Book lists for statistical pattern recognition
-
Advances in large margin classifiers, B.Schoelkopf, and C.Schuurmans, MIT Press, Cambridge, MA, 2000
-
Convex Optimization, Stephen Boyd and Lieven Vandenberghe
Cambridge University Press, 2004
-
Expert Systems and Probabilistic Network Models
, E. Castillo, J.M. Gutiérrez, and A.S. Hadi, Springer-Verlag, 1997, ISBN-10: 0387948589, ISBN-13: 978-0387948584, Spanish version available online
-
Information Theory, Inference, and Learning Algorithms
, David J.C. MacKay, Cambridge University Press, 2003, ISBN-10: 0521642981, SBN-13: 9780521642989
-
Introduction to Machine Learning, Draft of Incomplete Notes
, Nils J. Nilsson, 1996
-
Learning to Learn,
Sebastian Thrun and Lorien Y. Pratt, Kluwer Academic Publishers, ISBN-10: 0792380479
-
Bayesian Reasoning and Machine Learning (Draft), David Barber, 2010
-
Machine Learning, Neural and Statistical Classification
, D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds), 1994, ISBN-10: 013106360X, ISBN-13: 978-0131063600
-
Markov Random Fields and Their Applications
, Ross Kindermann and J. Laurie Snell, 1980, AMS ISBN: 0-8218-3381-2
-
Probability Theory: the Logic of Science
, E. T. Jaynes, Cambridge University Press, 2003, ISBN-10: 0521592712, ISBN-13: 978-0521592710
-
Recent Advances in Robot Learning,
Judy A. Franklin, Tom M. Mitchell, and Sebastian Thrun (Editors), Springer, 1996, ISBN-10: 0792397452
-
Reinforcement Learning: An introduction
, Richard Sutton and Andrew Barto, MIT Press, 1998, ISBN-10: 0-262-19398-1, ISBN-13: 978-0-262-19398-6
-
Advances in Kernel Methods - Support Vector Learning, B.Schoelkopf, C.J.C. Burges and A.J. Smola, MIT Press, Cambridge, MA, 1999
-
All of Statistics. A Concise Course in Statistical Inference, Larry Wasserman, Springer 2004
-
An Introduction to Computational Learning Theory, Michael J. Kearns and Umesh V. Vazirani, MIT Press, 1994, ISBN-10:
0-262-11193-4, ISBN-13: 978-0-262-11193-5
-
Bayesian Inference in Statistical Analysis, George E. P. Box and George C. Tiao, Wiley, 1992, ISBN: 978-0-471-57428-6
-
Bayesian methods for nonlinear classification and regression , David Denison, Chris Holmes, Bani Mallick and Adrian Smith, Wiley, 2002, ISBN: 978-0-471-49036-4
-
Bayesian Networks and Decision Graphs
, Finn V. Jensen, Springer-Verlag, 2001, ISBN:0387952594
-
Bayesian Theory , José M. Bernardo and Adrian F. M. Smith, Wiley, 2000, ISBN: 978-0-471-49464-5
-
Bioinformatics: The Machine Learning Approach, Pierre Baldi and Søren Brunak, MIT Press, 1998, ISBN-10:
0-262-02442-X, ISBN-13: 978-0-262-02442-6
-
Causality: Models, reasoning and Inference, Judea Pearl, Cambridge University Press, 2000, ISBN-10: 0521773628
-
Computational Intelligence: A Logical Approach
, David Poole, Alan Mackworth, Randy Goebel, Oxford University Press, New York 1998, ISBN: 0195102703
-
Computer Manual in MATLAB to accompany Pattern Classification, 2nd ed.
, David G. Stork and Elad Yom-Tov, John Wiley & Sons, 2004, ISBN: 0-471-42977-5
-
Data Mining: Concepts and Techniques, 2nd ed.
, Jiawei Han and Micheline Kamber, The Morgan Kaufmann Series in Data Management Systems, Jim Gray, Series Editor, Morgan Kaufmann Publishers, 2006, ISBN 1-55860-901-6
-
Data Mining: Practical Machine Learning Tools and Techniques (Second Edition)
, Ian H. Witten and Eibe Frank, Morgan Kaufmann, 2005, ISBN 0-12-088407-0
-
Elements of Information Theory, 2nd ed. , Thomas M. Cover and Joy A. Thomas, Wiley, 2006, ISBN: 0-471-24195-4
-
Estimation of Dependences Based on Empirical Data, V. Vapnik, Springer Verlag, 2006, 2nd edition, Hardcover ISBN: 978-0-387-30865-4
-
Gaussian Processes for Machine Learning
, Carl Edward Rasmussen and Christopher K. I. Williams, The MIT Press, 2006, ISBN 0-262-18253-X.
-
Introduction to Algorithms 2nd ed., Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein, MIT Press, 2001
-
Introduction to AI Robotics ,
Robin Murphy, MIT Press, 2000, ISBN-10: 0-262-13383-0
-
Introduction to Graphical Modelling, D Edwards, 2nd ed., Springer-Verlag 2000, New York, 333 pp. Hardcover ISBN 0-387-95054-0
-
Introduction to Machine Learning, Ethem Alpaydin, The MIT Press, October 2004, ISBN 0-262-01211-1
-
Kernel Methods for Pattern Analysis, J. Shawe-Taylor and N. Cristianini, Cambridge University Press, 2004, Hardback (ISBN-13: 9780521813976 | ISBN-10: 0521813972), Also available in eBook format
-
Latent Variable Models and factor Analysis, 2nd ed. , David Bartholomew and Martin Knott, Hodder Arnold,1999, Hardback, ISBN-10: 0340 69243X, ISBN-13: 978-0340692431
-
Learning in Graphical Models
, Michael I. Jordan, The MIT Press, Nov 1998, ISBN 0262600323
-
Learning Kernel Classifiers, Ralf Herbrich, The MIT Press, 2002, ISBN: 0-262-08306-X
-
Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond
, Bernhard Schölkopf and Alexander J. Smola, The MIT Press, 2001, ISBN-10: 0262194759, ISBN-13: 978-0262194754
-
Least Squares Support Vector Machines ,
J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, World Scientific Pub. Co., Singapore, 2002, ISBN 981-238-151-1
-
Machine Learning
, Tom Mitchell, McGraw-Hill, 1997, ISBN: 0070428077
-
Monte Carlo Methods in Bayesian Computation , Ming-Hui Chen, Qi-Man Shao, and Joseph G. Ibrahim, Springer-Verlag, 2000, ISBN 0-387-98935-8
-
Neural Networks for Pattern Recognition
, Christopher Bishop, Oxford University Press, 1996, ISBN 0-19-853849-9 Hardback, ISBN 0-19-853864-2 Paperback
-
Neurocomputing: Foundations of Research, James Anderson and Edward Rosenfeld (eds), MIT Press, 1988, ISBN-10:
0-262-51048-0, ISBN-13: 978-0-262-51048-6
-
Pattern Classification, 2nd ed.
, Richard Duda, Peter Hart and David Stork
, John Wiley & Sons, 2001, ISBN: 0-471-05669-3
-
Pattern Recognition and Machine Learning
, Christopher M. Bishop, Springer, 2006, ISBN: 978-0-387-31073-2
-
Pattern Recognition for Neural Networks
, Brian Ripley, Cambridge University Press, 1996, ISBN: 0 521 46086 7
-
Relational Data Mining,
Saso Dzeroski and Nada Lavrac (editors), Springer, Berlin, 2001, ISBN-10: 3540422897
-
Statistical Decision Theory and Bayesian Analysis, James O Berger, Springer, 1985 2nd ed., Hardcover
ISBN: 978-0-387-96098-2
-
Statistical Inference, G. Casella and R. Berger, Duxbury, 2001
-
Support Vector Machines, John Shawe-Taylor & Nello Cristianini - Cambridge University Press, 2000
-
Systems That Learn, 2nd Edition , Sanjay Jain, Daniel Osherson, James S. Royer, Arun Sharma, MIT Press, 1999, ISBN 0-262-10077-0
-
The Elements of Statistical Learning: Data Mining, Inference, and Prediction,Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer-Verlag 2001
-
Advances in Learning Theory: Methods, Models and Applications, J.A.K. Suykens, G. Horvath, S. Basu, C. Micchelli, J. Vandewalle (Eds.), 2003, ISBN: 1 58603 341 7
-
AI Application Programming, M. Tim Jones, Charles River Media, 2005, ISBN: 1584504218
-
Applied Evolutionary Algorithms in Java, Robert Ghanea-Hercock, Springer, 2003, ISBN: 0387955682
-
Artificial Intelligence, Rob Callan, Palgrave Macmillan, 2003, ISBN: 0333801369
-
Bayesian Learning in Neural Networks, R. Neal, Springer-Verlag, 1996
-
A Compendium of Machine Learning, Terry Caelli and Garry Briscoe, Intellect Books, 1996, ISBN-10: 1567501796
-
Computational Learning Theory and Natural Learning Systems, Vol. IV: Making Learning Systems Practical,
Russell Greiner, Thomas Petsche, Stephen Jose (Editors), The MIT Press, 1997, ISBN-10: 0262571188
-
Construction and Assessment of Classification Rules, David J. Hand, John Wiley and Sons, 1997, ISBN 0-471-96583-9
-
Data Mining and Knowledge Discovery with Evolutionary Algorithms, Alex A. Freitas, Springer, 2002, ISBN: 3-540-43331-7
-
Elements of Machine Learning, Pat Langley, Morgan Kaufmann, 1995, ISBN-10: 1558603018
-
Evolutionary Algorithms for Single and Multicriteria Design Optimization, Andrzej Osyczka, Physica-Verlag Heidelberg, 2001, ISBN-10: 3790814180
-
Explanation-Based Neural Network Learning: A Lifelong Learning Approach, Sebastian Thrun, Kluwer Academic Publishers, 1996, ISBN-10: 0792397169
-
Feature Extraction, Construction and Selection: A Data Mining Perspective, Huan Liu (Editor), Hiroshi Motoda (Editor), Springer, 1998, ISBN-10: 0792381963
-
Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering, Nikola K. Kasabov, The MIT Press, 1996, ISBN-10: 0262112124
-
Genetic Algorithms in Search, Optimization, and Machine Learning, David E. Goldberg, Addison-Wesley, 1989, ISBN-10: 0201157675
-
Graphical models for machine learning and digital communication, B. J. Frey, MIT Press, 1998
-
Hidden Markov Models: Estimation and Control, Robert J. Elliott, Lakhdar Aggoun and John B. Moore, Springer, 1995
-
An Introduction To Genetic Algorithms, Melanie Mitchell, MIT Press, 1998, 0-262-63185-7
-
An Introduction to Kolmogorov Complexity and Its Applications, Ming Li and Paul Vitanyi, Second Edition, Springer Verlag,1997, ISBN 0-387-94868-6
-
An Introduction to Latent Variable Models , Brian S. Everitt, Chapman & Hall, 1984, ISBN-10: 0412253100, ISBN-13: 978-0412253102
-
An Introduction to Neural Networks, Kevin Gurney, CRC Press, 1997, ISBN-10: 1857285034, ISBN-13: 9781857285031
-
Introduction to Statistical Pattern Recognition, 2nd ed, Keinosuke Fukunaga, Academic Press, 1990
-
Learning in Neural Networks : Theoretical Foundations, M. Anthony and P. Bartlett, Cambridge University Press, 1999
-
Machine Learning: A Theoretical Approach, Balas K. Natarajan, Morgan Kaufmann, 1991, ISBN-10: 1558601481
-
Machine Learning and Data Mining: Methods and Applications, Ryszad S. Michalski (Editor), Ivan Bratko (Editor), Miroslav Kubat (Editor), John Wiley & Sons,
1998, ISBN-10: 0471971995
-
Machine Learning and Image Interpretation, Terry Caelli, Walter F. Bischof, Springer, 1997, ISBN-10: 030645761X
-
Machine Learning Methods for Planning, Steven Minton, Morgan Kaufmann, 1993, ISBN-10: 1558602488
-
The Mathematics of Generalization, David H. Wolpert , Addison Wesley Longman, 1995, ISBN-10: 0201409852
-
Multidimensional Scaling, 2nd ed, T.F. Cox and M. A. A. Cox, Chapman and Hall, 2000.
-
The Nature of Statistical Learning Theory, V.N. Vapnik, second ed. Springer Verlag, 1999
-
Nonlinear Programming, O. L. Mangasarian, SIAM, 1994
-
Practical methods of Optimization, R. Fletcher, Wiley, 1988
-
Probabilistic Networks and Expert Systems. Robert G. Cowell, Steffen L. Lauritzen and David J. Spiegelhater, Springer, 2005, Language: English, ISBN-10: 0387987673, ISBN-13: 978-0387987675
-
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Judea Pearl, Morgan Kaufmann, 1988, ISBN-10: 1558604790
-
Readings in Machine Learning, Jude Shavlik (Editor), Thomas Dietterich (Editor), Morgan Kaufmann, 1990, ISBN-10: 1558601430
-
Reasoning about Uncertainty, Joseph Y. Halpern, The MIT Press, 2005, ISBN-10: 0262582597
-
Recent Advances in Reinforcement Learning, Leslie Pack Kaelbling (Editor), Kluwer Academic Publishers, 1996, ISBN-10: 0792397053
-
A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems, M. Vidyasagar, Springer-Verlag New York, Inc., Secaucus, NJ, 1997
-
Theory of Probability: A Critical Introductory Treatment, Bruno de Finetti, Wiley and Sons, 1970
Return to Student/Researcher Resource page
© 2008 Robert Fisher