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AbstractThis thesis is on the automation of diagrammatic proofs, a novel approach to mech-anised mathematical reasoning. Theorems in automated theorem proving are usuallyproved by formal logical proofs. However, there are some conjectures which humanscan prove by the use of geometric operations on diagrams that somehow representthese conjectures, so called diagrammatic proofs. Insight is often more clearly per-ceived in these diagrammatic proofs than in the algebraic proofs. We are investigatingand automating such diagrammatic reasoning about mathematical theorems.Concrete rather than general diagrams are used to prove ground instances of a univer-sally quanti�ed theorem. The diagrammatic proof is constructed by applying geometricoperations to the diagram. These operations are the inference steps of the proof. Ageneral schematic proof is extracted from the ground instances of a proof. It is rep-resented as a recursive program that consists of a general number of applications ofgeometric operations. When given a particular diagram, a schematic proof generatesa proof for that diagram. To verify that the schematic proof produces a correct proofof the conjecture for each ground instance we check its correctness in a theory of dia-grams. We use the constructive !-rule and schematic proofs to make a transition fromconcrete instances to a general argument about the diagrammatic proof.The realisation of our ideas is a diagrammatic reasoning system Diamond. Diamondallows a user to interactively construct instances of a diagrammatic proof. It thenautomatically abstracts these into a general schematic proof and checks the correctnessof this proof using an inductive theorem prover. Unlike other existing systems whichuse diagrams to construct essentially symbolic proofs, Diamond reasons with diagramsdirectly, so all the inference rules of a proof are diagrammatic.Despite a popular view of logicians from the past century that diagrams cannot beused in formal proofs, we show the contrary. The general diagrammatic proof frame-work presented in this thesis is a formalisation of diagrammatic reasoning. Diamondprovides an environment in which formal diagrammatic proofs of mathematical theor-ems can be constructed.

iii



iv



Acknowledgements
First and foremost, I should like to thank my supervisors Alan Bundy and Ian Greenwho gave me invaluable guidance and encouragement throughout the process of myresearch. Alan's sense of direction and general understanding of how things �t togetherin the big picture of science has been an inspiration for me. Ian's countless questionsand comments helped me convey my ideas in a more coherent manner.Thanks to Toby Walsh for commenting on the drafts of this thesis, to Predrag Jani�ci�cfor endless discussions which inspired many of my ideas, and to the members of theDream group in Edinburgh for many enjoyable discussions and useful comments.I especially thank Gavin Bierman for his love, understanding and encouragementthroughout this time.Lastly, najlep�sa hvala to my family for their continuous love and support.This research was supported by a studentship from the Department of Arti�cial Intel-ligence at the University of Edinburgh Studentship, a supplementary grant from theSlovenian Scienti�c Foundation, and a studentship from the British Overseas ResearchScheme.

v



vi



Declaration
I hereby declare that I composed this thesis entirely myself and that it describes myown research.

Mateja JamnikEdinburghFebruary 22, 1999

vii



viii



Publications
Parts of this thesis have already appeared in print, have been submitted for publication,or have been made publicly available:� Portions of Chapters 3, 7 and 8 are to appear in Journal of Logic, Language andInformation [Jamnik et al 99].� The original proposal for this thesis, thus parts of Chapter 3 and Chapter 4, werepublished in Perspectives on Cognitive Science [Jamnik et al 97a].� The main body of Chapter 7 appeared in Proceedings of the 15th IJCAI[Jamnik et al 97b].� Portions of Chapter 8 were published in Proceedings of the 1998 AAAI Fall Sym-posium on Formalising Reasoning with Visual and Diagrammatic Representations[Jamnik et al 98].

ix



x



Contents
Abstract iiiAcknowledgements vDeclaration viiPublications ixList of Figures xx1 Introduction 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Layout of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Literature Survey 82.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Representations of Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 102.2.1 Analogical Representation . . . . . . . . . . . . . . . . . . . . . . 102.2.2 Propositional Representation . . . . . . . . . . . . . . . . . . . . 102.2.3 Mixed Knowledge Representation . . . . . . . . . . . . . . . . . . 112.2.4 Cartesian Representation . . . . . . . . . . . . . . . . . . . . . . 122.2.5 Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 122.2.6 Diagrams on a Raster . . . . . . . . . . . . . . . . . . . . . . . . 132.2.7 Vector Representation . . . . . . . . . . . . . . . . . . . . . . . . 14xi



2.2.8 Topological Representation . . . . . . . . . . . . . . . . . . . . . 142.2.9 Conclusions About Representations . . . . . . . . . . . . . . . . 152.3 Abstraction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.3.1 Plotkin's Least General Generalisation . . . . . . . . . . . . . . . 172.3.2 Biermann's Method . . . . . . . . . . . . . . . . . . . . . . . . . 172.3.3 Bauer's Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.4 Anderson and Kline's Method . . . . . . . . . . . . . . . . . . . . 202.3.5 Mitchell's Version Space . . . . . . . . . . . . . . . . . . . . . . . 212.3.6 Quinlan's ID3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.3.7 Inductive Logic Programming . . . . . . . . . . . . . . . . . . . . 222.3.8 Baker's Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.3.9 Conclusions About Abstraction Mechanism . . . . . . . . . . . . 252.4 Diagrammatic Reasoning Systems . . . . . . . . . . . . . . . . . . . . . 262.4.1 Gelernter's Geometry Machine . . . . . . . . . . . . . . . . . . . 272.4.2 Koedinger and Anderson's DC . . . . . . . . . . . . . . . . . . . 282.4.3 Barker-Plummer and Bailin's \&"/GROVER . . . . . . . . . . . 302.4.4 Barwise and Etchemendy's Hyperproof . . . . . . . . . . . . . . . 322.4.5 Other Related Systems . . . . . . . . . . . . . . . . . . . . . . . 332.4.6 Conclusions About Diagrammatic Reasoning Systems . . . . . . 352.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Diagrammatic Theorems and Problem Domain 363.1 Diagrams and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.2 `Diagrammatic' Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 383.2.1 Commutativity of Multiplication . . . . . . . . . . . . . . . . . . 393.2.2 Pythagoras' Theorem . . . . . . . . . . . . . . . . . . . . . . . . 393.2.3 Triangular Equality for Even Squares . . . . . . . . . . . . . . . 403.2.4 Sum of Odd Naturals . . . . . . . . . . . . . . . . . . . . . . . . 413.2.5 Sum of Squares of Fibonacci Numbers . . . . . . . . . . . . . . . 413.2.6 Sum of Hexagonal Numbers . . . . . . . . . . . . . . . . . . . . . 423.2.7 Geometric Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43xii



3.2.8 Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.3 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.3.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.4 Abstractions in Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 483.5 Problem Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Constructive !-Rule and Schematic Proofs 534.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.2 !-Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.2.1 Motivation for using !-rule . . . . . . . . . . . . . . . . . . . . . 554.2.2 Example of Using the !-rule . . . . . . . . . . . . . . . . . . . . 564.3 Constructive !-Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.4 Schematic Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.4.1 Example of Schematic Proof in Arithmetic . . . . . . . . . . . . 584.4.2 Schematic Proof and Generalisation . . . . . . . . . . . . . . . . 604.5 Finding a Schematic Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 604.5.1 Meta Induction for Veri�cation of Schematic Proofs . . . . . . . 614.6 Why Use Schematic Proofs? . . . . . . . . . . . . . . . . . . . . . . . . . 614.7 Penrose, G�odel Argument and Constructive !-Rule . . . . . . . . . . . . 634.8 Diagrams and Schematic Proofs . . . . . . . . . . . . . . . . . . . . . . . 664.9 Schematic Diagrammatic Proof for Theorems ofCategory 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.9.1 Schematic Diagrammatic Proof for Triangular Equality forEven Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.9.2 Schematic Diagrammatic Proof for Sum of Odd Naturals . . . . 684.9.3 Schematic Diagrammatic Proof for Sum of Squares of FibonacciNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.9.4 Schematic Diagrammatic Proof for Sum of Hexagonal Numbers . 694.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70xiii



5 Design Considerations 725.1 Overview of Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.3 Diamond's Notion of Proof . . . . . . . . . . . . . . . . . . . . . . . . . 745.3.1 Diagrammatic Representation of Arithmetic Expressions . . . . . 755.4 Construction of Example Proofs . . . . . . . . . . . . . . . . . . . . . . 765.5 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795.5.1 Why Not Cartesian Representation Alone? . . . . . . . . . . . . 805.5.2 Why Not Topological Representation Alone? . . . . . . . . . . . 815.5.3 Mixed Representation . . . . . . . . . . . . . . . . . . . . . . . . 815.6 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866 Diagrammatic Operations 876.1 Classi�cation of Operations . . . . . . . . . . . . . . . . . . . . . . . . . 876.2 Multiple Representations of Diagrams . . . . . . . . . . . . . . . . . . . 886.3 Operations and Representations of Diagrams . . . . . . . . . . . . . . . 916.3.1 Transformation of Representations . . . . . . . . . . . . . . . . . 926.3.2 Destructor v. Constructor Operations . . . . . . . . . . . . . . . 936.4 Operations as Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946.5 Diagram Representation and Induction Schema . . . . . . . . . . . . . . 946.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 Extraction of Schematic Proofs 997.1 Context for Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007.2 Example Proof Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007.3 Formalisation of Schematic Proofs . . . . . . . . . . . . . . . . . . . . . 1017.4 Comparison of Abstraction Techniques . . . . . . . . . . . . . . . . . . . 1037.5 Abstracting for All Linear Functions . . . . . . . . . . . . . . . . . . . . 1067.5.1 Example of Abstraction . . . . . . . . . . . . . . . . . . . . . . . 1087.6 Breaking c-Homogeneous to f-Homogeneous Proof . . . . . . . . . . . . 109xiv



7.6.1 Example of Abstracting an f-Homogeneous Proof . . . . . . . . . 1127.7 Proofs With Case Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137.8 Proof Structure Considerations . . . . . . . . . . . . . . . . . . . . . . . 1147.9 Abstracting From One Example . . . . . . . . . . . . . . . . . . . . . . . 1167.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188 Veri�cation of Schematic Proofs 1198.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208.2 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228.4 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238.5 Function de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238.5.1 One Apply and Apply . . . . . . . . . . . . . . . . . . . . . . . . . 1238.5.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258.5.3 Mapping relation dmap . . . . . . . . . . . . . . . . . . . . . . . 1278.6 Correctness of Schematic Proofs . . . . . . . . . . . . . . . . . . . . . . 1278.6.1 Proof of Correctness of Schematic Proofs for an Example . . . . 1288.7 Size of Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298.8 Algebraic Correctness of Schematic Proofs . . . . . . . . . . . . . . . . . 1348.9 Arithmetic Conjecture and Diagrammatic Proof . . . . . . . . . . . . . . 1358.9.1 Diagrammatic Provability for an Example . . . . . . . . . . . . . 1358.10 Implementation of a Theory of Diagrams . . . . . . . . . . . . . . . . . . 1368.10.1 Loaded De�nitions and Lemmas . . . . . . . . . . . . . . . . . . 1378.10.2 Theorem Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 1388.10.3 Schematic Proof Encoding . . . . . . . . . . . . . . . . . . . . . . 1388.10.4 Proof Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399 Results and Evaluation 1419.1 Evaluation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419.1.1 Range and Depth of Theorems . . . . . . . . . . . . . . . . . . . 142xv



9.1.2 Source of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 1429.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439.2 Theorems Proved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449.3 Example of Diamond's Proof . . . . . . . . . . . . . . . . . . . . . . . . 1489.3.1 Diamond's Schematic Proof . . . . . . . . . . . . . . . . . . . . 1499.3.2 Diamond's Veri�cation Proof . . . . . . . . . . . . . . . . . . . . 1509.4 Theorems Not Proved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529.5 Diamond's Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539.5.1 Limitations on the Diagrams and Operations . . . . . . . . . . . 1549.5.2 Limitations of Abstraction Mechanism . . . . . . . . . . . . . . . 1549.5.3 Limitations of Veri�cation Mechanism . . . . . . . . . . . . . . . 1569.5.4 Limitations of User Interface . . . . . . . . . . . . . . . . . . . . 1579.6 Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16010 Related Work 16210.1 Diagrammatic Reasoning Systems . . . . . . . . . . . . . . . . . . . . . 16310.1.1 Hyperproof and Diamond . . . . . . . . . . . . . . . . . . . . . . 16310.1.2 GROVER and Diamond . . . . . . . . . . . . . . . . . . . . . . 16610.1.3 Conclusions on Diamond and Other Systems . . . . . . . . . . . 16810.2 Constructive !-Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16910.3 Schematic Proof Formalisation . . . . . . . . . . . . . . . . . . . . . . . 17110.4 Abstraction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 17310.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17511 Further Work 17611.1 More Diagrams and Operations . . . . . . . . . . . . . . . . . . . . . . . 17711.2 Improving the Abstraction Mechanism . . . . . . . . . . . . . . . . . . . 17811.2.1 Restriction on Recursive Structure of Schematic Proof . . . . . . 17911.2.2 Complexity of Dependency Functions . . . . . . . . . . . . . . . 18011.2.3 Flexibility in the Order of Diagrammatic Operations . . . . . . . 180xvi



11.3 Extending the Theory of Diagrams . . . . . . . . . . . . . . . . . . . . . 18111.4 Improvement of Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 18111.5 Formalisation of Abstractions in Diagrams . . . . . . . . . . . . . . . . . 18211.6 Diagrammatic Proofs in Other Problem Domains . . . . . . . . . . . . . 18611.6.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18611.6.2 Hardware Veri�cation . . . . . . . . . . . . . . . . . . . . . . . . 18811.7 Complete Automation of Diagrammatic TheoremProver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18911.8 The Nature of Various Knowledge Representations . . . . . . . . . . . . 19011.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19112 Conclusions 19312.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19412.1.1 Automating Diagrammatic Reasoning . . . . . . . . . . . . . . . 19412.1.2 Can Diagrams Be Used In Formal Proofs? . . . . . . . . . . . . . 19512.1.3 Diagrammatic Proofs . . . . . . . . . . . . . . . . . . . . . . . . 19612.1.4 The Human Mathematician and Diamond . . . . . . . . . . . . 19712.2 Have We Achieved the Aims? . . . . . . . . . . . . . . . . . . . . . . . . 197A More Examples of Diagrammatic Theorems 199A.1 Pythagoras' Theorem II . . . . . . . . . . . . . . . . . . . . . . . . . . . 199A.2 Triangular Equality for Odd Squares . . . . . . . . . . . . . . . . . . . . 200A.3 Even Triangular Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201A.4 Sum of All Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . 201A.5 Euler's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202B Complete Results 204B.1 Sum of Odd Naturals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204B.2 Sum of All Naturals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205B.3 Odd Triangular Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206B.4 Even Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207B.5 Odd Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207xvii



B.6 Fibonacci Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208B.7 Odd Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209B.8 Odd Naturals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210B.9 Sum of Two Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210B.10 Even Triangular Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211B.11 Triangular Equality for Odd Squares . . . . . . . . . . . . . . . . . . . . 212B.12 Triangular Equality for Even Squares . . . . . . . . . . . . . . . . . . . . 212B.13 Commutativity of Multiplication . . . . . . . . . . . . . . . . . . . . . . 213C User Manual for Diamond 214C.1 Starting Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214C.2 Constructing Examples of Proofs . . . . . . . . . . . . . . . . . . . . . . 215C.3 Abstracted Schematic Proof . . . . . . . . . . . . . . . . . . . . . . . . . 215C.4 Is it Correct? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216C.5 Import | Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216C.6 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217D Code 218D.1 Ftp and Web Site Instructions . . . . . . . . . . . . . . . . . . . . . . . 218D.1.1 Step by Step Instructions . . . . . . . . . . . . . . . . . . . . . . 218D.2 Other Software Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219D.3 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219Glossary 220Bibliography 224

xviii



List of Figures
2.1 Vector representation of a square and an applicable inference rule. . . . 142.2 The architecture of the Geometry Machine. . . . . . . . . . . . . . . . . 282.3 DC's problem de�nition and solution space. . . . . . . . . . . . . . . . . 302.4 The architecture of GROVER. . . . . . . . . . . . . . . . . . . . . . . . 312.5 Hyperproof's proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.1 Abstract representations of a square in the proof of the sum of oddnaturals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485.1 Some diagrammatic representations of arithmetic expressions. . . . . . . 755.2 Sum of odd naturals for n = 4. . . . . . . . . . . . . . . . . . . . . . . . 785.3 Sum of odd naturals for n = 3. . . . . . . . . . . . . . . . . . . . . . . . 795.4 Internal and external representation of a row and a square of magnitude4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.5 Screen shot of Diamond. . . . . . . . . . . . . . . . . . . . . . . . . . . 846.1 Multiple representations of a square. . . . . . . . . . . . . . . . . . . . . 896.2 Multiple representations of a rectangle. . . . . . . . . . . . . . . . . . . . 906.3 Multiple representations of a triangle. . . . . . . . . . . . . . . . . . . . 916.4 Transformation of representations of a square. . . . . . . . . . . . . . . . 936.5 Operations as tactics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.6 A square and the operations on it (n is a particular value). . . . . . . . 966.7 Correspondence between diagrammatic and algebraic rules. . . . . . . . 977.1 Example proof traces for n = 4 and n = 3 for sum of odd naturals. . . . 1017.2 Branching of dependency function for lcut. . . . . . . . . . . . . . . . . . 109xix



7.3 Branching of dependency function for split ends. . . . . . . . . . . . . . . 1098.1 De�nitions of diagrammatic operations in the theory of diagrams. . . . . 1248.2 Case analysis of operations. . . . . . . . . . . . . . . . . . . . . . . . . . 1329.1 Results: theorems proved using Diamond. . . . . . . . . . . . . . . . . . 1459.2 Spread of operations used in theorems proved with Diamond. . . . . . . 1479.3 (2n+ 1)2 = 1 + (4(2 � 1) + 4(2� 2) + � � �+ 4(2n)) = 1 + 4(Pni=0 2i) . . 1499.4 (2n)2 = �ni=1(4� 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559.5 Left-most position of a diagram in a proof tree. . . . . . . . . . . . . . . 1569.6 An example of three-dimensional virtual environment for diagrammaticproofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15810.1 The reasoning process direction in Hyperproof. . . . . . . . . . . . . . . 16410.2 The reasoning process direction in Diamond. . . . . . . . . . . . . . . . 16410.3 The diagram for the Diamond Lemma. . . . . . . . . . . . . . . . . . . . 16611.1 Additional multiple representations of diagrams. . . . . . . . . . . . . . 17811.2 Sum of odd naturals using abstract diagrams. . . . . . . . . . . . . . . . 18411.3 Incorrect portrayal of 2(m+ n; comb(m;�i:square(i); �i:ell(i))). . . . . . 18511.4 Correct portrayal of 2(m+ n; comb(m;�square(i); �i:ell(i))). . . . . . . . 18511.5 Three di�erent ways of portraying a square of magnitude n+ 1. . . . . . 18511.6 Pythagoras' theorem and continuous space. . . . . . . . . . . . . . . . . 18711.7 Representation of an n-bit incrementer composed of half-adders. . . . . 188

xx



Chapter 1Introduction

n2 = 1 + 3 + 5 + � � �+ (2n� 1)| Nicomachus of Gerasa (circa A.D.100)in Nelsen's Proofs Without WordsThis thesis is about mathematical reasoning with diagrams. Human mathematiciansoften informally use diagrams when proving theorems. We investigate whether we canmechanise this kind of diagrammatic reasoning in a formal computer proof system.Diagrams have been used as an aid in mathematical reasoning as far back as the timeof Euclid. They seem to convey information which is easily understood by humans.For example, it requires only basic secondary school knowledge of mathematics torealise that the diagram above is a proof of a theorem about the sum of odd naturals.We call such proofs diagrammatic proofs. In this thesis we present an investigationinto formalising diagrammatic reasoning, and a concrete result of this investigation, asemi{automatic formal proof system, called Diamond, which allows a user to provetheorems of arithmetic using diagrams.1.1 MotivationIt is an interesting property of diagrams that allows us to \see" and understand somuch just by looking at a simple diagram. Not only do we know what theorem thediagram represents, but we also understand the proof of the theorem represented bythe diagram and believe it is correct. 1



2 CHAPTER 1. INTRODUCTIONIs it possible to simulate and formalise this sort of diagrammatic reasoning on ma-chines? Or is it a kind of intuitive reasoning particular to humans that mere machinesare incapable of? Roger Penrose claims that it is not possible to automate certaindiagrammatic proofs.1 We are taking his position as a challenge and are trying to cap-ture the kind of diagrammatic reasoning that Penrose is talking about so that we willbe able to emulate it on a computer. Our motivation is not to discover diagrammaticproofs, but to study them in order to understand them better and be able to formalisethem.The importance of diagrams in many domains of reasoning has been extensively dis-cussed by Larkin and Simon [Larkin & Simon 87], who claim that \a diagram is (some-times) worth ten thousand words". The advantage of a diagram is that it conciselystores information, explicitly represents the relations among the elements of the dia-gram, and it supports a lot of perceptual inferences that are very easy for humans.Diagrams have been extensively used in the history of mathematics to aid informalmathematical reasoning. The use of diagrams in explanations of theorems and proofsof geometry dates back to Ancient Greece, and the time of Aristotle and Euclid. Thusit is surprising perhaps that more recently, starting with the invention of formal ax-iomatic logic in the sense of Frege, Russell and Hilbert, diagrams have been denied aformal role in theorem proving. It is generally thought by logicians that diagrams haveno accepted syntax nor semantic theory in a logical formalism which would make themrigorous enough to be used in formal proofs. Only very recently, in the last two dec-ades, there have been e�orts to �ll this gap and investigate whether and how diagramscan be used in formal proofs ([Sowa 84], [Kaufman 91], [Barker-Plummer & Bailin 92],[Barwise & Etchemendy 94], [Stenning & Oberlander 95], [Shin 95], [Hammer 95]).Alongside the revival of research on formal aspects of using diagrams, investigationshave also been carried out in other directions with di�erent perspectives on the use ofdiagrams. These can be characterised into three groups of research perspectives:� computational,� cognitive,� knowledge representation.From a computational perspective, Lindsay devised a computational model of humanreasoning with diagrams [Lindsay 98], and claims that diagrams are sometimes moree�cient for solving problems than the logical machinery. Glasgow makes a distinctionbetween visual and spatial reasoning [Glasgow & Papadias 92]. Stenning and Ober-lander in [Stenning & Oberlander 95] introduce computational models for interpretingEuler's circles [Euler 1795]. They also carry out a comparative analysis of the express-iveness of diagrammatic and sentential representations in [Stenning & Oberlander 92].From a cognitive perspective, Johnson-Laird [Johnson-Laird 83], and Hegarty andJust [Hegarty & Just 93] argue that humans, at least in some cases, use diagramsin their mental models of a situation. Mental imagery has been studied by Pylyshyn[Pylyshyn 81], Pinker [Pinker 85] and Kosslyn [Kosslyn 93], amongst others. From the1 Roger Penrose presented his position in the lecture at International Centre for Mathematical Sciencesin Edinburgh, in celebration of the 50th anniversary of UNESCO on 8 November, 1995.



1.2. AIMS 3knowledge representation perspective, a lot of work on various kinds of representationshas been carried out by Sloman and Hayes (see [Sloman 71], [Hayes 74], [Sloman 96]).Our work contributes in some sense to the e�ort in the research from the formalperspective on the use of diagrams, especially that of automated reasoning systemswhich use diagrams in the reasoning process. Automated reasoning systems have theirroots back in the �fties when the �rst programs were written that could automaticallyprove simple theorems of propositional logic. As a result of growing interest in theresearch on automated reasoning we have today many sophisticated systems such asthe theorem prover of Boyer and Moore (see [Boyer & Moore 90]) and Isabelle (see[Paulson 89]) in which one can prove complex theorems of mathematics.However, during all these years, perhaps due to the inuence of axiomatic logic, re-searchers have concentrated their e�orts in improving the exact, rigorous and formalproof searching algorithms for a particular formal system of logic. In their e�orts theyhave neglected the beauty and power of informal, intuitive reasoning of human math-ematicians. There are exceptions including work by Gelernter (see [Gelernter 63]) andBundy. Bundy argued in [Bundy 83] that in order to progress in computational logic,we need to go further and consider these informal aspects of human reasoning.Our work supports this argument. We investigate informal human reasoning withdiagrams and formalise it so that it can be carried out on machines. We build a metatheory in which diagrammatic proofs are formal. The issues which are addressed inthis process include formality, informality and rigour of diagrams in proofs. We hopeto gain an insight into the understanding of diagrammatic proofs.1.2 AimsThe concise storage of information, the intuitive representation of relations amongstelements of diagrams, and the support of perceptual inferences that humans seem to�nd easy to understand, are the characteristics of diagrams that we exploit in theresearch reported in this thesis. Our aim is to formalise diagrammatic reasoning andto show that diagrams can be used for proofs in a formal system.Diagrams are concrete in nature. Unless we use abstraction2 devices to representthe generality of a diagram (e.g. ellipsis), the diagram is a particular instance of thegeneral class to which it belongs. The use of abstraction devices in diagrams seemsto be problematic, because it is di�cult to keep track of them while manipulatinga diagram. It seems that humans do not manipulate such abstractions, but reasonwith concrete objects and infer the generality in some other way. We aim to capturediagrammatic proofs in a similar fashion on a computer. We use the concretenessproperty of diagrams and look into how theorems of mathematics can be expressed asdiagrams for some concrete values, i.e. ground instantiations of a theorem.2 Note that in this thesis the word abstraction has two meanings due to a lack of two di�erentappropriate words. First, an abstraction refers to some abstraction device, such as ellipsis, used ina diagram to represent its generality. Second, it refers to the abstraction mechanism which extractsa general proof from examples of a proof. We avoid using both meanings in the same sentence asmuch as possible.



4 CHAPTER 1. INTRODUCTIONThe initial diagrams are manipulated using some geometric operations which decon-struct diagrams in di�erent ways, but preserve certain properties. For instance, if adiagram represents a natural number, then the collection of diagrams which is a res-ult from applying some operation to the initial diagram represents the same naturalnumber. The sequence of geometric operations on a diagram represents the \inferencesteps" of a diagrammatic proof. This is a novel approach to proving theorems, whichto the best of our knowledge, has not been undertaken before in other research on theautomation of diagrammatic reasoning (see the literature survey in Chapter 2). Ratherthan using sentential formulae of some logic to prove a mathematical theorem, we usevisual manipulations of diagrams. The fact that the operations are visual seems tomake them intuitively easier to understand and use for humans. No specialised know-ledge of logic is required, just some familiarity with spatial manipulations. A concreteproof instance is called an example proof, and consists of a sequence of operationsapplied to the concrete diagram. The set of all available operations de�nes the proofsearch space.As humans seem to use other machinery to infer the generality of a diagram, or atheorem and its proof that the diagram conveys, we too need to �nd an alternativemechanism to capture a general proof. We do so by extracting a general patternfrom several proof instances, and capture it in a recursive program, called a schematicproof. This recursive program allows us to conclude a general diagrammatic proof forthe universally quanti�ed theorem.Finally, a general schematic proof which is inferred from the instances has to be shownto be correct. It seems that humans sometimes omit this step all together. Humanmachinery for extracting a general argument is usually convincing enough to reassurethem that the general argument is correct, e.g. consider the proof at the beginning ofthis chapter. In an automated reasoning system, we need to show formally the correct-ness of the induced general argument. This con�rms that a diagrammatic schematicproof is indeed a correct formal proof of a theorem. We use the constructive !-rule,an existing technique in logic, to justify the step from schematic proofs to theorem-hood. [Baker et al 92] investigated this rule in the domain of arithmetic theorems.The constructive !-rule allows us to capture in�nitary concepts in a �nite way usingthe diagrams. In this thesis we aim to investigate the entire process of constructingexamples, extracting a general proof, and showing that the general proof is correct.Together, all three stages constitute our formalisation of diagrammatic proofs.Having formalised the use of diagrams in proofs it is interesting to investigate therelation between formal algebraic proofs and more \informal" diagrammatic proofs.Usually, theorems are formally proved with the use of inference steps which oftendo not convey an intuitive notion of truthfulness to humans in quite as easy way asdiagrams do. The inference steps of a formal symbolic (as opposed to diagrammatic)proof are statements that follow the rules of some logic. The reason we trust that theyare correct is that the logic has been previously proved to be sound. Following andapplying the rules of such a logic guarantees that there is no mistake in the proof.We hope to have such a guarantee in our proof system, and moreover, to gain a moreinformal insight into the proof. Ultimately, the entire process of diagrammaticallyproving theorems will illuminate the issues of formality, rigour, truthfulness and powerof diagrammatic proofs.



1.3. CONTRIBUTIONS 51.3 ContributionsThere are three main contributions made by our work. First, our research introduces anovel approach to automated reasoning about mathematical theorems. There has beenlittle work done on the automation of systems which use diagrams in such a direct wayas our system Diamond, where all of the traditional formal rules of some logic whichare expressed as sentential formulae, are completely replaced by geometric operationson diagrams. Thus, all the inference rules of Diamond are diagrammatic.Second, the research reported in this thesis shows that diagrams can be used for formalproofs. Moreover, formal proofs are not just aided by diagrams, but can be constructedusing only diagrams and operations on them. We formalise diagrammatic reasoningin a particular domain of mathematics, and implement a reasoning system Diamondwhich is capable of diagrammatically proving a number of theorems (Chapter 9).Finally, we show how the constructive !-rule can be used to reason with particular in-stances of diagrams rather than with abstractions in general diagrams. We demonstratehow this technique can be used to capture general diagrammatic proofs (Chapter 4).These three contributions are embodied in an implementation of a diagrammatic proofsystem called Diamond (Diagrammatic Reasoning and Deduction),3 which auto-mates diagrammatic reasoning and applies it to problem solving in mathematics. Dia-mond is a body of Standard ML of New Jersey code which interactively, via a graphicaluser interface, allows a user to construct diagrammatic proofs.The construction of diagrammatic proofs in Diamond consists of three steps.� The user interactively constructs examples of proofs by choosing an initial dia-gram which represents the theorem (Chapter 5), and then applies diagrammaticoperations (Chapter 6) to build a proof.� Diamond then automatically extracts a general pattern from these instances,and captures it in a recursive program, called a schematic proof. (Chapter 7)� The �nal step is to check if the general diagrammatic proof is correct. Diamondautomatically veri�es a given schematic proof. (Chapter 8)The main criticism of Diamond is that its expressiveness of diagrammatic rules islimited. It seems that there are rules which cannot be expressed as manipulations ofdiagrams with the current repertoire. Indeed, there might be theorems which consist ofterms that cannot be expressed as diagrams. To overcome these weaknesses Diamondneeds to be extended with some additional diagrams and operations on them. Ourdiagrammatic approach can also be applied to other problem domains (e.g. geometry,hardware veri�cation). Finally, an interesting direction for future work is to extendDiamond to a fully automated theorem prover which discovers diagrammatic proofs.There is a potential for the ideas we present in this thesis to be used for exploringhuman intuitive reasoning in a novel way. We think that humans �nd diagrammatic3 I should like to thank Gavin Bierman for inventing the name for this system.



6 CHAPTER 1. INTRODUCTIONproofs easier to understand and more compelling than their logical counterparts. Wehave only anecdotal evidence to support our belief. However, some comparative psy-chological validity experimental study could be carried out. We propose that such astudy could use Diamond to provide an architecture where the diagrammatic proofscan be constructed and explored in order to gain an insight into the understanding ofthe proof.1.4 Layout of ThesisHere is the organisation and the layout of this thesis. We give a brief description ofeach chapter in order to give an overall picture of the research reported in this thesis,and to point the reader to a speci�c topic of interest.Chapter 1, Introduction. This chapter. We introduced the topic of this thesis, i.e. theformalisation of a diagrammatic reasoning system in mathematics.Chapter 2, Literature Survey. We report extensively other people's work on threetopics which are related to our work: the representation of diagrams, the ab-straction mechanism for inducing general arguments from speci�c ones, and onother automated diagrammatic reasoning systems.Chapter 3, Diagrammatic Theorems and Problem Domain. We identify theoremswhich lend themselves to diagrammatic representations. We devise a taxonomyof diagrammatic theorems which helps us choose a domain of problems on whichwe focus our attention.Chapter 4, Constructive !-Rule and Schematic Proofs. We introduce a mathematicalbasis, i.e. the constructive !-rule, for justifying the step of inducing a universallyquanti�ed statement from its instances. In particular, the rule allows us to cap-ture a general diagrammatic proof by a recursive program, i.e. a schematic proof,which consists of applications of diagrammatic operations, and is extracted fromconcrete examples of a proof using diagrams.Chapter 5, Design Considerations. This is where the description of our diagrammaticproof system Diamond starts. Several theoretical issues which need to be ad-dressed in the design of Diamond are discussed here. They include Diamond'snotion of a proof, the construction of examples of proofs, the representation ofdiagrams, Diamond's architecture and its interface.Chapter 6, Diagrammatic Operations. The inference steps of a diagrammatic proof areoperations on a diagram, therefore we de�ne them here and give some examples.Chapter 7, Extraction of Schematic Proofs. A diagrammatic proof is captured by usinga schematic proof. We de�ne the formalisation of schematic proofs. A mechanismfor abstracting a general schematic proof from examples of a diagrammatic proofis described here.Chapter 8, Veri�cation of Schematic Proofs. The mechanism for extraction of aschematic proof is an inductive inference algorithm. It is a machine's attempt to



1.4. LAYOUT OF THESIS 7make an \intelligent" guess of what the general proof is. This \guess" needs tobe veri�ed and formally shown to be correct. In this chapter we de�ne a way ofcarrying out the veri�cation, in particular, we devise a theory of diagrams wherewe can check for correctness of a schematic proof.Chapter 9, Results and Evaluation. We list some of the theorems that Diamond iscapable of proving, and go through one particular example of a theorem and itsdiagrammatic proof. We also discuss some of the limitations of Diamond todate.Chapter 10, Related Work. We relate several aspects of our research to the work ofother researchers. One of these aspects is the comparison between Diamond andother diagrammatic reasoning systems.Chapter 11, Further Work. We describe possible future tasks which could improveand extend Diamond. We also give some ideas for taking our research furtherin another research project which looks at creating a completely automated dia-grammatic theorem prover.Chapter 12, Conclusions. Finally, we end with some concluding remarks.Appendix A, More Examples of Diagrammatic Theorems. Some more examples oftheorems and their diagrammatic proofs are given here.Appendix B, Complete Results. We present the diagrams, the schematic proofs andtheir veri�cation for all the diagrammatic proofs that Diamond can extract.Appendix C, User Manual. We give the reader all the necessary information to beable to use Diamond to construct diagrammatic proofs.Appendix D, Code. We give the reader all the necessary information to obtain thecode and to install it on a computer to be able to run Diamond.



Chapter 2Literature Survey
A

D

CB AD = CD | H. GelernterRealization of a Geometry{Theorem Proving MachineThis chapter is a survey of several aspects of the work done in the area of reasoningand its automation. In particular, we identify four issues which are of interest in theautomation of diagrammatic reasoning system: the internal representation of diagrams,the abstraction mechanism for inducing general arguments from speci�c ones, a generalsurvey of systems which mechanise the use of diagrams in some way, and the use of theconstructive !-rule in schematic proofs. The �rst three of these issues are discussed inthis chapter, whereas the last will be discussed in the Chapter 4.In x2.1, we set the context within which we survey the work done on each of thethree topics. In x2.2, we discuss some possible techniques for internal representation ofdiagrams on a computer. In x2.3, we present some abstraction mechanisms. Finally, inx2.4 we describe some diagrammatic reasoning systems which have been implementedin the past. The main intention of surveying the �rst two topics, i.e. the representationsof diagrams and the abstraction mechanisms, is to provide us with some choices fromwhich we can either select the appropriate technique which suits the requirements ofour research project, or use some features of these techniques in devising our own.8



2.1. CONTEXT 92.1 ContextOne of the aims of our research is to formalise a diagrammatic reasoning system whichproves theorems of mathematics with geometric operations on a diagram rather thanusing formulae of some logic. The geometric operations on a diagram capture theinference steps of the proof. Therefore, one of the important issues in the design ofsuch a system is the internal representation of diagrams. The intention is to exploitthe concreteness property of diagrams by which we mean that diagrams which areused in the construction of a proof are of a particular rather than general magnitude.For instance, if a proof involves carrying out some operations on a square, the usermanipulates a square of some concrete magnitude, rather than a general square ofmagnitude, say, n. This proof procedure is only an instance of a general proof. Ageneral proof needs to be extracted from several instances, i.e. examples of proofs. Werefer to the extraction of a general proof from examples as an abstraction. Therefore,another important issue which needs to be addressed in our research is the abstractionmechanism which is used to infer general arguments from speci�c ones. Finally, we areinterested in existing diagrammatic reasoning systems which are related to the researchof the use of diagrams for proofs that we carry out and report on in this thesis.Our intention is to introduce a suitable representation for the diagrammatic reasoningsystem's internal representation of objects and manipulations. These need to capturethe intuitiveness, rigour and simplicity of human perception when reasoning with dia-grams. A computer does not yet possess the complex visual perception capabilities ofhumans. Therefore, an appropriate representation of diagrams and operations on themwhich enables a system to reason by non-visual means needs to be chosen. In x2.2 wediscuss some representations of diagrams which are available to us for the internal rep-resentation of diagrams. These include Cartesian representation, projective geometry,diagrams on a raster, vector representation and topological (relational) representation.Our choice of the representation for implementation of diagrams and operations willbe discussed in x5.5.As already mentioned, we intend to automate the abstraction of a general diagrammaticproof from instances of a proof. There are many techniques for the implementationof the abstraction mechanism which are available to us. The work on abstractiontechniques has been a very vibrant research topic in the area of machine learning. Inx2.3 we present several existing abstraction techniques. These include Plotkin's leastgeneral generalisation, Biermann's method, Bauer's method, Anderson and Kline'smethod, Mitchell's version space, Quinlan's ID3, Inductive Logic Programming, andBaker's method. Our choice of the abstraction technique will be discussed in x7.4.Finally, in x2.4 we describe several other diagrammatic system which have been im-plemented. They all use diagrams for reasoning in some way: to store information, toreject false facts, to infer new facts, etc. We present systems whose problem domain isEuclidean plane geometry, but we briey mention other systems as well. We concen-trate in more detail on Gelernter's Geometry Machine, Koedinger and Anderson's DC,Barker-Plummer and Bailin's GROVER, and Barwise and Etchemendy's Hyperproof,because these seem to be closest to our research in the use of diagrams for problemsolving.



10 CHAPTER 2. LITERATURE SURVEY2.2 Representations of DiagramsGenerally, there are two main classes of representation, analogical and propositional.However, there is also a mixed knowledge representation which contains elements ofboth, analogical and propositional representation. Analogical and propositional rep-resentations are perhaps too specialised forms of representation, whereas mixed rep-resentation allows more exibility. All three kinds of representations will be describednext.2.2.1 Analogical RepresentationAnalogical representation is also sometimes called a direct or homomorphic representa-tion. The syntax of such a representation models the semantics of the problem domain.The de�nition of analogical knowledge representation comes from [Sloman 85]:\If R is an analogical representation of T, then there must be parts of Rrepresenting parts of T, [...] and it must be possible to specify some sort ofcorrespondence, possibly context-dependent, between properties or relationsof parts of R and properties or relations of parts of T, [...]"Take for example, a cube to be the system T . Its representation R might be some twodimensional drawing of the cube where the lines in the diagram represent the edgesof the cube, points or dots might represent the vertices, dotted lines might representhidden edges, regions represent faces of the cube, etc. Furthermore, the propertiesof T such as three dimensional con�gurations of edges and surfaces of the cube canbe analogically represented in R as di�erent relationships between lines meeting at apoint.Note that not all relations in R need to be analogically named from T . It is di�cultfor the angles between edges or between surfaces of the cube in T to be representedcorrespondingly in R as angles between lines. Therefore, the interpretation of theanalogical representation might involve a large range of very complex procedures, wheresome representations might even be ambiguous. Analogical representation seems tobe quite a specialised one which suits some problems better than others. We willdiscuss our choice of representation in x5.5 after we present the requirements whichthe representation of diagrams should meet.2.2.2 Propositional RepresentationPropositional representation is also called Fregean or sentential (see [Sloman 71] and[Sloman 85]). The structure of R does not correspond to the semantics of T . Partsand relationships of the representation of T are not related to the problem domain.For example, if T is a cube, then its propositional representation R could be:f(0; 0; 0); (1; 0; 0); (0; 1; 0); (1; 1; 0); (0; 0; 1); (1; 0; 1); (0; 1; 1); (1; 1; 1; )g



2.2. REPRESENTATIONS OF DIAGRAMS 11The structure of the phrase \lower-left-front vertex of the cube" and the semanticsof the point (0,0,0) do not correspond naturally. Their relationship is decided bya convention. We just know (decided by the use of Cartesian representation) thatone represents the other. Programming languages, or natural languages, or predicatecalculus are propositional to some extent, because they use sentential representationsof the problem which do not correspond to the semantics of the problem. Their relationis de�ned by a generally accepted convention.12.2.3 Mixed Knowledge RepresentationNote that the two categories of knowledge representation given in x2.2.1 and x2.2.2 arenot exhaustive. A representation could be partly analogical and partly propositionalat the same time, or none of these at all. The representation could equally be aexible one, ranging between a domain dependent analogical representation and ageneral propositional structure. We could perhaps say that the representations di�erin the degree that they are analogical or propositional. A balanced mix of analogicaland propositional representation is a good candidate for a problem if it allows us torepresent the problem so that the required detail is not abstracted away. At the sametime the problem should not be overloaded with unnecessary detail.Ideally, we would like to use analogical representation for diagrams, because it seemscloser to human visual perception of diagrams. However, diagrams need to be repres-ented on a computer, which is more suited to manipulating symbols. This suggestsusing a propositional representation for diagrams. It appears that neither analogicalnor propositional representation alone is su�cient for mechanised diagram represent-ation, which perhaps suggests we should use a mixed representation. In this sectionwe discuss various kinds of mixed representation. The analysis of, and the discussionabout our choice of representation for diagrams in the scope of the implementation ofour diagrammatic reasoning system will be given in x5.5.The representations given in the subsequent sections do not fall under the two maincategories listed above (i.e analogical and propositional knowledge representation),but rather contain an element of each. They are potential candidates for the exiblerepresentation mentioned:1. Cartesian representation [Descartes 1637],2. Projective geometry [Zisserman 92],3. Diagrams on a raster [Furnas 90],4. Vector representation [Larkin & Simon 87],5. Topological (relational) representation.1 There are attempts to create analogical programming languages. Research in visual languages is anexample of this. For more information, the reader is referred to any issue of Journal of Languagesand Computing.



12 CHAPTER 2. LITERATURE SURVEY2.2.4 Cartesian RepresentationThis is a commonly used representation in geometry. Examples of systems whichuse Cartesian coordinates for internal representation of diagrams are the GeometryMachine by [Gelernter 63] (see x2.4.1) and Polya by [McDougal & Hammond 93]. Dia-grams are represented in terms of the coordinate system, typically two or three dimen-sional. In a two dimensional space a point is a pair of numbers which is the coordinate.Diagrams can be represented as lists of coordinates. For instance, a possible Cartesianrepresentation of a cube is as follows:Cube = f(0; 0; 0); (1; 0; 0); (0; 1; 0); (1; 1; 0); (0; 0; 1); (1; 0; 1); (0; 1; 1); (1; 1; 1; )gCarrying out operations on geometric objects represented by Cartesian coordinatesrequires matrix or other kinds of symbolic manipulations. These manipulations canbe complex and unintuitive even for simple operations. For instance, a translation ofa cube as de�ned above for S units of magnitude along the x-axis can be de�ned as:x-translate (S; f(X1; Y 1; Z1); (X2; Y 2; Z2); (X3; Y 3; Z3); (X4; Y 4; Z4);(X5; Y 5; Z5); (X6; Y 6; Z6); (X7; Y 7; Z7); (X8; Y 8; Z8)g)= f(X1 + S; Y 1; Z1); (X2+ S; Y 2; Z2); (X3+ S; Y 3; Z3); (X4+ S; Y 4; Z4);(X5 + S; Y 5; Z5); (X6 + S; Y 6; Z6); (X7+ S; Y 7; Z7); (X8+ S; Y 8; Z8)g)However, computers are e�cient at symbolic manipulations of diagrams representedby Cartesian coordinates.The reader is referred to the the next section to see how the Cartesian coordinates relateto homogeneous coordinates, i.e. how Cartesian representation is used in projectivegeometry.2.2.5 Projective GeometryWe list here a few essential de�nitions that might prove useful in understanding theprojective geometry representation:2Projective Geometry: geometry where only the properties that are preserved byprojective transformations are de�ned (e.g. collinearity of points, intersection oflines, cross ratio; but not distance between points, angles between lines).Projective Plane: a plane P 2 on which the projective geometry is de�ned. It ismodelled by a set of rays in a three dimensional space, where rays emanate froma common origin.Invariants: properties of geometric con�gurations which remain unchanged underparticular transformation (e.g. rotating and translating two points alters theircoordinates, but the distance between the points, i.e. the relative measurement,remains unchanged).2 For more information, see [Zisserman 92] from where most of the de�nitions are taken.



2.2. REPRESENTATIONS OF DIAGRAMS 13Homogeneous Coordinates: a 3-vector point representation, where a point in twodimensional space is represented as a vector x�! = (x1; x2; x3)t, instead of (x; y)t.A plane is represented in homogeneous coordinates by three numbers (x1; x2; x3),which represent a point x�!. One can think about homogeneous coordinates as raysthrough the origin in a three dimensional space. Only the direction of the ray isimportant, so all points of the form �x�! = (�x1; �x2; �x3)t are equivalent (with� 6= 0).Projective Transformation: also called projectivity; it is a projection from one pro-jective plane, �, to another, �, represented as a non-singular 3�3 matrix actingon homogeneous coordinates, where x�! are the coordinates of the image of X�!.In projective geometry points, lines and shapes are represented by homogeneous co-ordinates on the projective plane. For example, a line is represented by homogeneouscoordinates as follows:l1x1 + l2x2 + l3x3 = 0 or l�!:x�! where l�!= (l1; l2; l3)tNote that points and lines of the plane in projective geometry have a symmetric role,which is called a \Principle of Duality". Thus, all the statements or theorems concern-ing points in projective geometry hold also for lines, and vice versa.2.2.6 Diagrams on a RasterA raster is a regular, discrete, two dimensional assembly of picture elements (pixels).The raster image is scanned and inspected, so that the relevant information, such asshapes and objects, can be extracted from it. With appropriate processing operatorsthe information is interpreted, so that the system can reason about the components ofthe diagram.The �rst system developed using this sort of representation for diagrams was calledWHISPER, developed by [Funt 80]. It solved physical problems of stability of rigidbodies. The diagram was used as a tool, interpreted through a retina component of thesystem, and then modi�ed according to the stability of the objects. Another systemusing a raster-image for a diagram representation was developed by [Furnas 90] andwas called BITPIC.The example of a raster diagram representation for a rectangle would be (note thata di�erent annotation is used for di�erent element of the diagram; e.g. `x' for borderlines, `o' for interior of the rectangle, `X' for the vertices):XxxxxxxxxxxxxxxxxxxxXxoooooooooooooooooooxxoooooooooooooooooooxxoooooooooooooooooooxxoooooooooooooooooooxxoooooooooooooooooooxXxxxxxxxxxxxxxxxxxxxX



14 CHAPTER 2. LITERATURE SURVEYRaster representation of diagrams does not appear to be very e�cient for implementa-tion due to the fact that a large area of pixels has to be scanned, saved and interpretedfor every input or modi�cation of a diagram. However, it could be argued that it isanalogous to human retinal image, for instance. Hence it could be considered to beclose to the way human perceive diagrams.2.2.7 Vector RepresentationVector representation is sometimes also called \diagrams as graphs". It seems to be apopular way of representing diagrams in a computer, where a diagram is a combinationof a structural and a relational (topological) graph [Kulpa 94]. Purely topologicalrepresentation will be discussed in x2.2.8. Vector representation is overloaded withinformation for problems that do not require an explicit representation of either therelations amongst the elements of a diagram, or the structure of a diagram.Nodes of the structural graph represent elements of the diagram, and edges of the graphrepresent various relations between the elements of the diagram. More complex dia-grams can require several simultaneous structural graph representations, one depictingthe topological structure of the diagram, another delineating the metrical information,and so on. Figure 2.1 shows a diagram of a square using vector representation.
Inference Rule: Split square diagonally

Figure 2.1: Vector representation of a square and an applicable inference rule.The implementation of such graphs is easy in the form of a linked list of records.Reasoning about the diagram is carried through a set of inference rules, which areimplemented as a set of graph rewrite rules, directly corresponding to the predicatecalculus implications (see Figure 2.1).This type of diagram representation is not restricted to two dimensional diagrams, butcan easily be extended to three dimensional space. Moreover, it could be generalisedto represent any arbitrary representation scheme. This is referred to as model-basedreasoning, which is a generalisation of diagrammatic reasoning. Namely, an arbitrarymodel of the problem, in the sense of logical model theory, is directly manipulated andinspected in the process of reasoning.2.2.8 Topological RepresentationTopological (also called relational) representation is, in contrast to Cartesian represent-ation, independent of any coordinates. It expresses the relations between the elements



2.3. ABSTRACTION TECHNIQUES 15of the diagram. For instance, if we have a square ABCD, then its topological repres-entation might look like this:point(a) segment(ab) angle(abc)point(b) segment(bc) angle(bcd)point(c) segment(cd) angle(cda)point(d) segment(da) angle(dab)segment(XY)=segment(YX) angle(XYZ)=angle(ZYX)segment(XY)=segment(WZ) angle(XYZ)=angle(QPR)Topological representation is easy to implement on computers. It can vary in the degreeof detail explicitly represented. For instance, if the information about the angles ofa square is not needed to solve a problem, then such information does not need tobe speci�cally stated. The downside is that topological representation can be toospecialised for some problems, especially when numerical information about a diagramis required to solve a problem.GROVER by [Barker-Plummer & Bailin 92], for example, uses topological represent-ation for internal representation of diagrams.2.2.9 Conclusions About RepresentationsIn x2.2 we presented three kinds of knowledge representation: analogical, propositionaland mixed. Analogical and propositional representation alone appear to be too special-ised, so we concentrate on the mixed type of representation. We discussed �ve kindsof mixed representation. The following table summarises the pros and cons of each ofthese �ve mixed representations. We discuss our choice of diagram representation inx5.5. Representation Pros ConsCartesian e�cient symbolic manipu-lation unintuitive and complexProjective Geometry e�cient symbolic manipu-lation unintuitive and complexDiagrams on raster analogous to human per-ception ine�cient symbolic manip-ulation, complexVector e�cient and easy to imple-ment, intuitive specialised, too much in-formationTopological e�cient and easy to imple-ment, intuitive specialised2.3 Abstraction TechniquesThe term \abstraction" is used in this thesis to refer to the process of inferring generalarguments from speci�c ones. In computer science this process is often called inductive



16 CHAPTER 2. LITERATURE SURVEYinference, inductive learning or generalisation.3 Abstraction summarises a set of datain a way, so that the new representation can predict new instances of the data set. Inparticular, we refer to learning from examples, i.e. using a set of examples to �nd amodel that �ts all the instances of our set. Sometimes mathematical models are usedfor this. Using the model, we can infer new instances. We are in particular interestedin abstracting a general proof from instances of a proof. This is not a new problem| many abstraction techniques have been around for a few decades (see [Plotkin 69],[Winston 75], [Mitchell 78] and [Michalski 83]).Abstraction has many di�erent de�nitions. These range from our intuitive de�nitionto Vere's de�nition of abstraction in [Vere 77], to learning from implications (moregenerally from theorems) or conjunctions, to term abstraction and structural matching[Kodrato� 88]. We are interested in the following general de�nition of abstractionwhich assumes some propositional representation: I is more general than J (i.e. I > J)if J is an instance of I. Using some substitution � it follows that �(I) = J . Inparticular, we are interested in learning from implications, where we need to introduceuniversally quanti�ed variables. For instance, if e1; e2; e3; : : : ; ei is our set of examples,then we say that " is an abstraction of e1; e2; e3; : : : ; ei if for each n it follows that thereexists �n such that �n(") Cn; en, where Cn; is used to denote a computation carried outby a computer. For example, �n might be a function de�nition of Fibonacci numbers:Fib0 = 0Fib1 = 1Fib2 = 18n > 0 Fibn+2 = Fibn+1 + Fibnthus �n = Fibn. So, if e4 = 3 then �4 = Fib4 = Fib3 + Fib2 = 2 + 1 = 3.An important aspect of the abstraction mechanism which is of interest is not termabstraction, but rather the abstraction of a recursive structure (in our case, the ab-straction of a recursive computation: function de�nition of Fibonacci numbers is anexample of such computation) from the given set of examples.There are two main classes of abstraction techniques:� Analytic: learning from one example only (e.g. explanation based generalisation;see [Mitchell et al 86]),� Inductive: learning a concept from several examples.Here, we are interested in the latter methods, i.e. the inductive learning techniques.In the next few sections we present some of the available abstraction techniques.3 Note that generalisation in the sense of abstraction is di�erent from generalisation in the context ofinductive theorem proving.



2.3. ABSTRACTION TECHNIQUES 172.3.1 Plotkin's Least General GeneralisationIn light of the de�nition of the abstraction given above, Plotkin came up with thealgorithm for what is known as least general generalisation [Plotkin 69], [Plotkin 71].Given a set of examples E = fe1; e2; e3; : : : ; eng, then the least general generalisationof E is lg(E) = "i such that "i is an abstraction of E and for any other abstraction "jof E it holds that "j � "i (we use the notion of is more general than, i.e. > as de�nedearlier).Two examples (words, in Plotkin's terminology) are compatible if and only if theyare both terms or have the same predicate symbol. A set E of examples is saidto be compatible if and only if any two examples ei and ej in E are compatible.Plotkin's theorem states that every non-empty �nite set of examples has a least generalgeneralisation if and only if any two examples in the set are compatible.Therefore, let our set of examples be E = fe1; e2; e3; : : : ; eng. Then the least generalgeneralisation of E is:lg(E) = lg(e1; lg(e2; lg(: : : ; lg(en�1; en) � � � )))Now, the algorithm for least general generalisation of two compatible examples is asfollows:1. Take 2 compatible examples, e1 and e2.2. Let "1 = e1 and "2 = e2.3. While there exist sub-examples of "1 and "2, call them t1 and t2, which havethe same place (i.e. index) in "1 and "2 respectively, such that t1 6= t2, and suchthat t1 and t2 begin with a di�erent function symbol or at least one of them is avariable do:(a) Choose a variable x distinct from any in "1 or "2.(b) Wherever t1 occurs in the same place in "1 as t2 occurs in "2, replace each:t1 and t2 by x.4. The least general generalisation of E is "1 (= "2) with all possible sub-examplesreplaced.Most of the abstraction techniques that we describe in the rest of this chapter wereinuenced and use in some way Plotkin's ideas for a least general generalisation.2.3.2 Biermann's MethodIn [Biermann 72] and [Biermann & Krishnaswany 74] an algorithm which dealt withthe formation of procedures from sequences of instructions was devised by Biermann(later jointly with Krishnaswany). This work was motivated by the aim to synthesiseprograms, and was not seen as a generalisation or inductive learning problem that



18 CHAPTER 2. LITERATURE SURVEYPlotkin tackled. The input to the system called autoprogrammer is example calcula-tions, and the output of the system is programs (i.e. procedures) for these calculations.Example calculations are recorded in traces that contain the information about thecomplete memory contents at any one time (i.e. snap shots of all data structures), andpairs of conditions and instructions executed at any time.The algorithm for the synthesis of a procedure is de�ned in terms of four operat-ors Q1; Q2; Q3 and Q4. Q1 is the operator which inserts into each example trace allconditions which may have been omitted by the user. It takes an original trace asan argument and produces a modi�ed (i.e. completed) example trace. Q2 takes twoarguments: the modi�ed trace and a set of integer labels which are applied to theinstructions in a trace in the synthesis of the procedure. Q2 produces a set of tripleswhich constitute an incomplete procedure if the labels have been chosen properly. Aset of ascending integers is an example of a set of labels which yields a linear procedurewith no branching. Q3's role is to �nd a procedure which is more interesting than thislinear one. Q4 converts incomplete procedures with initial states into complete pro-cedures. Some error detection and correction is possible in autoprogrammer, howeverthe user still needs to be very precise and detailed in the instructions applied in theexample traces for the system to be able to extract a procedure and correct errors.The system includes a convenient subroutine feature with recursion, the backup fea-ture, local and global modes, and the ability to add and remove data structures atwill. An example of a synthesised procedure is quicksort. We give an example (takenfrom [Biermann & Krishnaswany 74]) of how the algorithm is executed on an examplelist (2; 7; 1; 6; 3) in order to create a routine called quicksort. The user needs to spe-cify that quicksort(A;L;U) takes three arguments, where the �rst one is the examplelist, the second the lower bound and third the upper bound on the elements of thelist. quicksort reorders the entries A(L+1); A(L+2); : : : A(U). The user speci�es thefollowing execution:Set pointers P1 to L and P2 to U . 2 7 1 6 3" "P1 P2Advance pointer P1 until A(P1) > A(P2). 2 7 1 6 3" "P1 P2Exchange those entries. 2 3 1 6 7" "P1 P2Decrease P2 until A(P1) > A(P2). 2 3 1 6 7" "P1 P2Exchange those entries. 2 1 3 6 7" "P1 P2



2.3. ABSTRACTION TECHNIQUES 19Increase P1 until P1 = P2. 2 1 3 6 7"P1 = P2Decrease P1 by one and call recursively quicksort(A;L; P1) andquicksort(A;P2; U).The user now gives two more traces of execution in the same way for the lists (2; 1) and(3; 6; 7) (which is already sorted). For the speci�cation of the quicksort routine thatautoprogrammer extracts, the reader is referred to [Biermann & Krishnaswany 74].2.3.3 Bauer's Method[Bauer 79] devised an algorithm which synthesises a procedure from a set of examples.He extended Biermann's work to permit more variation and exibility in the class ofexamples handled by the synthesis algorithm. The examples are instances of a proced-ure when given some initial values. The algorithm is capable of grouping instructionsto form loops, recognising that di�erent variables are used in di�erent examples ofthe same procedure, and replacing constants when they are used as instantiations ofparameters.Bauer uses a Computation Description Language (CDL) to express the examples fromwhich the procedure is learned. This language has a well-de�ned syntax. Using CDL,example computations are organised in a computation-tree. Each statement of an ex-ample computation forms a node. The tree branches to two subtrees each representingone of the truth values of the statement.The synthesis algorithm (i.e. the abstraction algorithm) takes a set of computation-trees consisting of example instructions and groups the nodes of the tree into classes.For instance, an occurrence of the same instruction is grouped into the same class.When the set of classes is obtained, the algorithm checks that the set meets certainconsistency conditions. For instance, one condition is that variables must be in thesame position in the node.To obtain a set of classes of instructions, the algorithm uses a similarity condition. Thefollowing process determines if all instructions in a set are similar. First, substitutionis used for predicates, procedure calls and function applications. A substitution � isde�ned to be a set of pairs f(Wijti)g such that the following holds [Bauer 79]:1. Wi is a variable,2. ti is a variable other than Wi or is a constant,3. for pairs (Wijtj) and (Wijti) in �, ti = tj (Wi can be replaced by at most onevariable or constant),4. for pairs (Wijti) and (Wjjti) in � and ti a variable, Wi = Wj (a variable ti canbe replaced by at most one variable).



20 CHAPTER 2. LITERATURE SURVEYIf s is a function application, predicate or a procedure call, a substitution � is appliedto s which simultaneously replaces each Wi by ti in s.Next, the algorithm uses a pair of substitutions for assignments, one for each side of theassignment. After instructions are classi�ed and all substitutions are carried out wehave a least general generalisation (in Plotkin's sense, see x2.3.1). If a set of instructionshas a least general generalisation, then all instruction in the set are called similar.Ultimately the least general generalisation of each class will become a single instructionin the synthesised abstracted procedure. To obtain a set of classes of instructions, thesynthesis algorithm also uses the consistency condition (see [Bauer 79]).Using the similarity and the consistency conditions for obtaining the set, the algorithmgenerates a body of the abstracted procedure and attempts to form a parameter list forthe procedure. A discovery of a parameter list is essentially an enumerative procedure.2.3.4 Anderson and Kline's Method[Anderson & Kline 79] devised a scheme for abstraction, which starts with speci�chypotheses and generates more general hypotheses when it encounters new instances(i.e. examples). When it comes across counter-examples, more speci�c hypothesesare generated. The scheme can generate conjunctive and disjunctive descriptions ofhypotheses. Such a method of abstraction is sometimes called a combined method,because it moves from speci�c to general as well as from general to speci�c descriptions.The algorithm for abstraction uses maximal common abstraction (generalisation, inAnderson and Kline's terminology) of two productions, developed by Vere in [Vere 77].The algorithm compares pairs of similar productions e1 and e2 and generates a newproduction "1 with the following characteristics:1. "1 applies in the circumstances that either e1 or e2 do (and possibly new circum-stances).2. "1 has the same e�ect as e1 or e2 in the circumstances that e1 or e2 apply.3. There is no production "2 that satis�es the �rst two characteristics above, andonly applies in a subset of the circumstances that "1 does.Maximal common abstraction is not unique. Anderson and Kline choose one of theabstractions randomly. The abstractions are formed by deleting clauses in the condi-tions of e1 and e2, and by replacing constants by variables. That is, the basic methoddeletes terms on which the two productions e1 and e2 di�er and replaces them by localvariables. This is similar for Plotkin's least general generalisation (see x2.3.1). In ordernot to over-abstract (a more commonly used term is over-generalise), Anderson andKline introduce several heuristics in their process of abstraction. The most importantof these is the restriction on the number of constants that can be replaced by a variable.Inspecting the two productions e1 and e2, the one with the least number of constantsis used as a reference. Then the abstracted production "1 cannot have more than halfof these constants replaced.



2.3. ABSTRACTION TECHNIQUES 212.3.5 Mitchell's Version SpaceUnlike Anderson and Kline's use of combined method for modifying one possible generaldescription, Mitchell's abstraction algorithm uses two sets of descriptions. Mitchelldeveloped in his PhD thesis the idea of version spaces [Mitchell 82] which makes use ofa representation of the possible concepts that are compatible with the data (examples)so far. Version space consists of two sets, G and S, where G is a set of most generalexamples, and S is a set of most speci�c examples. The application of a combinedmethod of abstraction is twofold. The most speci�c descriptions S are modi�ed byspeci�c-to-general method. The most general descriptions G are modi�ed by general-to-speci�c descriptions. Initially, S consists of the set of input examples.V S < G;S >= f" 2 E j for some s 2 S; s � " and for some g 2 G; " � ggwhere " is a possible abstraction, and the � relation is the abstraction (generalisation,in Mitchell's terminology) relation, described in x2.3.Version space V S < G;S > (i.e. sets S and G) is pruned by the following methods[Mellish 94]:� If s 2 S and 8g 2 G; s 6� g, then s can be removed from S.� If g 2 G and 8s 2 S; s 6� g, then g can be removed from G.� If distinct s1 and s2 2 S and s1 � s2, then s2 can be removed from S.� If distinct g1 and g2 2 G and g1 � g2, then g2 can be removed from G.As new positive examples are encountered that are not covered by the elements of theset of speci�c examples S, then S is transformed into a set of more general examplesusing a speci�c-to-general method. On the other hand, when new negative examplesare encountered, the set of most general examples G is modi�ed to exclude the non-example subsumption by the abstraction in G. Here, we only consider the case of newpositive examples, as this relates to the requirements in our research. Now, let e be anew positive example. Then S = Ss2S abstract(s; e) whereabstract(e1; e2) =MINf" 2 E j e1 � "; e2 � "gand MIN X = fx 2 X j 8y 2 X; if y � x then x = ygThe algorithm terminates when S and G consist of one identical element.[Young et al 77] proposed a technique similar to version spaces, but less computation-ally expensive, called focussing (see [Bundy et al 85] for a comparison of focussing withversion spaces).



22 CHAPTER 2. LITERATURE SURVEY2.3.6 Quinlan's ID3The algorithms presented so far are developed for descriptions of examples in the formof predicate calculus formulae. An alternative method was developed by Quinlan. ID3by [Quinlan 86] constructs decision trees from the set of examples. He refers to thisas Top-Down Induction of Decision Trees, where the decision tree is used to classifydata. Traversing the di�erent possible paths from root to node results in translatingthe decision tree into a set of rules in disjunctive normal form.Every example input to ID3 is represented as a list of attribute-value pairs. Theresulting decision tree contains at each node a test to sort instances of examples in theright alternative branch according to the classi�cation. The class of any leaf node isnot discriminable any further.The algorithm to construct the decision tree uses a procedure split(E) and works asfollows (taken from [Mellish 94]):1. Let E be a set of examples.2. If all the elements of the set of examples E have the same classi�cation, returna leaf node with this as its label.3. Otherwise,(a) Select a variable (\feature") f with possible values v1; v2; : : : ; vn.(b) Partition E into subsets E1; E2; : : : ; En, according to the value of f .(c) For each subset Ei call split(Ei) to produce a subtree Treei.(d) Return a tree labelled at the top with f and with subtrees Treei, thebranches being labelled with appropriate vi.ID3 uses several heuristics to optimise the formation of the decision tree. One of themis the information theoretic heuristic, and the other is the idea of \windowing". Formore information, see [Quinlan 86].2.3.7 Inductive Logic ProgrammingInductive Logic Programming (ILP), de�ned in [Muggleton 91], is a mixture of induct-ive learning (machine learning) and logic programming, and thus it employs techniquesfrom both these research �elds. ILP aims to derive techniques which synthesise (in-duce) new knowledge (hypothesis) from observations (examples). Muggleton and Raedtdescribe ILP as:\Inductive logic programming extends the theory and practice of computa-tional logic by investigating induction rather than deduction as the basicmode of inference. Whereas present computational logic theory describesdeductive inference from logic formulae provided by the user, inductive lo-gic programming theory describes the inductive inference of logic programsfrom instances and background knowledge." [Muggleton & De Raedt 94]



2.3. ABSTRACTION TECHNIQUES 23ILP programs consist of a number of specialisation and generalisation inference ruleswhich enable a program to modify hypotheses in order extract in the end a generalalgorithm which satis�es the given set of positive and negative examples. This approachis similar to Anderson and Kline's method (see x2.3.4). Muggleton and De Raedt givea generic ILP algorithm on a queue of hypothesis QH:repeatTake H from QHChoose the inference rules r1; : : : ; rk 2 R to be applied to HApply the rules r1; : : : ; rk to H to yield H1;H2; : : : ;HnAdd H1; : : : ;Hn to QHPrune QHuntil stop-criterion(QH) satis�ed.The algorithm continues to delete and expand hypothesis H from the queue. Takeinuences the search strategy (e.g. choose FIFO | �rst{in{�rst{out). Prune discardsunpromising hypotheses from further consideration. The hypotheses are expandedusing the inference rules, and then added to the queue. This process continues untilthe stop-criterion is satis�ed.One of the �rst ILP programs was the Model Inference System (MIS) by Shapiro (see[Shapiro 81] and [Shapiro 82]), which was able to learn quite complicated algorithms,e.g. append, member, etc.We consider now an example of ILP system which tries to learn the sorting functionquicksort. Assume that a system has background knowledge of predicates partition,append, � and >. A set of positive examples includes quicksort([ ]; [ ]) and quick-sort([1; 0]; [0; 1]), and a set of negative examples includes quicksort([1]; [ ]) and quick-sort([1; 0]; [1; 0]). The hope is that an ILP systems with such background knowledgeK, and such a set of positive examples e+ and negative examples e� is capable ofextracting the following quicksort procedure:quicksort([ ]; [ ]):qiocksort(HjT;Result) : � partition(H;T;List1; List2);quicksort(List1; Result1);quicksort(List2; Result2);append(Result1; [HjResult2]; Result):Although much background knowledge is required, there are ILP systems which arecapable of learning quicksort from as few as six to ten examples (e.g. GOLEM by[Muggleton & Feng 90] and FOIL by [Quinlan 90]).The shortcomings of ILP systems to date include the need for an extensive backgroundknowledge which sometimes may not be available. All of the mode and type informationof the predicates in the background knowledge needs to be provided by the user. TheILP systems also in general require a large number of positive and negative examples.The search strategy in specialising or generalising, and deleting or adding hypothesis



24 CHAPTER 2. LITERATURE SURVEYto the queue of possible hypothesis is too committed, and cannot go back to change thechoice. ILP systems to date cannot deal e�ectively and e�ciently with the numericaldata.2.3.8 Baker's MethodBaker's work on the implementation of the constructive !-rule in [Baker 93] is closelyrelated to our work. In particular, we are extending her work (which will be explainedin the subsequent chapters of this thesis), thus her approach to abstracting a generalproof is of interest. Baker did not use any of the above mentioned methods in obtainingan abstracted proof from a set of example proofs. She devised an algorithm which wasspeci�c to her encoding of an example of a proof. It is not clear why Baker didnot use any of the standard abstraction algorithms. Perhaps the reason is in thefact that all of the mechanisms that we described here have a fairly speci�c problemdomain. For instance, none of the algorithms are targeted at a mathematical domainto abstract from numbers.4 Furthermore, none of the existing abstraction mechanismsabstracted proofs. The closest to a proof abstraction is Biermann's and Bauer's workon abstracting programs. Baker claims that the choice of the abstraction mechanismis not crucial, because any mechanism with appropriate modi�cations should su�ce.The basic principle of Baker's technique is that the input to the abstraction algorithmis a few instantiations of a proof. From these example proofs the algorithm needsto extract a general proof, which by instantiation generates them. In particular, thenumber of times that each inference rule is applied in the proof needs to be abstractedinto a function which produces particular numbers of times that this rule is appliedin instances of a proof. Essentially, this mechanism is very similar to that of Bauer.The di�erence is that Baker uses proofs and applications of rewrite rules rather thantraces of program behaviour, which are instances of the execution of this program. Theparticular focus for Baker is the abstraction of the number of applications of rewriterules in the proof. On the other hand, the focus of Bauer's work is on abstraction ofthe conditions which satisfy a structure in a program (e.g. if ... then ... elseis an example of such a structure).Baker's abstraction algorithm takes the �rst example proof and makes an initial ab-straction of it by replacing the constant numbers of applications of rewrite rules bygeneral functions which generate them. She provided the system with a library ofpossible functions. An ordering is used to decide which function of n in the library offunctions computes the number of times an inference rule is applied. For example, thealgorithm �rst guesses that given that the instance of a proof is for n = 2, and that thenumber of times a rule is applied in the instance of a proof is f(n) = 4, then the �rstfunction f which is guessed is f = �n:n + 2, then the algorithm guesses f = �n:2n,and then f = �n:n2.The next example proof is taken, and it is checked that the same rule is applied in thesame place in the proof, and that it is applied a number of times which is computedby the function chosen in the �rst step of the algorithm. If so, then the function which4 Some work on abstracting from a number, has been done by [O'Rorke 87], but he abstracted fromone example only (which is analytic abstraction).



2.3. ABSTRACTION TECHNIQUES 25computes the number of times this rule is applied in the proof, and was looked upin the library of functions is more likely to be correct. The algorithm continues to gothrough all of the rules applied in the proof in this manner. If at any point the functionchosen initially is found to be inappropriate for a particular example proof, then theabstraction algorithm backtracks and tries another function from the library of possiblefunctions, until it �nds one that satis�es all of the example proofs considered so far.When this process stabilises and the general proof does not change for a certain numberof times, then this is the guessed abstraction. The induced general proof however, stillneeds to be veri�ed. For more information, the reader is referred to [Baker 93].To clarify Baker's algorithm we give an example of the abstraction from two examplesof proofs. Let there be two examples of proof traces for n = 2 and n = 3:example1(2; [rule1([1]; 4)])example2(3; [rule1([1]; 6)])Let the ordering of possible dependency functions in the library be [�n:n + 2; �n:2n;�n:n; �n:n2]. The �rst step of the abstraction algorithm takes the �rst example andabstracts it by replacing 4 with the �rst function from the library which satis�es theequation f(2) = 4. This is f(n) = n+ 2. So we have the �rst abstraction:general([rule1([1]; n + 2)])Now, consider the second example. The rules match, i.e. we have rule1 as the onlyrewrite rule applied in the proof, and the positions in the term where they are appliedmatch as well (i.e. we have [1] in both cases). The dependency function needs tocompute f(3) = 6. In the �rst step we chose f(n) = n + 2, but f(3) 6= 3 + 2 = 5,so the �rst chosen dependency function is inappropriate. The algorithm backtracksand �nds the second function from the library, which is f(n) = 2n. Now we havef(2) = 2 � 2 = 4, and f(3) = 2� 3 = 6, thus both instantiations of a function satisfythe examples. After a number of examples are checked and the dependency functiondoes not change for a set number of times, then it is decided that this is the abstractedgeneral proof: general([rule1([1]; 2n)])Note that Baker still needs to check formally that the abstracted general proof iscorrect. The abstraction algorithm just produced an educated guess of a general versionof a proof.2.3.9 Conclusions About Abstraction MechanismIn x2.3 we introduced various kinds of abstraction techniques developed over the years.By abstraction we mean concluding a general argument from examples of it. One of the�rst algorithms for abstraction was introduced by Plotkin and is known as least generalgeneralisation [Plotkin 69] [Plotkin 71]. Many subsequently introduced abstractionalgorithms were inuenced by the least general generalisation and use some ideas fromit. One of the exceptions is Biermann's abstraction mechanism [Biermann 72]. He



26 CHAPTER 2. LITERATURE SURVEYdevised an algorithm which learns from examples of execution traces of a programand thus synthesises the program. Bauer [Bauer 79] extended Biermann's programsynthesis algorithm to make it more powerful and general. At the same time he usedideas from the least general generalisation to abstract a program from its executiontraces.Anderson and Kline's abstraction algorithm [Anderson & Kline 79] also extracts gen-eral conclusions from examples. Unlike the algorithms introduced so far, it uses ex-amples as well as counter examples to extract an abstraction. Furthermore, it combinesthe existing approach of moving from speci�c to general, with a new one of movingfrom general to speci�c examples. The algorithm uses some ideas similar to leastgeneral generalisation. The combined method of abstraction is also used by Mitchell[Mitchell 82]. However, he introduced the idea of version spaces where there are twosets of descriptions. The set of general descriptions is modi�ed by general-to-speci�cmethod. The set of speci�c descriptions is modi�ed by speci�c-to-general method. Thealgorithm �nds the abstraction when both sets are the same.Rather than using descriptions expressed as predicate calculus formulae, Quinlan de-veloped an idea of constructing decision trees from examples [Quinlan 86], where ex-amples are represented as lists of attribute-value pairs.An alternative approach to abstraction was inductive logic programming (ILP) intro-duced by [Muggleton 91]. It combines techniques of logic programming and inductivelearning. It's abstraction mechanism is similar to Anderson and Kline's method of us-ing examples and counter examples, and have specialisation and generalisation rules.ILP is used to synthesise new knowledge.Finally, we described Baker's abstraction mechanism [Baker 93], because our workis an extension of hers. Baker's mechanism abstracts general proofs from exampleproofs. The abstraction is similar to that of Bauer, but applied to the domain ofarithmetic proofs. One of the most important features of Baker's abstraction is theability to extract a general function which by instantiation generates the examples itwas extracted from.In x7.4 we analyse the abstraction techniques presented in this chapter with respectto the requirements of our research. Furthermore, in x7.5 we discuss our choice ofabstraction mechanism.2.4 Diagrammatic Reasoning SystemsRoughly, Diagrammatic Reasoning Systems are those which use a diagram to aid thesearch for the solution of some problem. The �rst one was Gelernter's GeometryMachine described in x2.4.1. Others share much with Gelernter's Geometry Machine,e.g. a problem domain of Euclidean plane geometry. They are all diagrammatic in thesense that they make some use of a diagrammatic representation of the problem.We distinguish between visual and diagrammatic representations. A visual representa-tion is a visual display of a diagram on a computer screen so that it can be seen by theuser. A diagrammatic representation describes a diagram in some way which depicts



2.4. DIAGRAMMATIC REASONING SYSTEMS 27its visual characteristics. For example, Cartesian coordinates describe the elementsof a diagram by indicating their position in the coordinate system. A diagrammaticrepresentation does not necessarily have to be presented visually so that the user cansee, i.e. visualise it on a computer screen. Instead, some non-visual representation maybe used. For example, a diagram can be described using some predicates for relationsamong its elements. In most cases, diagrams are represented by Cartesian coordinates,in some cases by the bitmap or raster matrix, and in some cases they are in fact visual(i.e. the user interface allows the display of a visual image of the diagram). All ofthe mentioned representations are diagrammatic, however, they vary in the degree towhich they are visual.5The systems presented here are described according to their architecture and theirmain features, with particular focus on their use of the diagram. For each system wegive an example of the problem that it can solve.2.4.1 Gelernter's Geometry MachineThe �rst implemented systems which used diagrams for reasoning was Gelernter'sGeometry Machine [Gelernter 63]. The novelty of Gelernter's work was its use of adiagram to control the search for a proof of a theorem. The geometry machine controlsthe proof search by using a diagram as a model of the goal to be proved. In thebeginning of this chapter we showed an example of a theorem and a diagram whichthe Geometry Machine used to prove the theorem.The Geometry Machine operated on statements expressed as strings of characters in aformal logical system.6 The problem is a statement, and the solution, i.e. the proof, isa sequence of statements. A proof of a theorem starts from some axiom that the systemchooses, and is related to the theorem. Then it continues inferring further theoremsbased on the existing axioms or other theorems. The �nal statement of the solution isthe problem itself.Working from the axioms in a complete theory ensures that the sequence under con-sideration as a solution indeed terminates in the required theorem. However, theproblem-solving tree still has a high degree of branching. To prune the search tree,the Geometry Machine uses heuristic properties of the diagram to reject false subgoals.This means that the subgoals are tested against measurements of a coordinate diagram,and if the subgoal is false in the diagram, then it is rejected.The Geometry Machine consists of three components:Syntax/Logic: (also called a syntax computer) it manipulates the formal system bygenerating strings of hypothesis (premises, subgoals).Model/Semantics: (also called a diagram computer) the theorem to be proved is5 Related to the discussion about the di�erence between visual and diagrammatic representations isGlasgow's work [Glasgow & Papadias 92] where she distinguished between visual and spatial rep-resentations.6 The reader is referred to Gilmore's rational reconstruction of Gelernter's geometry machine for amore formal de�nition of the logical theory of Geometry Machine [Gilmore 70].



28 CHAPTER 2. LITERATURE SURVEYrepresented in a coordinate system. Also, it contains a series of qualitative de-scriptions of the diagram.Search Control: (also called a heuristic computer) it is the main component of thesystem. It compares sequences of strings generated by the syntax componentand their interpretation in the diagram. The search control component rejectssubgoals not supported by the diagram. Furthermore, it recognises the syntacticsymmetries of classes of strings and does modi�cations and improvements to thesystem.The ow of control in the Geometry Machine is such that it allows the syntax com-ponent to communicate with the model component and vice versa only through thesearch control component (see Figure 2.2 which was adapted from [Gelernter 63]).
Search Control

Logic / Syntax Model / SemanticsFigure 2.2: The architecture of the Geometry Machine.It is important to note that the system does not generate its own diagram. Rather, thediagram is supplied by the user. The diagram is supplied to the Geometry Machine inthe form of a list of coordinates for points named in the theorem. A second list, alsosupplied by the user, speci�es points joined by segments.The diagram has two roles. Its negative role is to reject hypotheses (subgoals) proposedby the search control component that are not true in the diagram. In this way thesearch space is pruned. The positive role of the diagram is to shorten the inferencepaths by assuming various facts that are obvious in the diagram as true, i.e. it veri�esthe correctness of simple goals by checking them in the diagram (e.g. a certain pointlies between two others).In summary, Gelernter's Geometry Machine is a theorem prover guided by a user-supplied model in the form of a diagram.2.4.2 Koedinger and Anderson's DC[Koedinger & Anderson 90] implemented a geometry problem solver called the Dia-gram Con�guration (DC) model. The interesting characteristic of this system is thatthe authors based the con�guration of the model of the system entirely on the empir-ical data from testing how human experts solve geometry problems. Thus, supportedby their empirical evidence, they claim that DC reasons the way humans do.The key feature of the system is that its data is organised in perceptual chunks, called



2.4. DIAGRAMMATIC REASONING SYSTEMS 29diagram con�gurations. These are analogous to key features of diagrams that humansrecognise when they inspect a diagram. During the process of generating a solutionpath, DC infers the key steps �rst, and ignores along the way the less important featuresof the input diagram, i.e. the less important inference steps.The Diagram Con�guration model (DC) consists of:Diagram Con�guration Schemas: are major knowledge structures of DC. Theyare associated with elementary or more complex geometric structures in theform of clusters of geometry facts (e.g. congruent-triangles-shared-side scheme,perpendicular-adjacent-angles scheme). A scheme consists of the following parts:Con�guration: storage for a geometric image, i.e. a diagram. It is a con�gur-ation of points and lines which is part of the geometric diagram.7Whole{statement: is a geometry statement referring to the whole of the con-�guration (e.g. 4XY Z �= 4XZW ).Part{statements: are geometry statements referring to the the relationshipsamong the parts of the diagram (e.g. \Y = \Z).Ways{to{prove: lists subsets of part{statements that are su�cient to provethe whole{statement and hence all of the part{statements.DC's Processing Components: DC consists of three major processing stages:Diagram Parsing: it recognises con�gurations in the input diagram and in-stantiates their corresponding schemas. The recognition is done on twolevels: low-level simple object recognition and high-level plausible con�gur-ation hypothesising.Statement Encoding: it deciphers the meaning of the given and goal state-ments, and represents them as part{statements which are tagged either\known" or \desired".Schema Search: using forward and backward inferences, schemas that are pos-sibly true of the problem are iteratively identi�ed (i.e. the system searchesthrough possible schemas until the link between the given and a goal state-ment is found).Note that a whole-statement can be viewed as a conjecture of the schema, and ways-to-prove are hypotheses which are su�cient to prove the conjecture provided that thehypotheses are proved as well.The main idea of DC is that it uses schemas instead of statements of geometry to planthe search for solution to a problem. In the �rst stage, the input diagram is parsed andthe possible schemas are instantiated. This is done by inspecting the elements of theinput diagram and identifying the schemas that are related to particular features of theinput diagram (for example, if the input diagram contains a right angle triangle thenthe schema for right angle triangles is instantiated). Hence, the input diagram triggersthe identi�cation of several schemas. However, a con�guration of the schema, might7 Note that this is a diagram of the schema and not an input diagram.



30 CHAPTER 2. LITERATURE SURVEYhave other features that are not identi�ed by the parsing of the input diagram. DCadds such schemas to the solution space as well. Hence, establishing one schema mayenable establishing another. No problem solving search is done at this stage, however,the biggest part of the work of the system is done by restricting the solution space byinput diagram parsing. Figure 2.3 shows a problem de�nition and the solution spaceof the problem after the diagram parsing and the instantiation of schemas (taken from[Koedinger & Anderson 90]). The boxes show the schemas that have been recognisedand the lines connect schemas to their part-statements.Input Diagram:
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GOALFigure 2.3: DC's problem de�nition and solution space.After diagram parsing, the given/goal statements of the problem de�nition are encodedby tagging them as \known" (or \desired") if they are already part-statements or whole-statements of a certain schema. Finally, to �nd the solution the system searches for apath from the givens to the goal statements. Note that the constraints which are listedin the ways-to-prove component of the schema have to be met when searching for thesolution path. There may be several solution paths.In summary, Koedinger and Anderson's DC system controls search for a solution ofa problem by organising the proof search space into smaller spaces which deal withspecialised concepts, i.e. schemas. These, when identi�ed to be related to a problem,allow us to apply a smaller set of rules. DC's schemas can be thought of as derivedrules of inference which are identi�ed by the diagram and can be applied in the proof.2.4.3 Barker-Plummer and Bailin's \&"/GROVER\&"/GROVER, developed by [Barker-Plummer & Bailin 92] is an automated reason-ing system which uses information from a diagram to guide proof search.The architecture of \&"/GROVER system consists of the \&" automated theoremprover, based on the sequent calculus for Zermelo set theory,8 and GROVER which8 See [Bailin & Barker-Plummer 93] for more information on Zermelo set theory.



2.4. DIAGRAMMATIC REASONING SYSTEMS 31is the diagram interpreting component of the system. GROVER passes the crucialinformation to prove the theorem from the inspected diagram to the \&" theoremprover. In the scope of this thesis we are mainly interested in the GROVER diagram-matic reasoning component.The architecture of GROVER is shown in Figure 2.4 (from [Barker-Plummer et al 95]).
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Figure 2.4: The architecture of GROVER.GROVER consists of the following components:ViewRunner: is the graphical editor tool, and GROVER's interface. It enables usersto draw a diagram consisting of fairly elementary components. The diagram issaved as an abstract description of the geometry of the diagram (e.g.: describingarcs, circles, arrows, dots, etc.).Geometry2Logic: is an expert system component. It parses the abstract descriptionof the diagram and translates the logical content of the diagram into formulaeexpressed in the \&" language. It works in a bottom-up fashion. This means thatit �rst analyses the objects of the diagram, then relationships between objectsand �nally the collection of atomic formulae to determine more complex formulae.Verify Logic: is an inspection tool allowing the user to examine and modify the logicalcontent (i.e. logical formulae description) of the input diagram. This descriptionis derived by the Geometry2Logic component from the graphical representationof the diagram.Create Strategy: constructs a sequence of goals which relate the logical formulaedetermined from the diagram to the conjecture that the user wants to prove.This sequence of goals can then be proved by the \&" theorem prover. It is thesecond of the most important components of the system.



32 CHAPTER 2. LITERATURE SURVEYVerify Strategy: allows the user to inspect the sequence of goals generated by theCreate Strategy component. If it is decided that they are acceptable, then thesequence is passed to the \&" theorem prover to verify that they are indeedprovable.The main idea of how GROVER works is that the information is extracted from thediagram and translated into logical formulae in the language of \&" which are thenproved by \&". Then they are used as additional hypotheses to the main proof ofthe conjecture. Thus, the formulae that are extracted from the diagram are in factadditional lemmas used when searching for a proof in \&" of the main conjecture.GROVER in conjunction with \&" is similar to the Geometry Machine in that it alsouses the diagram as a model of the goal which is to be proved. Moreover, the diagramspeci�es the subgoals themselves. Therefore, it constrains the high-level structure ofthe proof. Also, it speci�es the ordering in which the subgoals are applied. In order toprevent a high degree of branching of the proof search tree, GROVER considers onlysubgoals that are known to be true in the diagram, and in this way prunes the proofsearch space in \&". An in-depth comparison of our work to \&"/GROVER will begiven in x10.1.2.2.4.4 Barwise and Etchemendy's HyperproofHyperproof by [Barwise & Etchemendy 91] is an educational tool for teaching logicalreasoning, and in particular �rst-order logic. Its domain of reasoning is a blocks world.The system uses a sentential representation of �rst-order logic, as well as a diagram-matic representation to describe situations in the blocks world. The user learns howto construct proofs of both consequence9 and non-consequence10, proofs of consistencyand inconsistency, and independence11 proofs. Hyperproof automatically checks thelogical validity of each type of proof.A proof in Hyperproof starts with a blocks world situation described in a diagrammaticform using a graphical display. This is the initial information for the proof. In additionsome sentences of �rst-order logic might be given using the sentential representation.All of the initial information is called given information. The aim is to show thatsome conjecture about the given information is a consequence or a non-consequenceof the given information. Such a conjecture is normally represented using a sententialrepresentation.Figure 2.5 gives an example of the type of reasoning that Hyperproof is designedfor. The picture in the upper part of Hyperproof's screen is the initial informationgiven. The aim is to determine whether block c and block d are of the same shape:SameShape(c; d), which is a consequence of the given information. The given inform-ation also consists of two sentences: Dodec(c)! Dodec(d) and Small(c).The �rst step in the proof applies the second piece of sentential information to the9 A proof of consequence is an argument which establishes a proposition from a set of givens.10 A proof of non-consequence demonstrates from the set of givens that a proposition may not hold.11 An independence proof shows that a proposition cannot be proved on the basis of a set of givens.
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Figure 2.5: Hyperproof's proof.diagrammatic situation. It identi�es the one small block in the situation and labels itwith c. The user then observes that c in indeed a dodecahedron. Using the �rst piece ofgiven sentential information, the user then concludes that d is a dodecahedron as well.Since there are two dodecahedra, there are two possible ways of assigning label d totwo di�erent blocks. Therefore, there are two possible new situations. Hence, the twodiamonds in the following proof steps, which describe these two possible situations. Ineach of the situation the user can observe that the two blocks c and d have the sameshape.2.4.5 Other Related SystemsBesides the diagrammatic reasoning systems presented so far, there exist several oth-ers. They are perhaps less related to the system described in this thesis, but arenevertheless interesting in the diagrammatic features that they use or implement. Webriey mention Goldstein's Basic Theorem Prover, Nevins' geometry theorem prover,and McDougal and Hammond's Polya. The problem domain for all these systems isEuclidean plane geometry.In the domain of qualitative physics, the following systems are of interest: Funt'sWHISPER [Funt 80], Iwasaki, Tessler and Law's REDRAW [Iwasaki et al 95], andFurnas' BITPIC [Furnas 90]. For more information on these systems, the reader isreferred to the cited literature.



34 CHAPTER 2. LITERATURE SURVEYAlong with all the research that has been done on diagrammatic reasoning there areseveral journals and conferences that deal speci�cally with this topic. Some of themare Journal of Visual Languages and Computing, IEEE Workshops on Visual Lan-guages and IEEE Conferences on Visualisation. The more signi�cant events in thisbranch of research have been the AAAI Spring Symposium on Reasoning with Dia-grammatic Representations in March, 1992 (the working notes were later edited by H.N. Narayanan and published in [Narayanan 92]), AAAI Fall Symposium on Reasoningwith Diagrammatic Representations II in November, 1997 (the working notes were lateredited by M. Anderson and published in [Anderson 97]), and the release of the bookon Diagrammatic Reasoning by [Chandrasekaran et al 95].Goldstein's Basic Theorem ProverGoldstein in many ways extended Gelernter's Geometry Machine by implementing hisdiagrammatic reasoning system called BTP - Basic Theorem Prover [Goldstein 73].His system solves problems from a small part of plane Euclidean geometry.The input to BTP is a diagram, which is represented in the form of Cartesian coordin-ates of the points and a list of connections between the points, the hypotheses and theobjective, i.e. the goal. BTP's way to prove theorems is to start with the conclusionand try to get to the hypotheses. It consists of strategies containing goals and sub-goals, canonical names which identify synonyms for geometrical entities, corollaries ofhypotheses previously proved, experts and diagrams. A diagram is parsed and used toreject goals that are false in the diagram.Nevins' Geometry Theorem ProverNevins implemented a geometry theorem prover [Nevins 75] which at the time wasclaimed to be one of the most powerful geometry expert systems. The key featureof his system is forward reasoning strategy. He claims this is the way humans think- although this is by no means resolved within psychology. Certain features of thediagram cue the inference steps, which are made using a number of paradigms. Theparadigms are guided by the diagram and can make multiple conclusions. They arecapable of making inferences that require multiple steps. In many ways Koedinger andAnderson's DC (see x2.4.2) system extends the Nevins model. However, Nevins' systemdoes not visualise the diagrammatic model, nor does it use the numerical informationfrom the diagram.McDougal and Hammond's PolyaMcDougal and Hammond's Polya [McDougal & Hammond 93] is a geometry theorem-prover. Its input is a list of givens, a goal and a diagram. Its output is a proof whichis arrived at after a series of interpretations of plans for visual search and plans forwriting proofs. The diagram is described in terms of Cartesian coordinates, marksfor segments and marks for angles. For more information see [McDougal 93] and[McDougal & Hammond 95].



2.5. SUMMARY 352.4.6 Conclusions About Diagrammatic Reasoning SystemsIn x2.4 we surveyed several existing diagrammatic reasoning systems. Gelernter's Geo-metry Machine was the �rst system which used a diagram to aid the search for theproof of a theorem. Another diagrammatic system was the Diagram Con�gurationmodel which consisted of derived rules about geometrical facts which were used toconstruct the search space if the problem was related to the diagram used in the rule.Two systems that are perhaps of more interest are Hyperproof and GROVER. UsingHyperproof the user can constructs proofs by using �rst-order predicate logic rules andalso the diagrammatic rules derived from the diagram situations in a blocks world.GROVER uses the diagrams to guide a proof in the domain of well founded relations.All of the described diagrammatic reasoning system use diagrams in the search for anessentially algebraic proof of a theorem.2.5 SummaryIn this chapter we surveyed some of the work done in the area of automation of reason-ing. The aim was to introduce a plethora of available techniques for particular aspectsof our research which would enable us to choose an appropriate method for use inthe implementation of our diagrammatic reasoning system. In particular, internal rep-resentations of diagrams and abstraction techniques are of interest. Furthermore, wesurveyed diagrammatic reasoning systems.There are several types of representation available to us. These can be categorisedinto three classes: analogical, propositional and mixed. The former two representa-tions seem to be too speci�c, but the latter seems to be the representation which givesthe most scope for implementation. In the mixed class of representations, we intro-duced Cartesian representation, projective geometry, diagrams on a raster, vector, andtopological representation. Our choice of internal representation of diagrams will bediscussed in x5.5.Similarly, there are several abstraction techniques which are available to us. Our in-terest lies in the learning from several examples type of abstraction (rather than learn-ing from one example). We surveyed Plotkin's least generalisation, Biermann's method,Bauer's method, Anderson and Kline's method, Mitchell's version space, Quinlan'sID3, Inductive Logic Programming, and �nally Baker's method. These techniqueswill be compared and analysed with respect to the requirements in our diagrammaticreasoning system, and the chosen abstraction technique will be discussed in x7.4.Finally, we presented other diagrammatic reasoning system. It turns out that most ofthe systems implemented in the past have Euclidean plane geometry as their problemdomain. Systems with other problem domains (e.g. qualitative physics) were justbriey mentioned. However, Hyperproof [Barwise & Etchemendy 91] and GROVER[Barker-Plummer et al 95] seem to be the most closely related to our system Diamond.An in-depth comparison with Hyperproof, GROVER and our system Diamond willbe carried out in Chapter 10.



Chapter 3Diagrammatic Theorems andProblem Domain
n + 1

n

(n+1)n2 = 1 + 2 + 3 + � � �+ n| \The ancient Greeks" (as cited by Martin Gardner)in Nelsen's Proofs Without WordsOne of the aims of the work reported in this thesis is to show that proofs which usediagrams and manipulations of diagrams rather than symbolic formulae of some lo-gic can be automated and emulated on a machine. Humans often understand moreeasily diagrammatic proofs than logical (algebraic) proofs. Before mechanising suchdiagrammatic proofs the class of theorems which lend themselves to diagrammaticrepresentation needs to be identi�ed. Once we know what type of theorems can berepresented diagrammatically, and can be manipulated via some diagrammatic oper-ations, we devise a taxonomy which enables us to choose the domain of problems onwhich we focus in our research.In this chapter we present some examples of theorems which can be represented andproved in a diagrammatic way. Diagrams are often perceived as an informal ratherthan formal aid to reasoning, so we discuss in x3.1 their use in proofs, and the generalissues about the formal and informal role of diagrams in proofs. In x3.2 we present someexamples of theorems that can be proved diagrammatically by showing the diagramsand the manipulations on them. Based on these examples, a taxonomy of diagrammaticproofs is introduced in x3.3. Another factor which is considered in our choice of the36



3.1. DIAGRAMS AND PROOFS 37problem domain is the use of abstractions (e.g. ellipsis) in diagrams, which is discussedin x3.4. Finally, in x3.5, the taxonomy helps us choose the domain of problems thatwe subsequently concentrate on in our research.3.1 Diagrams and Proofs\There is no more e�ective aid in understanding certain algebraic identit-ies than a good diagram. One should, of course, know how to manipulatealgebraic symbols to obtain proofs, but in many cases a dull proof can besupplemented by a geometric analogue so simple and beautiful that the truthof a theorem is almost seen at a single glance." [Gardner 86]This is a quote by Martin Gardner where he discusses the \look-see" proofs. The nameitself, \look-see" proofs, indicates that Gardner writes about diagrams that guide hu-man mathematical thought, and enable a mathematician to understand instantly theproblem represented by the diagram, how to go about solving the problem and whythe solution is correct. In the everyday use of the word, \seeing" often means un-derstanding. Diagrams as objects which convey information in a visual way oftenseem to be more easily understood than other representations, such as symbolic for-mulae. The debate about the formal and informal use of diagrams is a long standingone [Larkin & Simon 87]. In this thesis we explore the intuitiveness and transparentunderstanding of the use of diagrams in mathematical proofs.Diagrams were used to solve problems as far back as Ancient Greece. In those timesthere were two modes of representation that coexisted, but only rarely mixed. Theywere the Aristotelean logic, or what we now call symbolic or sentential reasoning, andEuclidean geometry which used diagrams for inferencing. It was Descartes who broughtthe two modes of reasoning together, and showed that sentential and diagrammaticreasoning can complement each other in solving problems. Descartes showed this bythe invention of analytic geometry. However, at the turn of this century sententialrepresentation took over as the only rigorous mode of reasoning. The founders ofmodern logic, Frege, Russell and Hilbert, advocated that all arithmetic concepts bede�ned in logical terms, and all arithmetic knowledge be expressed and derived from theaxioms and de�nitions of the logic. Reasoning was considered to be rigorous only if itwas expressed in the formal language of some logic. The diagrammatic representationbecame neglected, not only due to the power that logic provided, but also due tosome carelessly constructed diagrams the use of which turned out to be faulty (see[Maxwell 59], [Dubnov 63]). Diagrams lost their legitimate role in formal proofs. Theywere not thought to be rigorous and formal enough for the use in proofs.However, in the last twenty years, researchers from various �elds, such as cognitivescience, arti�cial intelligence, computer science, physics, and mathematics returned tothe use of diagrams and tried to re-establish a formal role of diagrams in proofs. Some ofthe work has already been mentioned in Chapter 2, but let us just mention the rigorousanalysis of Venn diagrams as a formal system by Shin in [Shin 91] and [Shin 95], Sowa'swork on Pierce's existential graphs in [Sowa 84], and the use of diagrams in categorytheory [MacLane 71]. It seems that the neglect of formal use of diagrams in proofs has



38 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAINmotivated many researchers to explore whether diagrams can indeed be part of a formalsystem, and whether the formal symbolic (sentential) and \informal" diagrammaticreasoning can complement one another in order for such a system to solve problemsin a more understandable, intuitive and e�cient way. A good source of exampleswhich indicates how extensive this research area has become is [Narayanan 92] and[Chandrasekaran et al 95].One of our aims is to explore the role of diagrams in mathematical proofs. We wantto prove theorems of mathematics by manipulations of a diagram which capture theinference steps of a mathematical proof. Our aim is to devise a formal system which dia-grammatically proves theorems of mathematics, and to show formally that the proofsare correct. The hope is that the truth and understanding of the proof remains trans-parent to the user of such a system through various combinations of diagram manip-ulations in the process of proving a theorem. We want to show that diagrams can berigorous enough to be used for formal proofs. Moreover, we hope to capture in oursystem some of the intuitiveness and understanding of a proof which uses diagrams.The examples of theorems proved by manipulations of diagrams that we present inthis chapter are our starting point for the investigation of the use of diagrams informal proofs. In x3.5 we choose the domain of problems that we concentrate on inour pursuit to automate this type of diagrammatic reasoning in mathematics. As wellas exploring the formality of diagrams in proofs, we also want to challenge Penrose'sclaim that diagrammatic reasoning cannot be automated for emulation on machines.We present here some of the type of diagrammatic reasoning that Penrose described. Asalready mentioned, Penrose presented his view in the lecture at International Centre forMathematical Sciences in Edinburgh in November 1995. In [Penrose 94a] he discussesin greater detail his disbelief in the possibility that computers may emulate reasoningwith diagrams in any meaningful way, because mathematical visualisation lies beyondany kind of purely computational activity. Our work could be seen as an attempt todisprove Penrose. However, this is not the only motivation for the research reported inthis thesis. Our research explores the possibility of emulating diagrammatic reasoningon machines, and in fact, automates a small subset of it.3.2 `Diagrammatic' TheoremsWe are interested in mathematical theorems that admit diagrammatic proofs. In orderto clarify what we mean by diagrammatic proofs we �rst give some examples. We ana-lyse these and devise a taxonomy, which helps us characterise the domain of problemsunder consideration.Most of the examples presented here are taken from [Nelsen 93]. This is an excellentsource of numerous examples of proofs without words. Gardner refers to proofs withoutwords as \look-see" proofs. Nelsen's book is a collection of proofs without words fromAncient China, classical Greece, and twelfth-century India, but most of them are morerecent. Frequently they are the ones that appeared in the Mathematical Associationof America journals.Other examples can be found in [Dudeney 42], [Gamow 62], [Lakatos 76], [Gardner 81],



3.2. `DIAGRAMMATIC' THEOREMS 39[Gardner 86] and [Penrose 94a]. For the ones that are presented here, we give the sym-bolic (sentential) statement of the theorem �rst. Then, we show the diagrammaticrepresentation of the theorem together with the geometric operations of the diagram-matic proof. Finally, we describe informally how the diagrammatic proof is carriedout. Note that the informal descriptions of diagrammatic proofs are not necessary,because the proofs can be understood just by analysing the diagrams. Therefore, thereader is invited to look at the picture representing a mathematical statement and tryto see why it is true without reading the explanation under the picture.3.2.1 Commutativity of MultiplicationThe commutativity of multiplication theorem states that the order in which you mul-tiply two numbers does not matter: a� b = b� a
a

b

b

a

The diagram that we present here is for any real number a and b. The diagrammaticproof would be the same if the theorem was expressed in a natural number arithmetic.In fact, the proof for real numbers subsumes the proof for natural numbers. Thediagrammatic proof goes as follows: take a rectangle of any length a and height b.This represents a multiplication a � b. Rotate this rectangle by 90 degrees. Thisresults in a rectangle of length b and height a, which represents a multiplication b� a.The area of the rectangle is clearly preserved, hence a � b = b � a. Note that this istrue for any values a and b.3.2.2 Pythagoras' TheoremPythagoras' Theorem states that the square of the hypotenuse of a right angle triangleequals the sum of the squares of its other two sides. Here is one of the many di�erentdiagrammatic proofs of this theorem, taken from [Nelsen 93, page 3] (we give anotherexample of a diagrammatic proof of Pythagoras' Theorem in Appendix A):



40 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAINa2 + b2 = c2
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cbThe proof consists of �rst taking any right angle triangle. Along the hypotenuse c, jointhis triangle to another identical right angle triangle, to make a rectangle. Join to thisa square on the longer side a of one triangle, and a square on the shorter side b of theother triangle. Join to both squares, along their adjacent sides another two identicaloriginal right angle triangles. This completes the bigger square.Now re-arrange the triangles into the bigger square so that each side of the squareis formed from one side of one and the other side of another triangle. Thus, themagnitude of the bigger square is preserved and the square in the middle is the squareon the hypotenuse. Clearly, when we subtract the areas of the four triangles from theoriginal bigger and the new square, the sum of the squares on the sides of the rightangle triangle (in the original bigger square) equals the square on the hypotenuse ofthis triangle (in the new square).3.2.3 Triangular Equality for Even SquaresThe following is a theorem about the equality of triangular numbers for even squares.A triangular number is de�ned to be Trin � 1+2+3+ � � �+n = n(n+1)2 . The exampleis taken from [Nelsen 93, page 101]. The theorem states the following:(2n)2 = 8Trin�1 + 4nNote that were we not to use the de�nition of triangular numbers, the theorem couldbe stated as (2n)2 = 8(1+2+3+ � � �+(n� 1))+4n. The diagrammatic proof is givenas follows:

The proof consists of taking a square of magnitude 2n for a particular value of n. Wethen split it into four squares. Note that each of these four squares will be of magnitude



3.2. `DIAGRAMMATIC' THEOREMS 41n. Split each of these four squares diagonally. For each square two triangles will beformed, one of magnitude n and one of magnitude n � 1. For the four trianglesof magnitude n, split from them one side. Note that the triangles will become ofmagnitude n � 1 and the sides are of magnitude n. Thus we have eight triangles ofmagnitude n� 1, hence 8Trin�1 and four sides of magnitude n, hence 4n.3.2.4 Sum of Odd NaturalsThis example is also taken from [Nelsen 93, page 71]. The theorem about the sum ofodd naturals states the following:n2 = 1 + 3 + � � �+ (2n� 1)

If we take a square we can cut it into as many ells (which are made up of two adjacentsides of the square) as the magnitude of the side of the square. Note the use ofparameter n in the number of applications of geometric operations. Note also that oneell is made out of two sides, i.e. 2n, but the shared vertex has been counted twice.Therefore, one ell has a magnitude of (2n�1), where n is the magnitude of the square.3.2.5 Sum of Squares of Fibonacci NumbersThe theorem about the sum of squares of Fibonacci numbers states that the sum ofn squares of Fibonacci numbers equals the product of n-th and (n + 1)-th Fibonaccinumber. The example is taken from [Nelsen 93, page 83]. Formally, the theorem isstated as: Fibn � Fibn+1 = Fib12 + Fib22 + � � �+ Fibn2The formal recursive de�nition of Fibonacci numbers is given as (note that Fib0 = 0):Fib1 = 1Fib2 = 1Fibn+2 = Fibn+1 + Fibn
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The diagrammatic proof consists of taking a rectangle of length Fibn+1 and heightFibn for some particular n. Decompose this rectangle by splitting from it a square ofmagnitude Fibn, which is the magnitude of the smaller side of the rectangle. Continuedecomposing the remaining rectangle in a similar fashion until it is exhausted, i.e. for alln. Note the use of parameter n. Note also that the sides of the created squares representconsecutive Fibonacci numbers. Clearly, the longer side of every new rectangle is equalto the sum of the sides of two consecutive squares, which is precisely how Fibonaccinumbers are de�ned.This proof can be carried out inversely. We �rst take a square of unit magnitude (i.e.Fib21) and joining it on one of its sides with another square of unit magnitude (i.e.Fib22). Therefore, a rectangle has been created. Take this rectangle and join to it asquare of the magnitude of its longer side. A new rectangle will be created. Repeatthis procedure for all n.3.2.6 Sum of Hexagonal NumbersThe theorem about the sum of hexagonal numbers states that the sum of n hexagonalnumbers equals n cubed: n3 = Hex1 +Hex2 + � � �+HexnHexagonal numbers can be formally de�ned by the recursive de�nition (note thatHex0 = 0): Hex1 = 1Hexn+1 = Hexn + 6� nThe informal de�nition of hexagonal numbers could be presented in a series of hexagonswhere the hexagonal number is the number of dots in a hexagon:

1 7 19 .  .  .  .



3.2. `DIAGRAMMATIC' THEOREMS 43The diagrammatic proof of the sum of hexagonal numbers consists of breaking a cubeinto a series of half-shells. A half-shell consists of three adjacent faces of a cube. Theexample is taken from [Nelsen 93, page 109] and [Penrose 94a, pages 118-121].
If each half-shell is projected onto a plane, that is, if we look at the top-right-backcorner of each half-shell down the main diagonal of the cube from far enough, then ahexagon can be seen. So the cube is then presented as the sum of all half-shells, i.e.hexagons.

3.2.7 Geometric SumThis example is also taken from [Nelsen 93, page 118]. The theorem about a geometricsum of 12n as n tends to in�nity states the following:1 = 12 + 14 + 18 + � � �
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Note the use of ellipsis in the diagram. Take a square of unit magnitude. Cut it downthe middle. Now, cut one half of the previously cut square into halves again. This willcreate two identical squares making up a half of the original square. Take one of thesetwo squares and continue doing this procedure inde�nitely.



44 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAIN3.2.8 Geometric SeriesThis example is also taken from [Nelsen 93, page 121]. The theorem about a geometricseries of 1(2n)2 (or equivalently 14n ) as n tends to in�nity states the following:13 = 14 + 116 + 164 + � � �
1_
2

1_
2

1_
2

1_
4

1_
4

1_
8

1_
8

1

. . .

1

Note the use of ellipsis in the diagram. Take a square of unit magnitude. Cut it intofour squares. Note that each of the four squares is of magnitude 12 , thus the area of oneof the four squares is 14 . Take one of the four squares and repeat the procedure. Notethat this leaves three squares on which the procedure is not repeated (in the diagramabove they form sort of an ell shape). The areas of each newly created square is now14� 14 = 116 . Continue to carry out the same procedure inde�nitely. Note that the blacksquares are a third of the three squares on which the procedure is not repeated. Asthe number of such three-square structures tends to in�nity, they comprise the entireoriginal square of unit magnitude. Thus, the sum of all black squares is a third of theunit square.3.3 Classi�cationIt is our aim to choose from the examples represented in this chapter (and manymore, some of which are given in Appendix A) the class of theorems for which theextraction of diagrammatic proofs will be automated. The classi�cation of examplesrequires depicting certain properties of the examples and deciding the importance ofeach property. The examples are then evaluated and compared according to theseproperties, and �nally classi�ed into categories which all have common features.The features that are interesting to us are:� concreteness versus generality of diagrams,� the need for induction to prove the general case of the theorem,� the space of problems,



3.3. CLASSIFICATION 45� the need for abstractions in the representation of a diagram,� the number of proof steps.These properties are by no means exhaustive, but they are the ones which help us tocategorise the examples presented here.By concreteness of diagrams we mean the property that as a diagram is drawn it as-sumes a concrete magnitude, i.e. it represents particular values. By generality of adiagram we di�erentiate between diagrams that are the most general, i.e. they rep-resent the whole class of diagrams, and diagrams that represent only an instance of aparticular class of diagrams.Some theorems need mathematical induction to prove them. These are usually univer-sally quanti�ed over some parameter. We distinguish between theorems that have andthose that do not have a notion of a universally quanti�ed variable. Moreover, we areinterested in theorems that are universally quanti�ed over one parameter.We distinguish between a continuous space and discrete space of problems. Continuousspace allows reasoning about real numbers, whereas discrete space only allows reasoningabout natural numbers.By abstractions in diagrams we mean the use of abstraction devices such as ellipsis torepresent the generality of a diagram. In continuous space the abstractions are avoidedby labelling of a diagram. For instance, if a right-angle triangle is drawn in a continuousspace, then it inherently assumes a concrete magnitude. Each side of the triangle couldbe labelled with some variable which indicates that the variable can assume any realvalue. Thus, a particular right angle triangle is a representative of any right-angletriangle. The concreteness of diagrams is more problematic in a discrete space wherediagrams are represented with points (or dots or counters etc.) on a grid. A diagramin a discrete space is an instance of the class that it is part of. The generality of adiagram in a discrete space can be represented with the use of abstraction devices suchas ellipsis. We discuss the di�culty of using abstraction in x3.4.Some proofs of theorems consist of a number of proof steps dependent upon the instance(i.e. the value of the parameter) for which they are given. Such proofs are calledschematic proofs. We distinguish between proofs that are schematic and those thatare not. We discuss and formally de�ne schematic proofs in Chapter 4.The properties just discussed are the ones on which we base our analysis of examplesgiven in the previous section. The analysis will enable us to devise a taxonomy fortheorems that admit diagrammatic proofs.3.3.1 AnalysisTheorems about the commutativity of multiplication, Pythagoras' theorem, geometricsum and geometric series are theorems of continuous space. Diagrams in the proofsare represented using lines. The main feature of diagrams which is appealed to inorder to convey proofs is the manipulation of diagram areas. For instance, the proof



46 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAINof commutativity of multiplication appeals to the fact that if we rotate the diagram by90 degrees, its area remains the same.Proofs of commutativity of multiplication and Pythagoras' theorem use diagrams whichare general, i.e. they are representative of the entire class which represents the theorem.In other words, there is only one diagram for all instances of a theorem. There is noneed to use abstractions (e.g. ellipsis) to represent the general case of a theorem. Forexample, a rectangle in the proof of commutativity of multiplication is representative ofa rectangle of any magnitude, i.e. a and b stand for any real values. The same is truefor a right-angle triangle in the Pythagoras' theorem. There is no induction needed toprove the general case of a theorem. Generalisation is required in the end to show thatthe theorem holds for all values of universally quanti�ed variables. For both of thesetheorems, i.e. commutativity of multiplication and Pythagoras' theorem, the numberof proof steps does not depend on any parameter, it is �xed.On the other hand, proofs of geometric sum and geometric series do need abstractionsto represent the theorem. In fact, there is no notion of instances of the theorem, be-cause there is no universally quanti�ed variable in the theorem. Therefore, there isonly one case of a diagram, the one which represents the theorem. This case requiresinduction to prove the theorem. We say that theorems like these are inherently in-ductive. The number of diagrammatic operations is in�nite.1 Note however, that auniversally quanti�ed variable could be introduced, which would allow an extractionof a diagrammatic proof. For example, the theorem about the geometric sum wouldinstead of 1 = 12 + 14 + 18 + � � � be stated for all n > 0 as:1 = ( 121 + 122 + 123 + � � �+ 12n ) + 12nThus, a diagrammatic proof for a particular instance of n looks as follows:
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Note that there is no longer any need for abstractions in the representation of aninstance of the theorem and its proof. The same could be done for the theorem aboutthe geometric series | the new version of the theorem for all n would be: 1 = ( 1(21)2 +1(22)2 + 1(23)2 + � � � + 1(2n)2 ) + 1(2n)2 . However, such an introduction of a universallyquanti�ed variable transforms a theorem into a di�erent theorem than the original onewhich was under examination.1 On the other hand, such theorems do admit �nite logical (as opposed to diagrammatic) proofs.



3.3. CLASSIFICATION 47Theorems about triangular equality for even squares, sum of odd naturals, sum ofsquares of Fibonacci numbers and sum of hexagonal numbers are theorems of a discretespace, in fact, the natural numbers. Diagrams that represent theorems and their proofsare drawn using dots, where a dot represents the natural number 1. An empty diagram,i.e. no diagram, is the number 0. The main feature of diagrams which is used toconvey proofs is the manipulation of dots and its e�ect on the numbers that particularcollections of dots represent.The diagrams representing the proofs of these four theorems of discrete space areinstances of a corresponding theorem. The universally quanti�ed variable has been in-stantiated to a value and the diagram is drawn for this particular value. The diagramwhich is a representative of a particular instance of a theorem does not need abstrac-tions. However, were we to represent a general case of a theorem, then abstractionwould be needed in the diagram.For theorems about sum of odd naturals, sum of squares of Fibonacci numbers and sumof hexagonal numbers, the number of proof steps is dependent on the particular valuefor which the diagram is drawn, i.e. the value of a parameter for which the theoremis instantiated. The proof requires mathematical induction to prove the general caseof the theorem. For the theorem about a triangular equality for even squares thenumber of proof steps does not depend on the value of the parameter for which theinstance of the proof is given. We could say that the number of proof steps is triviallydependent on the value of the parameter, i.e. the number is constant. Abstraction ofthe magnitude of the discrete diagram is required in the end to show that the theoremholds for all values of the parameter. In a way, this is similar to the theorem aboutthe commutativity of multiplication and Pythagoras' theorem.3.3.2 TaxonomyFrom the analysis of the examples that we presented in x3.2, and many others, someof which are given in Appendix A, three categories of proofs can be distinguished:Category 1: Non-inductive theorems. Usually, there is only one representative dia-gram for all instances of the theorem. There is no need for induction to provethe general case: proofs are not schematic. Simple geometric manipulations ofa diagram prove the individual case. Abstraction is required to show that thisproof will hold for all a; b. Theorems are of continuous space. Example theorem:commutativity of multiplication, Pythagoras' theorem.Category 2: Inductive theorems with a parameter. A diagram is a representative ofa particular instance of a theorem. Proofs are schematic: they require inductionfor the general diagram of magnitude n (a concrete diagram cannot be drawnfor this instance). An alternative method can sometimes be used to capture thegenerality of the proof. Theorems are of discrete space. Example theorem: trian-gular equality for even squares, sum of odd naturals, sum of squares of Fibonaccinumbers, sum of hexagonal numbers.Category 3: Theorems whose proofs are inherently inductive: for each individualconcrete case of the diagram they need an inductive step to prove the theorem.



48 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAINEvery particular instance of a theorem, when represented as a diagram requiresthe use of abstractions to represent in�nity. Theorems are of continuous space.Example theorem: geometric sum, geometric series.Note that these categories are by no means exhaustive. We choose these, because theyconveniently enable us to de�ne our problem domain.3.4 Abstractions in DiagramsAbstraction devices, such as ellipsis, are conventions and notations which are usedto represent generality or abstraction of a structure. They can be used in sentential(symbolic) reasoning (e.g. n2 = 1+3+� � �+(2n�1)) or in diagrammatic reasoning. Forexample, were we to represent the most general representation of a theorem about thesum of odd naturals and its proof, we would need to use ellipsis to represent a generaldiagram and a general number of applications of geometric operations on a diagram.Figure 3.1 shows the representation of an abstract square and the operations forminga proof of the theorem about the sum of odd naturals.
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Figure 3.1: Abstract representations of a square in the proof of the sum of odd naturals.The fact that diagrams are concrete in nature is an inherent problem in drawing dia-grams. Using ellipsis is one of the conventions to represent generality. However, theproblem in using such abstract diagrams is to keep track of what has been ellided inthe representation of an abstract diagram. Moreover, it is di�cult to count how manymore occurrences of geometric operations still need to be applied. Note that a generalversion of geometric operations also need abstractions to represent their generality.In sentential representation there are formalisations of abstractions which are tractablethroughout the manipulations in the proofs. For instance, the sentential representationof the theorem about the sum of odd naturals is often expressed as: n2 =Pni=0 2i� 1where the de�nition of P is given recursively. Variables and other constructors suchas P are the abstractions.In diagrammatic representations the formalisation of abstractions seems to be moredi�cult. It is one of the topics that could be tackled in the future (see Chapter 11).The problem lies in the manipulation of such abstractions. It is di�cult to see how toautomatically keep track of the consequences of operations being applied to the ellidedparts of abstract diagrams. The inherent problem with ellipsis is its ambiguity. The



3.5. PROBLEM DOMAIN 49pattern on either end of the ellipsis needs to be induced by the system. For instance,it is ambiguous whether the abstract square given in Figure 3.1 is in fact a square, or arectangle. Some ambiguities can be removed by adding additional clues such as givinganother layer of a diagram and having each corner of an abstract square be instantiatedto a square. However, most of ambiguities remain: is the square in Figure 3.1 of evenmagnitude or is it of odd magnitude? The problem becomes more acute when dealingwith more complex structures. To recognise the pattern that the ellipsis represents thesystems needs to carry out some sort of pattern recognition technique which deducesthe most likely pattern and stores it in an exact internal representation. This guessedpattern might still be wrong.There is a possibility to resort to a di�erent abstract notation of diagrams which usesthe exact internal representation rather than ambiguous ellipsis. The exact notationwhich would normally have to be deduced by the pattern recognition mechanism couldbe used in reasoning for internal representation of abstractions. Externally, to theuser of the system, this exact formalisation could be made visual through a sort ofpretty-printing technique. For instance, a general square of magnitude n which isgiven in Figure 3.1 and uses ambiguous ellipsis could internally be stored using anexact representation square(n). All the internal reasoning can be carried out usingthis exact representation, yet the pretty-printing function would display to the usera square with ellipsis. The computational di�culty of extracting a pattern from anabstract notation has in this way been passed to the pretty-printing function. Forfurther discussion of the kind of possible formalisation of abstractions in diagrams thereader is referred to x11.5.Using such exact representation to store internally abstract diagrams and externallyportray them using abstractions is open to many objections. The question can ariseof how diagrammatic (visual) or non-diagrammatic (non-visual) this exact represent-ation is. Are we not in essence carrying out sentential reasoning which is the sameas using n2 instead of square(n)? Where is the border which divides sentential anddiagrammatic reasoning, especially when automated on machines? Trying to estab-lish what is visual (or graphical or diagrammatic) and what is sentential in reasoningwith a computer has been a topic of discussion amongst scientists in the �elds likecognitive science, cognitive psychology, philosophy, computer science and arti�cial in-telligence many times (see [Narayanan 92], [Olivier 96], [Blackwell 97], [Anderson 97],etc. ). A whole new area of programming using visual languages has been established(see [Burnett & Baker 94]). Yet, we have not come closer to de�ning any precise dis-tinction between the two. It seems that scientists adopt a distinction which is suitablewithin the scope of their research. We adopt here an informal notion that square(n)and n2 are sentential representations, because they have no properties that are ana-logous to our visual comprehension of a square. On the other hand, the representationof a square given in Figure 3.1 is considered to be diagrammatic.3.5 Problem DomainIn x3.2 we introduced the notion of diagrammatic theorems through a number of ex-amples. We discussed in x3.3 their common features which enabled us to categorise



50 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAINthem. The categorisation is by no mean exhaustive, but it helps us choose our problemdomain.First, we choose mathematics as our domain for theorems since it allows us to makeformal statements about the reasoning, proof search, induction, generalisations, ab-stractions and such issues. All of these are important when automating a system thatcarries out the type of diagrammatic reasoning represented by the examples in x3.2.Second, we narrow down the domain to a subset of theorems that can be representedas diagrams without the need for abstraction (e.g. the use of ellipsis, as in the aboveexample theorem for geometric sum). Conducting proofs and using abstractions indiagrams is problematic, as explained in x3.4, since it is di�cult to keep track ofthese abstractions while manipulating the diagram during the proof procedure. Thisexcludes the whole of theorems of Category 3 in x3.3.2. We also reject representinggeneral diagrams of Category 2 (as the one in Figure 3.1), but only concrete (i.e.instantiated) versions of them (as the one in x3.2.4). Therefore, theorems of Category2 will be instantiated to particular values, and the reasoning will be carried out onthese instances. The generality of the proof will be captured in an alternative way.2Third, we consider diagrammatic proofs that require induction to prove the generalcase (i.e. Category 2 given in x3.3.2). Such theorems are universally quanti�ed overone parameter. This includes theorems of Category 1 and Category 2. Diagrams canbe drawn only for concrete situations and objects. An n � n square in Figure 3.1,for example, cannot be drawn without using ellipsis. On the other hand, theorems ofCategory 1 can be drawn without abstractions. They are concrete, however they arethe general representatives of the class that they belong to. Our challenge is to �nd amechanism for extracting a general proof that does not require using abstractions indiagrams. The generality of the proof will be captured in a di�erent way.Fourth, to date we consider theorems of natural number arithmetic only. This areais rich, interesting and di�erent to other research done in this area (see a survey ofdiagrammatic reasoning system in Chapter 2), because arithmetic theorems are notas obviously amenable to diagrammatic representations as geometric theorems are.Diagrams that represent theorems of natural number arithmetic are represented usingdots. The problem space is two or three dimensional and discrete. Notice that thedomain of theorems that we can prove diagrammatically is not limited to only theoremswhich are expressed as degree two or three polynomial equations, and which havean obvious two or three dimensional diagrammatic representation. We give here anexample of a theorem which is stated using an equation of degree three polynomial, yetthe diagrammatic proof uses diagrams of a two dimensional space only. The theoremis about the sum of cubes and is stated as:(1 + 2 + 3 + � � �+ n)2 = 13 + 23 + 33 + � � �+ n3The diagrammatic proof is given for n = 4 as follows (the example is taken from[Nelsen 93, page 85]):2 We use schematic proofs which will be introduced in Chapter 4 to capture the generality of theproof.
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The diagrammatic proof of this theorem consists of taking a square of magnitude(1 + 2 + 3 + � � � + n)2 for some particular n (in the case of n = 4 the square isof magnitude 1 + 2 + 3 + 4 = 10) and splitting it into strips of ells each one unitthicker than the previous one. This explains why the original square is of magnitude(1+2+3+ � � �+n)2. For each thick ell we split it now to as many squares of magnitudewhich is equal to the width (i.e. thickness) of an ell as possible. For instance, an ell ofthickness 3 can be split to three squares of magnitude 3. Thus 3� 32 = 33. Note thatfor each ell of even thickness k, only k � 1 squares of magnitude k �t into an ell, plustwo bits at the end of an ell which form half of the square of magnitude k, hence bothof them together form another square of magnitude k. So, 2� k22 = k2. Therefore, foreach ell of even thickness we have ((k�1)�k2)+(2� k22 ) = (k�1)�k2+k2 = k�k2 = k3.To be more accurate, the diagrammatic proof given here proves the following versionof the theorem: (1+2+3+ � � �+n)2 = 1�12+2� 22+3�32+ � � �+n�n2, because weare not appealing to any three dimensional property of a cube. A three dimensionalversion of this diagrammatic proof is to think of dots as spheres, and take for eachthick ell, all of the sectioned squares and join them one on top of another to form acube.The example just given shows that the degree of the polynomial in the equation statingthe theorem does not uniquely determine the dimension of a space in which a diagram-matic proof can be carried out. Another example which demonstrates this is a theoremwhich uses polynomials of degree four. Some humans �nd it di�cult to picture fourdimensional space, yet this does not limit us to prove such theorems. For instance, ifwe have a term n4 we can alway represent it as n�n3 in a three dimensional space forsome concrete n.There are some limitations to theorems which we can prove diagrammatically. If wecan appeal to the feature of a diagram which conveys the truth of the theorem in twoor three dimensional space, then we can prove a theorem diagrammatically. In theexample above, we proved the theorem about the sum of cubes by appealing to thefact that n3 is equivalent to n � n2 and were thus able to prove the theorem in adiagrammatic way in a two dimensional space. Only theorems for which such featuresare accessible to appeal to, can be proved diagrammatically.The system that we present in this thesis proves theorems of Category 2 which are uni-versally quanti�ed over one parameter. The number of proof steps may be dependenton this parameter, thus the proofs are called schematic. We might consider extendingthe problem domain to continuous space, whereby the proofs for real numbers, such asgeometric theorems of Category 1 would be automated as well.



52 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAINOne of the possibilities for future work (see Chapter 11) is to consider a need for amore precise problem domain de�nition. For instance, a complete characterisation ofthe class of theorems that can be proved diagrammatically could be devised. However,formalising this characterisation of theorems seems to be a very di�cult task.3.6 SummaryIn this chapter we introduced examples of theorems that admit diagrammatic proofswhich we call diagrammatic theorems. The formal role of the use of diagrams inproofs within a historical context has been discussed. Diagrams have been used to aidreasoning throughout the history of mathematics. However, at the turn of this century,with the invention of modern logic, diagrams seemed to have lost their validity in formalproofs. Only recently, much research has been done to re-establish the formal role ofdiagrams. The research reported in this thesis is part of this trend.We continued by presenting examples of diagrammatic theorems, which gave us a a-vour of the type of diagrams which are of interest. We presented the following theoremswith diagrammatic proofs: commutativity of multiplication, Pythagoras' theorem, tri-angular equality for even squares, sum of odd naturals, sum of square of Fibonaccinumbers, sum of hexagonal numbers, geometric sum and geometric series. More ex-amples are given in Appendix A. We then went on to state the features on theseexamples which are of interest to us. Based on these features we analysed our ex-amples and categorised them into three categories.The di�culty of using abstractions in diagrams was discussed next. We concludedthat there is scope to avoid the need for abstractions (which are ambiguous) by adi�erent type of notation that is exact and requires a sort of pretty-printing functionto represent the proof externally in a diagrammatic way. However, it was questionedwhether such a notation can still be called diagrammatic, or has it been reduced to asentential notation.Finally, we choose our problem domain which is theorems of natural number arith-metic which require induction to prove them in the general case. This means that weare dealing with discrete space whereby natural numbers are represented using dots.Thus, diagrams used in proofs are various collections of dots. We chose theorems ofCategory 2 to further restrict our domain of problems. They are universally quanti�edover one parameter. The numbers of proof steps in such theorems is dependent uponthe parameter: they are called schematic proofs. We indicated that there is a possibil-ity to extend the problem domain to include continuous space which would enable usto prove theorems of Category 1 as well.



Chapter 4Constructive !-Rule andSchematic Proofs
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11 = 122 = 1 + 332 = 1 + 3 + 5... ... | MJadapted from Nelsen's Proofs Without WordsIn the previous chapter we presented some of the examples of theorems which we provediagrammatically. One of the aims of the work presented in this thesis is to formalisea method for automatic extraction of such diagrammatic proofs. The proof process iscarried out on concrete rather than general diagrams. The generality of the proof iscaptured in a di�erent way. The topic of this chapter is to give a way of capturingdiagrammatic proofs without the need to resort to general diagrams which use abstrac-tions to represent them. The mathematical basis for capturing the generality of theproof is in the use of the constructive !-rule in schematic proofs, which is explained indetail in this chapter.In x4.1 we put our choice of the technique for extraction of diagrammatic proofs in thecontext of automated reasoning. We go on in x4.2 to explain the !-rule, the problem inautomating its use, and the constructive version of the rule (in x4.3) as the solution tothe problem. In x4.4, we de�ne the concept of schematic proofs. In x4.5 we explain howto extract schematic proofs and give an example of a schematic proof in arithmetic.The discussion about the motivation for using schematic proofs follows in x4.6. Inx4.7 we challenge Penrose's argument that diagrammatic proofs cannot be automated.In x4.8, we propose how to use schematic proofs for representation of diagrammatic53



54 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFSproofs. Finally, in x4.9, we give structured informal schematic proofs for examples ofCategory 2 proofs given in Chapter 3.
4.1 MotivationIn Chapter 3 examples of diagrammatic proofs of theorems of natural number arith-metic were presented. When selecting the problem domain in x3.5 it was decided thatgeneral diagrams which use abstractions (such as ellipsis) to capture their generalitywill not be used. The problem of using abstractions in diagrams was discussed in x3.4.The theorems that we choose to prove are those which require the use of mathematicalinduction in a formal logical proof. In a diagrammatic proof this necessitates the useof general diagrams with abstractions, which we are trying to avoid. We proposedan alternative way of capturing the generality of a diagrammatic proof of a theorem,namely by the use of schematic proofs.We sketch here the basic idea behind schematic proofs, but de�ne them fully in x4.4.The formalisation of diagrammatic schematic proofs and the implementation of the ex-traction of schematic proofs is discussed in Chapter 7. A schematic proof is a programwith some parameters. By instantiation of these parameters the program generatesground examples of a particular proof. For instance, a schematic proof in arithmeticmay consist of a number of applications of rewrite rules which are applied to an ini-tial expression. In a diagrammatic proof the rewrite rules are replaced by geometricoperations on a diagram. Thus, a diagrammatic schematic proof is a program whichapplies geometric operations to diagrams when given some value of the parameter. Inthis way, we eliminate the need for general diagrams, and instead use a general numberof applications of geometric operations.A universally quanti�ed schematic proof is extracted from a number of ground instancesof a proof for a corresponding ground instance of a theorem. This process is referredto as inductive inference or abstraction, because it induces general conclusions fromparticular examples [Winston 75]. In Chapter 2 we presented some of the possibletechniques for drawing general conclusions from examples. The choice of a particulartechnique is relevant to the implementation of the extraction of a schematic proof. Inx7.4 we discuss in detail the use of abstraction in the implementation of extractionof schematic proofs. In this chapter, in x4.4, we state an algorithm for extractingschematic proofs.
4.2 !-RuleLet us de�ne the !-rule as in [Sundholm 83] (note that s is a successor function):



4.2. !-RULE 55De�nition 1 (!-Rule)The !-rule allows inference of the sentence 8x: P (x) from an in�nite sequence P (n)for n 2 ! of sentences P (0); P (s(0)); P (s(s(0))); : : :8n:P (n)In this section we motivate the use of the !-rule instead of the rule of mathematicalinduction within automated deduction, show the problem of its use within implement-ations, and propose a solution to this problem.4.2.1 Motivation for using !-ruleOne of our aims is to implement a system which proves theorems of mathematics usingdiagrammatic inference rules. Since our diagrams of Category 2 are a form of rep-resentation for natural numbers, we need to formalise a theory of diagrams which isequivalent to at least a part of natural number arithmetic, and is suitable for automa-tion. Important and desirable properties of such a theory and the formalised logic areconsistency, soundness and completeness. Only systems that axiomatise mathematicsstrongly enough may have such properties. There are two main reasons for using the!-rule in the formalisation of a theory of diagrams. The �rst one is that the Peanoaxioms plus the !-rule form a complete theory [Orey 56], and the second reason is thatthe use of the !-rule eliminates the need for the cut rule [Prawitz 71]. The cut ruleused in Gentzen's formalisation of sequent calculus is as follows:A;� ` C � ` A� ` CThe cut rule enables one to prove C using A. A is referred to as the cut formula. A isthen eliminated by proving it from from �.G�odel's �rst incompleteness theorem says that for any formal theory of natural numberarithmetic there will always be true statements for it, that are not theorems of thistheory [G�odel 31]. Hence we can never completely formalise all truths of arithmetic.The usual formalisation of arithmetic using Peano axioms and induction rule is limitedsince G�odel's �rst incompleteness theorem applies to this formalisation. However,[Shoen�eld 59] showed that a complete formalisation of arithmetic can be constructedfrom Peano axioms and the !-rule, thus G�odel's incompleteness theorem does notapply here. Peano axioms plus the !-rule is a semi-formal system because the proofsare in�nite, and is therefore not a formal system in the required sense (see [Orey 56]).The second reason for using the !-rule is that it removes the need to use the cutrule. For reasons such as consistency and restriction of search space, it is a desirableproperty of a system that cut elimination is valid (see [Schwichtenberg 77]). The cutelimination theorem for predicate calculus states that every proof may be replaced byone that does not require the use of a cut rule. The theorem was proved for �rst orderlogic by [Gentzen 69] and for Peano axioms plus the !-rule by [Prawitz 71]. This has



56 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFSa signi�cant impact on the search space in the automation of a reasoning system. If aproof is not cut-free, then any cut formula can be introduced to the proof, hence thereis a potentially in�nite branching of a search space. However, if the cut eliminationtheorem holds for a logical system, then any cut formula need not be used in the proof,hence branching of a search space is �nite.Cut elimination is not valid for the inductive formalisation of arithmetic, e.g. Peanoaxioms plus induction, as shown by [Kreisel 65]. The problem which arises is thatinduction in Peano arithmetic is blocked for some theorems (e.g. the associativity ofaddition stated as (x + x) + x = x + (x + x)), because P (s(x)) cannot be given interms of P (x). Using the rules in the recursive de�nition of addition, 0 + x = x ands(x) + x = s(x + x), and cancellation of successor function, the following equationsrepresent the derivations from P (s(x)) to P (x) (reasoning backwards). More precisely,all the possible pairwise combinations of the left hand side and the right hand side ofthe equations represent all the possible derivations from P (s(x)). Note that the termstructure is di�erent in the two sides of equations for the second arguments of bothadditions: (s(x) + s(x)) + s(x) = s(x) + (s(x) + s(x)) � P(s(x))s(x+ s(x)) + s(x) = s(x+ (s(x) + s(x)))s((x+ s(x)) + s(x)) = s(x+ s(x+ s(x)))(x+ s(x)) + s(x) = x+ s(x+ s(x)) 6= P(x)From a heuristic point of view, a generalised form of the theorem is required. Thisextends the problem to �nding what this generalised formula might be. Arbitrarily�nding it is an ad hoc approach, and potentially requires an in�nite branching ofa search space. In the example about the associativity of addition just given, onepossible generalisation of a formula is (x + y) + y = x + (y + y). For reasons suchas these, automatic theorem proving using the usual formalisation of arithmetic, i.e.Peano axioms plus induction, is made very di�cult. A solution might be to embed thearithmetic in a stronger system, where there is no need for generalisation. An exampleof such a system is Peano arithmetic plus the !-rule.4.2.2 Example of Using the !-ruleOne way of putting the !-rule into e�ect is to require that there is a formalisationof the derivation which proves each premise. For example, one could code proofs bynumbers by means of a recursive function which generates them. Such a formalisationwould be constructive. However, the rule as it is stated above is not constructive, andit is not suitable for implementation, since it has an in�nite number of premises. It ishard to automate on a computer proofs with an in�nite number of premises.Take, for example, a theorem about the associativity of addition:8x (x+ x) + x = x+ (x+ x)As seen in x4.2.1 the inductive proof is blocked, so some sort of generalisation isrequired. In such a case the correct proof is di�cult to �nd automatically. However,



4.3. CONSTRUCTIVE !-RULE 57the proof can be found using the !-rule, given that the proofs of the following premisescan be generated: (0 + 0) + 0 = 0 + (0 + 0)(s(0) + s(0)) + s(0) = s(0) + (s(0) + s(0))(s(s(0)) + s(s(0))) + s(s(0)) = s(s(0)) + (s(s(0)) + s(s(0)))...We restrict the !-rule so that the in�nitary proofs which are needed possess someimportant properties of �nite proofs. One such restriction is the so called constructive!-rule. This rule essentially requires that there is a recursive function which generatesby instantiation all instances of a proof. A possible implementation of the recursivefunction, required by the constructive !-rule, is by �nding a general pattern of a prooffrom examples of proofs for instances of a theorem (such as the ones given above), andcapturing it in a recursive program. This can be done by abstraction. An algorithmwhich can be used to recognise automatically the general pattern abstracts an initialset of rewrite rules describing an instance of a proof, and then updates this abstractionaccording to other instances of a proof, until the general proof representation satis�esall of the (large number of) cases considered. Any abstraction algorithm can be usedto guess the !-proof from individual proof instances.1We now go on to de�ne the constructive !-rule and show its use in schematic proofs.4.3 Constructive !-RuleHere we de�ne the constructive !-rule, which we later propose (in x4.8) to use in prov-ing diagrammatic theorems of Category 22 in a similar way that the rule is used toprove theorems of arithmetic. Baker investigated the constructive !-rule and schem-atic proofs for theorems of arithmetic [Baker et al 92].3 Here, we explain the ideabehind the constructive !-rule and schematic proofs and how they can be applied todiagrammatic proofs.De�nition 2 (Constructive !-Rule)The constructive !-rule allows inference of the sentence 8x: P (x) from an in�nitesequence P (n) for n 2 ! of sentencesP (0); P (s(0)); P (s(s(0))); : : :8n:P (n)such that each premise P (n) is proved uniformly (from parameter n).1 Possible abstraction mechanisms have been discussed in Chapter 2. The algorithm chosen for theimplementation is discussed in x7.5.2 The taxonomy of diagrammatic theorems was given in x3.3.3 More information on Baker's work can be found in [Baker & Smaill 95] and [Baker 93].



58 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFSSurprisingly perhaps, the formalisation of arithmetic using Peano axioms and the con-structive !-rule in place of induction has the desired property of cut elimination andis known to be complete [Shoen�eld 59].The uniformity criterion is taken to be the provision of a uniform computable proceduredescribing the proof of P (n). [Takeuti 87] de�ned the constructive !-rule so that thecomputable procedure gives the G�odel number of P (n) for every natural number n.The requirement for a uniform procedure is equivalent to the notion that the proofsfor all premises are captured in a recursive function. The computable procedure in[Yoccoz 89a] de�nition of the constructive !-rule is a recursive function. Yoccoz usesthis recursive function as an alternative to the G�odel numbering approach. To allowthe use of in�nitary rules, such as the !-rule, in automated reasoning systems, theserules are often restricted to their stronger recursive versions [Yoccoz 89b]. This meansthat a proof tree and a function describing the use of di�erent rules in a proof need tobe recursive. We call such uniform recursive functions schematic proofs.4.4 Schematic ProofHere we formally de�ne a schematic proof.De�nition 3 (Schematic Proof)A schematic proof is a recursive function which outputs a proof of some propositionP (n) given some n as input.Let a recursive function proof be a schematic proof. The function proof takes oneargument, namely a parameter n. By instantiation, i.e. by assigning a particular valueto n and passing it as an argument to the function proof, proof(n) generates a proof fora particular premise P (n). More precisely, proof(n) describes the use of rewrite rulesin proofs for each P (n). Now, proof(n) is schematic in n, because we applied some ruleR a function of n (or a constant) number of times. That is, the number of times thata rule R is applied in the proof depends on the parameter n. This recursive de�nitionof a proof for all premises is used as a basis for implementation of the schematic proofs(see x7.3).4.4.1 Example of Schematic Proof in ArithmeticTo illustrate the use of the constructive !-rule in schematic proofs, we give here anexample of a schematic proof of a theorem of arithmetic. The proof is an instance ofthe theorem about the associativity of addition, stated as x + (x + x) = (x + x) + x.The recursive de�nition of plus is given as follows:0 + Y = Y (4.1)s(X) + Y = s(X + Y ) (4.2)We also need a reexive law 8A: A = A.



4.4. SCHEMATIC PROOF 59The constructive !-rule is used on x in the statement of the associativity of addition.We write any instance of x as sn(0). By sn(0) is meant the n-th numeral, i.e. theterm formed by applying the successor function n times to 0. Next, the axioms areused as rewrite rules from left to right, and substitution is carried out in the !-proof,under the appropriate instantiation of variables. We use the following instance of theconstructive !-rule in our example:(sn(0) + sn(0)) + sn(0) = sn(0) + (sn(0) + sn(0))8x: (x+ x) + x = x+ (x+ x)where n is the parameter. We construct a schematic proof in terms of this parameterwhere the parameter n in the antecedent captures the in�nity of premises actuallypresent, one for each value of n. The aim is to reduce both sides of the equation tothe same term. The schematic trace of proof(n) is then represented in bold blocks ofrewrite rules which are being applied:(sn(0) + sn(0)) + sn(0) = sn(0) + (sn(0) + sn(0))Apply rule (4.2) n times on both sides...sn(0 + sn(0)) + sn(0) = sn(0 + (sn(0) + sn(0)))Apply rule (4.1) on both sidessn(sn(0)) + sn(0) = sn(sn(0) + sn(0))Apply rule (4.2) n times on left...sn(sn(0) + sn(0)) = sn(sn(0) + sn(0))Apply Reexive LawtrueHence, for any parameter n the recursive function proof can be expressed as follows:proof(n) = n� rule (4.2) on LHS;n� rule (4.2) on RHS;1� rule (4.1) on LHS;1� rule (4.1) on RHS;n� rule (4.2) on LHS;1�Reexive Law:Note that the number of proof steps depends on n, which is the instance of x we areconsidering. We see that the proof is schematic in n | certain steps are carried out anumber of times depending on n.



60 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFS4.4.2 Schematic Proof and GeneralisationThe constructive !-rule and schematic proofs can be used to prove theorems, such asthe associativity of addition, which in the usual axiomatisation of arithmetic require aproof involving mathematical induction. The fact that some theorems are not induct-ively provable without generalisation, but they are \schematically" provable using theconstructive !-rule, is one of the reasons that Baker used this formalisation of arith-metic in her implementation of an automatic theorem prover.4 It is hard to automategeneralisation in a theorem prover. Baker investigated the fact that proofs in Peanoarithmetic with the constructive !-rule do not require generalisations that are neededin usual inductive proofs,5 and used it in her automation of the use of the constructive!-rule.From a practical point of view, the constructive !-rule and schematic proofs elimin-ate the need for proofs of an in�nite number of premises. Moreover, they provide atechnique which enables an automation of search for proofs of universally quanti�edtheorems from instances of proofs, and eliminate the need for generalisations.We go on now and show how schematic proofs of universally quanti�ed theorems canbe found using several heuristics.4.5 Finding a Schematic ProofThe constructive !-rule de�ned in x4.3 requires that there is a schematic proof whichgenerates proofs of all premises. We capture a schematic proof using the recursivefunction proof. Here we describe a way of �nding such a function proof from instancesof proofs of a theorem.A schematic proof can be generated by considering individual examples of proofs forinstances of a theorem, and then extracting a general pattern from these instances.This general pattern can be captured in a recursive function proof. The idea is that inorder to extract a general structure common to all instances of a proof, the particularexamples of proofs of a theorem which are considered need to be some general repres-entatives of all instances, and not special cases. These are normally taken to be someintermediate values, e.g. 99 and 100, rather than the initial values, e.g. 0 and 1, sincethe proofs for initial values of a parameter n are almost always special cases. Therefore,we use such intermediate values, e.g. P (99) and P (100) and correspondingly proof(99)and proof(100), to extract the pattern, which is hopefully general. A structure whichis common to the considered examples is extracted by abstraction mechanism. Theextraction process is referred to as abstraction of a general schematic proof. If theinstances for the intermediate values that were considered are not representative of allinstances, so that the abstraction was carried out on incomplete information, then theextracted recursive function proof could be wrong. Therefore, the function proof needsto be veri�ed to be correct. This involves meta level reasoning about the proof, andshowing that proof(n) indeed generates a correct proof of each P (n).4 Another reason for Baker's use of constructive !-rule is to study generalisation [Baker 93].5 This result was originally established by [Girard 87].



4.6. WHY USE SCHEMATIC PROOFS? 61The following procedure summarises the essence of using the constructive !-rule inschematic proofs:1. Prove a few particular cases (e.g. P (99), P (100), ...).2. Abstract proof(n) from these (e.g. from proof(99), proof(100), ...).3. Verify that proof(n) proves P (n) by meta induction on n.The general pattern is extracted (guessed) from the individual proof instances by(learning type) inductive inference, i.e. abstraction (see x7.5). We explain now thenotion of meta induction.4.5.1 Meta Induction for Veri�cation of Schematic ProofsBy meta mathematical induction we mean that we introduce system Meta such thatfor all n: `Meta proof(n) : P (n)where \:" stands for \is a proof of". Baker used PA! (i.e. Peano arithmetic with!-rule) for the systemMeta [Baker 93]. The meta inductive rule is de�ned as follows:`Meta proof(0) : P (0) proof(r) : P (r) `Meta proof(s(r)) : P (s(r))`Meta 8n proof(n) : P (n)This essentially says that by using the rules on P (s(n)) we can reduce it to P (n).By meta induction we need to show in the meta theory that given a proposition P (n),proof(n) indeed proves it, i.e. it gives a correct proof tree with P (n) at its root, and ax-ioms of some chosen logic at its leaves. Meta induction di�ers from standard inductionin that it makes an assertion about proofs rather than object level formulae.In order to show in the meta theory that proof(n) proves the proposition P (n) weneed to encode P (n), so that the proposition is transformed from the object levelstatement to the meta level statement. This can be done via parametrised syntax. Theformalisation of a system in which the meta level reasoning can be carried out can befound in [Baker et al 92] and [Baker 93]. We will not use this method for veri�cationof our diagrammatic proofs in our use of schematic proofs, but will propose a di�erentway, which will be discussed in Chapter 8.4.6 Why Use Schematic Proofs?We discuss here several informal motivations for using schematic proofs, and pro-pose some reasons why schematic proofs are worth while studying. Since we have noempirical evidence that our speculations are correct, we would like to suggest some



62 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFShypotheses for which empirical tests could be carried out by cognitive scientists toeither support or reject our speculations.The history of mathematics has taught us that there are plenty of faulty proofs inmathematics. One famous example is the history of Euler's theorem [Lakatos 76].6Euler's theorem states that for any polyhedron V � E + F = 2 holds, where V is thenumber of vertices, E is the number of edges, and F is the number of faces. Lakatosinitially gives a proof, historically due to Cauchy, of the theorem which is a uniformmethod for proving instances of Euler's theorem. Thus, the method is a schematicproof, however parts of the method are not explicitly stated, but seem very convincingwhen applied to simple polyhedra.7 Analysing this proof, Lakatos proceeds to presenta number of counter examples in which the method fails. It turns out that the initialtheorem does not hold for all polyhedra. It seems plausible that humans use some sortof schematic procedure to �nd general proofs of theorems. In particular, humans oftenuse examples of proofs for certain instances and then abstract them into a generalproof. If not all the cases are covered by the examples, then the general proof might beincorrect, as in the case of the proof of Euler's theorem mentioned above. If a counterexample is encountered, then the method needs to be revised to exclude such cases.If all proofs of theorems that people �nd followed rules of some formal logic, then therewould be no explanation for how erroneous proofs could arise. The errors would alwaysbe detected as syntactical errors, provided that the rules used to prove the theoremare correct. We propose that humans often use a procedure similar to the one forextraction of schematic proofs, given in x4.5, but omit the last step of the procedurewhich checks the correctness of the proof. We propose further, that omitting the laststep of such a procedure accounts for erroneous proofs. For instance, if one has notconsidered all the representative examples, then the schematic proof may not prove allcases of the theorem. A counter example could be found.We propose that schematic proofs seem to correspond better to human intuitive proofs.This observation was also made by Bundy in [Bundy 94]. For example, take a rotate-length theorem about rotating a list its length number of times, stated asrot(len(l); l) = l(where len(l) gives the length of a list l, and rot(a; l) takes the �rst a elements of a listl and puts them at the end of it). Consider a schematic proof of this theorem. Firstwe give an example proof for some instance of a theorem. An example proof for theinstance len(l) = 5 goes as follows. Let the list l consist of �ve elements. We take the�rst element of the list and put it to the back of the list. Now, we do the same for theremaining four elements. rot(len([a; b; c; d; e]); [a; b; c; d; e]) =rot(5; [a; b; c; d; e]) =rot(4; [b; c; d; e; a]) =rot(3; [c; d; e; a; b]) =6 Another example is Fermat's last theorem, which had hundreds of \proofs" before it was �nallyformally proved by [Wiles 95].7 See xA.5 for a full explanation of the proof procedure.



4.7. PENROSE, G �ODEL ARGUMENT AND CONSTRUCTIVE !-RULE 63rot(2; [d; e; a; b; c]) =rot(1; [e; a; b; c; d]) =[a; b; c; d; e]It is very easy to see that this process gives us back the original list. Moreover, itis clear that if we follow the same procedure, i.e. schematic proof, for a list of anylength, we always get back the original list. Sloman reported to Bundy that this wasthe procedure he and many other people used [Bundy 94]. However, not everybodyagrees. McAllester, for instance, claims that he \sees" the invariant in the rotate-length theorem immediately, which does not seem to be a common experience. Boyerobjects that when using schematic proofs the induction is postponed until the metalevel veri�cation of a schematic proof [Bundy 94].8In contrast to a schematic proof of the rotate-length theorem, this theorem is not easyto prove by a conventional (non-diagrammatic) theorem prover. The inductive proofof the rotate-length theorem consists of a generalisation: e.g. rot(len(l); app(l; k)) =app(k; l), where app is the list append function. It is harder to see that this theoremis correct. Schematic proofs avoid such generalisations. Baker used schematic proofsto exploit this fact for theorems of arithmetic[Baker et al 92].Schematic proofs and the constructive !-rule also explain why one or more examplescan represent proofs. We will propose in x4.8 to use schematic proofs for diagrammaticproofs of the kind we presented in Chapter 3, precisely because they allow us to useexamples to extract general proofs. There is no longer a need for abstract diagramswhich use ellipsis to represent generality. We can use concrete examples of diagramsand use schematic proofs to capture the generality by a general number of applicationsof geometric operations on a diagram. The intricacies of how schematic proofs can beused for a formalisation of diagrammatic proofs will be discussed in x4.8.4.7 Penrose, G�odel Argument and Constructive !-RuleWe already mentioned in Chapter 1 that the research reported in this thesis was par-tially inspired by Penrose's talk in 1995 to the Centre for Mathematical Sciences inEdinburgh. In this talk Penrose argued that the aim of the strong programme in Arti�-cial Intelligence9 (AI) is impossible. He claimed that there is something fundamentallynon-computational in human mathematical reasoning, which therefore cannot be car-ried out on machines. There are several books in which Penrose argues his viewpointon the di�erence between human mathematical reasoning and mathematical reasoningsimulated on machines. See for example, [Penrose 89], [Penrose 94b] and [Penrose 94a].Penrose uses the G�odel argument that comes from G�odel's �rst incompleteness theorem8 Aaron Sloman, David McAllester and Bob Boyer communicated their opinions about the rotate-length theorem to Alan Bundy via email.9 There is a spectrum of opinions about what the aim of strong AI is. We think that a generallyaccepted notion of strong AI is perhaps that we can create intelligence. Weak AI, on the otherhand, argues that we can create behaviour on machines which in humans would be considered to beintelligent.



64 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFS(see x4.2.1 and [G�odel 31]) to convince us of the non-algorithmic nature of humanmathematical thought.10 He argues that humans are capable by \insight" to see andcheck the correctness of any mathematical proof. By G�odel's �rst incompletenesstheorem this is impossible for any formal system, and thus for machines:\... it seems to me that it is a clear consequence of the G�odel argumentthat the concept of mathematical truth cannot be encapsulated in any form-alistic scheme. Mathematical truth is something that goes beyond mereformalism." [Penrose 89, page 145]The question arises whether the completeness of the system of Peano axioms with theconstructive !-rule disproves Penrose's argument. According to Penrose, the !-ruleand its constructive counterpart also su�er from the G�odel argument, namely thatthey are computationally infeasible. This is due to the in�nitary nature of the rules.Although a complete formalisation of arithmetic can be devised using Peano axiomsand the constructive !-rule, it turns out that the G�odel argument does apply to somemeta system in which the veri�cation of the recursive function capturing the proof of atheorem is carried out.11 Unfortunately, this appears to support Penrose's argument.However, our hypothesis is that humans often omit the inductive veri�cation step.Curiously, Penrose himself omits this step in his argument. In order to convince usthat human mathematical reasoning is fundamentally non-computational and hencecannot be simulated on a machine, Penrose uses a procedure similar to the algorithmfor implementation of the constructive !-rule (given in x4.4).12In his lecture in Edinburgh, Penrose gave an example of human mathematical reasoningin mathematical visualisation, and claimed that such reasoning cannot be carried outby machines. The example that he used is the diagrammatic proof of a theoremabout the sum of hexagonal numbers. This diagrammatic proof has been presented inx3.2.6. The theorem about the sum of hexagonal numbers states that the sum of �rstn hexagonal numbers is n cubed. In his proof Penrose demonstrated only one instanceof the proposition P , namely for n = 3. Thus, the sum of the �rst three hexagonalnumbers (i.e. 1; 7 and 19) is three cubed (i.e. 27). He invited us to consider a cubeof magnitude three and showed us how one can decompose this cube into three half-shells.13 Each of these half-shells can be projected onto a plane to give a hexagonalnumber. Then, he asked us to consider how general this procedure is, and that it wouldwork for all values of n. To convince us, Penrose exhibited the trace for the proof forn = 3, i.e. proof(3), explained how to extract from this a general proof procedure10 G�odel's �rst incompleteness theorem has been used in the past by Lucas, similarly to Penrose, topoint out the distinction between reasoning by humans and reasoning by machines (see [Lucas 70]).11 Recall that in x4.4 we gave a three-stage algorithm of how to apply the constructive !-rule, andthat the third stage was to verify is some meta system that the recursive function which uniformlycaptures the proof is indeed correct.12 Most of the information about the line of argument that Penrose took at his talk in Edinburgh wascommunicated to me by Alan Bundy. Most of the analysis of Penrose's argument which is discussedin this section, is also due to [Bundy 96].13 Recall that a half-shell consists of three adjacent faces of a cube. This terminology is not the onethat Penrose used, but is due to Alan Bundy.



4.7. PENROSE, G �ODEL ARGUMENT AND CONSTRUCTIVE !-RULE 65proof, and claimed that proof(n) is correct, i.e. for each n it always gives a proof of theproposition P (n).Recall again the algorithm for using the constructive !-rule in schematic proofs whichwas given in x4.4. Penrose's argument very closely follows this algorithm.1. He proved one special case of the proposition. In particular, he gave proof(3)which is a proof of the proposition P (3).2. He discussed how to extract (abstract) a general proof procedure proof(n) fromproof(3).3. He claimed that proof(n) always proves P (n).Careful consideration of Penrose's argument reveals that he is doing less than ouralgorithm in x4.4:� He considers only one example of a proof.� He does not formalise proof(n).� He does not prove that proof(n) always proves P (n).Penrose's method of proving theorems is hence fallible. Potentially, a counter examplecould be found, i.e. a value of n for which proof(n) does not prove P (n). However, itseems that humans often use Penrose's method for solving problems. We, as humanmathematicians, consider examples of proofs of a proposition and try to ensure thatwe take care of all special cases and various types of examples. This corresponds to the�rst stage of Penrose's method. We then trust that our abstraction procedure is generalenough to encompass all the examples given in the �rst stage. This corresponds to thesecond stage of Penrose's method. Last, we rely on our judgement that the �rst twostages were carried out correctly, so we do not address the third stage of the methodto check that our general proof is indeed correct. As mentioned in x4.6, this can be apossible explanation for existence of erroneous proofs.What is then an adequate automated proof checker, according to Penrose? An answerto this question bears importance in understanding Penrose's argument against strongAI. If we consider the three stages involved in his method of extracting proofs (andconsequently in the implementation of the constructive !-rule), then it seems thatthere should be no particular di�culty in automating each stage in a proof checker.Such a system would ful�ll Penrose's requirements if the requirements are such ashe uses in his own reasoning, namely they correspond to his own method of proofextraction. In this thesis we present a system, called Diamond, which implementsthe procedure for extraction of schematic proofs as given in x4.4, and therefore ful�lsPenrose's requirements discussed in this section.



66 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFS4.8 Diagrams and Schematic ProofsIn part of the research in this thesis we extend Baker's work on schematic proofs toour diagrammatic proofs so that the generality of the diagrammatic proof is embeddedin the schematic proof. Thus, we eliminate the need for abstractions in diagrams. Ageneral schematic proof is extracted from geometric manipulations on concrete ratherthan general diagrams.The notion of proof in formal logical theories is embedded in the application of rewriterules. A theorem at hand is proved in a logical way (as opposed to a diagrammaticway) when the sentence expressing the theorem is reduced to a truth value, throughan application of rewrite rules.The notion of proof in diagrammatic proofs of the kind that we presented in Chapter 3is perhaps less obvious. The rewrite rules of a logical proof are replaced in a diagram-matic proof by geometric operations on a diagram. These could be seen as rewriterules if they were part of some logical theory of diagrams.14 The geometric operationstransform a diagram in some way. Theorems that are part of our problem domain aretheorems of natural numbers (see x3.5), therefore diagrams are represented using dots.The notion of a diagrammatic proof is embedded in the transformation of diagramsrepresenting one side of the equality (which states the theorem symbolically) into dia-grams representing the other side of the equality. All operations preserve the numberof dots composing a diagram. In this way, we can appeal to the visual characteristic ofthe composition of dots (e.g. six rows of six dots, one on top of another form a squareof magnitude six), and at the same time retain the notion of equality in the theorem(represented as an equation) throughout the application of geometric operations. Thevisual characteristic of the composition of dots gives us some sort of intuitive under-standing of what a particular number represents (e.g. 62 is a square of magnitude six).The preservation of dots in a diagram convinces us that the operations are valid \dia-grammatic rewrite rules" and that the equality is preserved. A diagrammatic proofis completed when one side of the equation is transformed into the other side of theequation (or equivalently, when the two sets of diagrams representing the two sides ofthe equation consist of identical diagrams). The notion of a proof, as implemented inour diagrammatic reasoning system Diamond, will be discussed in x5.3.The process of a diagrammatic schematic proof starts with a few particular concretecases of the theorem represented by diagrams. The diagrammatic manipulations (i.e.operations) on the diagram are performed next, capturing the inference steps of thediagrammatic proof. This step corresponds to the �rst step of the schematic proofprocedure given in x4.4.The second step is to abstract the operations involved to form a schematic proof forn. Note that the generality is represented as a recursive program which speci�es asequence of diagrammatic operations that are used on a diagram, and not as a generalrepresentation of a diagram. More precisely, the basic idea is to consider proofs forn + 1 which can be reduced to proofs for n (or conversely, such proofs for n whichcan be extended to proofs for n + 1 by adding to them some additional sequence of14 For example, Hammer formalised a logical theory of Venn diagrams [Hammer 95].



4.9. SCHEMATICDIAGRAMMATIC PROOF FOR THEOREMSOFCATEGORY 267operations). The di�erence between the proof for (n+ 1) and the proof for n, i.e. theadditional sequence of operations in the proof for (n+1) with respect to the proof forn is referred to as the step case of the abstracted schematic proof.The last step in the schematic proof procedure is to prove by meta induction that theabstracted diagrammatic schematic proof is correct. We need to show that proof(n)proves P (n) for all n. One way of proving the correctness of schematic proofs is tocreate a theory of diagrams that models the processes in a diagrammatic reasoningsystem and prove correctness there. This will be discussed in Chapter 8.We can see that the constructive !-rule and schematic proofs can indeed be applied todiagrammatic theorems so that we can formalise diagrammatic schematic proofs. Inthe next section we give examples of schematic proofs for theorems of Category 2 whichwere presented in Chapter 3. The implementation of the formalisation of diagrammaticschematic proofs and their extraction will be the topic of Chapter 7.4.9 Schematic Diagrammatic Proof for Theorems ofCategory 2We can now structure diagrammatic proofs in a more formal way. Identifying thegeometric operations that are required to prove a theorem helps us de�ne a su�cientrepertoire15 of such operations which are used in diagrammatic proofs. Diagrammaticproofs of Category 2 from x3.2 are structured here so that although the example proofswere given for particular values of a parameter n, we present the proofs here in a generalform. These general proofs are generated by extracting a general pattern from thetrace of the example proof procedure. In Chapter 7 we present how general schematicproofs are extracted automatically inDiamond. There are choices in the diagrammaticrepresentation of (part of) a theorem, which will be discussed in more detail in x5.3.1.For now it su�ces to say that our choice of a diagrammatic representation of a theoremis arbitrary.4.9.1 Schematic Diagrammatic Proof for Triangular Equality forEven Squares (2n)2 = 8Trin�1 + 4n4

15 By su�cient repertoire we mean a set of diagrams and operations which enable us to prove asigni�cant range and depth of theorems. We discuss these issues in greater detail in x9.1.1.



68 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFSHere we list the proof for the theorem about the triangular equality for even squares(given in x3.2.3) as a sequence of steps that need to be performed on the diagram. Thetheorem is stated as (2n)2 = 8Trin�1 + 4n. Recall that the triangular numbers Trixwere de�ned in x3.2.3. Let us choose to represent (2n)2 with a square of magnitude 2nfor some particular n. Note that there could be other diagrammatic representations of(2n)2. Also, let us represent Trin�1 as a triangle of magnitude n� 1, and n as a lineor a side or a column or a row of magnitude n. The aim is then to transform a squareof magnitude 2n into eight triangles of magnitude n � 1 and four sides (or lines orcolumns or rows) of magnitude n, for some particular n. A schematic proof, however,is given for a general n:1. Split a square of magnitude 2n into four identical squares (note that each of thefour squares is of magnitude n).2. Split each new square down the main diagonal (note that for each square, twotriangles are created, one of magnitude n and one of magnitude n� 1).3. For each bigger triangle (of magnitude n), split from it one side (note that thiscreates another four triangles of magnitude n�1 and four sides of magnitude n).Therefore, these steps are su�cient to transform a square of magnitude 2n representingthe LHS of the theorem to eight triangles of magnitude n�1 and four sides of magnituden representing the RHS of the theorem.4.9.2 Schematic Diagrammatic Proof for Sum of Odd Naturalsn2 = 1 + 3 + � � �+ (2n� 1)
Here we state the proof for the theorem about the sum of odd naturals (given inx3.2.4) as a sequence of steps that need to be performed on the diagram. Let usagain arbitrarily choose that n2 is represented by a square of magnitude n, (2n� 1) isrepresented as an ell and a natural number 1 is represented as a dot. The second stepin the proof procedure justi�es the choice of ell representing (2n� 1):1. Cut a square into n ells, where an ell consists of 2 adjacent sides of the square.2. For each ell, continue splitting from an ell pairs of dots at the end of two adjacentsides of the ell until only 1 dot is left (note that for each ell of magnitude n, wewill have n�1 pairs of dots plus another dot which is a vertex of the two adjacentsides, i.e. 2(n� 1) + 1).



4.9. SCHEMATICDIAGRAMMATIC PROOF FOR THEOREMSOFCATEGORY 269Therefore, these steps are su�cient to transform a square of magnitude n representingthe LHS of the theorem to n ells of increasing magnitudes representing the RHS of thetheorem.4.9.3 Schematic Diagrammatic Proof for Sum of Squares of FibonacciNumbersFibn � Fibn+1 = Fib12 + Fib22 + � � �+ Fibn2

Here we give the proof for the theorem about the sum of squares of Fibonacci numbers(given in x3.2.5) as a sequence of steps that need to be performed on the diagram. LetFibn � Fibn+1 be represented (arbitrarily) by a rectangle of length Fibn and heightFibn+1, and Fibn2 by a square of magnitude Fibn:1. Repeat splitting a square which is of a magnitude that is equal to the smallerside of a rectangle until a rectangle is exhausted (note that aligning squares ofFibonacci numbers in this way is a method of generating Fibonacci numbers, i.e.1; 1; 1 + 1 = 2; 1 + 2 = 3; 2 + 3 = 5, etc.)Therefore, these steps are su�cient to transform a rectangle of magnitude Fibn+1 byFibn to a representation of the RHS of the theorem, i.e. n squares of magnitudes thatare increasing Fibonacci numbers.4.9.4 Schematic Diagrammatic Proof for Sum of Hexagonal Numbersn3 = Hex1 +Hex2 + � � �+Hexn



70 CHAPTER 4. CONSTRUCTIVE !-RULE AND SCHEMATIC PROOFS

Here we state the proof for the theorem about the sum of hexagonal numbers (givenin x3.2.6) as a sequence of steps that need to be performed on the diagram. Let n3 berepresented by a cube of magnitude n and Hexn by an nth hexagon:1. Split a cube into n half-shells (recall that a half-shell consists of three adjacentfaces of a cube).2. For each half-shell project it down the main diagonal of a cube from a three-dimensional space onto a plane (note that this forms a hexagon).Therefore, these steps are su�cient to transform a cube of magnitude n representingthe LHS of the theorem to n increasing hexagons representing the RHS of the theorem.4.10 SummaryIn this chapter we showed how schematic proofs can be used for diagrammatic proofs.A schematic proof is a recursive program which by instantiation at n gives a proof ofeach proposition P (n). The constructive !-rule justi�es that such a recursive programis indeed a proof of a proposition for all n. The constructive !-rule enables us tocapture in�nitary proofs in a �nite way by a uniform procedure.We �rst motivated the use of the !-rule, which cannot be used for implementationdue to its in�nitary nature, and the constructive version of the !-rule, which can beused for implementation. The constructive !-rule requires a provision of a uniformprocedure to prove a theorem. The uniformity of procedure is captured in a recursiveprogram proof(n).Then, we demonstrated how the constructive !-rule is used in schematic proofs. Inparticular, we presented a procedure which implements its use to extract a recursiveprogram that is a proof of a theorem at hand. [Baker et al 92] investigated the use ofconstructive !-rule for the automation of schematic proofs of arithmetic theorems. Wegave an example of a schematic proof in arithmetic for a theorem about the associativityof addition.Next, we went on to discuss some reasons for, and consequences of using schematicproofs in proving theorems. We speculated that humans use a procedure similar tothe one for extraction of schematic proofs, but they omit the stage which veri�es therecursive program. This may account for existence of some erroneous \proofs".



4.10. SUMMARY 71Part of the inspiration for the research presented in this thesis came from Penrose andhis talk in Edinburgh. We challenge Penrose's argument that human mathematicalreasoning is fundamentally non-computational, and thus it cannot be automated.Finally, we showed how schematic proofs can be used for diagrammatic proofs. Adiagrammatic schematic proof consists of an application of geometric operations on adiagram. Instead of using general diagrams which use abstractions, we capture thegenerality of a proof in a general number of applications of geometric operations. Wegave examples of structured proofs (but not yet formalised into schematic proofs) fortheorems of Category 2. We now go on and show how these ideas are formalised andimplemented in a diagrammatic reasoning system Diamond.



Chapter 5Design Considerations

| Diamondthe SystemOne of the aims of the research reported in this thesis is to show that diagrams canbe used for formal proofs. Moreover, we want to demonstrate that diagrammaticreasoning can be automated. To realise the formalisation of diagrammatic reasoning weimplemented a system called Diamond which proves theorems by using diagrammaticinference steps. Diamond is a diagrammatic proof checker, which interactively provestheorems of mathematics by applying geometric operations to diagrams. In this chaptersome of the design issues for the implementation of this proof system are discussed.In x5.1, a brief overview of Diamond is given. The architecture of Diamond is presen-ted in x5.2. In x5.3 we describe the basic notion of a diagrammatic proof. In x5.4 weexplain the construction of example proofs. Finally, the discussion of other designissues for construction of proofs is given. They include the representation of diagramsin x5.5, and Diamond's graphical interface in x5.6.5.1 Overview of DiamondTheDiamond system is an embodiment of the ideas presented in this thesis. Diamondstands forDiagrammatic Reasoning andDeduction. It is a diagrammatic proof system72



5.1. OVERVIEW OF DIAMOND 73implemented in the functional programming language Standard ML of New Jerseyversion 109.1In Diamond we capture the generality of a diagrammatic proof by a diagrammaticschematic proof (see x4.4). The extraction of a diagrammatic schematic proof in Dia-mond consists of three steps corresponding to the procedure described in x4.5.� The interactive construction of example proofs.This is the topic of this chapter. An example proof is constructed interactivelywith the user. It consists of a sequence of geometric operations that are ap-plied to the diagram. The repertoire of geometric operations will be discussed inChapter 6. This sequence in some way (explained in more detail in x5.3) justi�es,i.e. proves, some ground instance of the theorem. In particular, if a theorem isexpressed as an equality, then an instance of a proof transforms the diagram-matic representation of the left hand side of the equality through a sequence ofoperations into the diagrammatic representation of the right hand side of theequality.� The automatic extraction of a schematic proof.Diamond abstracts the concrete, interactively constructed example proofs in or-der to extract a schematic proof that will hopefully be applicable to any groundinstance. A schematic proof captures the generality using the general numberof applications of geometric operations to a diagram. This number of applica-tions is some function of a parameter n, where n is a natural number. If twoinstantiations of a proof procedure have a common structure, then this struc-ture is automatically extracted and abstracted by Diamond. The constructive!-rule, introduced in Chapter 4, is used to justify that a general schematic proofdoes constitute a formal proof. The representation of schematic proofs and theirautomatic extraction will be discussed in detail in Chapter 7.� The veri�cation of a schematic proof.The schematic proof is an abstraction of the example proofs, and is an educatedguess induced by the abstraction mechanism. It still needs to be formally veri�edthat the schematic proof proves the theorem at hand. In particular, we need toshow that for any instance n a schematic proof generates a correct proof of aproposition P (n). To prove that proof(n) proves proposition P (n), we would needto re-introduce abstractions in order to be able to reason with general diagrams.Abstractions in diagrams can be avoided by creating a theory of diagrams whichmodels the processes in Diamond, and by carrying out a meta level proof ofcorrectness in this theory. The veri�cation of schematic proofs will be discussedin detail in Chapter 8.The rest of this chapter deals with the interactive construction of example proofs andthe design issues that are relevant for construction of example proofs.1 For more information on the Standard ML programming language, see [Paulson 91].



74 CHAPTER 5. DESIGN CONSIDERATIONS5.2 ArchitectureDiamond consists of a diagrammatic component and an inference engine. The dia-grammatic component forms and processes the diagram. The inference engine dealswith the diagrammatic inference steps. It processes the operations on the diagram.1) Inference engine: it is the main component of Diamond; it is the knowledge basecomponent of the system. It consists of several parts or submodules:� Assertion submodule: it accepts from the user a suggested diagram fromwhich to start the diagrammatic example proof.� Operations submodule: it generates strings of constraints and geometricoperations (instructions) that are to be carried out on a diagram. It acceptsfrom the user the diagrammatic operations to be used, and executes them.See Chapter 6 for detailed discussion of the operations in Diamond.� Example proof submodule: it keeps track of all the operations applied toa diagram. The operations and the states of diagrams are recorded in anexecution trace referred to as an example proof. This was discussed in x5.4.� Abstraction submodule: it contains the implementation of the abstractionmechanism which is used to extract general schematic proofs from exampleproofs. This extraction ful�ls the requirement of the constructive !-rulefor a uniform computable procedure (see x4.3). See Chapter 7 for detaileddiscussion of the abstraction method.� Veri�cation submodule: it checks that a schematic proof induced by theabstraction mechanism is indeed correct, i.e. that a schematic proof provesthe proposition at hand. The veri�cation is carried out in a theory of dia-grams, which models the processes in Diamond. See Chapter 8 for detaileddiscussion of the veri�cation mechanism.� Import submodule: it accesses previously stored diagrammatic proofs andadds them to the library of accessible proofs.� Replay submodule: it instantiates diagrammatic proofs for a particular user-de�ned value of a parameter n. The e�ect is a simulation of an exampleproof.2) Diagrammatic component: this is the interface between the inference engineand the user. The Cartesian representation of the diagram is used in this com-ponent to draw diagrams on the screen. The e�ects of the operations that areapplied to the diagram by the inference engine are shown here. The interface ispresented in greater detail in x5.6.5.3 Diamond's Notion of ProofDiamond's notion of a proof is captured in a sequence of diagrammatic operationsthat need to be applied to an initial diagram. The initial diagram (or diagrams) thatthe sequence of geometric operations is applied to is a diagrammatic representation of



5.3. DIAMOND'S NOTION OF PROOF 75the left hand side (LHS) of an instance of a symbolically expressed theorem. The resultof applying all the operations of the diagrammatic proof to this diagram should be thediagrammatic representation of the right hand side (RHS) of the same instance of thesymbolically expressed theorem.2 A parametrised sequence of geometric operationsfor a particular theorem that ful�ls this requirement for all instances of the parameterconstitutes a diagrammatic proof.Diamond is not a fully automated theorem prover. Rather, it is a proof checker.With Diamond we are not trying to discover diagrammatic proofs, but rather we areexploring and trying to understand them better. Thus, it is generally expected thatthe user has a diagrammatic proof in mind. Although, if this is not the case, the usercan simply try various combinations of diagrams and operations on them to exploretheir e�ects. It is up to the user to choose the appropriate diagrammatic representationof the symbolic theorem which is to be proved. For instance, the usual representationfor the user to pick would be a square to represent n2. There are choices that can bemade and the user makes these choices according to the particular proofs that he orshe has in mind.5.3.1 Diagrammatic Representation of Arithmetic ExpressionsA theorem of natural number arithmetic can have a diagrammatic proof if it is ex-pressed using terms that can be mapped into a diagrammatic form. There are someobvious mappings that can be used. The table in Figure 5.1 gives some examples. Notethat a diagrammatic representation is described for a particular value of n and m.Arithmetic Expression Diagramn row of magnitude nn column of magnitude nn2 square of magnitude nn�m rectangle of magnitude n by mn3 cube of magnitude nFigure 5.1: Some diagrammatic representations of arithmetic expressions.There are also some less obvious mappings from arithmetic expressions to diagrams.For example, one could choose two adjacent sides of a square to represent odd naturalnumbers. A triangle of magnitude n represents n(n+1)2 , since the domain of theorems isnatural number arithmetic (as opposed to n22 for any real number n).3 A circumference2 Rewriting the LHS to get the RHS of the equation is a common technique in automated reasoningsystems [Dershowitz & Jouannaud 90].3 In continuous space one can think of an area of a right angle triangle of magnitude n as half of asquare of magnitude n if a square of magnitude is split along its diagonal, hence n22 . However, indiscrete space a square is represented using dots. Splitting a square along its diagonal does not splitit to two identical triangles, because the corner dots on each side of the diagonal cannot be halved.Hence this creates one triangle of magnitude n and one of magnitude n � 1. Taking a rectangle ofmagnitude n by n+1 and halving it creates two triangles of magnitude n, hence a triangle representsn(n+1)2 .



76 CHAPTER 5. DESIGN CONSIDERATIONS(also called a frame) of a square of magnitude n where n is a natural number canrepresent n2�(n�2)2 or, equivalently, 4(n�1). These mappings do not necessarily needto be obvious to a human. Rather, they can be constructed in a way which would makethe equivalence explicit in order for a human to understand what arithmetic expressionthey represent. For instance, to explain that a frame of a square of magnitude nrepresents n2 � (n � 2)2 one just has to imagine taking a square of magnitude n andremove from it an inner square which is of magnitude n� 2. On the other hand, if tworows and two columns of magnitude n � 1 are joined at the sides they form a frame,hence 4(n� 1).Clearly, the domain of theorems which can be proved in a diagrammatic way is re-stricted by the possible diagrammatic representations of a theorem. A set of givendiagrams and operations on them can be used to construct the less explicit mappingsof arithmetic expressions into diagrams. The choice of which diagram represents whichexpression depends on the particular example proof that the user has in mind. Somechoices are better than others, because an appropriate diagram enables the use of ap-propriate operations on the diagram which are necessary to carry out the proof. Forinstance, consider the theorem about the sum of hexagonal numbers given in x3.2.6.The theorem states that the sum of n hexagonal numbers is equal to the cube of n.The diagrammatic proof given in x3.2.6 consists of splitting \half-shells"4 from a cubeof magnitude n, plus some additional operations. Were we to choose that n3 is rep-resented diagrammatically as n squares of magnitude n for some particular naturalnumber n, then the proof could not be carried out, because the operation of splitting ahalf-shell from a cube would not be possible. The selection of diagrammatic represent-ation of an arithmetic expression corresponds to the induction selection or a choice ofa lemma in an algebraic proof (as opposed to a diagrammatic proof) of a theorem. Ifthe appropriate representation (in a diagrammatic proof) or induction scheme (in analgebraic proof) is selected, then the proof can be carried out. This will be discussedin greater detail when multiple representations of diagrams and operations on themare introduced in x6.5.The choices for the mapping of arithmetic expressions into diagrams could in principlebe automated to some degree { but this is a topic for future work (see x11.7).5.4 Construction of Example ProofsDiamond's example proofs consist of a sequence of applications of geometric operationsto a diagram. The operations are the inference steps of the proof. Example proofs areinteractively constructed for particular concrete values of a parameter n. Diamondrecords a trace of the operations used in each example proof. The idea is to compareexample proofs and detect if there is a common structure between them. If so, thenwe want to capture this common structure in a general way. We try to �nd a proofsuch that proof(n) proves a proposition P (n) for all n. So, for example, consider twoinstances i1 and i2 of a universally quanti�ed variable n. Also, let example proof1 andexample proof2 be two example proof traces for i1 and i2. Then, we would at least4 A half-shell is a combination of three adjacent faces of a cube.



5.4. CONSTRUCTION OF EXAMPLE PROOFS 77require that: proof(i1) = example proof1proof(i2) = example proof2The aim is to �nd a uniform and e�ective characterisation of proof to capture thegenerality of the proof, i.e. a recursive function proof parametrised over n. We employheuristics in automating the extraction of such a function. The formalisation andextraction of the recursive program capturing a general proof will be described inChapter 7.A particular formalisation of a recursive program depends on the structure of theexample proofs. For instance, if the example proofs consist of operations which canbe combined so that an example proof for n+ c can be constructed using an exampleproof for n plus some additional operations, e.g.:example proof(n+ c) = operations1(n+ c) then operations1(n) : : : operations2then the parametrised recursive program for n + c can be formalised so that there isonly one recursive call to the program for a value of decreased parameter n, for somenatural numbers n and c, e.g.:proof(n+ c) = operations1(n+ c) then proof(n)proof(c) = operations2If for instance, an example proof for a particular n+ c needs to consist of operationswhich can be reorganised into the following:example proof(n+ c) = operations1(n+ c) then operations1(n) : : : operations2then operations1(n) : : : operations2then the formalisation of the recursive program can be:proof(n+ c) = operations1(n+ c) then proof(n) then proof(n)proof(c) = operations2where there are two recursive calls in the program.Each of the di�erent recursive programs gives a di�erent proof. In Diamond we areinterested in proofs of theorems which have inductive proofs. Therefore, Diamondexpects the example proofs to be formulated in a particular way where the order ofoperations is crucial. Example proofs are expected to be given with the same orderof operations, perhaps with some extra operations in the case of the proof for n + cwith respect to the proof for n for some particular n. There is some justi�cation ofthe constraint on the way the example proofs are expected to be formulated. Theconstraint on the order of operations follows an inductive argument where instancesof theorems for n+ c can be proved using proofs of instances of theorems for n, whichcan be proved using proofs of instances of theorems for n � c etc. However, the useris not constrained to provide example proofs for two consecutive values n and n + c,but is allowed to provide any two examples of the same class, i.e. for n and n + kc



78 CHAPTER 5. DESIGN CONSIDERATIONSfor any k 6= 0. The importance of the order of operations is due to the limitation ofthe abstraction mechanism (see Chapter 7). If the example proofs do not satisfy thisconstraint, the abstraction technique cannot detect the common structure. It is partof our future work to relax the constraint on the order of operations in example proofs(see x11.2.3).Consider the example for the sum of odd naturals. The theorem is symbolically statedas n2 = 1+3+5+ � � �+ (2n� 1). The user can choose a square amongst the availablediagrams to represent n2 on the left hand side of the theorem. The user can alsochoose operations such as splitting two adjacent sides from a square, and splitting theends from these two adjacent sides. These are the operations that will be used in theexample proof presented here. The example proof is given for concrete values. Taken = 4 and the instance 42 = 1 + 3 + 5 + 7, and n = 3 and the instance 32 = 1+ 3 + 5.Figure 5.2 shows the interactively constructed example proof for n = 4 and Figure 5.31. Cut a square 4 times into ells, where an ell consists of 2 adjacent sides of thesquare.
LCUT(4)

2. For each ell, split end dots from both edges (n�1) times (i.e. 3; 2; 1 and 0 times).
SPLIT_ENDS(3)

Figure 5.2: Sum of odd naturals for n = 4.shows another example proof for n = 3.The �rst part of these example proofs decomposes a square into ells: in the case ofn = 3 into three ells, and in the case of n = 4 into four ells. This correspondsto the number of elements summed in the instantiated theorem. The second partshows that each ell represents an odd natural number, which corresponds to 2i� 1for each i in the sum in the instantiated theorem. The execution trace for the ex-ample proof where n = 3 that Diamond records consists of the following operations:[lcut,split ends,split ends,lcut,split ends,lcut].After two example proofs are constructed, then Diamond needs to extract a generalschematic proof from them. The representation and extraction of schematic proofs willbe presented and discussed in Chapter 7.The rest of this chapter discusses some design issues, which are relevant for the inter-active construction of example proofs. These include the representation of diagrams,



5.5. REPRESENTATIONS 791. Cut a square 3 times into ells, where an ell consists of 2 adjacent sides of thesquare.
LCUT(3)2. For each ell, split end dots from both edges (n� 1) times (i.e. 2; 1 and 0 times).

SPLIT_ENDS(2)

Figure 5.3: Sum of odd naturals for n = 3.the architecture of Diamond and the user interface.5.5 RepresentationsOne of the important �ndings of mathematical reasoning research has been that therepresentation of knowledge is critical to one's ability to �nd the solution to the prob-lem. It was P�olya who was �rst to advise us on the importance of knowledge rep-resentation [P�olya 45]. Simon argued P�olya's point further in [Simon 96] by statingthat solving a problem means representing it so that the solution becomes trivial, orat least transparent. In automated reasoning it is di�cult to see how to use this ad-vice, since there is normally only one representation scheme for the problem which isavailable to the system. Amarel [Amarel 68] was the �rst one to consider this problemmore closely. There has been much research done in the area of the automation of therepresentation design, but unfortunately not much achieved [Kulpa 94]. However, apromising approach has been taken by [Van Baalen 89]. He proposed an automatedrepresentation design method. Unfortunately, Van Baalen's approach is targeted forpredicate calculus representation, rather than diagrammatic representation. The lackof success in the automation of representation design dictates that researchers devisetheir own appropriate representation.In the Diamond system the construction of proofs is entirely diagrammatic, thus theknowledge representation needs to be diagrammatic as well. In particular, one of thedesign issues which needs to be considered in Diamond is the internal representationof diagrams and operations on them. We choose a representation which we hopecaptures the intuitiveness, rigour and simplicity of human reasoning with diagrams.Diamond is able to inspect and manipulate diagrams in a way that does not allowunsound inferences. Moreover, the manipulations (i.e. the operations on a diagram)should be easily carried out by the system. The external representations of diagramsvia the user interface needs to be simple and comprehensible to any user. Consideringthe advice of P�olya and Simon about the importance of representation, we need to



80 CHAPTER 5. DESIGN CONSIDERATIONSchoose an appropriate problem representation so that the solution can be obtainedin the automation of diagrammatic proofs. With their visual perception humans canobserve and inspect diagrams directly and see (depending on how accustomed we are tospatial mental manipulations) the inference that needs to be made to prove a theoremin a diagrammatic way. We aim to capture some of the simplicity of human visualperception, and represent diagrams in a way which enables a theorem prover to provetheorems using diagrammatic inference steps.There are several representations available to achieve this. They include:� Cartesian representation [Descartes 1637],� Projective geometry [Zisserman 92],� Diagrams on a raster [Furnas 90],� Vector representation [Larkin & Simon 87],� Topological (relational) representation.In Diamond we use a mixture of Cartesian and topological representations. In thenext few sections we analyse the use of these two representations with respect to therequirements in the implementation of Diamond. We justify our choice of mixedrepresentation and show how diagrams are represented internally in Diamond. Formore information on the other representations, the reader is referred to x2.2 for thesurvey of representations, and to the literature cited above.5.5.1 Why Not Cartesian Representation Alone?Recall what the Cartesian representation is by referring to x2.2.4. We stated that anadvantage of using the Cartesian representation is the e�ciency of symbolic manip-ulation. For disadvantages we listed the complexity and unintuitiveness of geometricmanipulations. We analyse here why the Cartesian representation alone is not appro-priate for the use in Diamond.Usually, Cartesian representation can be e�ective for representing diagrams used intheorems which are proved in a symbolic way (as opposed to diagrammatically). ThePolya system by [McDougal & Hammond 93] is an example of a geometry theoremprover that uses the Cartesian representation of diagrams e�ectively, but reasons sym-bolically. When proving conjectures symbolically, the complexity of matrix proceduresrequired to represent the geometric manipulations on objects is not a problem. Further-more, in systems that reason symbolically the unintuitiveness of matrix manipulationsalso does not seem to be a problem, because the system can still reason e�ciently. Onthe other hand, in Diamond we do not reason symbolically, and moreover, Diamond'soperations should be intuitive and easily carried out. Take for instance, a geometricoperation that might be needed in Diamond: an operation which splits a face from acube. First, the system needs to distinguish which of the six faces is to be split from acube. When this is established (let it be the face closest to the user, where the originof the coordinate system is closest to the user in the left hand bottom corner), the



5.5. REPRESENTATIONS 81operation can be carried out. The result of the operation is two cuboids. Using theCartesian representation of a cube, it is di�cult to see which coordinates representthis particular face of the cube, and which coordinates represent the rest of the cube.In Diamond we would like such an operation to be readily carried out, whereby theuser points to the face of the cube and the system splits the face from a cube withoutany complex matrix manipulations. It seems therefore, that Cartesian representationalone is not appropriate for the internal representation of diagrams in Diamond.5.5.2 Why Not Topological Representation Alone?Recall what the topological representation is by referring to x2.2.8. We stated that theadvantages of using topological representation are the e�ciency and ease of implement-ation, and the intuitiveness of reasoning with diagrams represented topologically. Fora disadvantage we listed the fact that topological representation can be too specialised.We analyse here why this representation alone is not appropriate for use in Diamond.In x2.2.8 we gave an example of how to represent a square using a topological represent-ation. It appears that the topological description of a square is a very specialised one,particularly suited for problems that deal with relational characteristics of a diagram.On the other hand, in Diamond we are not interested in the fact that some angles ina diagram are equal to some others, for example. As in the human visual perceptionof angles, this fact should be transparent in the representation of an object. Consideragain one of the operations that we might want in Diamond: to split a square alongits diagonal. It is not easy to see which parts of the square representation given inx2.2.8 will represent one resulting triangle and which will represent the other resultingtriangle.It seems that the problem with this sort of representation is that it might suit someproblems better than others. For instance, a system that used this kind of topologicalrepresentation is GROVER (see x2.4.3, developed by [Barker-Plummer & Bailin 92]).The problems that GROVER was targeted at were very specialised, such as provingthe Diamond Lemma, which is a theorem in the theory of well-founded relations. InDiamond we are interested in entirely di�erent properties of diagrams, so we need touse a di�erent diagram representation to the special kind used in GROVER. Let usnow consider a mixture of Cartesian and topological representation.5.5.3 Mixed RepresentationConsider the problem domain (presented in Chapter 3) that Diamond is targetedfor. First, the problems we aim to prove are theorems of natural number arithmetic.Diagrams represent natural numbers, so the representation of diagrams and operationson them should reect the e�ect that operations have on diagrams with respect tonatural numbers that particular diagrams represent. Considering the taxonomy ofdiagrammatic theorems given in x3.3, in particular, theorems of Category 2, suggeststhat in Diamond we are not interested in geometric properties of diagrams (such asthe magnitudes of angles or which segments are parallel to each other). Rather, weare interested in the e�ect of splitting parts of diagrams apart in particular ways, and



82 CHAPTER 5. DESIGN CONSIDERATIONSthe e�ect of the operations on the natural numbers that the diagrams represent. Therepresentation of diagrams should be pertinent to the operations on them, so that theoperations can easily be carried out. For instance, were we to split a face from a cube,then one of the good representations of a cube could be in terms of a sequence of facescomprising a cube. Furthermore, were we to split a square along its diagonal, a goodrepresentation of a square is in terms of two triangles.It appears now that neither Cartesian nor topological representation alone meets theserequirements. Topological representation alone can represent a square consisting of twotriangles, but it does not specify how they are combined to form a square. Cartesianrepresentation alone speci�es the position of the square, but a complex matrix manip-ulation is required to split this square into, say, two triangles. Therefore, we decidedthat in Diamond a mixture of Cartesian and topological representation is used forthe representation of diagrams. First, we introduce Diamond's mixed representation,and then we explain why combining the two representations does not combine theirindividual disadvantages, but rather solves them.It is essential to realise that we need to represent only concrete diagrams, that is, theones that are of a particular magnitude. The magnitude of a diagram is always anatural number. We do not need to represent general diagrams, since the generality ofthe proof is captured in a di�erent way by a schematic proof (see Chapter 7). In thisway we bypass the need to formalise abstractions in diagrams.The primitive object of Diamond is a dot, which represents the natural number 1.5This primitive object dot carries the information about the Cartesian coordinates.Thus we have dot(x,y) in the two dimensional space, and dot(x,y,z) in the three di-mensional space, where x, y and z are instantiated to concrete natural number values.We shall refer to the primitive object as a �. Besides the primitive object, Diamondalso has elementary and derived objects. Elementary objects are constructed fromdots. Examples of elementary objects include row, column, ell and frame. De-rived objects are constructed using elementary objects or other derived objects. Forinstance, a square can be represented in terms of two triangles. Such representationrenders splitting a square along its diagonal almost trivial. Examples of derived objectsinclude square, rectangle, triangle,... Figure 5.4 shows the internal representa-Internal Representation External Representationrow (�,�,�,�)square ( row(�,�,�,�),row(�,�,�,�),row(�,�,�,�),row(�,�,�,�))Figure 5.4: Internal and external representation of a row and a square of magnitude 4.5 Were we to extend the system to a continuous space, we might want to consider a line or an areato be a primitive object (see x11.6.1).



5.6. INTERFACE 83tion of some diagrams (a row and a square), and their external representation, as theyappear on the user interface, and as humans usually think of them (considering thatthe space is discrete).Diagrams also have multiple representations. For instance, a square can be representedas a collection of rows, or as a collection of columns, or as a collection of two adjacentsides (referred to as an ell), etc. This will be discussed in more detail in Chapter 6where the operations are presented.6The question now is why combining two di�erent types of representation does not com-bine their problems. The reason is that the good sides of one representation removethe bad sides of the other, and vice versa. Hence, only the advantages of both rep-resentations remain. In particular, using topological representation solves the problemof complexity and unintuitiveness of Cartesian representation. For instance, a squarecan be represented as two triangles using the topological representation. This makes iteasy to split a square into two triangles. Since each triangle is represented using dotswith Cartesian coordinates, this makes it easy to see how these triangles are combinedtogether. Moreover, it removes the need to specify the relations between di�erentangles, for instance, and other specialised properties of diagrams, because these arenow implicit in Cartesian representation.5.6 InterfaceThe graphical interface of Diamond has been implemented in SmlTk,7 which is aStandard ML package providing a portable, typed and abstract interface to the userinterface description and command language Tcl/Tk.8 It allows the implementation ofgraphical user interfaces in a structured and reusable way, supported by the powerfulmodule system of Standard ML. Figure 5.5 shows a screen shot of a Diamond session.There are three windows that are �red up when a Diamond session is started. Theyare entitled DIAMOND { Diagrams, PROOF TRACE, and clam-server. Figure 5.5only shows the �rst two. The main window where the geometric operations are appliedto a diagram is the DIAMOND window. It consists of a canvas where the diagramsare displayed, the �eld where the value for the particular parameter n for which theexample proof is given is entered, the �eld where the theorem at hand is entered, theInstantiate Theorem button which instantiates the entered theorem for the enteredvalue of n, and a menu. The diagram menu consists of the following options:File : enables importing of previously saved schematic proofs (regardless of whetherthey have been veri�ed or not), saving schematic proofs, starting new exampleproofs and quitting the Diamond session.Diagram : enables the user to choose diagrams used in example proofs { square,triangle, rectangle, ell, ...6 Multiple representations are presented alongside the description of operations due to a close rela-tionship and interdependence between the representations of diagrams and operations on them.7 SmlTk has been implemented by Christoph L�uth, Stefan Westmeier and Burkhart Wol� at theUniversity of Bremen, Germany. It is publicly available via the internet on the following site:http://www.informatik.uni-bremen.de/ ~cxl/sml tk/.8 For more information on Tcl/Tk the reader is referred to [Welch 95].
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Figure 5.5: Screen shot of Diamond.



5.6. INTERFACE 85Store Example : is a button which enables the user to store example proofs fromwhich a schematic proof is extracted.Abstract Examples : is a button which executes the abstraction command, wherebyDiamond automatically abstracts from example proofs and extracts a schematicproof parametrised over some n. As Diamond successfully extracts a schematicproof, an additional option is added to the Save option in the File menu option,which enables the user to save the current schematic proof.Verify : is initially empty. When the user imports a �le containing a previouslysaved schematic proofs which was not checked for its correctness, or when aschematic proof is successfully abstracted during the current Diamond session,then the option of checking its correctness is added to this menu. It executes theveri�cation command which checks if a schematic proof is correct. The windowentitled clam-server displays the process of automatic veri�cation.Library : is initially empty. When the user imports �les containing previously savedschematic proofs, they are added to the library. The user can then choose tobrowse through the library of schematic proofs, and use an existing schematicproof within another schematic proof as a submodule.Replay : is also initially empty. As schematic proofs are added to the library, theycan be instantiated for a particular value of n, and then simulated (replayed) onthe screen.Operations on diagrams are accessed by clicking on the diagram (on the canvas) onwhich the operation is to be carried out so that the pop-up menu is activated. Thesepop-up menus are generated dynamically. They only enable a choice of operations thatare possible on a diagram of a particular type. For instance, split frame is an operationthat is allowed on a square only. So, only the pop-up menu for a square will enablethe use of this operation. The various operations and the diagrams on which they canbe used will be discussed in detail in Chapter 6.The second window entitled PROOF TRACE keeps track of the diagrams which arecreated in each step of the proof, and the operations which are applied to diagrams.It consists of three columns entitled Diagrams, Diagrammatic Operations and Algebra,and a �eld Instance of Theorem where the instance of the entered theorem for someentered value n is displayed. The Diagrams column displays the set of diagrams whichare present at each step of the proof. The Diagrammatic Operations displays thediagrammatic operation which is applied to the diagrams at each corresponding proofstep. Finally, the Algebra column displays the algebraic e�ect of each correspondingdiagrammatic operation for a particular value of n. For instance, if we take a squareof magnitude 5, the algebraic equivalent is 52. If we apply lcut once, this changes52 to 42 + (2 � 5 � 1). This will be discussed in more detail in x6.5. Note that wedisplay algebraic terms equivalent to diagrams in order to convey better the notion ofa proof. This algebraic representation of diagrams plays no role in the construction ofdiagrammatic proofs.The third window entitled clam-server is just a text box which displays the veri�cationprocess when the correctness of schematic proofs is checked. Veri�cation of schematicproofs will be discussed in greater detail in Chapter 8.



86 CHAPTER 5. DESIGN CONSIDERATIONS5.7 SummaryIn this chapter we introduced the Diamond system, which is an implementation ofthe ideas presented in this thesis. Diamond is a diagrammatic proof checker which in-teractively proves theorems of arithmetic. Three procedural aspects of Diamond wereidenti�ed: the interactive construction of example proofs, the automatic extraction ofschematic proofs from example proofs, and the veri�cation of schematic proofs. Thischapter dealt with the �rst part: the construction of example proofs. The other twoparts will be presented and discussed in the subsequent chapters.Several design issues relevant to the construction of example proofs in Diamond werediscussed. The internal representation of diagrams is clearly important. Analysisof several techniques identi�ed a suitable representation; a mixture of Cartesian andtopological representation. Diamond's architecture, which consists of an inferenceengine and a diagrammatic component, was presented. Finally, Diamond's graphicaluser interface was demonstrated.



Chapter 6Diagrammatic Operations
=nXi=0 2i� 1 = nXi=0 n | MJA diagrammatic proof, as used in this thesis, consists of operations that are applied to adiagram. The diagrammatic proof system Diamond, uses diagrams and operations onthem to carry out proofs. Rather that using the usual symbolic formulae of some logicfor inferencing, Diamond uses purely diagrammatic inference steps. The geometricoperations on diagrams capture the inference steps of the diagrammatic proof. Theseoperations need to be formalised in order to formalise diagrammatic proofs.This chapter presents the geometric operations, which are available in Diamond. Inx6.1 the operations are classi�ed into two main types: atomic and composite. These aredescribed and examples of each type of operations are given. Subsequently, multiplerepresentations of diagrams are introduced in x6.2. In x6.3, the relation between therepresentation of diagrams and operations on them is discussed. In x6.4, the analysisof the use of operations in tactics is given. Finally, in x6.5 the correspondence betweenthe choice of an operation on a diagram (and consequently, the representation of adiagram), and the choice of an induction schema in an algebraic proof is demonstrated.6.1 Classi�cation of OperationsOperations are also referred to as manipulations or procedures. They capture theinference steps of Diamond's diagrammatic proof. Therefore, a fairly large number of87



88 CHAPTER 6. DIAGRAMMATIC OPERATIONSsuch operations which are available to the user in the search for the proof, is identi�edand formalised. The intention is that the set of available operations enables one toprove theorems of signi�cant range and depth. The justi�cation of a signi�cant rangeand depth is informal and is discussed in more detail in x9.1.1. To date, Diamond hasbeen used to prove about �fteen diagrammatic theorems. We hope that by extendingthe set of available diagrams and operations Diamond will be able to prove moretheorems. They range from non-inductive to inductive theorems. The book ProofsWithout Words by [Nelsen 93] has been used as the main source of examples. For thediscussion of results, see Chapter 9.In Chapter 5 some of the kinds of operations that are needed in Diamond were de-scribed in order to choose an appropriate representation for diagrams. To recap, Dia-mond is targeted to prove theorems of discrete arithmetic. Diagrams are a way ofrepresenting natural numbers. The interest lies in the e�ect on the numbers thatdiagrams represent after an operation has been applied to the diagrams. Thus, theoperations join and split diagrams apart in various ways. Some operations are justsimple ones (e.g. split a row from a square), and some are more complicated ones (e.g.decompose a square into a sequence of rows). Hence, Diamond distinguishes betweentwo types of operations, atomic and composite:Atomic operations: are basic one-step operations that can be combined into morecomplex operations. The decision to classify these operations as atomic is arbit-rary. Potentially they could be considered complex. Examples of such operationsare: rotate, translate, cut, split, join, remove, insert a segment,...Composite operations: are more complex, typically recursive operations, composedfrom simple atomic ones. One can think of them as tactics in automated reason-ing. To date the composition function for all of the composite operations is of theform \apply atomic operations x, then apply y", where y is a recursive call of thecomposition function. There is scope to allow more complex tactics (e.g. consist-ing of conditional statements, etc.). Composite operations are de�ned in termsof decomposition of di�erent recursive representations of diagrams. Dependingon the theorem at hand, the diagram is viewed using a particular representation,which enables one to use a particular recursive composite operation. Ideally, theinternal representation of the diagram is pertinent to the composite operationthat is being carried out on it. Such a representation would render an operationvery easy to apply. It would be just a simple decomposition of the representationof a diagram. Examples of such operations are: recursive decomposition of asquare into rows, or columns, or ells, or frames,...In the following section the relation between the representations of diagrams and theoperations on them will be explained.6.2 Multiple Representations of DiagramsThe importance of problem representation has been acknowledged by many researchers([Simon 96], [Amarel 68], [Van Baalen 89]). Amongst them is George P�olya who argues



6.2. MULTIPLE REPRESENTATIONS OF DIAGRAMS 89in his books \How to Solve It" ([P�olya 45]) and \Mathematical Discovery" ([P�olya 65])that the choice of representation of a problem is vital for �nding its solution. Inautomated reasoning systems it is di�cult to see how to use this advice, since thereis normally only one representation scheme for the problem which is available to thesystem. An example of a commonly used representation scheme in automated reasoningsystem is predicate logic (see [Bundy 83]). In Diamond, however, P�olya's adviceof using alternative representations can be readily taken. Namely, diagrams can berepresented in a variety of di�erent ways. Hence, theorems are represented in a varietyof ways. The reader may notice that for some cases there is a connection between arepresentation of a diagram and induction schemas. This connection will be discussedin greater detail in x6.5.For instance, a square can be represented using several di�erent compositions:� a sequence of rows,� a sequence of columns,� a concentric sequence of circumferences, each of which is called a frame,� a nested sequence of ells,� a sequence of four squares, each of which is half the magnitude of the big one(note that the big original square has to be of even magnitude, and that therepresentation is recursive if the magnitude of the square if a power of 2),� a matrix of dots,� a sequence of diagonals.Figure 6.1 shows these possible representations.

4 Squares

Rows Columns Frames Frames

Ells Matrix DiagonalsFigure 6.1: Multiple representations of a square.



90 CHAPTER 6. DIAGRAMMATIC OPERATIONSSome of the multiple representations of a rectangle are analogous to the ones of asquare, some are not applicable, and some are new. A rectangle can be represented asfollows:� a sequence of rows,� a sequence of columns,� a nested sequence of squares,� a matrix,� a sequence of diagonals.Figure 6.2 shows these possible representations.
Rows Columns

Squares

Matrix DiagonalsFigure 6.2: Multiple representations of a rectangle.Diagrams in Diamond are discrete, and are represented in terms of collections ofdots (or other diagrams) on a discrete two-dimensional net. This necessitates that alltriangles that are available in Diamond are equilateral. It is hard to represent discretetriangles that are of any shape, i.e. the sides are of any magnitudes. Triangles arerepresented in a discrete space which consists of a two dimensional net where dots canbe drawn only for discrete values of both coordinates. Hence, the triangles appear tobe right-angle triangles, despite the fact the all the sides of any triangle are of equaldiscrete magnitude. Were we to extend Diamond to prove theorems of real arithmetic(see x11.6.1), then there would be a need for a continuous space, and therefore scopefor triangles of any magnitude. A triangle in Diamond can be represented as:� a nested sequence of sides,� a nested sequence of ells,� a collection of two triangles and a square.Figure 6.3 shows these possible representations.
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2 Triangles and 1 squareSides EllsFigure 6.3: Multiple representations of a triangle.6.3 Operations and Representations of DiagramsThe choice of representation that Diamond uses is important. Most of the proofsthat Diamond proves require some kind of recursive decomposition of a diagram.If the appropriate representation of a diagram is available, then such decompositionis possible. Clearly, the more representations of a diagram are available, the moreoperations are possible on this diagram.It is possible now to identify the available operations on a particular diagram. Giventhe multiple representations of diagrams de�ned in the previous section, we now listsome of the operations that Diamond provides. One of the features of Diamondis that it automatically restricts the operations o�ered to the user for each type ofdiagram. In this way, the user cannot try to carry out a nonsensical operation (forinstance, to split a triangle into four squares). Here are the available operations forsome diagrams:Square: split a row, split a column, split an ell, cut diagonally, split an outer frame,split an inner dot, split into four squares.Rectangle: rotate 90 degrees, split a row, split a column, split a square, cut diagonally.Triangle: split a side, split an ell, split into two triangles and a square.Ell: split row, split diagonal ends.Thick Frame: split a frame, split into rectangles.The particular set of available diagrams and operations on them was selected by theanalysis of examples of diagrammatic proofs, some of which are given in Chapter 3 andAppendix A. The hope is that these enable the user to prove a signi�cant range anddepth of theorems (see x9.1.1). There is a possibility to extend the set of diagrams andoperations on them. The reader is referred to Chapter 9 for a discussion of the results,i.e. of theorems that the user can prove using Diamond.A particular representation of a diagram is a way of viewing a diagram before making itpossible to carry out the operation. For instance, if a square is viewed as a sequence ofcolumns, then the operation that can be carried out on it is the recursive decomposition



92 CHAPTER 6. DIAGRAMMATIC OPERATIONSinto a rectangle and a column. If a square is viewed as a nested sequence of ells, thenthe operation that is possible on it is the recursive decomposition into a smaller squareand an ell.New complex operations may emerge, if these few possible representations, presentedin this chapter, are combined in various ways. For instance, let a square be representedas four smaller squares, and we use any other type of representation for each of the foursquares. This creates a new representation of a square, and as a consequence, allows anew complex recursive operation on a square. Amongst the available representationsof diagrams, the recursive representations, in particular, give scope for many newrecursive decompositions of diagrams.Clearly, depending on a theorem and its proof, di�erent operations are required. Con-sequently, diagrams need to be transformed into an appropriate representation. Some-times, diagram representation needs to be transformed midway through the proof inorder for the user to be able to use a particular operation. These transformations ofdiagram representations will be discussed next.6.3.1 Transformation of RepresentationsDiamond has a notion of a default representation of diagrams. This representationis used when a diagram is �rst chosen. It is typically a matrix or a sequence of sidesrepresentation. As di�erent operations are used, Diamond transforms the diagraminto an appropriate representation.The transformation between di�erent representations is readily achieved and is invisibleto the user. The idea is that the transformation of a diagram takes place behind thescenes, as it were, as the user chooses the operation. So for instance, say that theuser wants to decompose a square into ells, then immediately a square is transformedinto a representation of a nested sequence of ells. Using an appropriate representationenables easy handling of the operations. Figure 6.4 shows some of the transformationsin the case of a square.Sometimes, the transformation between two representations is not possible. For in-stance, a square of odd magnitude cannot be transformed into the \four squares" rep-resentation of a square. On the other hand, if a representation is not available, then theoperation on a diagram is not possible, unless the same operation can be composed ofother operations. For example, consider the example proofs for the theorem about thesum of odd naturals in Figure 5.2 and Figure 5.3 in the previous chapter. If a nestedell sequence representation of a square was not available, then the user could not splita square into an ell and a smaller square. However, the user could �rst split a rowfrom a square (thus the square would be transformed into a row representation), whichresults in a rectangle and a row. Then the user could split a column from the resultingrectangle (thus a rectangle would be transformed into a column representation). Thisleaves the user with a square, where the two operations can be repeated. It is easy tosee that if none of the three representations of a square and a rectangle were available,then the solution to the problem could not be found. It is obvious now how P�olya'sadvice about the importance of problem representation is used. A careful choice of arepresentation of the problem (i.e. diagrams) must be made in order to enable one to
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Figure 6.4: Transformation of representations of a square.�nd a solution for it.A question about the motivation for multiple representations might arise, especiallybecause all of the operations could potentially be carried out on, for example, a mat-rix representation of diagrams. What are the advantages and disadvantages of usingmultiple rather than single representations for diagrams? The advantage of using asingle representation for diagrams is that no transformations to other representationsneed to be carried out. The disadvantage however, is that the operations on a singlerepresentation are much more complex in comparison to operations de�ned on multiplerepresentations. Indeed, we argue that the operations should be simple, readily carriedout, and should reect the simplicity of human manipulation of diagrams. Multiplerepresentations o�er this advantage due to the close interdependence between a rep-resentation and an operation which is available and pertinent to this representation.This advantage outweighs the disadvantage of multiple representations which is thatthey require a transformation of representations.6.3.2 Destructor v. Constructor OperationsIt is apparent from the de�nitions that all operations decompose diagrams. Con-sequently, this reects itself in the structure of diagrammatic proofs that can be gen-erated using these operations. We distinguish between destructor operations, andconstructor operations. Destructor operations decompose diagrams in various ways(i.e. they split diagrams into new diagrams), whereas constructor operations composediagrams in various ways (i.e. they join diagrams into new diagrams). Hence, diagram-



94 CHAPTER 6. DIAGRAMMATIC OPERATIONSmatic proofs can be destructor and constructor.1 Since no di�erences appear in theusability of each type of operation in diagrammatic proofs, we arbitrarily choose to useonly destructor operations in Diamond.6.4 Operations as TacticsAs said before, operations may be combined recursively into more complex ones. Thesecombinations of operations are referred to as tactics. An atomic operation (such assplitting an ell from a square) is the simplest tactic. However, recursively applying thisoperation until the diagram is exhausted results in a more complex recursive tactic.Thus, tactics can use other tactics. Figure 6.5 gives an example of how di�erenttactics can be constructed from the example proof for the theorem about the sum ofodd naturals. Tactic 3 in Figure 6.5 consists of one atomic operation only. Tactic 2uses Tactic 3 recursively to prove that an ell consists of an odd number of dots. Tactic1 recursively repeats the splitting of ell operation and Tactic 2 until the diagram isexhausted. Note that this is an instance of an example proof.Figure 6.5 also represents how traces of example proofs are stored in Diamond, sothat a general proof can be extracted from them. A trace, i.e. a sequence of operationsused in an example proof, is recorded in Diamond using a tree structure. A linearsequence is mapped to a tree structure using a parameter which stores the positionof the diagram in a sequence together with the operation which is applied to it. Forinstance, the operation \split ell" in Figure 6.5 has a parameter [ ] associated with it toindicate that it is applied to the initial diagram. The parameter for the �rst applicationof \split diagonal ends" is [1], and for its second application the parameter is [1; 2].Extraction of general proofs will be discussed in detail in Chapter 7. An example proofis a tactic, because it consists of a sequence of diagrammatic operations.6.5 Diagram Representation and Induction SchemaIn x5.3.1 we showed how arithmetic expressions can be mapped into a diagrammaticrepresentation. It was also stated that a choice of a diagram and an operation on it�xes the choice of an induction schema.2 In this section we explain the relation betweenthe choice of a diagram representation and an induction schema in more detail.Choosing a representation of a diagram makes it possible for an operation to be carriedout on a diagram. It is a way of viewing a problem and formulating it so that a decom-position is readily achieved. Externally, the presentation of a diagram does not change.1 See Chapter 7 for a description of schematic proofs. Destructor schematic proofs are representedby the step case part �rst, followed by the base case part. Constructor schematic proofs would berepresented in an opposite way.2 By induction, as used in this context, we mean mathematical induction, and should not be con-fused with learning type induction, also called philosophical induction, where general statements areconcluded from particular examples. We refer to the learning type induction as abstraction. Theabstraction of a general schematic proof, which will be discussed in Chapter 7, is an example of alearning type induction.
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TACTIC 1

TACTIC 2

TACTIC 3

TACTIC 3

Repeat TACTIC 1

Take a square of size 3:

Split diagonal ends

Split diagonal ends

Split ell

Figure 6.5: Operations as tactics.A particular representation allows the use of a particular operation in the proof. Mostdiagrammatic proofs recursively decompose a diagram in some way. Carrying out eachdecomposition corresponds to doing a step case of a recursive decomposition. In analgebraic (as opposed to a diagrammatic) proof this process is analogous to the stepcase of mathematical induction. Therefore, choosing a representation of a diagram ina diagrammatic proof is analogous to choosing an induction rule in an algebraic proof.The analysis of recursive de�nitions and their structures which suggests inductionschemata and induction variables in the automation of inductive proofs dates backto Boyer and Moore [Boyer & Moore 79]. Recursion analysis tries to �nd a suitableinduction schema and universally quanti�ed variables for induction. Sometimes theremight be several induction schemata, or several variables over which to induct. Ifa wrong schema or variable is chosen, then the proof attempt is doomed to fail. Inour diagrammatic proofs we de�ne diagrams using di�erent recursive de�nitions for



96 CHAPTER 6. DIAGRAMMATIC OPERATIONSthe application of di�erent geometric operations. We examine now examples of howvarious recursive representations of a square (and thus the operations on it) correspondto the choice of induction schemata in an analogous algebraic proof. We use mappingsas described in x5.3.1 to make the correspondence between a diagrammatic and analgebraic proof explicit.A square, when viewed as a collection of ells allows an lcut operation. If a squareof magnitude n represents an arithmetic expression n2 and an ell of magnitude nrepresents an arithmetic expression 2n� 1, then an lcut operation corresponds to thefollowing rewrite rule: s(n)2 ) n2 + (2(s(n)) � 1). Figure 6.6 gives other possibilitiesaccording to the representation of a square, and consequently an operation on it (weuse a constructor s to de�ne a successor function):Operations and Diagrams(1) square of magnitude s(n)lcut)square of magnitude n and ell of magnitude s(n)(2) square of magnitude s(s(n))split frame)square of magnitude n and frame of magnitude s(s(n))(3) rectangle of magnitude s(n)� s(n)split row)rectangle of magnitude s(n)� n and row of magnitude s(n)(4) rectangle of magnitude s(n)� s(n)split col)rectangle n� s(n) and column of magnitude s(n)Figure 6.6: A square and the operations on it (n is a particular value).The underlined parts of the expressions in Figure 6.6 are the recursion constructorsin the rules. They indicate the recursive argument which is used in the analysis toidentify the induction schema. The same recursive constructors will be identi�ed inthe algebraic rewrite rules which correspond to the diagrammatic operations. To choosethe rewrite rule which corresponds to a diagrammatic operation we need to select anappropriate mapping between the two. Let us use the following mappings for thearithmetic expressions:� a square of magnitude n for n2,� a rectangle of length n and height m for n�m,� an ell of magnitude n for 2n� 1,� a row of magnitude n for n,� a column of magnitude n for n,� a frame of magnitude n for 4(n� 1).



6.5. DIAGRAM REPRESENTATION AND INDUCTION SCHEMA 97Note that these mappings in a diagrammatic proof are given for particular values ofn. We use a variable n to represent every instance in order to demonstrate the corres-pondence. Recall, that in Diamond there are no general diagrams, only concrete onesfor particular values of n. The choices of diagram representation, and consequently theoperations, given the mappings from diagrams to arithmetic expressions, correspond inan algebraic proof to the following rewrite rules (again, note the underlined recursiveconstructors) presented in Figure 6.7.Diagrammatic Operation Algebraic Rewrite Rule(1) lcut s(n)2 ) n2 + (2(s(n))� 1)(2) split frame s(s(n))2 ) n2 + 4(s(s(n))� 1)(3) split row s(n)� s(m) ) s(n)�m+ s(m)(4) split col s(n)� s(m) ) n� s(m) + s(n)Figure 6.7: Correspondence between diagrammatic and algebraic rules.We may need a rule that says that for some n, a square of magnitude n is equal to arectangle of magnitude n � n to be able to use the latter two rules. In the algebraicrewrite rules given above all the variables are implicitly universally quanti�ed. Consideragain the tables in Figure 6.6 and Figure 6.7. Note how di�erent recursive de�nitionsof operations in Figure 6.6 have di�erent recursion constructions (they are underlined),which occur in the recursive argument positions. The same is the case in the analogousalgebraic rewrite rules in Figure 6.7 (they are also underlined). Operations (rewriterules) (1), (3) and (4) have a one step recursive structure. Operation (rewrite rule)(2) has a two step recursive structure. Each of these recursion structures (schemata)corresponds to an induction schema. The one step induction schema is:P (0) P (n) ` P (s(n))8n: P (n)The two step induction schema is:P (0); P (s(0)) P (n) ` P (s(s(n)))8n: P (n)Choosing the representation of a square which allows (1), (3) or (4) �xes therefore, thechoice of an induction schema to a one-step induction schema in an algebraic proof.Choosing the representation of a square which allows (2) �xes the choice to a two stepinduction schema. However, notice that choosing the representation of a square whichallows (3) �xes the induction variable to be m, whereas choosing the representation to



98 CHAPTER 6. DIAGRAMMATIC OPERATIONSallow (4) �xes the induction variable to be n. In the diagrammatic proof the choiceof possible operations, and thus representation of a diagram, is dependent on how wemap the arithmetic expressions into a diagrammatic representation. These examplesdemonstrate that the choice of a representation of a diagram and operations on themin a diagrammatic proof is analogous to �xing the choice of an induction schema andan induction variable in an algebraic proof.On the other hand, it is interesting to notice that choosing an induction schema doesnot necessarily �x the choice of the representation that can be used for diagrams, andcorrespondingly the choice of possible operations. Rather, it restricts the set of pos-sible diagram representations. For instance, were we to choose a two-step inductionschema to carry out the proof of a theorem, then the only representation that we coulduse for a square would be the one that allows operation (2) (i.e. split frame in Fig-ure 6.7). Choosing a one-step induction schema restricts, but not uniquely determinesour choice of representation. However, in some cases the choice of an induction variablemay �x the choice of a diagram representation. For instance, if we choose m as aninduction variable, then this �xes the representation of a square to be the one thatallows operation (3).6.6 SummaryIn this chapter we presented the geometric operations available in Diamond. Theseoperations capture the inference steps of a diagrammatic proof. Two main classesof operations were identi�ed: atomic and composite. Some analysis of operationsindicated that representing diagrams in various ways is closely linked to the use ofgeometric operations on diagrams. In particular, if no appropriate representation of adiagram is available, then the operation on a diagram might not be possible. De�ningmultiple representations of diagrams made it possible to identify all possible operationson each type of diagram, given the limited repertoire of representations.Di�erent operations are required in di�erent proofs. Thus, the representation of adiagram sometimes needs changing midway through the proof. These transformationswere discussed next. It was also pointed out that all of Diamond's operations areof a destructor nature, i.e. they decompose a diagram in some way. Next, the use ofoperations in tactics was discussed. A sequence of operations used in an example proofis a tactic. Several such concrete tactics are abstracted into a general schematic proof.How an abstraction is carried out will be discussed in the next chapter.Finally, we demonstrated that the choice of operations in the diagrammatic proof(and therefore the particular diagram representation) is analogous to the choice ofan induction schema in an algebraic proof. The recursion analysis of de�nitions ofdiagrams identi�es the recursion schema. Analogously, the recursion analysis of thede�nitions of rewrite rules for an algebraic proof identi�es the induction schema to beused in an inductive algebraic proof.



Chapter 7Extraction of Schematic Proofs

Fibn � Fibn+1 = nXi=1 Fib2i | Alfred Brousseauadapted from Nelsen's Proofs Without WordsThe notion of diagrammatic proof presented in this thesis is captured in a recursiveprogram, referred to as a schematic proof. A schematic proof by instantiation generatesa proof of n for each proposition P (n). In this chapter we present how general schematicproofs are automatically extracted from example proofs, and how they are formalisedin Diamond.First, in x7.1 the explanation of what we mean by abstraction in the context of learn-ing from examples is given. In x7.2, the abstraction of schematic proofs from exampleproofs is discussed. In x7.3, the formalisation of schematic proofs is presented. A com-parative analysis of available abstraction techniques from x2.3 follows in x7.4. Then,in x7.5 the mechanism for abstracting for all linear dependency functions is given. Thepossibility of further breaking down the abstracted proof is considered in x7.6. In x7.7,proofs with case splits, and in x7.8 the recursive structure of proofs are considered.Finally, in x7.9 a possible mechanism for abstracting a general proof from one exampleproof is discussed. 99



100 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFS7.1 Context for AbstractionIn Chapter 4 schematic proofs were introduced. We argued that schematic proofs canbe used for diagrammatic proofs. A schematic proof of a theorem is a proof whichuniformly proves each instance of the conjecture. We use a recursive program proof tocapture the uniformity of the proof procedure. An algebraic schematic proof appliesrewrite rules to construct a proof. The number of applications of the rewrite rules isdependent upon a parameter n. The recursive program provides by instantiation aparticular proof of a particular instantiation of the conjecture.It is the geometric operations on a diagram which are used in the same way in adiagrammatic schematic proof as the rewrite rules are in the algebraic schematic proof.A schematic proof is extracted from examples of proofs of corresponding instantiationsof the premises. As mentioned in x5.4, example proofs are constructed interactivelywith the user. We investigate the formalisation of reasoning with examples rather thanwith general cases by the use of schematic proofs. We let the user explore instances ofproofs and we automate the extraction of a general proof from these instances. Thisextraction is referred to as an abstraction of a general schematic proof from examplesof proofs. In x2.3 we presented some possible abstraction techniques. The next twosections present how examples of proofs are stored in proof traces and how schematicproofs are formalised. Then, in x7.4 we analyse the applicability of the abstractionmethods from x2.3 with respect to the requirements for abstraction in Diamond. Thisanalysis will enable us to choose the technique most suitable for our purposes.7.2 Example Proof TracesA schematic proof of a theorem is extracted from a few example proofs.1 The construc-tion of example proofs was presented in x5.4. Diamond expects the example proofsto be formulated in a particular way in order for it to be able to abstract from them.The aim is to recognise automatically the recursive structure of the proof from a linearsequence of applications of operations, so that the structure common to the exampleproofs for n and n+1 can be recognised and abstracted into a general schematic proof.Notice that the example proofs do not need to be given for adjacent values of n. Thiswill be discussed further in x7.6.Traces of example proofs are recorded as sequences of applications of operations. Forinstance, take the two example proofs given in Figures 5.2 and 5.3 in Chapter 5. Theyare example proofs for the theorem about the sum of odd naturals for the values ofn = 4 and n = 3. The example proof traces for n = 4 and for n = 3 consists of thefollowing operations given in Figure 7.1.The sectioning of the tables indicates the structure common to the two example proofs.This structure needs to be automatically detected by Diamond, and is reformulatedinto the following representation:1 In Diamond we use two example proofs, which is enough to be able to extract linear dependenciesbetween the number of applications of geometric operations in the example proofs (see x7.5). Inx7.9 we discuss a possibility of abstracting from only one example proof.



7.3. FORMALISATION OF SCHEMATIC PROOFS 101Value of n = 4Operation No. of applicationslcut 1split ends 3 (i.e. 4-1)lcut 1split ends 2 (i.e. 3-1)lcut 1split ends 1 (i.e. 2-1)lcut 1split ends 0 (i.e. 1-1)
Value of n = 3Operation No. of applicationslcut 1split ends 2 (i.e. 3-1)lcut 1split ends 1 (i.e. 2-1)lcut 1split ends 0 (i.e. 1-1)Figure 7.1: Example proof traces for n = 4 and n = 3 for sum of odd naturals.proof(n = 4) = A(4)A(3)A(2)A(1)B(0)proof(n = 3) = A(3)A(2)A(1)B(0)where A(i) is the step case of the proof and consists of some sequence of operations(in the example above these are lcut and split ends) and B is a base case which alsoconsists of some sequence of applications of operations, or is empty (as in the exampleabove). The index i denotes the value of n for each particular step case. The sequenceof operations and the number of applications of operations in the step case is dependenton the case of the proof, i.e. the value of n.In a more general case of example proofs for n and n + 1 the representation can bereformulated into the following:proof(n) = A(n);A(n� 1);A(n� 2); : : : ;A(1);Bproof(n+ 1) = A(n+ 1);A(n);A(n � 1);A(n� 2); : : : ;A(1);BIt is possible that a theorem does not have a proof for all consecutive values of n, butrather for all odd or even or any other subset of values of n. Thus, in a case of twoexample proofs, the representation of a schematic proof can be reformulated for anynatural number c and n into the following:proof(n) = A(n);A(n� c);A(n� 2c); : : : ;A(c+ r);Bproof(n+ c) = A(n+ c);A(n);A(n� c);A(n� 2c); : : : ;A(c+ r);BIn the next section the formalisation of a recursive function proof is presented.7.3 Formalisation of Schematic ProofsWe are interested in inductive diagrammatic proofs. More precisely, we consider proofsfor n+ c which can be reduced to proofs for n (or conversely, such proofs for n whichcan be extended to proofs for n + c by adding to them some additional sequence of



102 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSoperations). It is precisely this di�erence between the proof(n + c) and proof(n), i.e.the additional sequence of operations in proof(n+ c) with respect to proof(n) that wecall the step case of the abstracted proof.Sometimes proofs are not uniform for all values of n. A theorem could have a di�erentschematic proofs for say, even and odd natural numbers. Such a proof clearly containsa case split: there is one schematic proof for odd naturals and another schematic prooffor even naturals. The abstraction mechanism that will be described in the next sectionhas to detect when a proof has a case split or not. If a schematic proof is the same forall values of n, i.e. there is only one case of the proof, so c = 1, we seek the followingrecursive reformulation of a schematic proof.proof(n+ 1) = A(n+ 1); proof(n) (7.1)proof(0) = B (7.2)Note that proof(0) is often an empty list of operations, because often no diagram isde�ned for n = 0, i.e. a diagram which consists of no dots.The proofs that have the same structure for all n are called 1-homogeneous proofs.Proofs can be c-homogeneous; then there are c cases of the proof. We say that if allinstances of the proof (for instances of numbers that \equal modulo c") have the samestructure and can be abstracted, then the proof is c-homogeneous. If there are c cases,then there are c di�erent abstracted proofs, one for each case. We seek the smallestcomplete recursive de�nition of a proof, i.e. c potentially di�erent schematic proofs,if there are c cases. The following theorem and corollary will help us de�ne what wemean by the smallest complete proof:Theorem 1 If a proof is c-homogeneous, then it is also (kc)-homogeneous for everynatural number k > 0.The immediate consequence of Theorem 1 is:Corollary 1 If a proof is not c-homogeneous, then it is also not f -homogeneous forevery factor f of c.In a c-homogeneous proof we will denote by Br a base case for a branch of numberswhich give remainder r when divided by c. Br is actually a proof for the smallestnatural number that gives remainder r when divided by c.A schematic proof is de�ned to be the smallest complete proof if there is no otherf -homogeneous proof obtainable from a c-homogeneous proof for any factor f of c,and all f schematic proofs for f cases are de�ned.The general representation of a destructor2 proof is formalised as follows { let:� n = kc+ r2 The notion of destructor and constructor proofs has been introduced and discussed in x6.3.2.



7.4. COMPARISON OF ABSTRACTION TECHNIQUES 103� where c = number of cases and r < c� and i � 1.Then the recursive de�nition of a general proof is:proof(ic+ r) = Ar(ic+ r); proof((i� 1)c+ r)proof(r) = Brwhere Ar is a step case and Br is a base case for a class of proofs where n � r(modc). \," denotes a concatenation of operations in Ar and proof. The formalisation ofabstracted proof for constructor proofs is symmetric to the one given above.Note that more complex proof structures are possible, e.g.proof(n+ 1) = A(n+ 1); proof(n); A0(n+ 1)proof(0) = BHowever, to date we have not come across proofs that would require more complexproof structures than the one we formalised, hence we decided not to cater for them.7.4 Comparison of Abstraction TechniquesIn Chapter 2 we presented in some detail several possible mechanisms for extractinga general pattern from some examples. They include: Plotkin's least general gener-alisation in [Plotkin 69] and [Plotkin 71]; Biermann's method [Biermann 72]; Bauer'smethod [Bauer 79]; Anderson and Kline's method [Anderson & Kline 79]; Mitchell'sversion spaces [Mitchell 82]; Quinlan's ID3 [Quinlan 86]; Inductive Logic Program-ming [Muggleton & De Raedt 94]; and Baker's method [Baker 93]. We analyse nowhow each of the techniques applies to the requirements of Diamond in order to choosean appropriate technique for implementation in Diamond.The analysis of abstraction techniques is carried out on an example of a typical ab-straction that is needed in Diamond. Consider an example proof trace for the theoremabout the sum of odd naturals given in Figure 7.1. The abstraction that we expect is:For any value n+ 1Operation No. of applicationslcut 1split ends nlcut 1split ends n� 1lcut 1split ends n� 2... ...... ...lcut 1split ends 0



104 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSViewing this proof in another way, we seek the following recursive de�nition of anabstracted schematic proof:proof(n+ 1) = [(lcut; 1); (split ends; n)]; proof(n)proof(0) = [ ]Plotkin's Least Generalisation: Note that the �rst example for n = 4 completelysubsumes the second example for n = 3. This is expected since the problemswhich we consider in our domain (natural number arithmetic theorems) are in-ductive, thus their proofs can be de�ned recursively. Therefore, there are nodi�erences in sub-examples where we could use a term substitution. The entiresecond example proof trace for n = 3 is used for the substitution. Step 3 ofPlotkin's algorithm generates the following abstraction:Value of n = 4Operation No. of applicationslcut 1split ends 3 (i.e. 4-1)RThe abstraction mechanism detected where to separate A(n + 1) from proof(n)in the proof traces as required. However, it only detected the di�erence betweenthe two examples, but abstracted away the information to abstract a dependencyfunction. The number of applications of the same rules in Diamond's exampleproof trace di�ers for each example. These need to be abstracted according totheir dependency on the parameter n. However, the algorithm simply abstractsthese numbers into one variable, rather than detecting the dependencies. Themethod is, therefore, not suitable for using in Diamond.Biermann's Method: The synthesis algorithm to generate a procedure from exampletraces applies to Diamond's example proof only partially. Unlike in Biermann'sexample traces, in our example there are no conditionals in the geometric op-erations on a diagram. Biermann's algorithm requires that the user explicitlylabels recursive procedures in the example trace. For instance, in the example ofquicksort (see x2.3.2), the user has to understand that the procedure calls itselfrecursively, and needs to invoke it in the appropriate place of an example trace.On the other hand, we would like Diamond to recognise the recursive structureof the example trace automatically, rather than demand from the user to give itto the system.Bauer's Method: The computation-tree for our example proof trace constructed us-ing Bauer's method does not consist of any branching points, because there areno conditional geometric operations in the proof traces. The operations that areperformed several times are grouped into the same class. The constants indicat-ing the number of applications of a rule are substituted by the same variable. Theresulting abstracted proof looks similar to the one extracted by using Plotkin's



7.4. COMPARISON OF ABSTRACTION TECHNIQUES 105least generalisation. The problem with this method is that the dependency of thenumber of applications of operations on the parameter n is not detected. Rather,it is abstracted away.Anderson and Kline's Method: This abstraction algorithm replaces terms thatdi�er in the two examples by local variables. Since the �rst example subsumesthe second, the algorithm abstracts from the example proof traces in a similarfashion to Plotkin's algorithm. The algorithm abstracted away the informationto abstract a dependency function about the number of applications of each op-eration in the proof. Therefore, this technique is inappropriate for the use inDiamond.Mitchell's Version Space: There is no notion of more general examples here. Theexamples are all speci�c. We have no criteria which distinguishes between thegenerality of one example and another example. Were we to decide, for instance,that the �rst example is more general since it subsumes the second example, thenthe resulting abstracted proof would be incorrect. The number of applications ofoperations in such an abstracted proof would be speci�c, i.e. no dependency onthe parameter n would be detected. It seems that this abstraction method doesnot meet the criteria in Diamond either. On the other hand, we could introducea most general program and try to specialise it given the examples traces. Therewould still need to be a mechanism for detecting the dependency of a number ofapplications of a rule on the parameter n.Quinlan's ID3: Following the algorithm for ID3, the examples need to be classi�ed.There should be a �nite set of variables with a �nite set of possible values. In ourexamples, one variable is the number of times that a particular geometric oper-ation is applied. Therefore, the particular values for the number of applicationsin each example are dependent on n and need to be abstracted into a variable.However, the resulting decision tree in the Quinlan's algorithm branches in eachnode the same number of times as the number of examples, instead of classifyingthem. This process therefore does not end in an abstracted proof.Inductive Logic Programming: Some of the ILP systems are su�ciently sophist-icated and can extract a recursive structure from the given set of examples ofexecution traces of the program which needs to be induced. Therefore, this wouldseem a very good candidate for the use in Diamond. However, much backgroundknowledge needs to be encoded in such a system, and such background knowledgemight not be accessible in Diamond. Furthermore, the abstraction in Diamondneeds to detect dependencies between functions and numerals, however the ILPsystems to date are not e�cient nor e�ective in dealing with numerical data.Baker's Method: Baker's algorithm is tailored to the type of examples that we areconcerned with. Her abstraction method detects the abstractions of dependencyfunctions as we indicate them in our example given above. The dependencyfunctions that we deal with are not expected to be more complex than the onesBaker's algorithm can detect, so it would seem reasonable to use this algorithm.Perhaps, we could extend the algorithm to detect more complex dependencyfunctions. However, Baker's algorithm does not detect the recursive structure



106 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSof the examples, which is one of the requirements for Diamond's abstractionmechanism.Considering the comparative analysis of the techniques given it seems that there arefeatures of Biermann's and Baker's algorithm that we could use in Diamond's abstrac-tion mechanism. In particular, Biermann's algorithm detects the recursive structure ofthe example that is suitable for use in Diamond. Baker's abstraction of dependencyfunctions is also a feature which we can use in our abstraction algorithm. We need toextend Biermann's technique so that the system automatically detects the recursivestructure, and Baker's technique to more complex dependency functions than a few�xed ones de�ned by Baker. Our abstraction mechanism is described in detail in thenext section.7.5 Abstracting for All Linear FunctionsAs mentioned above, we aim to recognise the particular recursive structure of the givenexample proofs. More precisely, we want to extract the step case A and the base caseB of the proof and then abstract them for all n. The general methodology employedfor doing this can be demonstrated as:
? ?

Given n=4 n=3

XY Y Y = A(3) Z

[X] = A(4)

. . .

where Y is the whole of an example proof for a particular n (in this case for n = 3) andX is the di�erence between example for n+1 and n (in this case a di�erence betweenexample proofs for n = 4 and n = 3). X and Y consist of sequences of applications ofgeometric operations. The di�erence X is a step case A of the schematic proof for aparticular value of n (in this case n = 4).The �rst step of the abstraction algorithm is to extract the di�erence between the twoexample proofs for n1 and n2 (n1 > n2), where c = n1 � n2, in the hope that this,when abstracted, will be the step case A of the proof. Note that if there is more thanone case of the proof, say c, then n1 and n2 need to be given for the same case of theproof. There will also be c di�erent step cases A, one for each case. The extractionof A is done by commutative and associative matching which detects and returns thedi�erence between the two example proofs.3 Now we have a concrete step case of the3 See x7.8 for discussion of diagrammatic proof structure which motivates the choice for commutativeand associative matching. Using commutative and associative matching reduces sensitivity to theorder of proof steps.



7.5. ABSTRACTING FOR ALL LINEAR FUNCTIONS 107proof. This di�erence consists of a few, say m, operations opk each applied xk;n1 timesfor some natural number k, where 0 < k � m.To make a step case general, we need to �nd the dependency function between everyxk;n1 and n1. This demands identifying a function of n1, which would give a speci�cxk;n1 , i.e. fk(n1) = xk;n1 for some k and n1. Diamond assumes that the dependency islinear: of the form an+ b. This is a heuristically adequate choice.4 Thus, let us writefor each opk a linear equation an1 + b = xk;n1 , where n1 and xk;n1 are known. Notethat Diamond cannot cope with, for instance, exponential, logarithmic or polynomialfunctions.The subsequent stage of the abstraction is to extract the next step case from the restof the example proof for the corresponding new n (i.e. n2). If successful, continueextracting step cases for the corresponding n's from the rest of the proof until only thebase case is left.Since we are dealing with inductive proofs, it is expected that every step case of a proofwill have the same structure,5 i.e. will consist of the same sequence of application ofoperations, but a di�erent number of times. Thus, we could in the same way as abovefor every operation opk write a linear equation an2 + b = xk;n2. However, the numberxk;n2 of applications of a particular operation opk in the next step case is not known. Apossible value of xk;n2 is acquired by counting the number x0 of times every operationopk of the initial step case occurs in the rest of the proof. The actual value of thenumber of occurrences of each operation could be any number from 0 to x0. Thus, webranch for all such values and so we have:an1 + b = xk;n1an2 + b = xk;n2where n1; n2; xk;n1 and xk;n2 are known, so the equations can be solved for a and b, andxk;n2 takes values from 0 to x0. This results in several possible potential abstractionsof the step case, where branching involves solving the following equations for eachoperation of the step case: an1 + b = xk;n1HHHHHHj@@@R? : : :an2 + b = f 0; 1; : : : ; xk;n2gThe aim is to eliminate those that are impossible. After checking if step cases for alln down to the base case are structurally consistent (i.e. the number of applications ofgeometric operations is as expected by instantiating the chosen dependency function)one hopes to be left with at least one possible abstraction of the example proofs. The4 See x11.2.2 for a possible extension of linear dependency functions to more complex, such as expo-nential or polynomial functions.5 Recall that if there is a case split in the proof, then the step cases of the same case of the proof willhave the same structure. However, step cases of di�erent cases of the proof might di�er.



108 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSstep case is rejected when the sequence of operations in the subsequent step cases isimpossible, i.e. the functions were chosen incorrectly. This normally occurs when thedependency function gives a negative number of applications of a particular operation,when the calculated sequence is not identical to the rest of the example proof, or whenthere is no integer solution to our equations. Usually, there will be only one possibleabstraction of the two given example proofs.The example proof for the sum of odd naturals is abstracted to form the following stepcase and base case: A(n) = [(lcut; 1); (split ends; n� 1)]B = [ ]where the function in parentheses indicates the number of times that the operationsare applied for each particular n. Thus, the following is the schematic proof for thetheorem about the sum of odd naturals:proof(n+ 1) = [(lcut; 1); (split ends; n)]; proof(n)proof(0) = [ ]7.5.1 Example of AbstractionConsider the example proof traces for the theorem about the sum of odd naturals givenin Figure 7.1. We give here an example of how to abstract a schematic proof from thetwo example proof traces.The �rst step is to extract the di�erence between the two example proofs. In our casethis is A(4) = [(lcut; 1); (split ends; 3)]. Thus we have n1 = 4, op1 = lcut, x1;4 = 1, andop2 = split ends, x2;4 = 3.Next, we need to �nd a dependency functions between n1 = 4 and x1;4 = 1, and n1 = 4and x2;4 = 3, i.e. we need to �nd functions f1 and f2 such that f1(4) = 1 and f2(4) = 3.We assume that the dependency function is linear: n1a + b = xk;n1. Thus we have:f1(4) = 4a+ b = 1 and f2(4) = 4a+ b = 3.The subsequent stage is to extract the next step case from the two example proofs.We seek the linear dependency function n2a + b = xk;n2 for each operation opk. Thevalue of n2 is known (n = 3), but xk;n2 can take any value from 0 to x0. Recall that x0is the number of times that the operation opk occurs in the rest of the example proof.So for op1 = lcut, x0 is 2. For op2 = split ends, x0 is 3. Therefore the possible functionsfor op1: 3a + b = 0; 3a + b = 1 and 3a + b = 2. Figure 7.2 shows the system of twoequations which need to be solved to �nd the dependency function for op1.For op2 the possible functions are 3a + b = 0; 3a + b = 1; 3a + b = 2 and 3a + b = 3.Figure 7.3 shows the system of two equations which need to be solved to �nd thedependency function for op2.Solving the system of two equations for op1 to get the values for a and b, we get thefollowing possible functions f1:� f1(n) = n� 3



7.6. BREAKING C-HOMOGENEOUS TO F-HOMOGENEOUS PROOF 109
LCUT

3a + b = 0 3a + b = 1 3a + b = 2

4a + b = 1

Figure 7.2: Branching of dependency function for lcut.
SPLIT_ENDS

3a + b = 0 3a + b = 1 3a + b = 2 3a + b = 3

4a + b = 3

Figure 7.3: Branching of dependency function for split ends.� f1(n) = 1� f1(n) = 5� nFor op2 the get the following possibilities for f2:� f2(n) = 3n� 9� f2(n) = 2n� 5� f2(n) = n� 1� f2(n) = 3Instantiating these functions for any value of n � 4 and checking it with any of the twoactual example proofs eliminates impossible functions and identi�es that f1(n) = 1 isthe dependency function for op1 = lcut, and f2(n) = n� 1 is the dependency functionfor op2 = split ends.7.6 Breaking c-Homogeneous to f-Homogeneous ProofConsider again the two example proofs for the sum of odd naturals (the example proofconsists of making n lcuts, and then showing that each ell consists of an odd number ofdots). If the user supplies two example proofs for values of n and n+1, for some concreten, then there is no problem, so Diamond will abstract normally and determine thatthe proof is 1-homogeneous. However, should the user supply proofs for n and n + 2for some concrete n, the �rst stage of abstraction would determine that the step case



110 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSconsists of two lcuts. However, a complete recursive function for abstraction requiresa step case to consist of one lcut only.For instance, suppose a user supplies examples for some concrete n and n + 2 wheren is an even number in the proofs for the theorem about the sum of odd naturals andthe abstraction mechanism described so far extracts the following schematic proof:proof(n+ 2) = [(lcut; 1); (split ends; n+ 1); (lcut; 1); (split ends; n)]; proof(n)proof(0) = [ ]Some inspection of the schematic proof indicates that this, �rst, is not a completede�nition (i.e. there is no de�nition of a schematic proof for odd natural numbers),and second, that the step case of this schematic proof can be further broken down intothe following: A(n+ 2) = [(lcut; 1); (split ends; n+ 1)]A(n+ 1) = [(lcut; 1); (split ends; n)]... ... ...A(2) = [(lcut; 1); (split ends; 1)]A(1) = [(lcut; 1); (split ends; 0)]B = [ ]This can be recursively re-de�ned as:proof(n+ 1) = [(lcut; 1); (split ends; n)]; proof(n)proof(0) = [ ]which is what we expect. This recursive de�nition is now a complete, i.e. de�ned forall natural numbers, and the smallest schematic proof.Diamond has a mechanism which detects whether a schematic proof can be furtherbroken down, as in the example just given. It checks this by trying to split the stepcase into a further f structurally the same sequences of operations, for all factors f ofc in order to obtain an f -homogeneous proof. We give now a method for extractionof an f -homogeneous proof from a c-homogeneous proof, where f is a factor of c. Anexample of using this method to break down the step case for sum of odd naturalsfollows in x7.6.1.Let A(n) be the step case of the abstracted schematic proof, consisting of some se-quence of operations. The number of applications for each operation is expressed as adependency function on n. The algorithm consists of the following steps:1. For each operation opk count how many times it occurs in A(n). Therefore, wehave occ(opk) = an+ b, where a and b are known.2. For each factor f of c, assume that each operation opk occurs �(n � lf) + �times for l ranging from 0 to m, where m is such that mf < c, more precisely,(m+ 1)f = c and thus m = cf � 1. Therefore we have:



7.6. BREAKING C-HOMOGENEOUS TO F-HOMOGENEOUS PROOF 111occ0(opk) = �n+ �occf (opk) = �(n� f) + �...occlf (opk) = �(n� lf) + �...occmf (opk) = �(n�mf) + �3. For each operation opk, and for each factor f of c, add all of the above equations.After some simpli�cation we get:cf�1Xm=0�(n�mf) + � = ( cf �)n+ ((�(0 + f + 2f + � � �+( cf � 1)f))� + ( cf )�) == ( cf �)n+ ((�f(0 + 1 + 2 + � � �+ c� ff ))�+ ( cf )�)= ( cf �)n+ ((�f( c�ff ( c�ff + 1)2 ))� + ( cf )�)= ( cf �)n+ ((�f((12)(c � ff )( cf )))�+ ( cf )�)= ( cf �)n+ ((�c(c � f)2f )�+ ( cf )�)where f and c are known.4. For each operation opk, solve the system of equations in 1.) and 3.) for � and �.Thus: ( cf �)n+ ((�c(c � f)2f )�+ ( cf )�) = an+ bwhere a,b,c and f are known. Thus, by equating the coe�cients of n and 1 onboth sides we get: � = afc and � = b+ c(c�f)2fcf5. For these � and �, solve the equations of 2.), which results in the number ofoccurrences of each operation opk for a particular factor f in a correspondingpart of the divided step case A(n). Furthermore, for each divided part of thestep case, the order of operations has to be preserved from the original step caseA(n).



112 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSUsing this algorithm, one can determine where to split the step case A(n) into fstructurally identical parts.If the method fails, then there is no such f -homogeneous further abstraction of thestep case A(n). If the method succeeds, and Diamond �nds a new abstraction of thestep case, call this A0(n), then it also needs to �nd a new base case B0r0 if r0 6= 0, or B0fif r0 = 0, where the previous r for c was such that n = kc+ r and r < c, and the newr0 is now such that n = kf + r0 and r0 < f . The proofs of soundness and completeness(given the limitation of the algorithm | e.g. linear dependency function restriction)of this abstraction algorithm can be obtained by appealing to the construction of thealgorithm.7.6.1 Example of Abstracting an f-Homogeneous ProofConsider again, the example of a schematic proof for which a step case A consists ofthe following operations:A(n) = [(lcut; 1); (split ends; n� 1); (lcut; 1); (split ends; n� 2)]where the number in brackets indicates the number of applications of that particularoperation. Assume also that Diamond determined after the �rst abstraction attemptthat the proof is 2-homogeneous, i.e. it has two cases. We demonstrate now how thealgorithm in the previous section splits the step case of the proof further so that thefunction proof becomes 1-homogeneous.Recall from the previous section, that we want the step case to be A(n) = [(lcut; 1);(split ends; n� 1)] (while A(n� 1) = [(lcut; 1); (split ends; n� 2)] as expected in orderto preserve the structure of the proof).6The algorithm given in the previous section describes how to detect where to split thestep case A into f structures, yet retain the same structure for all split parts in termsof dependency on n. Consider now how this algorithm works for the example justgiven, where c = 2 and f = 1. Following the algorithm given in the previous sectionwe have:1. occ(lcut) = 2 where a = 0 and b = 2, and occ(split ends) = (n�1)+(n�2) = 2n�3where a = 2 and b = �3.2. We have:(a) occ0(lcut) = �1n+ �1,(b) occ1(lcut) = �1(n� 1) + �1,(c) occ0(split ends) = �2n+ �2,6 Note that in x7.6 we de�ned the step case A for n + 2, whereas here we de�ne it for n where n iseven. Essentially we are considering the preceding instantiation of the recursive call in the schematicproof. This is due to the mechanism being de�ned for A(n) rather than A(n + 2). Renaming ofvariables could be used instead, e.g. n+2 can be renamed into m so the algorithm applies to A(m).



7.7. PROOFS WITH CASE SPLITS 113(d) occ1(split ends) = �2(n� 1) + �2.3. Note that m = f0; 1g so that mf < c (f = 1; c = 2). Then:lcut �! 1Xm=0�1(n�mf) + �1 = (2�1)n+ ((�1)�1 + (2�1))split ends �! 1Xm=0�2(n�mf) + �2 = (2�2)n+ ((�1)�2 + (2�2))Thus: (2�1)n+ ((�1)�1 + (2�1)) = 2(2�2)n+ ((�1)�2 + (2�2)) = 2n� 3So �1 = 0, �1 = 1, and �2 = 1, �2 = �1.4. Now we have:(a) occ0(lcut) = 0n+ 1 = 1,(b) occ1(lcut) = 0(n� 1) + 1 = 1,(c) occ0(split ends) = 1n� 1 = n� 1,(d) occ1(split ends) = 1(n� 1)� 1 = n� 2.Therefore following the order of operations in the initial step case, we now have:A(n) = [(lcut; 1); (split ends; n � 1)] (while as expected A(n � 1) = [(lcut; 1);(split ends; n� 2)]). Hence the schematic proof can now be re-de�ned into:proof(n+ 1) = [(lcut; 1); (split ends; n)]; proof(n)proof(0) = [ ]7.7 Proofs With Case SplitsA theorem could have structurally di�erent schematic proofs for di�erent classes ofvalues n. Such a proof contains a case split. The abstraction mechanism described inx7.6 can deal with proofs that have uniform case splits, i.e. proofs that have di�erentstructure for:� 2 cases: classes of numbers that are:divisible by 2 (even)giving rest=1 when divided by 2 (odd)� 3 cases: classes of numbers that are:divisible by 3giving rest=1 when divided by 3giving rest=2 when divided by 3



114 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFS� 4 cases: classes of numbers that are:divisible by 4giving rest=1 when divided by 4...so the proof is said to be 2-homogeneous, 3-homogeneous, 4-homogeneous, and so on,respectively (where a 1-homogeneous proof is trivial with one case only). As shownin x7.6 Diamond can detect such linear case splits. However, the system cannot dealwith case splits that are homogeneous for any other non-linear sequence of numbers(e.g. exponential, logarithmic, prime, etc).Suppose the user constructs two example proofs for some particular values n and n+c.As described in x7.6 Diamond �rst abstracts the recursive function proof(n) with cas the di�erence in the value of n in subsequent recursive calls. Then it reduces thisc-homogeneous proof into an f -homogeneous schematic proof, where f is a factor ofc, if such a proof exists. If there are no possible reductions to f -homogeneous proof,then the proof is c-homogeneous and by Corollary 1 there is no f -homogeneous furtherabstraction of the proof. Furthermore, if a proof is c-homogeneous, then Diamondrequests from the user to supply 2 � (c � 1) additional example proofs in order to beable to abstract them for the other branches of the case split, and make the recursivefunction proof which represents the schematic proof total. Note that for each branchof the case split, the pairs of additional example proofs have to be a factor f of c, ora multiple of f apart.Suppose now, that a theorem does contain a case split, i.e. it is c-homogeneous andc 6= 1, but the user supplies two example proofs that are not for the same case of theproof (i.e. not for n and n+ kc, for some particular values of n and any multiple of c,say kc). Clearly, Diamond cannot abstract these example proofs to form a schematicproof, because no such schematic proof exists. When Diamond fails to abstract aschematic proof from the given examples, then there are several reasons to which itcan draw the user's attention. One of them is that the two example proofs are givenfor di�erent cases, so Diamond can suggest to the user to supply another exampleproof for each case, in order for it to be possibly able to abstract.77.8 Proof Structure ConsiderationsThe schematic proofs that Diamond can extract all have a simple structure (for sim-plicity of presentation, let there be only one case of the proof):proof(n+ 1) = A(n+ 1); proof(n)proof(0) = BThe way the geometric operations are de�ned allows for construction of example proofsfrom which schematic proofs with this particular recursive structure can be extracted7 Another possible reason is that the restrictions that are imposed by Diamond's abstraction mech-anism have not been followed in the construction of the example proofs.



7.8. PROOF STRUCTURE CONSIDERATIONS 115(e.g. there is one recursive call to proof, and the step case A precedes it). All geometricoperations on diagrams decompose a diagram in some way. The sum of diagrams,i.e. the existence of diagrams is associative and commutative, so diagrams can bepresented in any order. As a consequence, there are several equivalent legal orders forthe combination of operations in the example proofs. However, certain restrictions onthe order of operations still apply. An operation can be applied only to an appropriatetype of a diagram, so such a diagram needs to exist (i.e. be presented). If it does not,then the diagram must be created via some other operation which will generate it.Therefore, the latter operation has to be carried out before the aforementioned one.Consider the example of the proof about the sum of odd naturals. The schematic proofof this theorem consists of applying an lcut �rst, followed by the split ends operations.Then, we repeat these by recursion. Such a schematic proof has the following step caseA and base case B: A(n+ 1) = [(lcut; 1); (split ends; n)]B = [ ]The particular characteristic of commutativity and associativity of the existence ofdiagrams enables us to reorganise the proof in a non-recursive way into carrying outall the applications of the lcut operation, followed by all the applications of split endsoperation for each ell. The schematic proof in this case could be represented non-recursively as: proof(n+ 1) = [(lcut; n+ 1); (split ends; nXi=0 i)]How does this relate to the schematic proof of the associativity of addition given inx4.4.1? Recall that the schematic proof of associativity of addition consists of thefollowing rewrite rules parametrised over n (rules (4.1) and (4.2) are given on page 58):proof(n) = [(n� rule (4.2) on LHS);(n� rule (4.2) on RHS);(1� rule (4.1) on LHS);(1� rule (4.1) on RHS);(n� rule (4.2) on LHS);(1�Reexive Law)]The schematic proof of associativity of addition cannot be rearranged into a recursiveform that we use for our diagrammatic schematic proofs. To construct proof(n + 1)from proof(n) we have to insert applications of 4.2 into the middle of the proof(n). Onecannot choose to insert them at the end. The order matters. In our diagrammaticproof we can invariably rearrange the applications of operations in a number of orders.This is due to the associative and commutative nature of the existence of diagrams.Of course, certain restrictions in the diagrammatic schematic proof still apply. Forinstance, we could not �rst carry out all applications of split ends operation followedby the applications of lcuts. However, it does not matter whether we carry out x



116 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSapplications of lcut for some x, then followed by any number of applications of split ends,or whether we carry out x+y � n applications of lcut for some x and y, before carryingout any number of applications of split ends.The discussion above shows that a diagrammatic proof can always be reformulatedinto the recursive structure formalised in x7.3. This is due to the nature of geometricoperations available in Diamond which invariably split diagrams in some way. Theexistence of diagrams, i.e. the order in which the diagrams are present is associativeand commutative. This enables various equivalent formulations of examples proofswith di�erent orders of applications of operations which can always be rearranged ina general case into the recursive structure given in x7.3.7.9 Abstracting From One ExampleA question arises whether it would be possible to abstract a general schematic prooffrom just one example proof. The explanation-based generalisation8 provides a mech-anism for doing just that (see [Mitchell et al 86] and [DeJong & Mooney 86]). It is atechnique which enables a formulation of general concepts from a speci�c training ex-ample. It di�ers from other inductive abstraction techniques in that it ever only needsone example to abstract from. The basic idea of a system that uses explanation-basedgeneralisation is that the system constructs explanations of why an object satis�es afunction de�nition. It employs a domain model. A domain model is used to constructthe explanation of why the training example satis�es the function de�nition. Then,the training example is transformed using this explanation into the most general form(usually by replacing constants with variables). The problem with this type of abstrac-tion technique is that a considerable domain knowledge needs to be available beforeany learning (i.e. abstraction) can take place. It is a deductive rather than an inductivelearning method. In a diagrammatic reasoning system there is no such extensive do-main knowledge available in advance. It also cannot be built into the system, becauseit does not exist prior to carrying out the examples. The entire principle is based onthe fact that a diagrammatic proof is induced (learned or abstracted) from a set ofexamples without any prior knowledge of what the proof should look like.For instance, one of the requirements in Diamond is to abstract the dependencyfunctions from the proof applications. Recall that the dependency function de�nesthe dependency between the parameter n for which a schematic proof is given, and thenumber of applications of particular geometric operations. Consider, for instance, thatthe training example was given for n = 2 and the number of applications of a particularoperation is 4. The dependency functions which could represent a general function forthese two values are: f(n) = 4; f(n) = 2n; f(n) = n2. Which one is the right one?There is no piece of domain knowledge which could determine the preference of onefunction over another. Were we to provide another example where n = 3 and thenumber of applications of the same operation is 6, then the only choice from the onesgiven if f(n) = 2n. It seems, therefore, that explanation-based generalisation (learning)technique is not enough to induce a general diagrammatic proof from examples. There8 Note that we refer to generalisation in the sense of inductive inference as abstraction.



7.9. ABSTRACTING FROM ONE EXAMPLE 117is not enough domain knowledge to abstract, or if we de�ne such knowledge (e.g wepick the preference for the given functions randomly), we might abstract incorrectly(i.e. over-generalise, to use the usual terminology).However, it could be argued that humans do see a pattern from just one trusted ex-ample. This is probably more true for simple examples where the recursive structure ofthe proof is transparent. Here, we consider exploring this feature of human \informal"reasoning with diagrams. We present a plausible technique which hints very stronglywhat the recursive structure of the proof looks like. This would enable a system toexploit the hint given by the user in order for the system to be able to abstract ageneral schematic proof of a theorem from one example only.Consider the example proof for the theorem about the sum of odd naturals where n = 4,given in Figure 5.2 in Chapter 5 and the corresponding example proof trace given inTable 7.1. The recursive structure of the proof is inherent in the recursive structureof a square. If we take a square of magnitude four and split and ell from it, and thensplit end dots from the ell to show that it consists of an odd number of dots, we areleft with a square of magnitude three on which the same procedure is repeated. This,when abstracted is the step case of the schematic proof, i.e. A(n). It is possible thatthe user when constructing the example proof realises that the pattern repeats itselfafter this �rst instance of an instantiated step case. This gives a potential to exploitthe user's intuition about the repetition of a pattern in the application of geometricoperations. A feature can be designed which allows the user to carry out automaticallythe repetition of the operations used so far, rather than speci�cally instruct the systemto apply each operation. Let this option be called \repeat...".The idea behind \repeat..." is that during the process of interactive constructionof example proofs the system records the operations carried out so far. If the userindicates that the sequence of operations applied on the diagram constitutes a patternwhich needs to be repeated on the remaining diagram, this feature allows the user toinstruct the system to automatically repeat this sequences on the remaining diagram.For example, consider the example proof trace for n = 4 given in Figure 7.1. It isapparent that after carrying out the �rst section of the table: i.e. one lcut and threesplit ends, the pattern repeats itself on the rest of the square. \repeat..." allows thisrepetition. However, the operations can only be applied as far as possible, dependingon the magnitude of the diagram. For example, in the �rst application of \repeat..."it is not possible to apply three occurrences of split ends, but rather only two. It isthe role of the system to detect such constraints. If the pattern can be successfullyrepeated until the diagram is exhausted, then this pattern of operations indeed formsan instantiated step case of the example proof, i.e. A(4). No further example proofis needed for the abstraction mechanism. The �rst step of the abstraction algorithmgiven in x7.5 has been carried out by the user who provided the possible structureA. The system can now make this step case general by �rst checking if the patterncan be repeated, and then by �nding a dependency function for the general number ofapplications of operations in the step case of the schematic proof.This seems a plausible technique which could be used in order to enable Diamond toabstract from one example proof only. The command \repeat..." has been implementedand incorporated in Diamond. In such a way the system would need only one example



118 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFSproof to �nd the schematic proof, if such a proof exists, but the abstraction from oneexample has yet to be implemented.However, the problem remains when a pattern which constitutes an instance of a stepcase of a schematic proof is not apparent to the user. In a more complex examplethe recursiveness of the proof might note be obvious at all. For instance, it might notbe clear to the user that two rectangles of magnitude 8 � 5 and 13 � 8 are instancesof the same recursively de�ned general diagram. Namely, a rectangle of magnitude8 � 5 is a rectangle of magnitude Fib6 � Fib5 and a rectangle of magnitude 13 � 8 isa rectangle of magnitude Fib7 � Fib6, where Fibx is the x-th Fibonacci number. Ingeneral, these are two instances of a general rectangle of magnitude Fibn+1 � Fibn.We cannot expect that the user will always be able to detect a pattern in an exampleproof. If this is so, Diamond needs two example proofs to extract a general schematicproof. However, if the pattern is clear to the user, and the user indicates this by theuse of the \repeat..." feature, then Diamond could extract a general schematic prooffrom one example proof only.7.10 SummaryIn this chapter we presented how diagrammatic schematic proofs are extracted fromexamples of proofs for instances of a theorem. We use inductive inference to abstracta general pattern from particular examples of proofs. We introduced the general pat-tern that the abstraction algorithm has to detect. We formalised the representationof schematic proofs, and captured it in a recursive program called proof which byinstantiation uniformly produces a proof of each instance of the premise.We explained in detail the algorithm for abstraction, which extracts the pattern fromexample proofs and abstracts it into a recursive program, i.e. schematic proof. Toclarify the algorithm, we then showed an example of the algorithm in action. Then,we presented a re�ned version of the abstraction mechanism, which detects when anabstraction can be further re�ned and when there are case splits in the proof. Toclarify the idea behind the algorithm, we showed an example of an application of thealgorithm.Next, we discussed the detection and the representation of case splits in the schematicproof. We considered the implications of the particular formalisation of schematicproofs on a structure of example proofs. Finally, we discussed a technique whichenables an automatic extraction of a schematic proof from one example proof only.



Chapter 8Veri�cation of Schematic Proofs

V ertices�Edges + Faces = 2| Augustin Louis Cauchyin Lakatos' Proofs and RefutationsThe process of construction of diagrammatic proofs has been presented so far in twostages. The �rst stage is to prove diagrammatically ground instances of a conjecture athand (Chapter 5). The second stage is to extract a common proof structure from theseexamples and capture this structure in a recursive program proof(n) called a schematicproof. The common structure is extracted using an abstraction algorithm (Chapter 7).The last stage is to prove the correctness of the induced schematic proof, i.e. we needto show that a schematic proof indeed proves the proposition for all n. This ensuresthat the transition from speci�c examples to a general proof is sound.In this chapter we present a method which enables us to prove the correctness ofschematic proofs for particular theorems. We present a theory of diagrams in which theveri�cation is carried out. The idea is to show that when the geometric operations of aparticular schematic proof are applied to diagrams, they indeed result in the collectionof correct diagrams which represent the theorem. We de�ne in this chapter what ismeant by a collection of correct diagrams. Furthermore, we de�ne when a schematicproof is an algebraically correct proof of a theorem. A meta level theorem whichstates when a particular object level arithmetic conjecture can be diagrammatically119



120 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFSproved using Diamond is needed in the end. It enables us to put all the pieces ofinformation together, and show how theorems can be proved diagrammatically startingwith a conjecture and �nishing with a veri�ed diagrammatic schematic proof of thisconjecture.In x8.1, we motivate the need for veri�cation of schematic proof and propose a theoryof diagrams as a veri�cation mechanism. Then, we present some of the primitivesof the theory: the diagrams in x8.2, the operators in x8.3, the operations in x8.4, and�nally in x8.5, the function de�nitions and lemmas which are needed for the veri�cationof schematic proofs. In x8.6 we state the property of the correctness of a particularschematic proof. In x8.7 we de�ne the size of a diagram, which is used to make explicitthe link between a schematic proof and a theorem that it proves. In x8.8 we de�neand prove a general desired property of algebraic correctness of schematic proofs. Inx8.9 we state and prove a theorem about the diagrammatic provability of an arithmeticconjecture. Finally, in x8.10 we discuss the implementation of our theory of diagrams.8.1 MotivationThe motivation for de�ning a theory of diagrams is to verify the correctness of schem-atic proofs that Diamond generates, because the example proofs and their abstractionwhich forms a schematic proof are fallible. The reader is referred to x7.3 for the form-alisation and representation of schematic proofs. The veri�cation ensures that thetransition from concreteness to generality of a diagrammatic proof is correct. In hu-man reasoning this step is often omitted when humans are convinced that the examplesused to induce a general schematic proof uniformly account for all cases of a theorem.This can sometimes result in erroneous proofs (see x4.6). In an automated reasoningsystem, however, we should like to formally show the correctness of a schematic proof.Diamond automatically extracts a schematic proof from two example proofs usingan abstraction mechanism. The abstraction mechanism is an inductive inference al-gorithm and thus an unproven, but informed guess of a general schematic proof. Therequirement by the constructive !-rule, given in De�nition 2 (see x4.3), is that there isa uniform procedure which proves each premise. To ensure that the guessed schematicproof is a procedure which proves each premise, we need to show in some meta theorythat proof(n) uniformly proves P (n) for all n. A meta level proof using diagrams ofgeneral magnitude would be an obvious method for verifying our schematic proofs.However, such meta level proof reintroduces the need for manipulating abstractions(e.g. ellipsis) in diagrams which, as discussed in x3.4, we are trying to avoid.One way of overcoming this problem is to de�ne diagrams and operations in a theoryof diagrams where we can express abstract diagrams symbolically rather than dia-grammatically. In this theory we can verify schematic proofs by de�ning the notionof applicability of a posited proof. Given that a particular theorem is expressed asan equality, its schematic proof is correct if applying the operations speci�ed in theschematic proof on the diagrammatic representation of the left hand side of the the-orem results in the diagrammatic representation of the right hand side of the theorem.There are two conditions that need to be satis�ed. The �rst condition is that there isan appropriate diagrammatic representation available for the mapping of the theorem



8.2. DIAGRAMS 121into its diagrammatic representation. The second condition is that the operations ofthe schematic proof are de�ned on those diagrams. A veri�cation proof is a meta levelproof, because it is a proof about a property of an object level schematic proof.Before we can state the de�nition of the correctness property of schematic proofs,we need to formalise the machinery which will enable us to model the processes of adiagrammatic proof. Therefore, we need to formally de�ne diagrams, operations onthem, and the applicability of operations of a schematic proof.8.2 DiagramsDiagrams in the theory are de�ned to be of object type. Some examples of the di�erentkinds of object names in the theory are: row, column, ell, frame, square, rectangle, andtriangle.Diagrams of the theory model natural numbers. Diamond's primitive notion of a con-crete diagram, a dot, is represented in the theory as the natural number 1. Objects areintroduced via a constructor function, diagram, which takes the name of the type ofa diagram and the list of parameters of its magnitude. Thus, the type of constructorfunction diagram is name � pnat list ! object. So for instance, a square of magnitude4 is expressed in the theory as diagram(square,[4]). All elementary and derived con-crete diagrams are expressed using a primitive object dot, hence in the theory theycan be expressed using a constructor function, the object name and some parameterrepresenting a natural number for the magnitude of the diagram.Constant ; denotes a null diagram, or in other words an empty diagram. We de�nethat any diagram that is of 0 magnitude is an empty diagram (note that a 2 b denotesthat a natural number a is an element of a list b; thus the type of an in�x 2 is: pnat� pnat list ! boolean): 0 2 s! diagram(x; s) � ; (8.1)Note also, that all triangles are equilateral (see x6.2). The reader is referred to x6.2 fora reminder of diagrams and their names. Here are some examples of diagrams:diagram(row; [n])diagram(column; [n])diagram(ell; [n])diagram(square; [n])diagram(square; [2n])diagram(square; [2n� 1])diagram(triangle; [n])diagram(rectangle; [n; f(n)])diagram(frame; [n])diagram(thick frame; [2n+ 1])



122 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFS8.3 OperatorsThis section gives the operators available in the theory. First, we write diagrammaticequality using d= which denotes that two lists of diagrams are identical. Here is thede�nition of d=: X d= Y ! 8d: count(d;X) = count(d;Y)where the function count can be de�ned by:count(d; [ ]) = 0count(d; d :: D) = 1 + count(d;D)d 6= e! count(d; e :: D) = count(d;D)Diagrammatic equality d= is a larger relation than an arithmetic equality =, becauseit has all the properties of =, i.e. reexivity, symmetry, transitivity and substitutionproperties, plus an additional one | the order of elements in a list does not matter.Therefore, two lists of diagrams, X and Y, are diagrammatically equal, X d= Y, even ifthe orders in which the diagrams are listed in both lists di�er.1 We now de�ne someoperators that introduce the existence of several diagrams. Note that the data typepnat stands for non-negative natural number of Peano arithmetic.� @ | append on lists,� :: and nil| list constructors (concatenation of elements onto a list, and an emptylist),� 
 | pnat � object list ! object list (it is an in�x operator which introduces acombination of a number of identical lists of diagrams),� U | pnat � pnat � (pnat ! object) ! object list (it denotes a collection ofdiagrams of increasing magnitudes which are all of the same kind { it is analogousto P for summation of integers).Here is the recursive de�nition of Ubi=a for all a � b:21 Note that our de�nition of diagrammatic equality of lists is equivalent to bag equality. The order ofthe elements in a bag (sometimes called multi-set) does not matter. For further discussion of bags,see x11.3.2 Note that to simplify the notation we write Ubi=aD(i) instead of instead U(a; b; �i:D(i)).



8.4. OPERATIONS 123a]i=a diagram(name; f(i)) d= [diagram(name; f(a))] (8.2)a � b! b+1]i=a diagram(name; f(i)) d= b]i=a diagram(name; f(i))@[diagram(name; f(b+ 1))] (8.3)Note that f is some function which generates a list of natural numbers for a givennumber i. This list denotes the parameters of a magnitude of a diagram. Note alsothat:b]i=a diagram(name; f(i)) d= [diagram(name; f(a)); diagram(name; f(a+ 1)); � � � ;diagram(name; f(b))]8.4 OperationsDiagrammatic operations are represented via a function op : opname � object list !object list. Figure 8.1 de�nes some operations on diagrams. Note that it is also possibleto de�ne new operations in Diamond. This is done by adding a new operations tothe repertoire of operations available in the construction of example proofs, and to thetheory of diagrams, i.e. the veri�cation mechanism. A diagrammatic operation is validif it preserves the sum of natural numbers that the resulting diagrams represent.8.5 Function de�nitions8.5.1 One Apply and ApplyHere we de�ne what it means to apply an operation on a diagram several times. We usea function apply which is of the type apply: (opname � pnat) list � object list! objectlist, and a function one apply which is of the type one apply : pnat � opname � objectlist ! object list. Let:one apply(0; opnm;D) d= D (8.4)one apply(n+ 1; opnm;D) d= op(opnm; one apply(n; opnm;D)) (8.5)apply([ ];D) d= D (8.6)apply((opnm; x) :: opss;D) d= apply(opss; one apply(x; opnm;D) (8.7)Note that opss is a list of pairs of an operation and the number of times that thisoperation is applied to a diagram.
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op(lcut;diagram(square; [n+ 1]) :: D) � [diagram(square; [n]); diagram(ell; [n+ 1])]@D (8.8)op(lcut;diagram(triangle; [n+ 2]) :: D) � [diagram(triangle; [n]); diagram(ell; [n+ 2])]@D (8.9)op(split row; diagram(ell; [n+ 1]) :: D) � [diagram(column; [n]); diagram(row; [n+ 1])]@D (8.10)op(split row; diagram(rectangle; [n; n+ 1]) :: D) � [diagram(square; [n]); diagram(row; [n])]@D (8.11)op(split col; diagram(rectangle; [n; f(n) + 1]) :: D) � [diagram(rectangle; [n; f(n)]); diagram(row; [n])]@D (8.12)op(split col; diagram(square; [n+ 1]) :: D) � [diagram(rectangle; [n; n+ 1]); diagram(column; [n+ 1])]@D (8.13)op(split col; diagram(rectangle; [n+ 1; n]) :: D) � [diagram(square; [n]); diagram(column; [n])]@D (8.14)op(split col; diagram(rectangle; [n+ 1; f(n+ 1)]) :: D) � [diagram(rectangle; [n; f(n+ 1)]); diagram(column; [f(n+ 1)])]@D (8.15)op(split diagonally;diagram(square; [n+ 1]) :: D) � [diagram(triangle; [n+ 1]); diagram(triangle; [n])]@D (8.16)op(split diagonally;diagram(rectangle; [n+ 1; n]) :: D) � (2
 [diagram(triangle; [n])])@D (8.17)op(split diagonally;diagram(rectangle; [n; n+ 1]) :: D) � (2
 [diagram(triangle; [n])])@D (8.18)op(split outer frame; diagram(square; [n+ 2]) :: D) � [diagram(square; [n]); diagram(frame; [n+ 2])]@D (8.19)op(split inner dot; diagram(square; [2n+ 1]) :: D) � [diagram(thick frame; [2n+ 1]); diagram(square; [1])]@D (8.20)op(split2four; diagram(square; [2n]) :: D) � (4
 [diagram(square; [n])])@D (8.21)op(rotate90; diagram(rectangle; [n; f(n)]) :: D) � [diagram(rectangle; [f(n); n])]@D (8.22)op(split sqr; diagram(rectangle; [n+ f(n); n]) :: D) � [diagram(rectangle; [f(n); n]); diagram(square; [n])]@D (8.23)op(split sqr; diagram(rectangle; [n; n+ f(n)]) :: D) � [diagram(rectangle; [n; f(n)]); diagram(square; [n])]@D (8.24)op(split side; diagram(triangle; [n+ 1]) :: D) � [diagram(triangle; [n]); diagram(row; [n+ 1])]@D (8.25)op(split tst; diagram(triangle; [2n]) :: D) � ((2
 [diagram(triangle; [n])])@[diagram(square; [n])])@D (8.26)op(split tst; diagram(triangle; [2n+ 1]) :: D) � ((2
 [diagram(triangle; [n])])@[diagram(square; [n+ 1])])@D (8.27)op(split dia ends; diagram(ell; [n+ 1]) :: D) � [diagram(ell; [n]); diagram(column; [1]); diagram(row; [1])]@D (8.28)op(split frame; diagram(frame; [n+ 1]) :: D) � ((2
 [diagram(row; [n])])@(2 
 [diagram(column; [n])]))@D (8.29)op(split tframe; diagram(thick frame; [2n+ 1]) :: D) � ((2
 [diagram(rectangle; [n+ 1; n])])@(2
 [diagram(rectangle; [n; n+ 1])]))@D (8.30)Figure 8.1: De�nitions of diagrammatic operations in the theory of diagrams.



8.5. FUNCTION DEFINITIONS 1258.5.2 EquationsHere we give an axiom about a null diagram de�ned in x8.2:; :: D d= D (8.31)Here are some theorems. op(opnm;D :: Ds) d= op(opnm; [D])@Ds (8.32)one apply(n; opnm;D :: Ds) d= one apply(n; [D])@Ds (8.33)apply(ops;D :: Ds) d= apply(ops; [D])@Ds (8.34)Proof of Equation (8.32)The proof of (8.32) is carried out by a case analysis of the operations. We give herean example of one case. All other cases of a de�ned operation on diagrams (i.e.for (8.8) through to (8.30) in Figure 8.1) are similar. Let opnm = lcut and D =diagram(square,[n+ 1]) in op(opnm;D :: Ds) d= op(opnm; [D])@Ds. Then we have:op(lcut; diagram(square; [n+ 1]) :: Ds) d= op(lcut; [diagram(square; [n+ 1])])@Ds(8:8) + (8:8)[diagram(square; [n]);diagram(ell; [n+ 1])]@Ds d= ([diagram(square; [n]);diagram(ell; [n+ 1])]@[ ])@Ds
Proof of Equation (8.33)The proof is carried out by induction on n using the rules (8.4), (8.5), and (8.32).Base case: n = 0one apply(0; opnm;D :: Ds) d= one apply(0; opnm; [D])@Ds(8:4) + (8:4)D :: Ds d= [D]@DsStep case:Hypothesis: one apply(n; opnm;D :: Ds) d= one apply(n; opnm; [D])@DsConclusion:



126 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFSone apply(n+ 1; opnm;D :: Ds) d= one apply(n+ 1; opnm; [D])@Ds(8:5) + (8:5)op(opnm; one apply(n; opnm;D :: Ds)) d= op(opnm; one apply(n; opnm;D]))@Dshypothesis +op(opnm; one apply(n; opnm; [D])@Ds) d= op(opnm; one apply(n; opnm; [D]))@Dsgeneralise: + let one apply(n; opnm; [D]) = Gop(opnm;G@Ds) d= op(opnm;G)@DsNote that the case where G = [ ], i.e. one apply(n; opnm; [D]) = [ ] never arises, becausean operation opnm is applied in one apply(n; opnm; [D]) = G to a non-empty diagramlist [D], and all the operations preserve the natural number that a diagram represents,hence G cannot be empty either.If G = G1 :: Gs then op(opnm; (G1 :: Gs)@Ds) d= op(opnm;G1 :: Gs)@Ds, which is trueby applying (8.32) on both sides of the diagrammatic equality.Proof of Equation (8.34)The proof is carried out by induction on the list ops using the rules (8.6), (8.7), and(8.33).Base case: ops = [ ] apply([ ];D :: Ds) d= apply([ ]; [D])@Ds(8:6) + (8:6)D :: Ds d= [D]@DsStep case:Hypothesis: apply(ops;D :: Ds) d= apply(ops; [D])@DsConclusion:apply((opnm; n) :: ops;D :: Ds) d= apply((opnm; n) :: ops; [D])@Ds(8:7) + (8:7)apply(ops; one apply(n; opnm;D :: Ds)) d= apply(ops; one apply(n; opnm; [D]))@Ds(8:33) +apply(ops; one apply(n; opnm; [D])@Ds) d= apply(ops; one apply(n; opnm; [D]))@Dsgeneralise: + let one apply(n; opnm; [D]) = Gapply(ops;G@Ds) d= apply(ops;G)@DsNote that the case G = [ ] never arises for the same reasoning as in the proof of (8.33).If G = G1 :: Gs then apply(ops; (G1 :: Gs)@Ds) d= apply(ops;G1 :: Gs)@Ds, which is trueby appealing to the hypothesis on both sides of the diagrammatic equality.



8.6. CORRECTNESS OF SCHEMATIC PROOFS 1278.5.3 Mapping relation dmapLet dmap denote a relation between a particular class of statements of arithmetic andtheir equivalent diagrammatic expressions in the theory of diagrams. The equivalenceis de�ned to be over the size of the diagram. The size of a diagram is de�ned to be thenumber of counters (dots) in the diagram, i.e. the natural number that the diagramrepresents. dmap takes two arguments, an arithmetic expression and a list of diagramswhich could collectively represent this expression. Hence, the type of the relation dmapis pnat � object list. Here are some general mappings:dmap(0; [ ]) (8.35)dmap(n2; [diagram(square; [n])]) (8.36)dmap(2n� 1; [diagram(ell; [n])]) (8.37)dmap(n; [diagram(row; [n])]) (8.38)dmap(n; [diagram(column; [n])]) (8.39)dmap(n� f(n); [diagram(rectangle; [n; f(n)])]) (8.40)dmap(n(n+1)2 ; [diagram(triangle; [n])]) (8.41)dmap(4(n� 1); [diagram(frame; [n])]) (8.42)dmap((2n+ 1)2 � 1; [diagram(thick frame; [2n+ 1])]) (8.43)m 6= 0! dmap(n+m;D :: E) such that dmap(n; [D]) and dmap(m;E) (8.44)dmap(Pbj=a f(j);Ubj=aDj) such that 8j; a � j � b; dmap(f(j); [Dj ]) (8.45)8.6 Correctness of Schematic ProofsWe have now formalised enough machinery to be able to de�ne the correctness propertyof a schematic proof.De�nition 4 (Correctness of Schematic Proofs)proof is a correct schematic proof of a particular conjecture 8n L(n) = R(n) if for all nthere exist two lists of diagrams D and E such that dmap(L(n);D) and dmap(R(n);E),and apply (proof (n); D) d= EIt is possible to prove the property in De�nition 4 only if L(n), R(n) and proof areknown, i.e. for a speci�c case of a conjecture and a schematic proof. Knowing L(n)and R(n) allows us to infer some mapping relations which specify two lists of diagramsD and E. This satis�es the �rst part of De�nition 4. In the next section we prove thecorrectness of a schematic proof for a particular conjecture at hand.



128 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFS8.6.1 Proof of Correctness of Schematic Proofs for an ExampleHere we prove the property given in De�nition 4 for an example of a schematic proof ofa theorem about the sum of odd naturals. The theorem is stated as n2 =Pni=0(2i�1).The schematic proof of this theorem is given as:3proof(0) = [ ] (8.46)proof(n+ 1) = [(lcut; 1)]; proof(n) (8.47)The proof of correctness of a schematic proof for this particular example requiresinduction on n. The base case for n = 0 is trivial, since by (8.35) no operations areapplied to an empty diagram list which results in [ ]. We consider a step case ofinduction.Step case:Hypothesis: for nUsing (8.36) notice dmap(n2; [diagram(square; [n])]),hence let D = [diagram(square; [n])].Using (8.45) and (8.37) notice dmap(Pni=0(2i� 1);Uni=0 diagram(ell; [i])),hence let E = Uni=0 diagram(ell; [i]).apply(proof(n); [diagram(square; [n])]) d= n]i=0 diagram(ell; [i])Conclusion: for n+ 1Similarly to the hypothesis, D and E are mapped for n+ 1.apply(proof(n+ 1); [diagram(square; [n+ 1])]) d= n+1]i=0 diagram(ell; [i])proof(n+ 1) = [(lcut; 1)]; proof(n) +apply(((lcut; 1); proof(n)); [diagram(square; [n+ 1])]) d= n+1]i=0 diagram(ell; [i])(8:7) +apply(proof(n); one apply(1; lcut; [diagram(square; [n+ 1])])) d= n+1]i=0 diagram(ell; [i])(8:5) +apply(proof(n); op(lcut; one apply(0; lcut;[diagram(square; [n+ 1])])) d= n+1]i=0 diagram(ell; [i])(8:4) +3 For the brevity of presentation we take a simpler version of the schematic proof which does notinclude the operation split ends.



8.7. SIZE OF DIAGRAMS 129apply(proof(n); op(lcut; [diagram(square; [n+ 1])]) d= n+1]i=0 diagram(ell; [i])(8:8) +apply(proof(n); [diagram(square; [n]); diagram(ell; [n+ 1])]) d= n+1]i=0 diagram(ell; [i])(8:34) +apply(proof(n); [diagram(square; [n])])@[diagram(ell; [n+ 1])] d= n+1]i=0 diagram(ell; [i])(RHS of hypothesis) +n]i=0 diagram(ell; [i])@[diagram(ell; [n+ 1])] d= n+1]i=0 diagram(ell; [i])(8:3) +n+1]i=0 diagram(ell; [i]) d= n+1]i=0 diagram(ell; [i])8.7 Size of DiagramsDe�nition 4 makes no claims about the link between a schematic proof and the theor-emhood of a conjecture 8n L(n) = R(n). We still need to disprove the possibility of acorrect schematic proof of a false conjecture. To establish that the conjecture is truewhen proved by a schematic proof, an explicit algebraic link between them needs tobe de�ned. We establish this link via the size of diagrams. We �rst de�ne the size ofa diagram, and later, in x8.8, we state the theorem about the algebraic correctness ofa schematic proof for a given conjecture.Let us denote the size of the diagram D by jD j. Here is a de�nition for the size of adiagram:De�nition 5 (Size of Diagrams)The size of a list of diagrams is equal to the value of the arithmetic expression that itrepresents: if dmap(e;D) then jD j = e.Note that the type of j j is: object list ! pnat. Using the property of size de�ned inDe�nition 5 on formulae from (8.35) to (8.45), we have the following:j [ ] j = 0 (8.48)j [diagram(square; [n])] j = n2 (8.49)j [diagram(ell; [n])] j = 2n� 1 (8.50)j [diagram(row; [n])] j = n (8.51)j [diagram(column; [n])] j = n (8.52)j [diagram(rectangle; [n; f(n)])] j = n� f(n) (8.53)



130 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFSj [diagram(triangle; [n])] j = n(n+ 1)2 (8.54)j [diagram(frame; [n])] j = 4(n� 1) (8.55)j [diagram(thick frame; [2n+ 1])] j = (2n+ 1)2 � 1 (8.56)E 6= [ ]! jD :: E j = j [D] j+ jE j (8.57)������ b]j=aDj ������ = bXj=a j [Dj] j (8.58)We state now a lemma about the equality of sizes of two diagrammatically equal objectlists.Lemma 1 (Equality of Size of Two Diagram Lists)Two diagrammatically equal lists of diagrams have the same size.D d= E! jD j = jE j
Proof of Lemma 1The proof of Lemma 1 is straightforward by induction on the structure of D:Base case: D = [ ] [ ] d= E �! j [ ] j = jE j+ by substitution property of d=j [ ] j = j [ ] jStep case:Hypothesis: for D = B, so B d= E! jB j = jE j where E is universally quanti�ed.Conclusion: for D = A :: B A :: B d= E0 �! jA :: B j = ��E0 ��E0 6= [ ] since it contains at least ALet E00 = A :: Fthen E0 d= E00 +A :: B d= E00 �! jA :: B j = ��E00 ��by substitution property of d= +A :: B d= A :: F �! jA :: B j = jA :: F j+ (8:57)



8.7. SIZE OF DIAGRAMS 131A :: B d= A :: F �! j [A] j+ jB j = j [A] j+ jF jX d= Y! Z :: X d= Z :: Y + M = N ! K +M = K +NB d= F �! jB j = jF junify in hypothesis E with F +trueNow, we state a lemma about the preservation of the size of the sum of all resultingdiagrams when an operation is applied on a diagram. For all operations that were justintroduced, the following holds:Lemma 2 (Size Invariance Under One Operation)The size of the result of applying an operation to some diagrams is the same as thesize of the diagrams before the operation was applied. Let D be some diagrams suchthat dmap(e;D) then: j op(opname;D) j = jD j.Proof of Lemma 2: Case analysis on operationsThe proof of Lemma 2 consists of a case analysis of operations and mappings of arith-metic expressions. The case analysis is given in the table in Figure 8.2.The proof consists of the following steps:j op(opname;D) j = jD jusing rule R +jDS j = jD jwhere the table in Figure 8.2 provides all cases. In particular, column 1 gives all casesof opname. Column 2 gives corresponding rules R used in the rewrite of the proof.Column 3 gives the corresponding cases of D. Column 4 gives the corresponding DS's.Column 5 gives jD j. Column 6 gives jDS j. Note that the values in column 5 and 6 arecalculated using the rules of size given in (8.48) through to (8.58). Also, let dmap(e;D),hence jD j = e.Finally, the rest of the proof calculates that the two values in column 5 and column 6of the table in Figure 8.2 are the same. Note that in the calculation we subtract e fromboth sides of the equality �rst. The reference to the right of the calculation correspondsto the second column R in Figure 8.2.
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opname R D DS jD j jDS jlcut 8.8 diagram(square,[x+ 1])::D [diagram(square,[x]), diagram(ell,[x+ 1])]@D (x+ 1)2 + e x2 + (2(x + 1) � 1) + elcut 8.9 diagram(triangle,[x+ 2])::D [diagram(triangle,[x]), diagram(ell,[x+ 2])]@D (x+2)(x+3)2 + e x(x+1)2 + (2(x + 2)� 1) + esplit row 8.10 diagram(ell,[x+ 1])::D [diagram(column,[x]), diagram(row,[x+ 1])]@D 2(x+ 1)� 1 + e x+ (x+ 1) + esplit row 8.11 diagram(rectangle,[x; x+ 1])::D [diagram(square,[x]), diagram(row,[x])]@D x(x+ 1) + e x2 + x+ esplit col 8.12 diagram(rectangle,[x; f(x) + 1])::D [diagram(rectangle,[x; f(x)]),diagram(row,[x])]@D x(f(x) + 1) + e x(f(x)) + x+ esplit col 8.13 diagram(square,[x+ 1])::D [diagram(rectangle,[x; x + 1]),diagram(column,[x+ 1])]@D (x+ 1)2 + e x(x+ 1) + (x+ 1) + esplit col 8.14 diagram(rectangle,[x + 1; x])::D [diagram(square,[x]), diagram(column,[x])]@D (x+ 1)x+ e x2 + x+ esplit col 8.15 diagram(rectangle,[x + 1; f(x+ 1)])::D [diagram(rectangle,[x; f(x + 1)]),diagram(column,[f(x+ 1)])]@D (x+ 1)f(x + 1) + e xf(x+ 1) + f(x+ 1) + esplit diagonally 8.16 diagram(square,[x+ 1])::D [diagram(triangle,[x + 1]),diagram(triangle,[x])]@D (x+ 1)2 + e (x+1)(x+2)2 + x(x+1)2 + esplit diagonally 8.17 diagram(rectangle,[x + 1; x])::D 2 
 [diagram(triangle,[x])]@D (x+ 1)x+ e 2x(x+1)2 + esplit diagonally 8.18 diagram(rectangle,[x; x+ 1])::D 2 
 [diagram(triangle,[x])]@D x(x+ 1) + e 2x(x+1)2 + esplit outer frame 8.19 diagram(square,[x+ 2])::D [diagram(square,[x]), diagram(frame,[x+ 2])]@D (x+ 2)2 + e x2 + (4(x + 1)) + esplit inner dot 8.20 diagram(square,[2x + 1])::D [diagram(thick frame,[2x + 1]),diagram(square,[1])]@D (2x + 1)2 + e (2x+ 1)2 � 1 + 12 + esplit2four 8.21 diagram(square,[2x])::D 4 
 [diagram(square,x)]@D (2x)2 + e 4x2 + erotate90 8.22 diagram(rectangle,[x; f(x)])::D [diagram(rectangle,[f(x); x])]@D xf(x) + e f(x)x+ esplit sqr 8.23 diagram(rectangle,[x + f(x); x])::D [diagram(rectangle,[f(x); x]),diagram(square,[x])]@D (x+ f(x))x+ e f(x)x+ x2 + esplit sqr 8.24 diagram(rectangle,[x; x+ f(x)])::D [diagram(rectangle,[x; f(x)]),diagram(square,[x])]D x(x+ y) + e xy + x2 + esplit side 8.25 diagram(triangle,[x+ 1])::D [diagram(triangle,[x]), diagram(row,[x+ 1])]@D (x+1)(x+2)2 + e x(x+1)2 + (x+ 1) + esplit tst 8.26 diagram(triangle,[2x])::D (2 
 [diagram(triangle,[x])]) @[diagram(square,[x])]@D 2x(2x+1)2 + e 2x(x+1)2 + x2 + esplit tst 8.27 diagram(triangle,[2x+ 1])::D (2 
 [diagram(triangle,[x])]) @[diagram(square,[x+ 1])]@D (2x+1)(2x+2)2 + e 2x(x+1)2 + (x+ 1)2 + esplit dia ends 8.28 diagram(ell,[x+ 1])::D [diagram(ell,[x]), diagram(column,[1]),diagram(row,[1])]@D 2(x+ 1)� 1 + e (2x� 1) + 1 + 1 + esplit frame 8.29 diagram(frame,[x+ 1])::D (2 
 [diagram(row,[x])]) @ (2 
[diagram(column,[x])])@D 4(x� 1 + 1) + e 2x+ 2x+ esplit tframe 8.30 diagram(thick frame,[2x+ 1])::D (2
 [diagram(rectangle,[x + 1; x])]) @ (2 
[diagram(rectangle,[x; x+ 1])])@D (2x+ 1)2 � 12 + e 2((x+ 1)x) + 2(x(x+ 1)) + eFigure 8.2: Case analysis of operations.



8.7. SIZE OF DIAGRAMS 133(8.8) x2 + (2(x+ 1)� 1) = x2 + 2x+ 2� 1 = x2 + 2x+ 1 = (x+ 1)2(8.9) x(x+1)2 + (2(x+ 2)� 1) = x2+x+2(2x+4�1)2 = x2+5x+62 = (x+2)(x+3)2(8.10) x+ (x+ 1) = 2x+ 1 = 2(x+ 1)� 1(8.11) x2 + x = x(x+ 1)(8.12) x(f(x)) + x = x(f(x) + 1)(8.13) x(x+ 1) + (x+ 1) = x2 + x+ x+ 1 = (x+ 1)2(8.14) x2 + x = (x+ 1)x(8.15) x(f(x+ 1)) + f(x+ 1) = (x+ 1)f(x+ 1)(8.16) (x+1)(x+2)2 + x(x+1)2 = x2+3x+2+x2+x2 = 2x2+4x+22 = (x+ 1)2(8.17) 2x(x+1)2 = x(x+ 1) = (x+ 1)x(8.18) 2x(x+1)2 = x(x+ 1)(8.19) x2 + (4(x + 1)) = x2 + 4x+ 4 = (x+ 2)2(8.20) (2x+ 1)2 � 1 + 12 = (2x+ 1)2(8.21) 4x2 = (2x)2(8.22) f(x)x = xf(x)(8.23) f(x)x+ x2 = x(f(x) + x) = (x+ f(x))x(8.24) xf(x) + x2 = x(f(x) + x) = x(x+ f(x))(8.25) x(x+1)2 + (x+ 1) = x2+x+2x+22 = (x+1)(x+2)2(8.26) 2x(x+1)2 + x2 = 2x2+2x+2x22 = 4x2+2x2 = 2x(2x+1)2(8.27) 2x(x+1)2 + (x+ 1)2 = 2x2+2x+2x2+4x+22 = 4x2+6x+22 = (2x+1)(2x+2)2(8.28) (2x� 1) + 1 + 1 = 2x+ 1 = 2(x+ 1)� 1(8.29) 2x+ 2x = 4x(8.30) 2((x+ 1)x) + 2(x(x+ 1)) = 2x2 + 2x+ 2x2 + 2x = 4x2 + 4x= 4x2 + 4x+ 1� 1 = (2x+ 1)2 � 1
The immediate consequence of Lemma 2 is the preservation of size when an operationis applied multiple times to some diagram.Lemma 3 (Size Invariance Under Multiple Applications of One Operation)The size of the result of applying an operation to some diagrams multiple times is thesame as the size of the diagrams before the operation was applied multiple times. LetD be some diagrams such that dmap(e;D) then:j one apply(n; opname;D) j = jD jProof of Lemma 3The proof of Lemma 3 is trivial by induction on n, using the rules (8.4) and (8.5) forthe recursive de�nition of one apply, and Lemma 2.The immediate consequence of Lemma 2 and Lemma 3 is the preservation of size whenseveral operations are applied multiple times to some diagram.



134 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFSLemma 4 (Size Invariance Under Multiple Operations)The size of the result of applying a list of operations to some diagrams is the sameas the size of the diagrams before the list of operations was applied. Let D be somediagrams such that dmap(e;D) then:j apply(ops;D) j = jD jProof of Lemma 4The proof of Lemma 4 is by straightforward induction on the structure of list ops,using the rules (8.6) and (8.7) for the recursive de�nition of apply, and Lemma 3.
8.8 Algebraic Correctness of Schematic ProofsApart from being diagrammatically correct, we want every schematic proof to be al-gebraically correct as well. A schematic proof is algebraically correct if the sizes of thediagrams representing both sides of the proposition after the operations of the schem-atic proof have been applied are the same. Theorem 2 states the property of algebraiccorrectness for any schematic proof.Theorem 2 (Algebraic Correctness of Schematic Proofs)For all instances of a schematic proof P and for all pairs of lists of diagrams D and E,a schematic proof P is algebraically correct if and only ifapply (P;D) d= E �! jD j = jE j
Proof of Theorem 2The proof of Theorem 2 is straightforward by appealing to Lemma 1 and Lemma 4.apply(P;D) d= E �! jD j = jE jby Lemma 1 +j apply(P;D) j = jE j �! jD j = jE jby Lemma 4 +jD j = jE j �! jD j = jE j



8.9. ARITHMETIC CONJECTURE AND DIAGRAMMATIC PROOF 1358.9 Arithmetic Conjecture and Diagrammatic ProofThere is one last theorem needed in the formalisation of diagrammatic theory whichwill allow us to prove theorems of arithmetic using diagrammatic proofs. We state inTheorem 3 the property about the diagrammatic provability of arithmetic arguments.Theorem 3 (Diagrammatic Provability of an Arithmetic Conjecture)A conjecture 8n L(n) = R(n) is diagrammatically provable if and only if for all n thereexist two lists of diagrams D and E such that dmap(L(n);D) and dmap(R(n);E), andjD j = jE j �! L(n) = R(n)Proof of Theorem 3The proof of Theorem 3 is trivial by the de�nition of size of a list of diagrams given inDe�nition 5.8.9.1 Diagrammatic Provability for an ExampleWe consider now an example of an arithmetic conjecture and prove it diagrammaticallyusing a schematic proof that Diamond extracts. Let the arithmetic conjecture be8n n2 = nXi=0 2i� 1and the schematic proof proof that Diamond extracted be as de�ned in (8.46) and(8.47). Here are the reasoning steps of the proof:1. Appealing to Theorem 3 we can discharge the conjecture by:� using (8.36) notice dmap(n2; [diagram(square; [n])]),hence let D = [diagram(square; [n])],� using (8.45) and (8.37) notice dmap(Pni=0(2i � 1); Uni=0 diagram(ell; [i])),hence let E = Uni=0 diagram(ell; [i]),and proving for all nj [diagram(square; [n])] j = ����� n]i=0 diagram(ell; [i]) ����� (8.59)2. Appealing to Theorem 2 and proof(n) that Diamond extracted, we can dischargethe expression in (8.59) by proving for all napply (proof(n); [diagram(square; [n])]) d= n]i=0 diagram(ell; [i]) (8.60)3. Finally, notice that we already proved (8.60) in x8.6.1.



136 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFS8.10 Implementation of a Theory of DiagramsThe veri�cation mechanism that we formalised in this chapter is implemented in Dia-mond using Clam. Clam is a proof planner developed in Edinburgh [Bundy et al 91].It searches for a proof plan of a theorem. A proof plan is a high level proof speci�ca-tion consisting of methods and strategies which specify clusters of inference rules thatneed to be applied in the object level proof. An object level veri�cation proof canbe obtained by executing the Clam proof plan in Oyster proof development system[Bundy et al 90]. We are not interested in the intricacies of the object level veri�cationproof. Rather, we check if the veri�cation theorem is true by �nding a proof plan.Hence, for the purposes of Diamond we do not execute a proof plan to obtain theobject level veri�cation proof.Diamond and Clam are linked together:4 a Clam server sits on top of Diamond andwaits for Clam commands which are passed to it from Diamond.5The implemented part of the veri�cation mechanism checks for the correctness of anextracted schematic proof, i.e. Diamond automatically checks whether the prop-erty given in De�nition 4 is satis�ed for a particular schematic proof. We followthe reasoning described in the previous section whereby the diagrammatic provability(Theorem 3) and algebraic correctness (Theorem 2) are used to discharge the originalconjecture, and leave us with the need to prove the correctness property of a schematicproof. The user can access the veri�cation mechanism to check the correctness of aparticular schematic proof via a command available on one of the menus in the mainwindow of Diamond's graphical interface.To automate the veri�cation mechanism, all the primitives of the theory need to beloaded into Clam at the start of a Diamond session, i.e. the de�nitions of diagramsgiven in x8.2, the operators de�ned in x8.3, the operations de�ned in x8.4, and axioms,theorems and function de�nitions given in x8.5. Note that in the implementation ofthe veri�cation mechanism every diagram list used in the theory of diagrams is givenin terms of a list of tuples. The �rst element of any tuple is a diagram of objecttype, and the second element is the information about the position of a diagram in aproof tree. We add another property to the implemented de�nition of diagrammaticequality | two lists of diagrams are diagrammatically equal regardless of the additionalinformation about the position of a diagram in the proof tree attached to each diagramin the list. This modi�cation is needed to specify where in the proof tree is a diagramto which an operations is applied. Furthermore, the diagrammatic equality of bags isnot implemented yet. We use lists instead, and leave implementing bags for the future(see x11.3). Both of these modi�cations can limit the number of schematic proofs thatwe can verify in Diamond (see x9.5.3).Considering De�nition 4, when a schematic proof is to be veri�ed, then the followingpieces of information need to be provided:� the conjecture 8n L(n) = R(n),4 I am grateful to Richard Boulton for providing me with the code which links the SML and Prologprogramming languages.5 A separate window displays all the information that is passed to and is produced by Clam.



8.10. IMPLEMENTATION OF A THEORY OF DIAGRAMS 137� the cases of the dmap relation which specify the two lists of diagrams D and Efor L(n) and R(n) respectively,� the schematic proof proof,� the veri�cation theorem 8n apply(proof(n);D) d= E with instantiated D and E.Therefore, the user is required to input to Diamond the theorem of natural numberarithmetic expressed in a sentential representation (see x8.10.2). Diamond tries tomap the theorem using the relation dmap as de�ned in x8.5.3 into its diagrammaticrepresentation to �nd D and E. The schematic proof is translated into the syntax ofClam, and loaded from Diamond into Clam as the de�nition of proof. Diamondformalises the veri�cation theorem using the provided information, and passes it toClam. This completes loading of all the de�nitions necessary for the correctness proof.Finally, Diamond starts Clam searching for a proof plan of the veri�cation theorem.If a proof plan can be found, then Clam passes it to Diamond to display it and toinform the user that the schematic proof is correct.An interesting case to investigate would be a successful extraction of a schematic proofof a theorem, but verifying the schematic proof in Diamond's theory of diagramsshows it is incorrect.6 We are not interested in a trivial case of a theorem for whichthere is no mapping to a diagrammatic representation, or where the operations are notde�ned, so they cannot be used. We are interested in an example theorem for whichDiamond �nds a schematic proof, but the veri�cation shows that the schematic proofis incorrect. In the testing of Diamond that we carried out so far (see Chapter 9), wehave not come across such cases.An example of a false schematic proof is the diagrammatic proof of Euler's theoremabout polyhedra given at the beginning of this chapter. Check xA.5 for an explanationof a diagrammatic proof, as given by Cauchy in [Lakatos 76]. Although we cannot provethis theorem using Diamond, we can extract, as discussed in x4.6, a schematic proof,i.e. a uniform procedure that proves instances of this theorem. This proof satis�edhuman mathematician for a while, but it turns out that it is false, because not all ofthe examples of polyhedra were considered. Cauchy later found a correct logical proofof this theorem [Lakatos 76]. It would be interesting to identify other schematic proofsthat human mathematicians found, but did not verify. Verifying such schematic proofscould potentially reveal that they are false.8.10.1 Loaded De�nitions and LemmasWhen a Diamond session is compiled, a Clam session is started as well, whereby allthe de�nitions for diagrams, operators, operations, functions and axioms are loaded| equations from (8.1) to (8.31). The large number of operations makes their loadinginto Clam quite slow. The lemmas that we load are the theorems (8.32), (8.33) and(8.34) that were proved in x8.5.2.6 Note that our implementation of veri�cation mechanism in Clam does not show that a veri�cationtheorem is false, it can only fail to �nd a proof plan.



138 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFSThe Clam proof methods and strategies which are available in the search of a proofplan include apply lemma, base case, induction strategy and normalisation, plus allthe methods loaded to Clam by default. We use depth-�rst proof planning search.8.10.2 Theorem MappingWe require that a theorem of natural number arithmetic which is proved diagrammat-ically be expressed as an equality with one universally quanti�ed variable n, i.e. of theform 8n L(n) = R(n). The user is required to enter this theorem using the appropriatesyntax. Here is the grammar for this syntax:term � term = termj term+ termj term� termj term=termj term � termj sqr(term)j sum(term; term; �(term; term))j stringj pnatNote that in sum(term; term; �(term; term)) the �rst argument is normally a naturalnumber, the second argument is a variable, and the third argument is a lambda ex-pression. The theory of diagrams is implemented over natural numbers. Therefore,all integers used in the expression of the theorem need to be converted into a naturalnumber representation which uses a successor function s and 0 to represent them. Thisis done automatically in Diamond before the theorem to be proved is passed to Clam.By De�nition 4 it is required that there is a mapping of L(n) to a diagrammaticrepresentation D, and R(n) to E. Diamond implements dmap as it is expressed inx8.5.3 in relations from (8.35) to (8.45), and searches for a mapping of L(n) and R(n).If no such mapping exists then the schematic proof cannot be veri�ed.8.10.3 Schematic Proof EncodingEvery time the user wants to verify a new schematic proof, a new recursive de�nitionfor this particular schematic proof has to be added to the veri�cation mechanism.Diamond has built in functions which add new de�nitions to the implementation oftheory of diagrams in Clam. A schematic proof can either be de�ned recursively or non-recursively. If the step case of the proof is empty,7 and base case consists of operationswhich are parametrised over n, then the schematic proof is de�ned non-recursively as8n proof(n) = ops.7 The reader is referred to x7.3 for a reminder of a formalisation of a schematic proof.



8.11. SUMMARY 1398.10.4 Proof PlanThe proof plan for the veri�cation of a schematic proof for the sum of odd naturalsconsists of the following methods: induction, step case and base case. The proof planthat Clam �nds and passes back to Diamond looks as follows:/* This is the pretty-printed forminduction([(n:pnat)-s(v0)])[base_case,step_case] thenbase_case(...)*/Note that the base case method in the proof plan consists of simple symbolic evaluationand rewriting. Besides base cases of inductive proofs it is also often used in non-inductive proofs. The object level veri�cation proof is given in x8.6.1. Its extractionusing the proof plan has not been automated, because it is not central to the ideaspresented here.8.11 SummaryIn this chapter we presented a mechanism which is used to check the correctness ofschematic proofs. We formalised a theory of diagrams in which the correctness proofcan be carried out. This constitutes the last stage of the procedure for extraction ofdiagrammatic proofs as presented in x4.8. A schematic proof is correct if it provesall cases (i.e. for all n) of the proposition. The language and the rules of the theoryenable us to de�ne the notion of applicability of a schematic proof, and the correctnessproperty of schematic proofs. We then proved the correctness property for an exampleof a schematic proof of a theorem.Algebraic correctness of a schematic proof ties the original theorem of natural numberarithmetic to the diagrammatic schematic proof, and ensures that if the schematic proofof a diagrammatically expressed theorem is correct, then the corresponding statementof arithmetic is a theorem. The link between a diagrammatic theory and the theory ofnatural number arithmetic is the size of a diagram, which selects the natural numberthat the diagrams represents. This number is the number of dots in the diagram.We stated and proved some lemmas about the size invariance under application ofdiagrammatic operations.We then stated a theorem about the diagrammatic provability of an arithmetic con-jecture. This theorem is used to show that a particular theorem of natural numberarithmetic is provable diagrammatically using the diagrams available in Diamond. Ifan extracted schematic proof is found to be correct, then the theorem of algebraic cor-rectness and the theorem of diagrammatic provability can be used to formally justifywhy a schematic proof is a correct diagrammatic proof of an arithmetic theorem.



140 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFSFinally, we presented the implementation of the theory of diagrams in Diamond.Diamond uses a proof planner Clam to implement the language and the rules of adiagrammatic theory, and to search for the proof of correctness of a schematic proof.Diamond �nds a mapping of a theorem of arithmetic to its diagrammatic represent-ation, and passes it along with the corresponding schematic proof to Clam to �nd aproof plan. If such a proof plan exists, then the schematic proof is correct.Other interesting properties of the theory of diagrams which could be investigatedinclude incompleteness and characterisation of the class of theorems that we can provein this theory. It would be interesting to show a non-trivial example of a non-theoremand its schematic proof for which the proof of correctness does not work, and show inthis way that the theory of diagrams is incomplete. A characterisation of the class oftheorems we can prove seems to be a much more di�cult task. The reader is referredto Chapter 11 for a further discussion of these issues.



Chapter 9Results and Evaluation

(2n+ 1)2 = 8Trin + 1 | Edwin G. Landauerin Nelsen's Proofs Without WordsIn this thesis we presented our research on the use of diagrams in proofs of mathemat-ical theorems. This work has been realised in the implementation of a diagrammaticreasoning system Diamond. In this chapter we evaluate the ideas discussed in thisthesis. The evaluation of the system is carried out by trying Diamond on some ex-ample theorems.We begin in x9.1 by identifying the issues which need to be considered in the evaluationof Diamond. We then give in x9.2 a summary of theorems that Diamond proved.Next, in x9.3, an elaborate description of the extraction of a proof using Diamondfor an example of a theorem is given. An account of theorems that we proved incomparison to those that we could not prove is given in x9.4. The limitations ofDiamond are discussed in x9.5, followed by the analysis of when Diamond fails toextract a diagrammatic proof of a theorem in x9.6. In x9.7 we conclude with a summaryof this chapter.9.1 Evaluation IssuesDiagrammatic proofs are interactively constructed via Diamond's graphical user inter-face which was demonstrated in Figure 5.5. It is expected, but not necessary, that users141



142 CHAPTER 9. RESULTS AND EVALUATIONhave some example cases of a diagrammatic proof in mind, so that they can choosea diagram from which to start an example, i.e. a ground instance of a diagrammaticproof. Furthermore, users need to choose the operations which are used as inferencesteps during the proof procedure. In the course of the development of Diamond weidenti�ed as many examples as was possible of the kind of theorems that we wantedDiamond to prove. Some of them are given in Chapter 3 and in Appendix A. Thesehelped us identify a set of diagrams and operations on them, with which Diamondneeds to provide the user (Chapter 5 and Chapter 6). The hypothesis for evaluatingour ideas and the system is that Diamond and the techniques developed in this thesisprovide a feasible way of proving a limited class of theorems of mathematics. Thequestion now is whether the set of diagrams and operations available in Diamondenables one to prove diagrammatically a su�cient number of theorems. We discussnext the criteria for assessing that a number of proved theorems is su�cient.9.1.1 Range and Depth of TheoremsIn Chapter 6 we described the operations in Diamond and claimed that the set ofavailable operations should enable us to prove theorems of signi�cant depth and range.The de�nitions of both signi�cant depth and signi�cant range are informal. By sig-ni�cant depth we hope to capture a set of examples which are not trivial to provediagrammatically. For instance, theorems which require proofs that consist of only oneinference step and are non-recursive, so the number of inference steps does not dependon the parameter, are in general not considered to be of signi�cant depth. An exceptionis when a theorem is not trivial to prove with the usual logical machinery (e.g. due tothe need for lemmas which may not be available, or the need for generalisation), but istrivial to prove diagrammatically, and the proof is a one step non-recursive proof, thenthis theorem still contributes to the depth (and range) of theorems that Diamondcan prove (e.g. commutativity of multiplication). Theorems whose schematic proofsare non-recursive, but the proof consists of several inference steps, i.e. diagrammaticoperations, are of signi�cant depth. All theorems whose proofs are de�ned recursively,so the number of inference steps in the proof depends on the parameter for which theproof is given, are also of signi�cant depth. Moreover, proofs of theorems which useother proofs as lemmas are of signi�cant depth.By signi�cant range we mean to capture a variety of examples which are di�erent fromeach other. For example, we claim that the set which contains recursively and non-recursively de�ned proofs is of signi�cant range. Other criteria for the range include avariety of theorems about di�erent natural numbers. For instance, proofs of theoremsabout square numbers, triangular numbers, Fibonacci numbers, hexagonal numbers,etc. form a set of proofs of signi�cant range. Note that all of the mentioned proofs oftheorems contribute not only to the range but also to the signi�cant depth of provedtheorems.9.1.2 Source of TheoremsOur main source of examples is Nelsen's book Proofs Without Words [Nelsen 93]. Wealso found some examples in [Penrose 94a], [Lakatos 76], [Gardner 86], [Gardner 81],



9.1. EVALUATION ISSUES 143[Dudeney 42] and [Gamow 62]. Our choice of theorems of natural number arithmeticrather than geometry means that the proofs which are considered to be formal proofsof these theorems are usually logical rather than diagrammatic proofs. Nelsen's bookindicated a way to prove some of these theorems diagrammatically. Also, a theorem ofgeometry usually has an obvious diagrammatic representation, whereas a theorem ofnatural number arithmetic may not. Often, Nelsen's book helped us �nd a diagram-matic representation of our chosen theorems. However, there was still a slight problemin identifying a large corpus of theorems which can be represented diagrammatically,and on which we could test Diamond. The sources mentioned above helped us identifya signi�cant number of such theorems. Further investigation could uncover additionaltheorems which can be represented diagrammatically. Moreover, once we identi�edtheorems, we also had to �nd their diagrammatic proofs which we then interactivelyconstructed in Diamond.It would be interesting to see if Diamond could automatically discover proofs of the-orems, and moreover discover theorems which it can prove in a diagrammatic way.If such an automatic theorem prover discovered diagrammatic proofs which have notbeen known before, then this would support our evaluation hypothesis that using theproof extraction methodology presented in this thesis enables us to prove theoremsof mathematics. However, to date Diamond is an interactive proof checker, so theautomatic discovery of proofs remains a topic for future work (see x11.7).9.1.3 MethodologyThe evaluation of Diamond consists of two stages. The �rst stage checks how manyschematic proofs we can extract using Diamond. The second stage checks how manyof these schematic proofs can be veri�ed.For the �rst stage we check whether Diamond is able to extract a schematic prooffrom example proofs. This stage tests the expressiveness of the available diagramsand operations (see Chapter 5 and Chapter 6), and the capability of the abstractionmechanism (see Chapter 7).The second stage checks whether the schematic proof is correct or not. The veri�cationproof is carried out in the theory of diagrams (see Chapter 8). The veri�cation of aschematic proof is done automatically. Some possible reasons for failing to verify aschematic proof will be discussed in x9.5.Given that Diamond is an interactive, rather than a completely automated, proofchecker, it is di�cult to carry out any meaningful statistical analysis of how manytheoremsDiamond is capable of proving in comparison to those for which it fails to �nda proof. The set of theorems on which we can test Diamond are those the system wasdesigned to be able to prove. A possible test, which is explained in x9.4, is to count thenumber of theorems in natural number arithmetic that are diagrammatically provedin Nelsen's book Proofs Without Words, and compare this number to the theoremsproved with Diamond. Furthermore, in x9.5 we identify the problems which preventus from proving theorems diagrammatically.Another test by which we can evaluate Diamond is to compare it with other theorem



144 CHAPTER 9. RESULTS AND EVALUATIONprovers which construct proofs diagrammatically. However, not much work has beendone on the automation of diagrammatic theorem provers. Some of the relevant workwas surveyed in x2.4. Furthermore, in Chapter 10, we give a comparative analysis ofsystems related to Diamond, where it is evident that Diamond is not a rival to theseother systems. The fact that our work is novel in the area of automated reasoningmakes it infeasible to give an evaluation based on a comparative statistical analysis ofDiamond and its proofs, with some other system.9.2 Theorems ProvedThe tables in Figure 9.1 list theorems that we proved using Diamond. We distinguishbetween the development and the test set of theorems. This ensures that Diamondhas not been specialised for only a few theorems during the development stage. If anumber of theorems from the test set is successfully proved, or at least their schematicproofs can be found, then we can conclude that Diamond is reasonably general.The �rst column entitled Ref gives the reference number of a theorem which, togetherwith its proof, is given in Appendix B. The second column entitled Theorem expressesa theorem in the usual sentential way. In some cases, we represent a theorem with boththe use of ellipsis and with the use of summation symbolP together with the generalform of a term. The ellipsis clearly depicts the �rst few numbers, as well as the generalform of a number in the sequence in the summation. P captures ellipsis in an al-ternative way. The third column entitled Schematic Proof lists whether Diamond wascapable of �nding a schematic proof for the particular theorem under consideration.The fourth column entitled Type states whether the schematic proof which Diamondfound is de�ned recursively or non-recursively. Finally, the �fth column entitled Veri-�cation lists whether the schematic proof of a given theorem was successfully checkedto be correct in the theory of diagrams. The listing of complete results including thepictures of the diagrams used and operations on them, the corresponding schematicproofs, and the resulting veri�cation proof plans are given in Appendix B.Note also, that the theorem n(n + 1) = n(n+1)2 + n(n+1)2 is an instance of x = x2 + x2 .The former theorem is about two triangles of equal magnitudes n which together forma rectangle of magnitude n by n+1. The latter theorem is from a diagrammatic pointof view more general, where x = n(n+ 1).Furthermore, notice that theorem (B.13) is an instance of a theorem n �m = m� nwhich is universally quanti�ed over two parameters and so it cannot be proved inDiamond. We arbitrarily chose to instantiate m to n + 3, but any other instance ofm would have the same diagrammatic proof.The tables in Figure 9.1 do not include all the theorems that Diamond can prove. Adi�culty in listing all of the results is the choice of what is an interesting theorem (andproof), and what is not. One criteria is that the theorem and its proof contribute to therange and depth of theorems that Diamond proves. Therefore, we exclude theoremsthat perhaps do not contribute to the range and depth of proved theorems.
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Development Set of TheoremsRef Theorem Schematic Proof Type Correctness(B.1) n2 = 1 + 3 + 5 + � � �+ (2n� 1) =Pni=0 2i� 1 Found Recursive Proved(B.2) n(n+1)2 = 1 + 2 + 3 + � � �+ n =Pni=0 i Found Recursive Proved(B.3) Tri2n+1 = Trin+1 + 3Trin Found Non-Recursive Proved

Test Set of TheoremsRef Theorem Schematic Proof Type Correctness(B.4) Tri2n = 3 + 7 + 11 + � � �+ (2(2n) � 1) =Pni=0(2(2i) � 1) Found Recursive Proved(B.5) (2n+ 1)2 = 1 + (8 + 16 + � � �+ 4(2n)) = 1 + 4Pni=0 2i Found Recursive Proved(B.6) Fibn � Fibn+1 = Fib21 + Fib22 + � � �+ Fib2n =Pni=1 Fib2i Found Recursive Proved(B.7) Tri2n�1 = 1 + 5 + 9 + � � �+ (2(2n� 1)� 1) =Pni=0(2(2i � 1)� 1) Found Recursive Not Proved(B.8) 2n� 1 = (Pn�1i=1 2) + 1 Found Recursive Not Proved(B.9) n(n+ 1) = n(n+1)2 + n(n+1)2 Found Non-Recursive Proved(B.10) Tri2n = Trin�1 + 3Trin Found Non-Recursive Proved(B.11) (2n+ 1)2 = 8Trin + 1 Found Non-Recursive Proved(B.12) (2n)2 = 8Trin�1 + 4n Found Non-Recursive Proved(B.13) n� (n+ 3) = (n+ 3)� n Found Non-Recursive ProvedFigure 9.1: Results: theorems proved using Diamond.



146 CHAPTER 9. RESULTS AND EVALUATIONHowever, since this de�nition is given informally, the choice is not strictly de�ned andis a matter of opinion. Perhaps the fact that the theorems that we list are usuallynot proved diagrammatically makes them interesting. For instance, rotating a rect-angle of any natural number magnitude by 90 degrees diagrammatically proves thatmultiplication of natural numbers (and indeed of real numbers as well) is commutat-ive. Is this an interesting result? We think it is, because it demonstrates how simplediagrammatic proofs can be. The corresponding sentential (logical) proof (in Peanoarithmetic, for instance) is less obvious. In fact, almost any combination of operationson a diagram for which we can �nd a schematic proof using Diamond is an interestingresult. Therefore, another criterion for an interesting theorem could be the simplicityof diagrammatic proof in comparison to its sentential proof in some logical theory. Wecarried out a closer examination of this comparison in which it was revealed that the-orems that appeal to the commutativity or associativity of addition and multiplicationin their logical proof are much easier to prove diagrammatically. For other theoremsno signi�cant di�erence was noticed. The \interestingness" criteria of a theorem andits proof is hard to pinpoint formally, and it can lend itself to much criticism. Hence,we do not use it as a formal criteria in our selection of presented results which are ofsigni�cant range and depth.The tables in Figure 9.1 list thirteen theorems for which Diamond found schematicproofs. There were around �fteen other theorems which could perhaps be consideredas too simple or too similar to those in Figure 9.1 to be either interesting, or tocontribute to the depth and range of theorems that Diamond proves. Therefore, theyare omitted here. For instance, we excluded the following theorems which were provedusing Diamond, because their proofs are neither recursive nor do they consist of morethan one inference step:� n2 = n(n+ 1) + n� 2n� 1 = n+ (n� 1)� (n+ 2)2 = n2 + 4((n+ 2)� 1)� n� (n+ 3) = n� ((n+ 3)� 1) + nDiamond used �ve di�erent kinds of diagrams and eleven diagrammatic operations toprove the theorems listed in Figure 9.1. The table in Figure 9.2 gives all the operationsand theorems from Figure 9.1 and indicates which operations were used in whichdiagrammatic proofs of referenced theorems. This table gives an idea of the spreadand the generality of operations.Amongst the eleven operations used, there are some that could be composed out ofothers. For instance, an lcut operation splits two adjacent sides from a square. Thisoperation could be replaced by splitting �rst a row and then a column (or vice versa)from a square. Using Diamond we can �nd di�erent schematic proofs of the sametheorem, because the proofs might use di�erent operations that result in the samee�ect when applied to diagrams (i.e. rather than using a particular operation theproof applies a combination of operations that comprise this particular operation).Such theorems are listed in Figure 9.1 only once.
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Theorem RefOperations (B.1) (B.2) (B.9) (B.3) (B.10) (B.11) (B.12) (B.6) (B.4) (B.7) (B.8) (B.5) (B.13)split dia ends p plcut p p psplit side p pcut diagonally p p p p p psplit tst p psplit frame psplit tframe psplit2four psplit sqr psplit outer frame psplit inner dot protate90 pFigure 9.2: Spread of operations used in theorems proved with Diamond.



148 CHAPTER 9. RESULTS AND EVALUATIONNotice that the operations split frame, split tframe and split2four in Figure 9.2 are vir-tually the same operation. They all split a frame of a particular thickness into fourdiagrams. However, since they are applied to three di�erent types of diagrams: aframe, a thick frame and a square respectively (where a thick frame and a square aremade out of frames), they are slightly di�erent operations that are generalised intoone. To clarify what these operations do, they are o�ered to the user of Diamondunder di�erent names. The same is true for split outer frame and split inner dot. Theyare instances of the same operation which splits a square of a particular magnitudefrom a given square. In the former case the operation splits a square of magnituden� 2 from a square of magnitude n. In the latter case, the operation splits a squareof magnitude 1 from a square of magnitude n. Hence, only operations split sqr androtate90 in Figure 9.2 are used only once. This suggests that these operations are toospecialised. However, split sqr can be constructed using an existing operation split side(where a side is a row or a column). rotate90 is used only once because it is implicitin other proofs, e.g. in any proof of a theorem about triangles, or squares, becauserotating a triangle or a square does not change a diagram. It also does not changethe natural number that the diagram represents, e.g. a square still represents n2, anda triangle still represents n(n+1)2 for some n. On the other hand, rotating a rectangleof magnitude n by m changes it to a rectangle of magnitude m by n. In summary,we could conclude that the operations available in Diamond are reasonably general.We hope that in further testing we could reuse these operations to construct morecomplicated operations which might be needed to prove new theorems.All of the diagrammatic proofs for theorems in the tables in Figure 9.1 are interestingin that they are easily intuitively understood. Furthermore, to the best of our know-ledge, their diagrammatic proofs have not been mechanised before. All theorems forwhich the schematic proofs are de�ned recursively use mathematical induction in theirlogical (as opposed to diagrammatic) proofs. On the other hand, when constructinga diagrammatic proof the user does not need to have any knowledge of mathematicalinduction, which often proves to be di�cult to comprehend. The reader is referred tox9.3.2 for a further discussion of the built-in properties of diagrammatic proofs whichneed to be explicitly present in logical proofs.9.3 Example of Diamond's ProofWe present now an example of a diagrammatic proof. The theorem under considerationis (2n+1)2 = 1+4(Pni=0 2i). The main idea is that (2n+1)2 can be represented as asquare of magnitude 2n+ 1 for some particular n. Consider the right hand side of thetheorem. 2i can be represented as a row of magnitude 2i. Multiplying this by 4 meansthat we have four rows. A schematic proof consists of splitting a square into frames,and then for each frame we split it into rows and columns (note that rows are the sameas columns in terms of which natural number they represent). If the magnitude of asquare is 2n + 1 then one row will be of magnitude 2n. Figure 9.3 shows an exampleproof for the theorem under consideration where the parameter n is instantiated to 3.The user provides Diamond with the value of the parameter n for which each groundinstance of a diagrammatic proof is constructed. The proof trace of an example proof



9.3. EXAMPLE OF DIAMOND'S PROOF 1491. Split a square of magnitude 7 (i.e. 2�3+1) three times into frames. This resultsin three frames and a dot.
SPLIT OUTER

FRAME(3)

2. For each frame, split it into rows and columns.
SPLIT FRAME(1)

Figure 9.3: (2n+ 1)2 = 1 + (4(2 � 1) + 4(2� 2) + � � �+ 4(2n)) = 1 + 4(Pni=0 2i)for n = 3 consists of the following operations:proof(3) = [(split outer frame; 1); (split frame; 1);(split outer frame; 1); (split frame; 1);(split outer frame; 1); (split frame; 1)]Another example proof is constructed by the user for n = 4 and its proof trace consistsof the following operations:proof(4) = [(split outer frame; 1); (split frame; 1);(split outer frame; 1); (split frame; 1);(split outer frame; 1); (split frame; 1);(split outer frame; 1); (split frame; 1)]9.3.1 Diamond's Schematic ProofThe number of inference steps in the proof of the theorem (2n+1)2 = 1+4(Pni=0 2i),for which we showed an example proof in Figure 9.3, depends on the parameter n.This means that the schematic proof of this theorem is de�ned recursively. The stepcase of the proof consists of two operations | split outer frame and split frame:proof(n+ 1) = [(split outer frame; 1); (split frame; 1)]; proof(n) (9.1)proof(1) = [ ] (9.2)



150 CHAPTER 9. RESULTS AND EVALUATIONRobustness of Abstraction MechanismDiamond abstracted the schematic proof formalised in (9.1) and (9.2) from two ex-ample proofs given for n = 3 and n = 4. We tested Diamond's abstraction mechanismfor its robustness on two other sets of example proofs, i.e. for n = 3 and n = 5, andfor n = 3 and n = 9. Diamond abstracted the same schematic proof for both sets ofexample proofs as shown above. This indicates that the abstraction mechanism is ro-bust, i.e. it behaves as expected, irrespective of the di�erent cases for which examplesare given. The same test has been successfully carried out on all the theorems listedin Figure 9.1.9.3.2 Diamond's Veri�cation ProofThe schematic proof that Diamond found and which was presented in x9.3.1 is auto-matically veri�ed in Clam and found to be correct. Using (8.36) Diamond maps theleft hand side of the equation expressing the theorem to diagram(square; [2n+ 1]), andusing (8.36), (8.38), (8.39) and (8.45) Diamond can map the right hand side of theequation of the theorem to diagram(square; [1]) :: (4
Unj=0 diagram(row; [2n])). Noticethat there are other possibilities for the mapping of the theorem. The theorem whichClam veri�es is therefore stated as:8n apply(proof(n); [diagram(square; [2n+ 1])])d=diagram(square; [1]) :: (4
Unj=0 diagram(row; [2j]))Note that proof(n) is de�ned by (9.1) and (9.2). Diamond passes the recursive de�n-ition of proof(n) to Clam. Clam �nds a proof plan for this theorem which consists ofusing an induction strategy on the universally quanti�ed variable n, step case method,followed by a base case method that consists of symbolic evaluation which rewritesboth sides of the equation to reach equality using various rewrite rules of the theory(see Chapter 8)./* This is the pretty-printed forminduction([(n:pnat)-s(v0)])[base_case,step_case] thenbase_case(...)*/The step case of the inductive proof is carried out by rippling, which uses annotationsto guide rewriting.1 We give here just an outline of the object level veri�cation proof.The base case for n = 0 of the induction strategy is trivial. No operations are applied.After some symbolic evaluation both sides of the equation are equal to a list of onediagram, namely a square of magnitude 1. The hypothesis for n of the step case in the1 For more information on rippling, the reader is referred to [Bundy et al 93].



9.3. EXAMPLE OF DIAMOND'S PROOF 151induction strategy is given above as the veri�cation theorem. The outline of the prooflooks as follows:� Conclusion: apply(proof(n+ 1); [diagram(square; [2(n+ 1) + 1])])d=diagram(square; [1]) :: (4
Un+1j=0 diagram(row; [2j]))� Using (9.1), (8.19), (8.29), the de�nitions of apply (8.6), (8.7), and one apply (8.4),(8.5), and the function which picks the right diagram from the list of diagram,we have: apply(proof(n); diagram(square; [2n+ 1]) ::((2 
 [diagram(row; [2(n+ 1)])])@(2 
 [diagram(column; [2(n+ 1)])])))d=diagram(square; [1]) :: (4
Un+1j=0 diagram(row; [2j]))� Using a theorem that a column equals to a row, in addition to the de�nition of
 we have:apply(proof(n); diagram(square; [2n+ 1]) :: (4
 [diagram(row; [2(n+ 1)])]))d=diagram(square; [1]) :: (4
Un+1j=0 diagram(row; [2j]))� Using (8.34) we have:apply(proof(n); [diagram(square; [2n+ 1])])@(4 
 [diagram(row; [2(n+ 1)])]))d=diagram(square; [1]) :: (4
Un+1j=0 diagram(row; [2j]))� Using the RHS of the hypothesis, (8.3) and de�nition of 
 we have:diagram(square; [1]) :: (4
Un+1j=0 diagram(row; [2j]))d=diagram(square; [1]) :: (4
Un+1j=0 diagram(row; [2j]))
Object Level v. Meta Level ProofRecall that by an object level logical proof we refer to a usual proof in some axiomaticlogic. Such a proof takes a theorem and applies some axioms and lemmas of thislogic to the theorem in order to prove it. In contrast, by a meta level veri�cation of



152 CHAPTER 9. RESULTS AND EVALUATIONa schematic proof we refer to a proof in the theory of diagrams which shows that aschematic proof proves the theorem. A schematic proof can be referred to as an objectlevel diagrammatic (rather than logical) proof. The veri�cation proof is a meta levelproof because it reasons about the object level proof. Both object level and meta levelproofs are represented sententially.The question which arises is what is the relation between an object level logicalproof and a meta level veri�cation proof of the same theorem? Consider the the-orem discussed earlier (2n + 1)2 = 1 + 4(Pni=0 2i). The reader is invited to workout the details of the object level logical proof of this theorem by using the induc-tion strategy. We just outline it here: the logical proof of this theorem consists ofusing mathematical induction, hence carrying out the base case and the step caseof the induction. In the step case of the proof lemmas about the associativity andcommutativity of addition are needed in order to transform the left hand side ofthe conclusion in the step case (2(n + 1) + 1)2 to a term that is similar to the hy-pothesis plus additional terms, i.e. (2(n + 1) + 1)2 to (2n + 1)2 + 8n + 8, because(2(n+1)+1)2 = (2n+3)2 = 4n2+12n+9 = 4n2+4n+1+8n+8 = (2n+1)2+8n+8.It turns out that both the object level logical and the meta level veri�cation proofsuse the same proof methods: an induction strategy with its step case and base casemethods. There are some additional lemmas which are used in the object level logicalproof (e.g. if a+ b = c then cn = an+ bn, so in the case above it is necessary to inferthat 12n = 4n+8b), which are avoided in the meta level veri�cation of a diagrammaticproof. Furthermore, the logical proof uses the associativity of addition which is notused in a veri�cation of a diagrammatic proof, because it is an implicit property ofdiagrams. Therefore, the meta level veri�cation of schematic proofs is less complexthan the object level logical proofs of theorems.We considered other examples for the comparison between an object level and a metalevel proof of the same theorem. It appears that in most cases a meta level veri�cationproof is similar in structure to an object level logical proof, but an object level proofuses more lemmas. This again suggests that the veri�cation of a schematic proof ofa theorem is less complex than the object level logical proof. It also appears thatthere are diagrammatic proofs which when veri�ed in the theory of diagrams requireno mathematical induction, but the object level proof does need induction (e.g. com-mutativity of multiplication). This is perhaps due to the fact that associativity andcommutativity of addition are built into the diagrammatic reasoning in Diamond, andare therefore already built in the system. It would be interesting to investigate whatare other properties of diagrams which are built into the system by virtue of usingoperations on diagrams rather than logical formulae to prove theorems. But this is leftfor the future.9.4 Theorems Not ProvedIn x9.1.3 we mentioned that a possible test for evaluating Diamond is to compare thenumber of theorems that we can and cannot prove using Diamond. We informallydescribe this test here.



9.5. DIAMOND'S LIMITATIONS 153We used Nelsen's book Proof Without Words [Nelsen 93] as our source of theorems,plus the additional ones that we invented or discovered while analysing the availableexamples (see Chapter 3 and Appendix A). In [Nelsen 93] there are 44 theorems ofnatural number arithmetic and they all have some kind of diagrammatic proof. 7 ofthese theorems fall out of the scope in Diamond, because their diagrammatic proofsappeals to some continuous space property of a diagram | e.g. the basic unit diagramrepresenting the natural number 1 is not a dot, but a square or a triangle, so theproof appeals to the continuous space property such as the area of a diagram. Somemajor redesign of Diamond would be required to enable us to prove these theorems inDiamond. Out of the remaining 37 theorems, we can prove 7 of them using Diamond.We invented the proofs of further 6 theorems that are listed in the tables in Figure 9.1.The reasons why we were unable to diagrammatically prove some of the theorems listedin [Nelsen 93] can be classi�ed into three categories | the inability to prove a theoremdue to:1. an unavailability of appropriate diagrams, diagram representations or diagram-matic operations | 12 theorems could not be proved due to this reason,2. there are multiple universally quanti�ed variables involved in the theorem and itsproof, so the abstraction mechanism in Diamond cannot cope with such proofs| 6 theorems could not be proved due to this reason,3. the diagrammatic proof is for a three dimensional space | 12 theorems couldnot be proved due to this reason.The modi�cations which are needed to be able to prove theorems that cannot be proveddue to reasons described in 1. are fairly straightforward. We discuss them in x9.5.1.A signi�cant redesign of Diamond's abstraction mechanism would be required so thattheorems counted in 2. for multiple universally quanti�ed variables could be proved.Extending the interface to three dimensions as discussed in x9.5.4 would enable us toprove the theorems described in 3.In summary, if the limitations that we describe next are removed as we suggest inChapter 11, then it appears that most of the theorems in [Nelsen 93] could be proveddiagrammatically using Diamond.9.5 Diamond's LimitationsThe number of theorems that Diamond to date can prove is limited by various factors.These include limitations of:� the number of diagrams and operations available to users | this corresponds inx9.4 to reason 1. for failing to diagrammatically prove some theorems,� the abstraction mechanism | in part this corresponds in x9.4 to failure reason 2.,since Diamond's abstraction cannot deal with more than one variable,



154 CHAPTER 9. RESULTS AND EVALUATION� the veri�cation module due to weaknesses in the implementation of the theoryand due to weaknesses in Clam,� the user interface | this corresponds in x9.4 to failure reason 3., since Diamondcannot display diagrams in three dimensions.We discuss each of these in turn.9.5.1 Limitations on the Diagrams and OperationsThere are about eight di�erent diagrams and fourteen di�erent operations available inDiamond. As discussed in x9.1.1, these should enable us to prove theorems of signi-�cant range and depth, and as showed in x9.2 they do indeed. Clearly, implementingadditional diagrams and operations would allow us to prove more theorems. The ques-tion is whether such additions contribute to the range and depth of diagrammaticproofs we can extract in Diamond. Also, additional operations must be generally use-ful and not ad hoc. It is our heuristic choice to limit the set of diagrams and operationsto the one which is implemented in Diamond to date. Potentially, additional or newones which subsume the existing ones can be added to the set, but this remains one ofthe tasks for future work. The justi�cation for such a heuristic choice is that with cur-rently available diagrams and operations we are able to prove theorems of signi�cantrange and depth, as showed in x9.2.9.5.2 Limitations of Abstraction MechanismDiamond's abstraction mechanism has several weaknesses which limit the kind ofschematic proofs which it is capable of extracting. Some of them were pointed out inthe earlier sections, e.g. x7.5, where we introduced the abstraction mechanism employedby Diamond. The limitations of Diamond's abstraction can be divided into threekinds | the inability to extract a schematic proof due to:� a more complex structure of a schematic proof than the one formalised in Dia-mond,� non-linear dependency functions, and �nally,� due to a di�erent order of inference steps in the example proofs than expectedby the abstraction mechanism.There was another limitation mentioned in x9.4 as reason 2. for failing to prove theor-ems. This was that Diamond's abstraction mechanism can only abstract proofs withone universally quanti�ed variable. It would be a non-trivial task to devise a new ab-straction mechanism which could abstract proofs with multiple universally quanti�edvariables.



9.5. DIAMOND'S LIMITATIONS 155Let us recall Diamond's formalisation of a schematic proof which was given in equa-tions (7.1) and (7.2). proof(n+ 1) = A(n+ 1); proof(n)proof(1) = BNow, consider a theorem which is stated as (2n)2 = �ni=1(4 � 12), and its examplediagrammatic proof for n = 3 given in Figure 9.4. The diagrammatic proof consists
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Figure 9.4: (2n)2 = �ni=1(4� 12)of applying the operation split2four an appropriate number of times. The schematicproof of this theorem can be formalised as:proof(n+ 1) = [(split2four; 1)]; proof(n); proof(n); proof(n); proof(n)proof(1) = [ ]Diamond's abstraction mechanism is not powerful enough to be able to extract thistype of complicated formalisation of a schematic proof. Any other structure of aschematic proof than the one given in equations (7.1) and (7.2) cannot be extracted byDiamond's abstraction mechanism. This limits the range of theorems that Diamondis capable of proving. In x11.2.1 we discuss how to remove this limitation.Diamond can detect only linear dependency functions of the form f(n) = an+ b. Itdoes not recognise schematic proofs which apply operations on diagrams a number oftimes which is exponentially, logarithmically, or in some other non-linear way depend-ent on the parameter. This limits the range of schematic proofs that Diamond canextract. However, to date we have not encountered examples of theorems which needa non-linear dependency function.Finally, Diamond's abstraction mechanism expects the example proofs to be formedwith a strict ordering of the operations carried out in the example proofs. This wasdiscussed in x5.4. For instance, consider the following example proof trace for n = 3:[lcut, split ends, split ends, lcut, split ends, lcut]. The abstraction mechanism success-fully extracts a schematic proof from two example proof traces formed in the particularway as given in this example. However, if the order of the operations in the exampleproof was shu�ed around into say, [lcut, lcut, lcut, split ends, split ends, split ends] then



156 CHAPTER 9. RESULTS AND EVALUATIONthe abstraction mechanism cannot extract a schematic proof. As discussed in x5.4 thereis some justi�cation for such a restriction, based on the inductive nature of proofs andthe extraction of a recursive schematic proof (see x5.4). This limits the number oftheorems that Diamond can prove. In x11.2.3 we discuss how to lift this restriction.The improvement of the limitations of the abstraction mechanism inDiamond remainsa task for future work, which we discuss in Chapter 11.9.5.3 Limitations of Veri�cation MechanismIt is evident from the second table in Figure 9.1 that not all schematic proofs could beveri�ed automatically. We carried out an experiment on paper, and used the theory ofdiagrams discussed in Chapter 8 to verify whether the schematic proofs listed in thesecond table in Figure 9.1 are correct. We found that all of the schematic proofs wereindeed correct.The reason that the veri�cation of all schematic proofs cannot be carried out automat-ically is due to the limitations of the implementation of the theory in Clam, and dueto the limitations of Clam itself.In Chapter 8 we de�ned the diagrammatic equality of two diagram lists d= as bagequality.2 We stated in x8.10 that bag equality has not been implemented yet. Fur-thermore, we explained that the implementation of the veri�cation mechanism uses adiagrammatic equality over lists of tuples. A tuple consists of a diagram and a positionof this diagram in the proof tree. This information is necessary to enable the systemto pick from the list the right diagram to which an operation should be applied. Weimplemented a function which picks the appropriate diagram (speci�ed by the positioninformation) from a list and puts it to the front of it, i.e. it puts the diagram to theposition of the left-most leaf of the proof tree. The positions are computed as shownin Figure 9.5 (e.g. the left-most leaf is in position (1; 1; 1)). A diagram has to be at the
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left-most leafFigure 9.5: Left-most position of a diagram in a proof tree.2 Bags are lists in which the order of elements does not matter.



9.5. DIAMOND'S LIMITATIONS 157front of the list for the system to be able to apply an operation to it. This is becauseall of the operations de�ned in x8.4 are applied to the front element of the list.The manipulation of positions of diagrams in the proof tree as described here has aconsequence that the order of the list changes during the proof. This is the reasonthat diagrams need to be manipulated in bags rather than in lists. However, bags havenot been implemented yet, hence the number of schematic proofs that Diamond canverify is limited. The implementation of bags remains a task for future work, althoughit is perhaps not a very interesting problem in itself.A limitation of using Clam is that Clam is not very good with arithmetic rewriting andnon-zero conditionals in the induction strategy. For instance, Clam �nds it di�cult to�nd a proof plan for the theorem which is not quanti�ed over all natural numbers butonly over non-negative naturals. Clam is also not very good in using non-constructivede�nitions in the induction strategy. For example, using a predecessor functions cancause problems { rather than representing Tri2n = Trin�1 + 3Trin Clam prefers arepresentation of Tri2(n+1) = Trin+ 3Trin+1 which can be quanti�ed over all naturalnumbers. We use this formulation when possible, but it is not possible it all cases. Allof these down-sides can prevent Clam from carrying out the veri�cation of a schematicproof. Considering the last column in the second table in Figure 9.1 the schematicproofs of theorems (B.7) and (B.8) could not be veri�ed. The reason for failing is thatClam is not good with non-constructive functions such as the predecessor function.The theorems can be restated so that they contain no predecessor functions, but theirschematic proofs would then be di�erent.9.5.4 Limitations of User InterfaceConsider the theorem about the sum of hexagonal numbers given in x3.2.6. The dia-grammatic proof which we presented consisted of taking a cube, looking down the maindiagonal and splitting it into half-shells3, and �nally for each half-shell, we project itfrom three dimensions onto a plane and observe that it forms a hexagon.To be able to construct this diagrammatic proof, we need to have a three dimensionalenvironment in which diagrams such as cubes, and operations such as splitting a half-shell from a cube are available to us. To date, Diamond's interface is capable ofdisplaying two-dimensional images only. This clearly limits the number of theoremswhich can be proved by Diamond.However, we proposed to Farrow [Farrow 97] to design a three-dimensional diagram-matic viewer which is capable of displaying two and three dimensional diagrams andoperations on them. Our idea was to link such a viewer to Diamond, so that the ex-ample proofs are constructed in three dimensions using the viewer, but the schematicproof is abstracted and veri�ed in Diamond. Figure 9.6 shows how a cube is observeddown its main diagonal after being split into half-shells. This viewing makes the factthat a half-shell forms a hexagonal number explicit.Farrow's diagrammatic viewer allows a user to construct example proofs in a similar3 Recall that a half-shell consists of three adjacent sides of a cube.



158 CHAPTER 9. RESULTS AND EVALUATION

Figure 9.6: An example of three-dimensional virtual environment for diagrammaticproofs.
way as Diamond. In the end, it produces example proof traces, which can be passed toDiamond, so that Diamond's abstraction mechanism attempts to extract a schematicproof. To date, Farrow's diagrammatic viewer has not been linked to Diamond dueto the limited number of diagrams and operations which her viewer provides the user.Extending the diagrammatic viewer to encompass all of the current diagrams andoperations of Diamond, plus the additional three-dimensional ones, would make it anexcellent candidate to become the main interface of Diamond. But this remains atask for the future.A possible test is to take a proof trace produced interactively by Farrow's viewerand manually feed it to Diamond's abstraction mechanism to see, whether it canabstract from it a general schematic proof. The test has not been carried out, but someinspection shows that there is no reason that would prevent Diamond abstracting aschematic proof given that the appropriate data types for diagrams (e.g. in the case ofthe sum of hexagonal numbers the new diagrams are hexagons and cubes) are addedto Diamond. For instance, Farrow's diagrammatic viewer allows the user to constructthe following example proof for the theorem about sum of hexagonal numbers (note



9.6. FAILURE ANALYSIS 159that the proof trace is given for n = 4):proof(4) = [(split half shell; 1); (project to 2d; 1);(split half shell; 1); (project to 2d; 1);(split half shell; 1); (project to 2d; 1);(split half shell; 1); (project to 2d; 1)]The proof trace for n = 3 is the same as this minus the �rst two operations:proof(3) = [(split half shell; 1); (project to 2d; 1);(split half shell; 1); (project to 2d; 1);(split half shell; 1); (project to 2d; 1)]Using the abstraction algorithm given in x7.5, the following schematic proof can beextracted (recall that this has not been implemented yet):proof(n+ 1) = [(split half shell; 1); (project to 2d; 1)]; proof(n)proof(0) = [ ]Finally, additional de�nitions for new diagrams and operations need to be added tothe theory of diagrams in order to verify this schematic proof. Again, we foresee noparticular obstacles in implementing these additions. Hence, in principle, using theformalisation of proofs used in Diamond, we can abstract a diagrammatic proof of atheorem about the sum of hexagonal numbers as presented by Penrose [Penrose 94a].9.6 Failure AnalysisWhen does Diamond fail to �nd a diagrammatic proof? Given the discussion inx9.4 and x9.5 about a list of theorems which cannot be proved and the limitations ofDiamond to date, there are several candidates which can be blamed: the abstractionmechanism, the lack of certain diagrams and operations, or the implementation of thetheory of diagrams. It is not interesting to analyse a schematic proof which cannotbe automatically veri�ed due to the limitations of the implementation of the theory ofdiagrams. For instance, Clam fails to verify a schematic proof since it cannot equatetwo lists of identical diagrams in a di�erent order. This limitation can be removed byimplementing an equality of bags (see x11.3).An interesting evaluation of Diamond would be an analysis of a successful extractionof a schematic proof, but the veri�cation of the schematic proof in the theory of dia-grams shows that the schematic proof is incorrect. This means that a failed attemptto �nd a correct diagrammatic proof is not due to the limitations of Diamond's ab-straction mechanism which were discussed in x9.5.2, or the limitations in the set ofdiagrams and operations that Diamond provides, nor is it due to the limitations ofthe implementation of a veri�cation mechanism as discussed in x9.5.3.To date, we have not come across such a schematic proof, so no failure analysis can begiven here. However, it is interesting to see where the extraction of a diagrammatic



160 CHAPTER 9. RESULTS AND EVALUATIONproof could fail (disregarding the perhaps, uninteresting candidates discussed above inx9.5). One possible candidate for succeeding to extract a schematic proof, but failingto verify it is the mapping relation between a sentential and a diagrammatic repres-entation. Why is a particular diagrammatic proof a proof of a sententially expressedtheorem? The relation between a given theorem and an example of a ground instanceof a diagrammatic proof is chosen by the user in the �rst step in the extraction of a dia-grammatic proof. The diagram that the user chooses to represent a theorem indicateswhich one of the possible dmap relations is used in the proof (the possible dmap rela-tions in Diamond were de�ned in x8.5.3). If the user makes an incorrect choice, thenthe schematic proof can still be extracted, but it is not a proof of a theorem at hand.Suppose the theorem under consideration is n2 = Pni=0 2i � 1 and the user choosesan incorrect diagrammatic representation of a theorem, e.g. a triangle to represent n2.The user then splits a triangle into a collection of sides, and thinks that these representPni=0 2i � 1. A schematic proof that Diamond extracts is probably a correct proofof a theorem that the user has in mind, but the veri�cation mechanism fails to �nd aproof plan for the theorem of correctness for this schematic proof, because the dmaprelation has been chosen incorrectly. Diamond expects that an ell represents 2n� 1,so that Pni=0 2i � 1 is a collection of ells rather than sides. The abstraction mechan-ism correctly extracted a schematic proof, but the schematic proof is not a proof of atheorem at hand.It seems that the explanation of why a diagrammatic proof is a proof of a sententiallyexpressed theorem lies in the choice of dmap relation which transforms sentential rep-resentations into diagrammatic. There are choices for this, the user is responsible foran appropriate choice in order to be able to extract a correct diagrammatic proof.A perhaps more interesting candidate for succeeding to extract a schematic proof, butfailing to verify it is where a schematic proof is successfully extracted, but it does notapply to all cases of the theorem. An example of such a theorem and its schematic proofis Cauchy's proof of Euler's theorem analysed in [Lakatos 76] and presented in xA.5.The extraction of the schematic proof of Euler's theorem has not been implemented.However, using the methodology for construction of diagrammatic proofs presented inthis thesis, a schematic proof can be extracted, if we take a cube as a polyhedron, forinstance. The veri�cation of this schematic proof would fail, because the schematicproof is not applicable to all polyhedra, but only to the simple polyhedra. For anaccount of various counter examples to the schematic proof, the reader is referred to[Lakatos 76].9.7 SummaryIn this chapter we presented some of the results from the research project presentedhere. We gave an informal description of when a set of proved theorems is of su�cientdepth and range. Our main source of examples for designing and testing the Diamondsystem was [Nelsen 93], but we also listed some other sources. The methodology takento evaluate Diamond was �rst to evaluate for how many theorems Diamond's ab-straction mechanism can successfully extract a general schematic proof. The secondpart of evaluation was to see how many of these schematic proofs were successfully



9.7. SUMMARY 161automatically proved to be correct in the theory of diagrams. Figure 9.1 listed someof the theorems that Diamond can prove. An example of a complete process of theextraction of a diagrammatic proof was given next, including a presentation of an ex-ample proof, a schematic proof, and the discussion of the veri�cation of a schematicproof in the theory of diagrams.There are many reasons why Diamond cannot prove more theorems of natural numberarithmetic than the ones we listed in this chapter. These include the insu�cient numberof available diagrams and operations, the limitations in the abstraction mechanism,weaknesses in the implementation of a veri�cation mechanism, and the limitations ofa user interface. A discussion of each of these limitations was given.Finally, we stated that an interesting evaluation of Diamond would be to carry outa failure analysis of an attempt to extract a diagrammatic proof, and successfullyconstructing example proofs and abstracting then into a schematic proof, but theveri�cation discovers that the schematic proof is incorrect. However, we have notcome across such an example. Instead we discussed other potential candidates forfailing to extract a diagrammatic proof.



Chapter 10Related Work

| Hyperproofthe SystemThis chapter relates and compares several aspects of the work reported in this thesiswith the work on related techniques of other researchers. The particular aspects thatare of interest are:� the use of diagrams in a reasoning process with particular focus on other auto-mated diagrammatic reasoning systems (as presented in Chapter 2) which isdiscussed in x10.1,� the use of the constructive !-rule in relation to its use in [Baker et al 92] whichis discussed in x10.2,� the structure of a schematic proof in relation to its formalisation in Baker's work[Baker et al 92] which is discussed in x10.3,� abstraction techniques in the sense of extracting recursive programs from exampletraces which is discussed in x10.4. 162



10.1. DIAGRAMMATIC REASONING SYSTEMS 16310.1 Diagrammatic Reasoning SystemsIn x2.4 we described several diagrammatic reasoning systems. Hyperproof and GRO-VER are perhaps the most closely related to Diamond. We analyse the similaritiesand di�erences between these two systems with respect to Diamond.10.1.1 Hyperproof and DiamondHyperproof by Barwise and Etchemendy [Barwise & Etchemendy 94] was briey de-scribed in x2.4.4. Hyperproof is an educational tool for teaching �rst order predicatelogic. It is an example of a heterogeneous logic system in the sense that there are twological systems which are intimately interleaved. The �rst one is sentences of �rst orderpredicate logic, and the second one is diagrammatic situations in the blocks world.The sentential part of Hyperproof consists of sentence connective rules (conjunction,disjunction, negation, conditional rules), quanti�er and identity rules (identity, exist-ential quanti�er, universal quanti�er rules) and a set of axioms such as reexivity,transitivity, etc.The diagrammatic part of Hyperproof consists of situations in the blocks world, andsome rules for connecting the diagrammatic and the sentential part of Hyperproof.The blocks world consists of tetrahedrons, cubes and dodecahedrons which can belarge, medium or small. They are placed on a checker board. Each of these elementsof the situation in the world has a sentential predicate associated with it. For ex-ample, Small(a) ^ Cube(a) says that a particular block in the diagram-situation whichis labelled by a is a small cube.The rules which connect the sentential part and the diagrammatic part of Hyperproofare Observe and Cases Exhausted (and a special case of the latter, Apply). TheObserve rule allows the user to extract sentential information from the diagrammaticsituation. Kleene three-value logic is used to establish the truth of the extractedsentences. Cases Exhausted (and Apply) allows the communication to go in theopposite direction, i.e. the sentential expressions are applied to the diagrammatic situ-ation. Hyperproof allows the user to change labels of the names that are attached tothe blocks in the situation, to change their magnitude, location and shape.An obvious similarity between Hyperproof and Diamond is the fact that they areboth automated proof checking systems which use diagrams in the reasoning process.Their problem domains di�er, blocks world for the former system, and natural numberarithmetic for the latter system.The main di�erence between Hyperproof and Diamond is that unlike Diamond, Hy-perproof has no diagrammatic inference rules. The diagrammatic situation in Hyper-proof is never modi�ed by a diagrammatic inference rule which has a diagrammaticprecondition and a diagrammatic postcondition. On the other hand, Diamond usesonly diagrammatic inference rules to construct proofs, except during the veri�cationstage.Furthermore, Hyperproof constructs object level proofs of the conjecture in some logical



164 CHAPTER 10. RELATED WORKtheory, whereas Diamond does not. Hyperproof constructs object level proofs usingsentential and diagrammatic representations. The construction of a proof does notconsist of any meta level reasoning about the proof. Hyperproof's reasoning process (onthe object level) goes in three directions (represented in Figure 10.1): from sentences
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Figure 10.1: The reasoning process direction in Hyperproof.to sentences (using sentential rules of �rst order predicate logic), from sentences todiagrammatic situations (usingApply) and from diagrammatic situations to sentences(usingObserve). Notice that there are no direct inferences from diagrams to diagrams.On the other hand, Diamond does not construct object level proofs of a conjecture in alogical theory. Rather, it constructs diagrammatic schematic proofs (see Figure 10.2).The �rst part of a proof construction takes a sententially expressed theorem, maps
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Figure 10.2: The reasoning process direction in Diamond.it into diagrammatic representation (using dmap relation, selected by the user), andapplies diagrammatic operations to a diagram in order to construct a diagrammaticproof. This part of Diamond's reasoning process is carried out only between diagrams.The second part is meta level reasoning about the proof which veri�es the proof in atheory of diagrams. The meta level veri�cation uses sentential representation, andensures that the diagrammatic proof is indeed a proof of an object level conjecturein a formal logical sense. Therefore, Diamond's reasoning process for constructing adiagrammatic proof is not aided by the sentential representation, but the process ofensuring that the diagrammatic proof is a proof of a conjecture is.



10.1. DIAGRAMMATIC REASONING SYSTEMS 165There are no rules in Diamond which correspond directly to Hyperproof's Apply andObserve. The similarity between the two systems is indirect and twofold. Hyper-proof's actions which directly correspond to diagrammatic operations in Diamond arethe tools for editing a diagrammatic situation. These actions include tools for changingthe names, magnitudes, shapes and locations of the blocks in the situation. Anotherway in Hyperproof to change a diagrammatic situation is to insert a sentence aboutthe blocks world, and then to use the rule Apply to reect the sentence in the changeof a diagram. Observe-ing the diagram after the change transforms the diagrammatice�ects of the rule into sentences which are part of the proof. Diamond uses no speci�csentential rules of logic which can be applied to a diagram, but the end e�ect of Hyper-proof's logical rule applied to a diagram and Diamond's geometric operation appliedto a diagram is the same in that they alter the diagram during the proof process. Themain di�erence is the fact that in Diamond these are the only rules of inference andare entirely diagrammatic, whereas in Hyperproof they are combined with the usualsentential rules of �rst order predicate logic.A point of comparison between Hyperproof and Diamond is Hyperproof's evaluationschema in Kleene three-value logic, and Diamond's veri�cation mechanism. In Hy-perproof, the condition for successfully observing the diagrammatic situation is thatthe sentence which is to be inferred is checked to be true according to the evaluationschema in Kleene logic. This ensures that every step of the proof is sound, given thepartial information in the proof. In the end, when Hyperproof declares that a completeproof is constructed, then, given that all the steps of the proof are evaluated to be true(Hyperproof communicates to the user if this is the case) then the proof is guaran-teed to be correct. The correctness of a diagrammatic schematic proof in Diamond ischecked in the veri�cation module, i.e. in Diamond's theory of diagrams. No evalu-ation of proof steps is carried out during the proof construction (which is di�erent toHyperproof), but after a schematic proof is abstracted from instances of diagrammaticproofs, the schematic proof is checked to be correct in order to allow us to assert auniversally quanti�ed statement. Therefore, considering Hyperproof's and Diamond'sevaluation of correctness of a proof, the two systems are similar, because they are bothinterested in theoremhood and the correctness of a conjecture.Hyperproof uses a diagrammatic situation in order to check the consequence or a non-consequence of a sentence, and constructs a proof of a theorem of �rst order predicatelogic in this way. Diamond constructs proofs by using ground sentences (instancesof a proof) and then infers universal sentences from them. In this sense, the twoapproaches are similar to model checking approach where diagrams are used as amodel of a problem. The di�erence is that in the construction of instances of a proofin Diamond diagrams are the only tool to model a problem, whereas in Hyperproofpredicate logic is used in addition to diagrams.Finally, Hyperproof is designed to be purely an interactive proof checker, which helpsstudents to learn formal logical reasoning. On the other hand, although Diamondto date is still an interactive proof tool for constructing diagrammatic proofs, it isour intention to extend it to a fully mechanised theorem prover which can discoverdiagrammatic proofs automatically. But this falls out of the scope of this thesis, and isthe topic for future work discussed in x11.7. It seems, however, that Hyperproof couldbe extended to become a mechanised theorem prover in a similar way as Diamond. An



166 CHAPTER 10. RELATED WORKexhaustive application of all logical rules and all the editing commands on all diagramsin Hyperproof, and an exhaustive application of all the diagrammatic operations onall the diagrams in Diamond would be an obvious start.10.1.2 GROVER and DiamondGROVER in conjunction with the \&" theorem prover is a diagrammatic theoremprover which uses diagrams to suggest strategies for \&" to use during the proof. Anexample of a strategy that could be suggested by a diagram is to use mathematical in-duction to prove a theorem. GROVER was designed by [Barker-Plummer & Bailin 92]and was briey described in x2.4.3.The main result achieved by using GROVER with \&" is the proof of the DiamondLemma. The Diamond Lemma is a non-trivial theorem in the theory of well-foundedrelations. It can be stated as:LCRR(x) ^WFR(x)! GCRR(x)where LCRR(x) states that the relation R j x (\R restricted to the set x") has thelocal Church-Rosser property (i.e. R is locally conuent), and GCRR(x) states thatthe relation R j x has the global Church-Rosser property (i.e. R is globally conuent).1WFR(x) states that the relation R is a well founded one with no in�nite sequences (i.e.R is a terminating relation).The diagram used to prove the Diamond Lemma is given in Figure 10.3. The authors
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Figure 10.3: The diagram for the Diamond Lemma.claim that this is a standard diagram which accompanies the proof of a DiamondLemma in textbooks. The user is expected to input the diagram to GROVER, i.e. itis the user who who comes up with an appropriate diagrammatic representation of theproblem.The external portrayal and the internal representation of diagrams in GROVER andin Diamond di�er. The diagram in GROVER is not portrayed in its visual format,1 The local Church-Rosser property says that for all a; b and c in a set x, if aRb and aRc there thereexists a d 2 x such that bR�d and cR�d. The global Church-Rosser property is similar to its localcounterpart, except that in place of R we use R� to indicate the transitive closure of R.



10.1. DIAGRAMMATIC REASONING SYSTEMS 167but rather it is sententially described by the user. Internally, GROVER's diagrams arerepresented using an abstract topological representation. The language which describesdiagrams in GROVER consists of statements such as \!" for universal quanti�cation,label(arc1,"R"), etc. On the other hand, in Diamond diagrams are portrayed visu-ally with pictures rather than with sentential descriptions as in GROVER, i.e. Dia-mond has a graphical user interface whereas GROVER does not. Furthermore, inDiamond we use a mixture of Cartesian and topological representations rather thanjust topological representation as in GROVER to represent diagrams internally on thecomputer.The diagram in Figure 10.3 does not justify the theorem as stated above, but ratheran equivalent representation:8xyz:((x 6= y ^ x 6= z) ^ (R�(x; y) ^R�(x; z))! 9w:(R�(y;w) ^R�(z; w)))GROVER automatically checks if the user-input diagram can be used as a model ofthe problem in order to prove the theorem at hand. It does so by trying to matchthe terms in the theorem with the elements of the diagram. An example of the use ofthe diagram in Figure 10.3 for inferencing a step in the proof is the ability to deduce9w:(R�(y;w) ^R�(z; w)). The system does this by deriving and using the transitivityproperty of R� to �nd in the inspection of the diagram that there is a w which isinstantiated to h, where y = b and z = c in the diagram.As was the case with Hyperproof, GROVER is targeted at a di�erent problem do-main than Diamond. GROVER proves theorems of well-founded relations, whereasDiamond proves theorems of natural number arithmetic.GROVER is an expert system rather than a theorem prover. The diagrams in GRO-VER are used to give information of how to conduct a proof and to indicate why thetheorem is true.2 The underlying theorem proving is carried out by the \&" theoremprover. This di�ers fromDiamond in thatDiamond constructs proofs directly (exceptin the veri�cation stage), rather than interprets diagrams in statements which are usedin the proof elsewhere. In a sense, GROVER uses diagrams to model the problem andthen prune the proof search space by adding additional hints in the forms of strategiesto the underlying theorem prover, and is therefore similar to the work done by Gelernteron Geometry Machine (see x2.4.1 and [Gelernter 63]).The inference steps in GROVER/\&" are the logical rules of sequent calculus for Zer-melo set theory. In contrast to Diamond's inference rules, they are not diagrammatic.The diagram in GROVER serves to extract automatically the hints which help \&" toprove the theorem. These hints are additional rules or lemmas or strategies in sequentcalculus. An example of a hint to the theorem prover is to suggest to use mathem-atical induction at a particular point in the proof. Mathematical induction is usuallysuggested when there is an ellipsis in the diagram, which the user input to the system.Diagrams in GROVER are not intended to be used for applying inference rules onthem, as in Diamond. Rather, they are intended to guide a logical proof of \&". Inthis sense, the role of diagrams in GROVER is similar to the role of diagrammatic2 [Giunchiglia & Walsh 92] formalised the notion of a proof outline (a proof with some steps missing)from a diagram and used GROVER's example about the Diamond Lemma to test this formalisation.



168 CHAPTER 10. RELATED WORKoperations in the veri�cation of a diagrammatic proof in Diamond. It could be saidthat Diamond's diagrammatic proof partially guides the proof search for its veri�ca-tion in that it explicitly indicates some of the rules which are used in the proof (e.g.diagrammatic operations), but it does not suggest others (e.g. the induction rule).Another di�erence in the use of diagrams in GROVER and Diamond is that a diagramin GROVER is a static object, which expresses dynamic knowledge of the intendedproof strategy. By static object we mean that the diagram is inspected only once, beforeany theorem proving is carried out in \&", and moreover, the diagram is not modi�edduring the proof process. By dynamic knowledge we mean that the diagram suggestshow the proof should be carried out. On the other hand, diagrams inDiamond are verymuch dynamic objects which usually change after every application of an inference step(i.e. the geometric operation on diagrams). Where GROVER interprets the knowledgein a diagram, Diamond manipulates diagrams to acquire the knowledge from them.Elements of the diagram in GROVER can be existentially or universally quanti�ed.\!" indicates that an element is universally quanti�ed. On the other hand, diagrams inDiamond have no notion of universal quanti�cation. The idea in Diamond is to usea few instances of the universally quanti�ed theorem, and then extract the universalstatement from these.The similarities between GROVER and Diamond are in the amount of input that isexpected from the user by both systems. GROVER and Diamond both expect theuser to input the diagram. In GROVER the user draws the diagram (or describes it inan abstract form), and in Diamond the user chooses the initial diagram from a set ofavailable diagrams. GROVER and Diamond both expect the user to have a particularstrategy for the proof in mind. In GROVER this is by indicating in the diagram aseries of existential subgoals. In Diamond the user has to have a particular example ofthe proof in mind, construct a few examples using the same strategy, and the systemextracts this strategy for a universal statement of the theorem.10.1.3 Conclusions on Diamond and Other SystemsGiven the discussions in the previous two sections, Hyperproof and GROVER are sys-tems which di�er from Diamond, both in their use of diagrams, and in the underlyingreasoning process. As far as we are aware there are no other systems which are moreclosely related to Diamond than the two mentioned. Diamond is not a rival to Hyper-proof and GROVER. Rather, it complements them in that it concentrates on a di�erentproblem domain, namely that of natural number arithmetic. Diamond uses diagramsas dynamic rather than static objects which are part of the proof. Manipulations ofdiagrams rather than their interpretation form the inference steps of Diamond's proof.Finally, the distinct di�erence between Diamond and these two systems is that onlydiagrams and their manipulations are used to construct the proof. There are no othersentential logical rules used in the construction of a proof. Sentential representation isused in the meta level proof in Diamond's theory of diagram in order to ensure thata diagrammatic proof indeed proves a given conjecture. In this sense, this is similarto the evaluation in Kleene logic in Hyperproof, but the di�erence is that Hyperproofdoes the evaluation of an object level proof, whereas the veri�cation in Diamond is on



10.2. CONSTRUCTIVE !-RULE 169the meta level, i.e. no object level logical proof is constructed in Diamond. The sim-ilarity between GROVER and Diamond is in using the diagram to suggest a strategyfor the proof in \&", and using a schematic proof to partially guide its veri�cation inDiamond.10.2 Constructive !-RuleWe examine here the similarities and the di�erences in the use of the constructive !-rule in [Baker 93] in comparison to our use. The comparison is carried out with respectto the following features of the use of the constructive !-rule:� the problem domain in which the constructive !-rule is used,� the use of the constructive !-rule as a rule of inference in a formal logical system,and the �nite nature of the rule,� the use of the constructive !-rule when an inductive proof is blocked, when usingthis rule avoids generalisation, and how using this rule can suggest generalisationfor an inductive proof.One of the main di�erences between Baker's and our work is the problem domain.Similarly to Baker, we prove arithmetic theorems, however, Baker's problem domainare theorems of Peano arithmetic whose proofs are constructed using logical rewriterules. We, on the other hand, choose to prove theorems of natural number arithmeticwhich can be expressed as diagrams, so the proofs consist of diagrammatic operationson diagrams, rather than logical rules of inference which rewrite symbolic formulae.Perhaps the two approaches are more similar with respect to the veri�cation of schem-atic proofs, which in Diamond, is carried out, as in Baker's work, sententially in alogical theory of diagrams. However, the veri�cation is a meta level proof of correct-ness. The object level construction of a diagrammatic proof is not sentential and di�ersfrom Baker's construction of proofs.Baker used the constructive !-rule as an additional rule of inference in the theoryof Peano arithmetic which is referred to as PAc!. The theory of PAc! is knownto be complete [Shoen�eld 59]. The rule enabled her to construct �nite rather thanin�nite proof trees. She showed how the proof trees in PAc! can be de�ned e�ectively,which corresponds to the in�nitary proof trees in the theory of Peano arithmetic withthe in�nitary !-rule in place of induction. Her motivation for using the constructiveversion of the rule is that an in�nitary !-rule is not suitable for implementation (seeChapter 4).The motivation for using the constructive !-rule in our work is similar to Baker's inthat the rule allows us to automatically capture the generality of a proof in a �niteway. We can use concrete diagrams rather than general diagrams with abstractions(such as ellipsis). When a schematic proof that can generate a proof of any instanceof a conjecture is extracted, then the constructive !-rule allows us to conclude thatthe universally quanti�ed conjecture is true. Diamond formally veri�es the fact that



170 CHAPTER 10. RELATED WORKa general program indeed uniformly proves each instance of a conjecture in a metatheory.Another motivation in Baker's research for using the constructive !-rule in schematicproofs is the fact that schematic proofs overcome the problem of blocked induction (seex4.2.1) in PA with induction as a rule of inference. For example, consider again thespecial case of the arithmetic theorem about the associativity of addition (x+x)+x =x+ (x+ x) and its schematic proof (we showed how induction is blocked in the proofof this theorem in x4.2.1) that we gave in x4.4.1:(sn(0) + sn(0)) + sn(0) = sn(0) + (sn(0) + sn(0))Apply rule (4.2) n times on both sides...sn(0 + sn(0)) + sn(0) = sn(0 + (sn(0) + sn(0)))Apply rule (4.1) on both sidessn(sn(0)) + sn(0) = sn(sn(0) + sn(0))Apply rule (4.2) n times on left...sn(sn(0) + sn(0)) = sn(sn(0) + sn(0))Apply Reexive LawIn contrast, we are not interested in proofs for which mathematical induction is blocked.Our motivation for using the constructive !-rule is to avoid reasoning about generalarguments which require manipulations of general diagrams. Rather, we want to reasonwith ground instances, and then extract a general argument in an alternative way.The main contribution of Baker's work is showing how the use of constructive !-rulein schematic proofs can suggest a generalisation which is required in order to completea proof in PA such that induction is no longer blocked. For the theorem above, thisis: (x+ y) + y = x+ (y + y)This generalisation is suggested by looking at what remains unaltered in the nth caseproof of the general proof, where n is a numeral. Note that what is meant by \un-altered" is de�ned by what is una�ected by the rewrite rules.(s(x) + s(x)) + s(x) = s(x) + (s(x) + s(x)) � P(s(x))s(x+ s(x)) + s(x) = s(x+ (s(x) + s(x)))s((x+ s(x)) + s(x)) = s(x+ s(x+ s(x)))(x+ s(x)|{z}� ) + s(x)|{z}� = x+ s(x+ s(x)|{z}� ) 6= P(x)Note in Baker's example, that the terms � remain unaltered. This suggests two possiblegeneralisations:(x+ y) + y = x+ (x+ y) and (x+ y) + y = x+ (y + y)



10.3. SCHEMATIC PROOF FORMALISATION 171In order for the formula to be provable, it is clear that the second generalisation iscorrect, but this is not an obvious conclusion using normalisation. Now, the equationcan be proved by induction on x.Our motivation for using constructive !-rule is di�erent. We are not interested inthe generalisation of a formula in order to prove it inductively. As discussed in x3.4,inductive diagrammatic proofs would require reasoning with general diagrams of somegeneral magnitude, rather than concrete magnitude. This necessitates a formalisationof abstractions (such as ellipsis) in the representation of general diagrams. Our mo-tivation for using the constructive !-rule is that it allows us to step from the conceptof \universally provable ground instances" to a \provable" theorem. This means thatwe can use speci�c examples of proof which need not use general but rather concretediagrams, and allows us to extract a general proof tactic which uniformly proves eachpremise.Baker's motivation for using constructive !-rule is, apart from avoiding blocked in-ductions and suggesting a generalisation of a formula, also to avoid generalisations ininductive proof. We gave an example of the need for unintuitive generalisation in theproof of rotate{length theorem in x4.6, and showed how using constructive !-rule inschematic proofs avoids generalisation. Similarly to Baker, we too hope that diagram-matic schematic proofs avoid unintuitive generalisations.10.3 Schematic Proof FormalisationHere, we compare Baker's formulation of schematic proofs to ours, and highlight themotivation for a di�erent use of both.Baker's general schematic proof representation consists of a list of rules which areapplied in the proof, each with two attributes attached to it. The �rst attribute storesthe position of the term on which the rule is applied within the entire expression. Thesecond attribute stores the dependency function which computes the number of timesthat the rule is applied to the term. The dependency function is dependent on theuniversally quanti�ed variable n. The following is Baker's representation of a generalschematic proof:general proof([R1(Pos1; f1(n)); R2(Pos2; f2(n)); :::]) (10.1)where n is the universally quanti�ed variable, Rk is the kth rule applied in the proof,Posk is the position at which the kth rule is applied, and fk(n) is the function of ntimes that the kth rule is applied.Comparing the representation in (10.1) to the schematic proof representation given inx7.3 in equations (7.1) and (7.2), we notice that Baker's schematic proofs are de�nedas a linear list of applications of rewrite rule, whereas diagrammatic schematic proofsare represented recursively. An example of Baker's schematic proof of a theorem ofarithmetic is the proof of associativity of addition (see x4.4.1). Recall the encoding ofthe schematic proof for associativity of addition from x7.8 (where (4.1) and (4.2) are



172 CHAPTER 10. RELATED WORKthe equations for the recursive de�nition of addition):proof(n) = [((4:2); n � on RHS);((4:2); n � on LHS);((4:1); 1 � on RHS);((4:1); 1 � on LHS);((4:2); n � on LHS)]As discussed is x7.8 where we analysed the structure of proof encoding, Baker's schem-atic proofs are not recursive. This is due to two reasons. First, most of the theoremsof arithmetic which are considered within Baker's problem domain are the ones forwhich standard mathematical induction is blocked (see x4.2.1). This means that theproof for P (n + 1) cannot be reduced to a proof for P (n), therefore no appeal to theinduction hypothesis can be made in the proof. Inversely, to construct the proof ofP (n + 1) we need to insert applications of rewrite rules \in the middle" of proof ofP (n). Since the order of the rules matters, proof of P (n + 1) cannot be expressed asproof of P (n) with additional rewrite rules in front or at the end. Therefore, theoremsfor which a standard inductive proof is blocked, have schematic proofs where the prooffor P (n+1) can be constructed only by inserting the additional rules in the middle ofthe proof for P (n).On the other hand, Diamond's schematic proofs can be transformed into linear se-quences of operations similar to Baker. For instance, Diamond's schematic proof forthe sum of odd naturals given asproof(n+ 1) = [(lcut; 1)]; proof(n)proof(0) = [ ]can be linearised into proof(n) = [(lcut; n)]which is similar to Baker's formulation. Although this is a more general formalisation,we do not use it, because the veri�cation of such schematic proofs is more complexand requires meta induction on diagrams. As pointed out before, meta inductionreintroduces the need for abstractions in diagrams, which we reject.Furthermore, the order of the rules in our diagrammatic schematic proofs does notmatter (see x7.8). More precisely, the order is associative and commutative, thereforeapplications of geometric operations can invariably be rearranged into a recursive for-mulation of a general schematic proof where the additional rewrite rules for the proofof P (n+ 1) are inserted in the beginning (or at the end) of the proof of P (n).A nice feature of the recursive structure of a diagrammatic schematic proof is thatit usually corresponds to a recursive de�nition of a diagram. For example, take aschematic proof of the sum of odd naturals, which consists of n applications of an lcutoperation. A schematic proof for n+1 can be constructed by adding another instanceof an lcut to the proof for n. This corresponds to taking a square of magnitude n+ 1and removing from it an ell of magnitude n+1, and thus creating a square of magnituden on which the proof for n is repeated.



10.4. ABSTRACTION TECHNIQUES 173An advantage of having a recursive formulation of a schematic proof as we de�nedin (7.1) and (7.2) is the simplicity of carrying out the veri�cation step (the reader isreferred to Chapter 8 to recall the method of veri�cation of schematic proofs). Thede�nition about the correctness of a particular schematic proof given in De�nition 4(see x8.6) is universally quanti�ed over one parameter. This means that the proof ofthe theorem will probably consist of a mathematical induction in addition to otherproof methods. Having recursive de�nitions of terms used in the theorem simpli�esthe automated veri�cation proof. Baker on the other hand, used a relatively complexschematic proof encoding into parametrised syntax in order to carry out the metainductive veri�cation proof. For more information on Baker's veri�cation of schematicproofs, the reader is referred to [Baker 93].10.4 Abstraction TechniquesOur mechanism for abstraction of schematic proofs from traces of example proofs waspresented in x7.5. Considering other existing abstraction techniques described in x2.3and their comparative analysis given in x7.4 it is evident that Baker's technique isperhaps the most closely related to ours. This is not surprising since we extend someof the ideas in Baker's work to diagrammatic reasoning by using schematic proofs toprove theorems diagrammatically. Therefore, we compare in more detail Baker's toour work.Baker's abstraction algorithm consists of the following steps:1. Take any instance X of n and the proof of P (n). Encode this example proof as:proof(X; [R(1;X)(Pos(1;X); No(1;X)); R(2;X)(Pos(2;X); No(2;X)); : : : ])where R(k;X) is kth rewrite rule, applied in the expression at position Pos(k;X),No(k;X) times.2. For each X and No(k;X) go through the list of dependency functions and storeeach function fj such that fj(X) = No(k;X) in a list of possible dependencyfunctions [f1; f2; : : : fj].3. Rewrite the general representation of a schematic proof into (10.1) which is the�rst guess of a general schematic proof (possibly an incorrect one).4. Take another instance of n and repeat the �rst two steps. If the dependencyfunction for a corresponding rule in both cases of an example proof is di�erentthen pick another function fj from the list of dependency functions which satis�esthe two cases considered, and update accordingly the general schematic proofrepresentation.5. Now repeat the previous step for other instances of n until for each rule sucha dependency function rule is found which satis�es a large number of the casesconsidered, and it has not changed for a certain number of times, i.e. the processhas stabilised.



174 CHAPTER 10. RELATED WORKThere are two main di�erences between Baker's and our abstraction mechanisms. First,Baker's mechanism is not designed to detect recursive structures in the proof, whereasrecursion is a very important feature of our formulation of schematic proofs. Thiswas discussed in the previous section x10.3. However, it should be noted that Baker'sabstraction algorithm is more powerful than ours. This is due to Baker's non-recursiveformalisation of schematic proofs, which is more general than our recursive formalisa-tion. Hence, Baker's abstraction mechanism can extract more schematic proofs.The second di�erence is that Baker allows for only a few di�erent dependency functions,which seem to be su�cient for a signi�cant number of problems. These dependencyfunctions are: f(n) = k; f(n) = kn; f(n) = n + k; f(n) = n2. Note that the �rstthree functions are special cases of the general function f(n) = an + b. In order tochoose the function which satis�es the number of applications of a rewrite rule for aparticular instance of a proof Baker requires a large number of proof instances. Whenthe function does not change for a large number of instances then Baker's algorithm issatis�ed with the choice.On the other hand, the number of dependency functions that Diamond's abstractionmechanism can detect is the entire class of linear function f(n) = an+b rather than justthree special cases as in Baker's case. However, Diamond cannot detect exponential,or any other non-linear dependency functions. To date, we have not encounteredexamples of theorems, which would require more complex non-linear functions. Incontrast to Baker's mechanism which requires a large number of examples to extractthe dependency function, Diamond generally needs only two, as explained in x7.5.There are recursive structures of a schematic proof with which Diamond's abstractionmechanism cannot deal, whereas Baker's can. For instance, Diamond cannot abstractproofs which consist of two recursive calls. An example of this is the following schematicproof structure: proof(n+ 1) = A(n+ 1); proof(n); proof(n)proof(0) = BThere are other abstraction mechanisms, e.g. Inductive Logic Programming systems(see x2.3.7), which can automatically detect multiple recursive calls. However, suchmechanisms su�er from other drawbacks which deter us from employing them in Dia-mond (the reader is referred to x7.4 for a comparative analysis of existing abstractionmechanisms). It remains a task for the future to devise an abstraction mechanismwhich is capable of detecting and extracting functions with multiple recursive calls.In summary, Diamond's abstraction mechanism is very similar to Baker's mechanismwith two main di�erences: it detects and extracts a recursive proof structure, andany linear dependency function for the number of applications of an operation. Ourmechanism is not intended to be in competition with Baker's technique. It is targetedto problems that di�er from Baker's in that they can be represented recursively ratherthan only linearly. Diamond's abstraction mechanism is a new technique, but it is notthe main contribution of our work.



10.5. SUMMARY 17510.5 SummaryThis chapter related and compared our work to that of other researchers in the areaof mechanised mathematical reasoning. In particular, we concentrated on several is-sues: existing diagrammatic reasoning systems, the use of constructive !-rule, theformalisation of schematic proofs, and existing abstraction techniques.Hyperproof and GROVER are two systems which are perhaps more closely relatedto Diamond. Although they both use diagrams, they in addition, use sentential (asopposed to diagrammatic) logical rules to construct proofs of theorems of mathem-atics. Hyperproof and GROVER's diagrams are designed to aid sentential reasoning:Hyperproof uses diagrams to model the problem and to extract or to show the e�ect ofsentential information on diagrams. From diagrams Hyperproof can sometimes extractthe sentential information which enables it prove the theorem, and which otherwise,without the use of diagram, it would not be capable of. GROVER uses a diagram tointerpret the information from it in the form of additional subgoals or lemmas whichare used in the essentially sentential proof in \&" theorem prover. On the other hand,Diamond uses only diagrammatic inference rules to construct proofs.The constructive !-rule is used in Baker's work as a formal logical rule of inferencewhich allows us to capture in�nitary arguments in a �nite way. Similarly, the ruleis used in Diamond as a mathematical justi�cation for extracting universally quanti-�ed arguments from their ground instances by providing a uniform procedure whichenumerates them.The formalisation of schematic proof in Baker's work is di�erent from our formalisa-tion. In Diamond we extract a recursive tactic, whereas Baker formalises the schem-atic proof as a linear sequence of rewrite rules. Linearisation of Diamond's recursiveschematic proofs renders a linear sequence similar to that of Baker's schematic proof.In contrast, Baker's linear sequence cannot be reformulated into a recursive tactic asde�ned in Diamond where additional rules are attached to the front or the end ofthe recursive call. In Baker's schematic proofs, the additional rules can be insertedin the middle of the recursive call. The di�erence between the two formalisations isexplained by the di�erent motivations for using schematic proofs. Baker uses themessentially when the usual logical inductive proofs are blocked. We, on the other handuse schematic proofs to avoid the use of abstractions in diagrams.Finally, we compared our abstraction technique to that of Baker. Both mechanismsare very similar, which is perhaps expected, as we extend Baker's work on arithmeticproofs to diagrammatic proofs. Since the formalisations of schematic proofs di�er, wedesigned our abstraction mechanism so that it can detect recursive structures in theexamples of proofs. We also can detect a wider range of dependency functions in thenumber of applications of diagrammatic (rewrite) operations (rules).In conclusion, none of the aspects of our diagrammatic reasoning system that we dis-cussed, is a rival to the existing ones. Rather, our research should be thought of ascomplementary and novel approach to mechanised mathematical reasoning.



Chapter 11Further Work

13 + 23 + 33 + � � �+ n3 = (1 + 2 + 3 + � � � + n)2 | Alan L. Fryin Nelsen's Proofs Without WordsThe research presented in this thesis tackles a challenge of exploring and mechanising\informal" human reasoning with diagrams. A concrete result of our work is an inter-active diagrammatic proof checker Diamond. Throughout this thesis we pointed outwhat Diamond's limitations are, and now we propose ways of removing them. Apartfrom implementation improvements, there are also other theoretical topics which sur-faced during the course of our research and beg to be studied, but unfortunately, timedid not permit us to do so.In general these topics can be divided into two main groups. The �rst one consistsof tasks for the medium{term future which are easier to tackle, and the second oneconsists of more di�cult tasks for the long{term future. They include:Medium{term goals | improvements in Diamond of the:� diagram objects and operations on diagrams (x11.1),� abstraction mechanism (x11.2),� theory of diagrams (x11.3),� interface (x11.4). 176



11.1. MORE DIAGRAMS AND OPERATIONS 177Long{term goals | investigations into:� the formalisation of abstractions in diagrams (x11.5),� applying parts of Diamond's techniques for extracting diagrammatic proofsto other problem domains (x11.6),� a completely automated diagrammatic theorem prover which is capable ofdiscovering diagrammatic proofs (x11.7),� the characteristics and uses of various kinds of knowledge representation,e.g. algebraic v. diagrammatic (x11.8).11.1 More Diagrams and OperationsIn x9.5.1 we stated that it was our heuristic choice to restrict the set of diagrams andoperations to the ones which are implemented in Diamond to date (see Chapter 6).The available set seems to be su�cient to enable one to prove theorems of a signi�cantrange and depth (see Chapter 9).However, to enlarge the set of theorems that Diamond is capable of proving, additionaldiagrams and operations could be implemented. There are three issues which need tobe considered with respect to enlarging this set.First, if we are just interested in proving more theorems in Diamond, then the rangeof proved theorems would perhaps not change much. However, it would still be worthwhile pursuing as the number of theorems that Diamond can prove would increase,as well as some existing operations might be reused. Some diagrammatic objectswhich come to mind that could be implemented are pentagons, hexagons, rectangular,pentagonal and hexagonal frames, etc. The additional operations which could be im-plemented are splitting pentagons and hexagons into frames, splitting frames into sides,splitting hexagons into triangles, etc. Another possible extension is the implementationof additional multiple representations of diagrams (see x6.2). For instance, instead ofusing a lattice of Cartesian coordinates on which the dots composing a diagram aredrawn, we could use some other type of net, which would allow the display of di�erentmultiple representations of diagrams. Some of them are depicted in Figure 11.1.Second, we could improve the user interface (see x11.4) to allow three dimensionalmanipulations of diagrams. This would give scope to the implementation of threedimensional diagrams (cubes, boxes, pyramids with a triangle, square, pentagon orhexagon as a base), and operations on these new diagrams (splitting various faces fromdiagrams, e.g. half-shells, splitting a diagram into various components, e.g. a pyramidwith a hexagon as a base into six pyramids with a triangle as a base, etc.).Third, the problem domain in Diamond could be extended to continuous space (seex11.6.1), or some completely di�erent domain, e.g. hardware veri�cation (see x11.6),which would give scope to the implementation of a di�erent kind of diagrams (e.g.circles, ovals, triangles of any magnitude, circuit gates etc.) and operations (divid-ing angles, projecting from three to two dimensions, stretching from three to twodimensions, rearranging | rotating, translating, splitting diagrams in various way,
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Figure 11.1: Additional multiple representations of diagrams.transforming, etc.). We discuss in more detail how the techniques in Diamond can beapplied to other domains in x11.6.11.2 Improving the Abstraction MechanismRecall from Chapter 7 that Diamond's abstraction mechanism can extract a recursivefunction proof which is parametrised over one parameter n. The number of times thatan operation of a schematic proof is applied, is linearly dependent on n. The functionproof which encodes a schematic proof can be stated as (see x7.3):proof(n+ 1) = A(n+ 1); proof(n)proof(0) = BOne of the possibilities for improvement of abstraction mechanism in Diamond is todevise an abstraction from one example only. The reader is referred to x7.9 for adiscussion of this proposal, and an indication of how to go about developing such anabstraction technique.In x9.5.2 we discussed various limitation of Diamond's abstraction mechanism wherewe divided them into three groups:� restriction on the recursive structure of proof,� insu�cient complexity of dependency functions,� insu�cient exibility in the order of diagrammatic operations in example proofs.We propose now how to tackle these limitations.



11.2. IMPROVING THE ABSTRACTION MECHANISM 17911.2.1 Restriction on Recursive Structure of Schematic ProofDiamond can extract schematic proofs with one recursive call, and with additionaldiagrammatic operations attached at the beginning, i.e. the schematic proofs are tailrecursive. This is adequate for many proofs. However, it would be desirable that Dia-mond could abstract and encode schematic proofs with additional operations attachedto the end of the recursive call, e.g.:proof(n+ 1) = proof(n); A(n+ 1)proof(0) = Bor with multiple recursions in the schematic proof, e.g.:proof(n+ 1) = A(n+ 1); proof(n); proof(n); proof(n); proof(n)proof(0) = Bor with insertions of additional operations in the middle of the proof, e.g.:proof(n) = prf(n; [ ])prf(n+ 1;P) = prf(n;A(n+ 1)@P@B(n+ 1))prf(0;P) = Pwhere the top level schematic proof proof can be instantiated for a particular value ofn by calling prf which uses an accumulator P to insert applications of operations inthe middle of the proof.Extending Diamond's abstraction mechanism to enable it to extract schematic proofswhich have the �rst proposed recursive structure should not be too di�cult. Ratherthan looking for the di�erence A at the beginning of the example proofs, the algorithmwould look for A at the end.The second structure is a bit more di�cult to detect. A technique that comes to mind isto heuristically look for the di�erence either at the back or in the beginning of exampleproofs, and then try to split the rest in various ways into two (for two recursive calls),three (for three recursive calls), four etc. occurrences of identical structure proof(n).The third structure of schematic proofs should not be too di�cult to extract either.Rather than trying to extract recursive structure, the mechanism can just extract alinear sequence of diagrammatic operations, as [Baker et al 92] does in her work (seex10.4), which is parametrised over n for the number of applications of each operation.For instance, proof(n+ 1) = [(lcut; 1)]; proof(n)proof(0) = [ ]would then become proof(n) = [(lcut; n)].Additional information for extracting more complex recursive structures of schematicproofs could be sought from the Inductive Logic Programming systems. ILP systems[Muggleton & De Raedt 94] can deal with the problems of extracting various kinds of



180 CHAPTER 11. FURTHER WORKrecursive structures from examples, however to date they are not good in dealing withnumerical data (the reader is referred to x2.3.7 for the description of ILP). Hence ILPmight be useful in giving clues how to extract complex recursive structures, but nothelpful for extraction of dependency functions in our schematic proofs.An interesting investigation would be to see if the veri�cation mechanism could stillcheck the correctness of a schematic proof which is expressed using any of the aboveproposed recursive structures.11.2.2 Complexity of Dependency FunctionsThe dependency function in Diamond is a linear function with some parameter n, i.e.f(n) = an+ b. It is attached to each diagrammatic operation which is to be appliedin a diagrammatic proof. When instantiated to a particular value of n it determinesthe number of applications of the operation. Despite the fact that to date we have notcome across diagrammatic examples which require a non-linear dependency function,it would be good to allow for them should such a case arise.For example, dependency functions which are degree two polynomials could be extrac-ted by demanding three rather than two examples, and solve three functions with threeunknowns: an21 + bn1 + c = x1an22 + bn2 + c = x2an23 + bn3 + c = x3where n1; n2; n3; x1; x2 and x3 are known, so the three equations can be solved fora; b and c in order to obtain a degree two polynomial function f(n) = an2 + bn + c.The same mechanism can be employed for detecting dependency functions which arepolynomials of higher degrees.The problem is more di�cult with non-polynomial functions, e.g. logarithmic. A pos-sible solution would be to have a library of such functions and try to match the numberof applications of operations with one of the functions in the library. This is the methodthat [Baker et al 92] used.11.2.3 Flexibility in the Order of Diagrammatic OperationsIn x5.4 we explained the restriction on the order of operations in the construction ofexample proofs. The restriction follows an inductive argument so that in the con-struction of proof(n + 1) all of the operations of proof(n) succeed those which makeup a di�erence between proof(n+ 1) and proof(n), for some particular n. That is, theoperations of the step case A are applied before the rest of the proof. The restrictionis required due to a limitation of the abstraction mechanism which is incapable ofextracting a schematic proof if the order restriction is not satis�ed.Diamond's limitation on the order of operations could be improved, in particular therestriction could be relaxed. Associative and commutative matching of the example



11.3. EXTENDING THE THEORY OF DIAGRAMS 181proof traces detects the structure common to two example proof traces as well astheir di�erence while at the same time allowing any order in the two traces. Anyassociative-commutative matching algorithm can be used, e.g. [Stickel 81].Using associative-commutative matching in the abstraction mechanism would relax therestriction on the order in the construction of example proofs. However the operationsin the extracted schematic proof would still have to satisfy some restrictions, becausesome operations cannot precede others. For instance, starting with a square the oper-ation split ends can only be applied if the operation lcut has been applied previouslyto create an ell. Hence, the associative-commutative matching algorithm would needto be modi�ed to consider such restrictions.11.3 Extending the Theory of DiagramsThe theory of diagrams, as presented in Chapter 8, is modulo position information forthe position of the diagram in a proof tree. This information is used when selectinga diagram from a list of diagrams to which the operation is applied. A function picksthe selected diagram from a list according to the position information (see x9.5.3).Diamond's veri�cation mechanism fails to check the correctness of a schematic proofif at any point the two lists representing each side of the equation of veri�cation theoremare in di�erent order.To remove this limitation we could use bags (also called multi-sets) rather than lists torepresent collections of diagrams on each side of the equality in the veri�cation theorem.A bag is a �nite or in�nite collection of elements in which the order of occurrences of theelements is disregarded, but the multiplicity (i.e. the number of occurrences) of eachelement is signi�cant. Using bags in the theory of diagrams in Diamond is necessarybecause the order of diagrams in a list does not matter. We want a collection of asquare and a triangle in that order to be equal to a collection of a triangle and asquare. In the current veri�cation mechanism, these would be distinguished, hence theveri�cation would fail. For more information on the structures and functions necessaryfor the implementation of bags, the reader is referred to [Manna & Waldinger 85].The hope is that the repercussions of using bags for the automation of veri�cation arenot detrimental, i.e. that the automation of reasoning with bags is not more complexthan reasoning with lists.11.4 Improvement of InterfaceIn x9.5.4 we discussed the limitations of Diamond's interface. The main criticism isthat there are no three-dimensional diagrams or operations on them available to theuser.This limitation can be mended by extending Diamond's current interface along thelines of Farrow's work (see x9.5.4) in her Master's Thesis [Farrow 97] to a three dimen-sional diagrammatic viewer. To implement such an environment would be a non-trivialtask. It would require considering Farrow's diagrammatic viewer, and improving it to



182 CHAPTER 11. FURTHER WORKallow for much more exibility of manipulation of objects, more generality, and greaternumber of available operations and diagrams.11.5 Formalisation of Abstractions in DiagramsIn x3.4 we discussed the use of abstractions in diagrams. Figure 3.1 showed howabstractions, namely ellipsis, are used to represent a general square of magnitude n. Weclaimed that the formalisation of abstractions is hard. We also proposed that humansdo not seem to reason with abstract objects, but rather with concrete objects andthen they abstract from these a general structure of reasoning to conclude a universalstatement. The formalisation of diagrammatic proofs inDiamond reects this proposalin that concrete diagrams are manipulated in the construction of examples of proofs,and an abstraction mechanism is employed in order to extract a general proof of auniversally quanti�ed theorem.The question is whether the use of abstractions could be formalised in order to reasondirectly with general diagrams which use ellipsis or some other device to representthe generality. Using abstract diagrams could potentially tackle theorems with morethan one universally quanti�ed variable. In x3.4 we discussed internal exact and ex-ternal ambiguous representations to distinguish between what is used internally on thecomputer to represent the ellipsis (for instance, in algebra the internal representationfor summation is P), and what is portrayed externally on the screen to the user (forinstance, the external portrayal of Pni=0 2i� 1 is 1 + 3 + 5 + � � �+ (2n� 1)). Were weto formalise ellipsis in our diagrammatic proofs, we would need to �rst formalise theellipsis in a diagram of a general magnitude. Then, we would have to formalise an el-lided collection of diagrams, e.g. some general number of diagrams. Bundy formalisedan exact notation for internal representation of list of general length in [Bundy 95].We present this formalisation here along with the formalisation of diagrams of generalmagnitudes.We will use an exact representation for diagrams which are de�ned non-recursively as:� square(n),� rectangle(n;m),� triangle(n),� etc.where any diagrams of magnitude 0 is ; which denotes an empty diagram.Bundy uses 2 (in a similar way to P or Q) as notation for lists, sequences or othern-ary operations. The idea is that the reasoning, internal to the computer, is carriedout using the exact notation 2 in place of abstractions. Externally, to the user, thereasoning is portrayed using ellipsis in diagrams. So, internally, square(n) is usedto reason about a general square of magnitude n. However, externally this squareis portrayed as a square with ellipsis indicating that it is of magnitude n (e.g. seeFigure 3.1).



11.5. FORMALISATION OF ABSTRACTIONS IN DIAGRAMS 1832 is a polymorphic, second order function of type:2 : (nat� (nat! �))! list(�)Its �rst argument is the length of the list. It applies the function, its second argument,to each of the natural numbers 1, 2, etc. up to this length and returns a list of theresults, i.e. 2(n; f) = [f(1); : : : ; f(n)]2 can be de�ned recursively as follows:12(0; F ) = [ ] (11.1)2(N + 1; F ) = 2(N;F )@(F (N + 1) :: nil) (11.2)We now need an axiom which de�nes how lists can be put in 2 form, i.e.8L : list(�);9n : nat;9f : (nat! �): L = 2(n; f)Functions, such as append (i.e. @) can now be de�ned as:2(M;F )@2(N;G) = 2(M +N; comb(M;F;G))where comb is de�ned by:comb(M;F;G)(i) = � F (i) if i �MG(i�M) if i > MThe de�nition of append should be portrayed as:[F (1); : : : ; F (M)]@[G(1); : : : ; G(N)]) = [F (1); : : : ; F (M); G(1); : : : ; G(N)]Let us examine the diagrammatic proof of the theorem about the sum of odd naturalsusing this abstract notation. First, we need to give some de�nitions of diagrammaticrewrite rules. For instance, an lcut can be de�ned as (where D is a list of the rest ofdiagrams): square(n+ 1) :: D lcut) square(n) :: ell(n+ 1) :: D (11.3)The theorem is formally expressed as:n2 = nXi=0 2i� 1where n2 corresponds diagrammatically to square(n), and 2i�1 to ell(i), so the theoremcan be expressed diagrammatically using 2 as:square(n) :: nil = 2(n; �i:ell(i))The theorem is proved by induction on n.1 Note that the de�nition of 2 is very similar to the de�nition of U in the theory of diagrams asde�ned in Chapter 8.



184 CHAPTER 11. FURTHER WORKBase case: n = 0 square(0) :: nil = 2(0; �i:ell(i))de�nition of ; + (11:1)[ ] = [ ]Step case:Hypothesis for n: square(n) :: nil = 2(n; �ell(i))Conclusion for n+ 1:square(n+ 1) :: nil = 2(n+ 1; �i:ell(i))de�nition of lcut(11:3) + (11:2)square(n) :: ell(n+ 1) :: nil = 2(n; �i:ell(i))@(ell(n+ 1) :: nil)hypothesis + hypothesisell(n+ 1) :: nil = ell(n+ 1) :: nilThis proof is portrayed externally with diagrams whereby we take a square of mag-nitude n + 1, apply an lcut to it, use rule (11.2) on the RHS of the theorem, and�nally apply the hypothesis to reach equality. As Bundy pointed out in [Bundy 95]the problem of reasoning with abstractions is now transferred to portrayal function.We would expect the portrayal function to display the theorem:square(n) :: nil = 2(n; �i:ell(i))as shown in Figure 11.2. However, the problem lies in identifying which elements of
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n nFigure 11.2: Sum of odd naturals using abstract diagrams.2 to portray, and which not. The portrayal function needs to be context sensitive inorder to be able to identify the critical elements. For instance, Figure 11.3 shows anincorrect portrayal of 2(m + n; comb(m;�i:square(i); �i:ell(i))). On the other hand,Figure 11.4 portrays the diagrams as we would expect with the �rst few elements andthe end elements of intermediate ellipsis portrayed. The problem is also in portrayingellipsis within a diagram. Which concrete parts of a diagram are portrayed and whichparts are ellided? In order to gain an intuitive understanding of operations that are
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Figure 11.3: Incorrect portrayal of 2(m+ n; comb(m;�i:square(i); �i:ell(i))).
. . .

. . .. . . . . .

n

. . .

. . .

. . .

. . .

. . .
. . .

mFigure 11.4: Correct portrayal of 2(m+ n; comb(m;�square(i); �i:ell(i))).applied to a diagram, the choice of portrayed parts of a diagram is crucial. Figure 11.5shows the ambiguity in the choice of portraying particular parts of a square of mag-nitude n+ 1. A formalisation of abstractions in diagrams as presented here seems tobe promising, especially in carrying out inductive proofs. However, the heavy burdenfalls onto portraying functions. Sometimes, additional rewriting will be required toportray the proof in a satisfying way. The choice of which parts of diagrams to portrayis also crucial. Much work is needed to investigate the issues of portraying abstractdiagrams, and it remains an open question whether a satisfying solution can be found.There is also a question of psychological validity of reasoning with abstractions. To us,they do not seem to be as easily understood as concrete diagrams. Perhaps an inter-esting study for cognitive psychologists would be to devise an empirical experiment to
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n+1Figure 11.5: Three di�erent ways of portraying a square of magnitude n+ 1.



186 CHAPTER 11. FURTHER WORKindicate whether humans are more likely to reason with abstract or concrete diagrams.Furthermore, it would be interesting to investigate how complex an abstraction peoplecan reason with.11.6 Diagrammatic Proofs in Other Problem DomainsThe problem domain which we chose is natural number arithmetic, more preciselyde�ned in x3.5. This means that diagrams represent natural numbers, and are thereforedisplayed using collections of dots in a discrete space. We devised a taxonomy fordiagrams in x3.3 and decided to concentrate on theorems of Category 2. Formalisingreasoning with abstractions, as discussed above in x11.5, would give scope to tackletheorems of Category 3. A possibility is to extend Diamond to continuous spacewhich would enable us to prove theorems of Category 1, i.e. geometrical theorems (e.g.Pythagoras' theorem). Another possibility for extending the problem domain includeshardware veri�cation. We briey discuss each of these domains.The domain of natural number arithmetic already has a wide range of problems towhich we can apply our approach of proving theorems by diagrammatic inference rules,of extracting a general proof from examples, and of verifying the schematic proof inthe theory of diagrams. In other domains, not all of these features of Diamond canbe applied. In geometry which typically reasons in the domain of real numbers weuse diagrammatic inference rules in a similar way as we use them in Diamond, butnot the abstraction mechanism. The veri�cation of diagrammatic proofs of theoremsof geometry is similar to Diamond's veri�cation. In hardware veri�cation, we usediagrammatic rules, the abstraction mechanism and the veri�cation in a similar wayto Diamond.Amongst these domains, the most scope for further work lies, in our opinion, in geo-metry. Despite the fact that it does not use the properties of the constructive !-rule(because in geometry we also reason with real numbers), geometry does give scope forproving a large range of new theorems. Hardware veri�cation is interesting, becauseall aspects of our work in Diamond can be applied, but much detail still needs to beworked out.11.6.1 GeometryTheorems of Category 1 are usually geometric theorems of continuous space. As said inx3.3 the common logical proofs of these theorems do not require induction, but rathergeneralisation. Therefore, their corresponding diagrammatic proofs can be consideredto be a trivial case of schematic proofs, i.e. they are not de�ned recursively. The numberof applications of operations to a diagram is not dependent on the universally quan-ti�ed variables. Therefore, no notion of abstraction is needed, and thus Diamond'sabstraction mechanism is not used. The generality of the proof is in continuous space,where diagrams are assumed to be of general magnitude. Let us imagine that Dia-mond can construct diagrams in continuous space. In order to prove the Pythagoras'theorem (as in x3.2.2 and in Figure 11.6) we need right angle triangles and squares. The
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Figure 11.6: Pythagoras' theorem and continuous space.only additional operation which is required in order to construct a proof is splitting asquare into two smaller squares and two identical rectangles. The diagrammatic proofof this theorem consists of the following operations:proof(a; b; c) = [(split sqr2sqr recs; 1);= (cut diagonally; 2);= (move x direction(+a; triangle1); 1);= (move y direction(�b; triangle2); 1);= (move x direction(�b; triangle3); 1);= (move y direction(+a; triangle3); 1)]Additional operations will involve moving diagrams in various directions (for instance,in Figure 11.6 we indicated x and y direction), because in geometric theorems, the spacecoordinates and relative location to other diagrams matter. Additional geometricalknowledge would need to be built into the system. For instance, the sum of all anglesin any triangle is 180 degrees. Such knowledge would enable the user and the systemto observe certain geometrical facts. For instance, in our example, one observation isthat when triangles are rearranged the body inside the bigger square is a square aswell.The proof of Pythagoras' theorem in Figure 11.6 is not exactly the proof of a2+b2 = c2.Rather, it shows that (a+b)2 = a2+b2+4ab2 and also that (a+b)2 = c2+4ab2 , thereforea2 + b2 + 4ab2 = c2 + 4ab2 , and thus a2 + b2 = c2.In the new continuous space, the diagrammatic equality needs to be rede�ned as itis no longer over the number of dots that a diagram is composed of, but over thearea which a diagram assumes. All of the operations preserve the sum of areas of alldiagrams. The generality of a proof is embedded in the use of the continuous space,where all diagrams are assumed to be of general magnitude. For instance, a right angle



188 CHAPTER 11. FURTHER WORKtriangle in the proof above is for any value of a; b and c such that they form a rightangle triangle.11.6.2 Hardware Veri�cationDiagrammatic reasoning of the style employed inDiamond can be applied to hardwareveri�cation. This is an important area for industrial manufacturing of circuits, wherethere is a potential of big �nancial losses if the fabricated circuits are faulty. Much re-search in this area has been carried out by [Gordon 95], [Cyrluk et al 94], [Barrow 84],[Basin & Klarlund 95], [Cantu-Ortiz 97].We show here an example of hardware veri�cation problem using the approach fromDiamond. In particular, we indicate how an n-bit incrementer can be diagrammat-ically veri�ed. The same approach can be applied to an n-bit adder, an n-bit ALU(arithmetic-logic unit), an n-bit shifter, an n-bit processing unit etc.An n-bit incrementer is a recursive combinational circuit which is usually implementedby a sequence of n interconnected half-adders. It takes as an input a word a of lengthn and a Boolean carry input cin, and produces as output a word of length n+1 whichis a result of adding cin to a. If cin is true then x is incremented by 1, otherwise it isleft unchanged, and a carry output cout is produced. An implementation of an n-bitincrementer is shown in Figure 11.7. The following predicate establishes equivalence
c-in c-out

s(n)s(1) s(2)

c(1) c(2) c(n-1). . . .

a(1) a(2) a(n)

half-adder half-adder half-adder

Figure 11.7: Representation of an n-bit incrementer composed of half-adders.between the speci�cation and the implementation of an n-bit incrementer (taken from[Cantu-Ortiz 97]):` 8c : bool; 8a : word: word2nat(inc(a; c)) = word2nat(x) + bool2nat(c)where word2nat converts a word into a natural number representing its length and isde�ned recursively, bool2nat converts true to 1 and false to 0, and inc is recursivelyde�ned as half-adder attached to an inc of a word less one character.An example of a diagrammatic proof could be composed for n = 5, whereby we con-struct a 5-bit incrementer. The precondition is that a half-adder is veri�ed to becorrect. For n = 5 we just compose diagrammatically �ve half-adders. For n = 6we compose six half-adders. The abstraction mechanism like Diamond's extracts aschematic proof which consists of taking n half-adders to form an n-bit incrementer



11.7. COMPLETEAUTOMATION OF DIAGRAMMATIC THEOREMPROVER189(or more precisely, taking a half-adder and attaching to it n� 1 more half-adders):proof(n+ 1) = [(join half adder; 1)]; proof(n)proof(1) = [ ]The veri�cation of this schematic proof uses lemmas about the correctness of a half-adder, but the correctness check of schematic proof boils down to carrying out inductionon n. There is also scope for exploiting symmetry in these proofs. All the intricaciesneed to be worked out, but in principle the general approach in the domain of hardwareveri�cation, although somewhat contrived, seems to work.11.7 Complete Automation of Diagrammatic TheoremProverWe now propose a research project which in our opinion is the most promising andinteresting: making Diamond a completely automated theorem prover capable of dis-covering diagrammatic proofs. This will contribute to two parallel research aims ofarti�cial intelligence and computer science: on the one hand it will enable computersto achieve new goals and solve new problems, and on the other hand it will help us tounderstand better diagrammatic reasoning.We describe only the general methodology which could be employed in order to achievecomplete automation of a diagrammatic theorem prover. The intricacies of the systemare left to be investigated in the future.There are two possible starting points for the proposed research. For the �rst one,which is slightly easier than the second approach, the user presents the system with atheorem expressed in a usual way using sentential representation of a theorem. Anyundergraduate mathematical text, especially in the domain of natural number arith-metic would be a good source of problems. Then, a completely automated Diamonduses the mapping relation dmap to map (parts of) the sententially represented theoreminto diagrammatic representations in order to �nd the initial diagrams to which theoperations are applied. Next, the system applies diagrammatic inference rules in thehope to discover a diagrammatic proof. We discuss later the method for automaticallychoosing the inference rules.The second possible starting point for a diagrammatic reasoning system is not from asententially represented theorem, but from any combination of diagrams. The oper-ations are applied in the hope that they result in some \interesting" combination ofdiagrams. The mapping relation dmap is used to give the usual sentential interpret-ation of the diagrams and the operations on them. Clearly, we need to de�ne somecriteria as to what is an interesting combination of diagrams. Perhaps, a library ofsententially expressed theorems could provide a look-up facility to decide if the resultis in the library of interesting problems. Another possibility is for the user to decidewhether the proof of a theorem is of interest or not.Next, we need to de�ne a method of choosing the diagrammatic inference steps, i.e.the operations that are applied to diagrams, which is employed in the search for a



190 CHAPTER 11. FURTHER WORKproof of a theorem. The �rst obvious mechanism that springs to mind to achieve auto-matic discovery of proofs is to exhaustively apply the available geometric operations onconcrete cases of diagrams in the hope that something interesting will emerge. Givensimple initial diagrams and a limited repertoire of geometric operations this mightbe tractable. Later, we could control search for the diagrammatic proof by encodingseveral heuristics. For example:� A heuristic which determines the particular kind (i.e. version) of an operationthat is possible, or is sensible, to be applied to the diagram (e.g. it is sensible tocut a square so as to preserve right angles and respect the recursive de�nition ofa square whenever possible).� Detect when it is impossible to generate a certain construction with the availableoperations on a particular diagram (e.g. it is impossible to split a square of oddmagnitude into four identical squares).� Additional pieces of knowledge of certain properties (e.g. geometric properties ofdiagrams).These heuristics could be encoded as proof methods, so we could employ proof planning[Bundy 88] to use them to guide the search for a diagrammatic proof. Using the heur-istics, several possible sequences of operations on concrete diagrams can be generatedautomatically. Subsequently, they need to be abstracted to form a general proof. Itseems plausible that an appropriate representation of the problem might give us cluesas to how to achieve this. George P�olya in his book Mathematical Discovery [P�olya 65]argues that the choice of the representation of the problem is vital to �nding its solu-tion. We could consider this suggestion more closely, as will be discussed next. Itappears that di�erent representations of the same diagram will lead to a discovery ofdi�erent diagrammatic proofs, and subsequently di�erent formal mathematical proofs.11.8 The Nature of Various Knowledge RepresentationsP�olya suggests in [P�olya 65] that if a problem is well represented it can become trivialto solve. Of course, the di�culty is in �nding a good problem (knowledge) repres-entation which makes the solution transparent. Many people have given the sameadvice, and studied how a good representation of a problem can be chosen. Someof the most inuential work in the �eld of knowledge representation has been doneby Simon [Simon 96], Larkin [Larkin & Simon 87], Sloman [Sloman 71], [Sloman 85],[Sloman 96], Hayes [Hayes 74], Stenning and Oberlander [Stenning & Oberlander 95],and many others.Despite having so many books and papers published on the choice of a good repres-entation, there is still no good answer as to how to �nd \the best" suited problemrepresentation. Many arguments have been debated about the expressiveness and ef-�cacy of diagrammatic in comparison to sentential, usually logical, representations.Rather than trying to establish the di�erence between these two classes of representa-tion it might be more fruitful to look into how each can be used, and where each proves



11.9. SUMMARY 191to be more useful. In addition, studies into how the two modes of representation canbe used in parallel can be carried out.To investigate various types of knowledge representation in order to give some mean-ingful characterisation of when a particular representation is better, e.g. when is itbetter to use diagrams than sentential logical representation to teach logic to under-graduate students, is an ambitious undertaking. The investigation could be brokendown into a number of tasks:� identi�cation of various types of knowledge representation (e.g. diagrammatic,sentential, audible, etc.),� characterisation of each type of knowledge representation (e.g. in terms of ex-pressiveness, e�cacy, etc.),� psychological validity testing to determine when each type of representation isused (e.g. when teaching geometry, algebra, etc.),� devise tests to see when one representation is better than the other.All of these tasks are hard and require extensive knowledge from various �elds. Thesuggested research could therefore, be carried out in collaboration between scientistsfrom various �elds such as psychology, cognitive science, arti�cial intelligence, computerscience and mathematics. Useful and promising results of such a research project wouldmake a signi�cant impact on the many di�erent branches of science, but in particularon the automation of reasoning systems.11.9 SummaryThe research reported in this thesis makes some advances in the investigation on theautomation of human mathematical reasoning with diagrams. There are many moreissues which we would like to study further, but fall out of the scope of this researchproject. We reported on some of these in this chapter.We divided the future tasks into two groups, namely the medium{term tasks andthe long{term research ideas. Amongst the medium{term tasks we discussed somepossible improvements of Diamond which correspond to its limitations discussed inx9.5. We suggested to implement more diagrams and operations on them which couldenable a user to prove more theorems. Then, we suggested how to improve Diamond'sabstraction mechanism which extracts a general schematic proof from ground instancesof proofs. Three aspects of the abstraction mechanism were of particular interest {the complexity of the structure of schematic proofs, the complexity of dependencyfunctions, and the exibility of the order of diagrammatic operations in examples ofproofs. We suggested to improve the abstraction mechanism so that it can extractschematic proofs of increased complexity of structure and dependency functions, andgreater exibility of the order of operations. We then suggested how to improve theimplementation of the theory of diagrams to allow for a greater number of schematicproofs to be veri�ed. The last medium{term task we suggested was to improve the



192 CHAPTER 11. FURTHER WORKuser interface to Diamond by devising a new or improving upon the three-dimensionalvirtual reality type environment designed by [Farrow 97].Amongst the long{term research ideas that we proposed is a formalisation of abstrac-tions in diagrams to enable one to reason with diagrams of general magnitude. Wesuggested an exact internal sentential representation 2 which captures the general-ity of a length of a list in much the same way as P for the summation. A portrayfunction could be used to display diagrams externally on the screen to the user in adiagrammatic form using abstractions such as ellipsis.Another long{term task is to extend the approach to reasoning in Diamond to otherdomains. We suggested geometry in mathematics, and other �elds like hardware veri-�cation in computer science.To us, the most appealing long{term task for further work is to extend Diamond froma semi-automatic proof checking system to a completely automated theorem provercapable of discovering diagrammatic proofs of theorems. The �rst method that comesto mind is to exhaustively apply diagrammatic operations on various (combinationsof) diagrams in the hope that something interesting will emerge. The proof search canlater be controlled by the use of heuristics which encode certain specialised knowledgeof geometry or other properties of diagrams.Finally, another interesting research project which is suggested investigates the natureof di�erent kinds of knowledge representations. Many scientists have studied this �eld,but it appears to be a di�cult topic to study. We suggested some starting points forresearch which we hope could lead to promising results.



Chapter 12Conclusions

n3 = 1 + 7 + 19 + � � �+ hex(n) | ANONin Penrose's Mathematical Intelligence and in Nelsen's Proofs Without WordsWe hope that we have convinced the reader that diagrams are a reasoning tool worthyof investigation. Despite the fact that humans frequently use diagrams when provingtheorems, diagrams are not generally accepted as a tool for formal reasoning. We haveshown that diagrams can be used in formal proofs, and moreover that such diagram-matic reasoning can indeed be formalised and emulated on machines. Our formalisationof automated diagrammatic reasoning is embodied in a semi-automatic diagrammaticproof system Diamond which allows a user to construct diagrammatic proofs of math-ematical theorems. In this way we responded to Penrose's challenge of claiming thatdiagrammatic proofs, such as the one he presented about the sum of hexagonal num-bers (demonstrated in the picture above) cannot be automated. Diamond cannot yetautomatically �nd a diagrammatic proof of this particular theorem. Nevertheless, wehave shown that the approach to reasoning embodied in Diamond allows automa-tion of a theorem prover which proves theorems, including the one given by Penrose,diagrammatically. 193



194 CHAPTER 12. CONCLUSIONS12.1 ContributionsIn the introduction of this thesis, we set out three main contributions of our research.Here we discuss each of these in more detail and argue whether we achieved the aimsand ful�lled the promises that we set ourselves. These three contributions are:� our mechanisation of diagrammatic reasoning is a novel approach to automatedreasoning,� we show that diagrams can be used in formal proofs,� we show how general diagrammatic proofs can be extracted from examples ofproofs, so abstractions are not needed in diagrams.12.1.1 Automating Diagrammatic ReasoningThe �rst automated reasoning systems were implemented in the Fifties when Newelland Simon built a program that could prove simple theorems of propositional logic[Newell & Simon 63]. There has been a lot of interest since in the automation of the-orem proving, and as a result we nowadays have very many complex systems includingNqthm by [Boyer & Moore 90], Isabelle by [Paulson 86], Nuprl by [Constable et al 86],and Clam by [Bundy et al 91]. All of these reasoning systems use the usual sententiallogical representations, such as sequent calculus, for mathematical reasoning. The sys-tems use the rules of some chosen logic in order to generate a proof of a theorem ofmathematics.In subsequent years formal mathematical logic has been considered as one of veryfew tools which is rigorous enough to base automated reasoning systems on. A more\informal" aspect of human mathematical reasoning, such as the use of diagrams toconvey truths of statements, has been neglected. However, in the past two decades,researchers have looked into how more \informal" aspects of human mathematicalreasoning, especially the use of diagrams, can these be incorporated to automatedreasoning systems. In particular, one of the �rst systems to use diagrams to guide asearch for proofs was Gelernter's Geometry Machine [Gelernter 63]. The systems whichhave been devised since (e.g. GROVER [Barker-Plummer & Bailin 92] and Hyperproof[Barwise & Etchemendy 94]) use diagrams to model the problem and to guide thesearch for what is essentially a sentential logical proof.Our research and the realisation ofDiamond is new in the area of automated reasoning.In the realisation of Diamond we consider more closely how diagrams can be used forreasoning. The usual sentential logical inference rules are replaced inDiamond by geo-metric operations on diagrams. Rather than constructing proofs by chaining togetherlogical formulae, proofs in Diamond are constructed by applying various combinationsof geometric operations to diagrams. Unlike most existing theorem provers which useonly logical formulae in proofs, Diamond uses only geometric operations to constructproofs. Moreover, unlike the Geometry Machine and other systems that use diagramsin some way, and use a combination of sentential and diagrammatic inference rules,Diamond uses only diagrammatic inference rules. No logical formulae are needed



12.1. CONTRIBUTIONS 195when constructing proofs. The construction of proofs in Diamond is supported bymachinery which ensures that Diamond's diagrammatic proof is a correct proof of atheorem.In the realisation of Diamond we made several other contributions. These are:� Multiple representations of diagrams have been devised. Their use is equivalentto using di�erent representations of a problem. The solution to a problem canbe obtained depending on whether the right representation is used. Such anapproach to knowledge representation illuminates how to use P�olya's advice onthe importance of appropriate representations [P�olya 65].� A graphical user interface which allows an easy interactive construction of dia-grammatic proofs was implemented. Various kinds of diagrams and operationson them have been implemented and are available to the user via this graphicaluser interface. Previously implemented systems (such as the Geometry Machine)have no or very limited graphical interface.12.1.2 Can Diagrams Be Used In Formal Proofs?Diagrams have been used as an aid in reasoning for centuries. At the turn of thiscentury the invention of rigorous axiomatic logical reasoning made a signi�cant impacton the notion of formal reasoning. Part of this inuence was a belief that diagrams arenot rigorous enough to be used as a tool in formal reasoning. However, in the last twodecades this belief has changed, and we can observe an increased interest in researchon re-establishing a formal role of diagrams in reasoning.Our semi-automatic proof system Diamond is a realisation of a formalisation of dia-grammatic reasoning. Our research contributes to the e�ort of showing that diagramscan indeed be used as a tool for formal automated rather than just informal humanmathematical reasoning. Diamond provides an environment in which diagrammaticproofs of mathematical theorems can be constructed. The method of diagrammaticproof construction in Diamond consists of three steps:1. The user can construct instances of a diagrammatic proof using various combin-ations of diagrams and operations applied to them. All diagrams are concrete,drawn for a particular value of a universally quanti�ed variable.2. Diamond then automatically extracts a general diagrammatic proof from theseinstances. Diamond's diagrammatic proof is captured by a recursively de�nedschematic proof, and consists of a general number of applications of geometricoperations.3. In Diamond we have a machinery which can formally show whether a diagram-matic proof is correct or not. This machinery is embodied in a theory of diagramsin which Diamond can automatically formally verify an extracted diagrammaticschematic proof.



196 CHAPTER 12. CONCLUSIONSThe extraction of a schematic proof is an educated guess made by a machine of whatlooks like the most likely proof of a theorem, given some example proofs. The diagram-matic theory which is provided in Diamond is a formal theory in which Diamond cancheck that this guess was indeed correct. In this way, we ensure that a diagrammaticproof is a correct proof of a theorem in a formal logical sense.We showed that the formalisation of diagrammatic reasoning that was devised in ourresearch can be extended from a natural number arithmetic to other domains, such asgeometry. Thus, diagrams can be used as a formal reasoning tool for problem solvingin other domains. The main conclusion that we can draw from this is that the neglectof the use of diagrams in reasoning due to the belief that diagrams are not formal orrigorous enough device is not justi�ed. By implementing a diagrammatic reasoningsystem Diamond we show that diagrammatic reasoning can be formal.12.1.3 Diagrammatic ProofsThe research into machine learning techniques for generalisation or abstraction, as werefer to it, was a vibrant area in the sixties and seventies. One of the �rst algorithmsfor abstraction was devised by Plotkin ([Plotkin 69],[Plotkin 71]) which attempts to�nd the least general term from speci�c examples. Since then, many variations ofPlotkin's abstraction algorithm have been invented, all specialised for particular classesof problems.Another contribution which we made in the realisation of Diamond is a variation of analgorithm for abstraction. The abstraction in Diamond is used to extract schematicproofs from examples of interactively constructed concrete proofs. A schematic proof isa recursive program which constitutes a diagrammatic proof of a theorem. Diamond'sabstraction mechanism uses aspects of existing techniques, especially that of Baker[Baker 93], and extends them in order to be able to abstract:� the dependency function which speci�es the number of applications of a geometricoperation to a diagram (this function is linearly dependent on the parameter n)| previous techniques do not seem to be capable of doing this,� the recursive structure of the schematic proof | very few existing techniquesseems to be capable of extracting automatically a recursive structure from ex-amples,� a general schematic proof from only two examples | other abstraction tech-niques (in the sense of inductive learning, rather than analytic learning from oneexample) require more examples.Baker explored the use of the constructive !-rule, a stronger alternative to the inductionrule, for logical proofs of arithmetic theorems. The constructive !-rule requires theprovision of a uniform computable procedure which by instantiation produces a prooffor a corresponding instance of a theorem. Baker used schematic proofs to provide thisuniform procedure. The use of constructive !-rule allows a technique for extractingproofs from instances of proof by providing a justi�cation that a correct schematicproof is a formal proof of a theorem.



12.2. HAVE WE ACHIEVED THE AIMS? 197We extended Baker's work from arithmetic theorems to diagrammatic reasoning. Us-ing the constructive !-rule in schematic proofs allows reasoning with instances of adiagrammatic proof. Therefore, the diagrams which are employed in instances of aproof can be concrete rather than abstract. In this way we avoid the need for a formal-isation of abstractions (e.g. ellipsis) in general diagrams, and so avoid di�culties withsuch representations.Rather than using meta induction to verify schematic proofs, as Baker did, we deviseda diagrammatic theory where schematic proofs can be checked for their correctnesswithout any need for meta induction. Meta induction on diagrams is open to problemsbecause it requires reasoning with general diagrams which use abstractions. In ourtheory of diagrams, the veri�cation of schematic proofs seems to require only simplestandard induction, while at the same time it removes the need to formalise abstractionsin diagrams.12.1.4 The Human Mathematician and DiamondThe realisation of Diamond is a valuable research project in its own right which isevident by the contributions made to several aspects of computer science mentionedin the preceding few sections. Here, we propose to cognitive scientists a potentialfor using a Diamond-like system in experiments which would test the psychologicalvalidity of diagrammatic reasoning. The implications of a potentially positive result ofsuch testing could have an impact on various �elds, but especially in teaching studentsmathematics.Diamond provides an architecture for the construction of diagrammatic proofs. Ourbelief is that diagrammatic proofs of the kind that we presented in this thesis are moreeasily understood by humans than their corresponding algebraic proofs. However,we have not carried out any psychological validity testing on human mathematicianswhich would empirically support our belief. Diamond provides an architecture whichcould be used by cognitive scientists as a basis for testing to what extent novice orexpert mathematicians �nd diagrammatic proofs more intuitively understood thanalgebraic proofs. Moreover, Diamond can be used as an environment which enablesusers to explore reasoning with diagrams and thus, hopefully gain an understandinginto a diagrammatic proof of a theorem. If the outcome of such a comparative studysupports our belief, then this would suggest that Diamond-like systems could be auseful teaching tool for studying elementary mathematics.12.2 Have We Achieved the Aims?We hope the reader is convinced by now that the aims which we set ourselves in thebeginning of this research project and were outlined in Chapter 1 have been achieved.We automated parts of mathematical reasoning with diagrams in the domain of naturalnumber arithmetic | the realisation of our research is a semi-automatic proof systemDiamond. Diagrammatic proofs are formed from examples that the user constructsby applying geometric operations to diagrams. Diamond extracts the structure com-



198 CHAPTER 12. CONCLUSIONSmon to these examples and represents it in the form of a recursive program, called aschematic proof, which consists of a general number of applications of operations todiagrams. We devised a theory of diagrams in which Diamond formally veri�es thecorrectness of a schematic proof. If the schematic proof is correct, then it constitutesa formal diagrammatic proof of a theorem.Our research shows that despite the fact that diagrams have been denied a formal rolein theorem proving, they can be used as a formal tool for mathematical reasoning.Unlike many other existing systems, diagrams in Diamond are not used as a model ofa problem to �nd an essentially algebraic proof of a theorem, but are used directly toreason with them.There are many aspects of our research which could be developed and extended further.Diamond could be extended to continuous space, and thus geometry, or even furtherto other �elds of science, such as hardware veri�cation in computer science. Ultimately,we hope that Diamond could be extended to a theorem prover capable of discoveringdiagrammatic proofs for itself.



Appendix AMore Examples of DiagrammaticTheorems
Here we give more examples of theorems and their diagrammatic proofs. These ex-amples, in addition to the ones given in Chapter 3 plus others from [Nelsen 93],[Lakatos 76] and [Gamow 62], are analysed to motivate a taxonomy of diagrammatictheorems in order to choose a problem domain (see x3.5) for this research project.The examples are given in terms of diagrams to which operations are applied, followedby a description of the proof. Finally, we examine these proofs to identify the requiredrepertoire of geometric operations, and to formalise the general structure of diagram-matic proofs. The following examples of theorems are presented: Pythagoras' theorem,two di�erent triangular equalities, sum of all naturals, and Euler's theorem. Note thatthe proof of Euler's theorem is an example of an erroneous schematic proof. Some dis-cussion about this proof was carried out in x4.6, but for more information, the readeris referred to [Lakatos 76]. The theorems that a user can prove using Diamond areboth triangular equalities and the sum of all naturals. For a set of complete results,i.e. all the theorems which can be proved using Diamond, see Appendix B.A.1 Pythagoras' Theorem IIPythagoras' Theorem states that the square of the hypotenuse of a right angle triangleequals the sum of the squares of its other two sides. Here is another diagrammaticproof of this theorem which is di�erent to the one given in x3.2.2 and is taken from[Nelsen 93, page 4]: c2 = a2 + b2

a
a

(a- b)

b
c

c

b 199



200 APPENDIX A. MORE EXAMPLES OF DIAGRAMMATIC THEOREMSThe diagrammatic proof demonstrated in the picture consists of taking any right angletriangle with a hypotenuse c and two sides a and b. We now join to this triangle alongits shorter side another identical right angle triangle with its longer side touching theshorter side of the �rst triangle. We take a third identical right angle triangle and jointo the second triangle in the same way as before. We repeat the same process for thefourth triangle which is joined to the third and also the �rst triangle. Notice that thisprocess forms a square of magnitude c which is the hypotenuse. Note also that in themiddle, there will be another smaller square formed. Therefore, this formation justi�esthe following equation c2 = 4ab2 + small square.Now, we rearrange the diagram forming the square of magnitude c by moving two ofthose right angle triangles, and joining them along their hypotenuse to the remainingtwo triangles. Notice now that the smaller square is joined to the shorter side on atriangle to form its longer side, thus the magnitude of the smaller square is a�b. Hencewe have that c2 = 4ab2 + (a� b)2 = 2ab+ a2 � 2ab+ b2 = a2 + b2.We now give a structured diagrammatic proof:� 3� join a triangle with its shorter side along the longer side of another triangle(to create 90 degrees angle),� 2� move a triangle and join it along a hypotenuse of another triangle.A.2 Triangular Equality for Odd SquaresThe following is a proof of the equality of triangular numbers for odd squares. Theexample is taken from [Nelsen 93, page 101]. The theorem and its diagrammaticproof can be demonstrated as follows:(2n+ 1)2 = 8Tn + 1

The proof consists of taking a square of magnitude 2n + 1 for a particular value ofn. We then split from it the middle dot. This results in a thick frame. We splitthis frame into four rectangles. Note that two of the rectangles will be of magnitude(n+1)�n, and two of them will be of magnitude n� (n+1). We split now each of therectangles diagonally. This results in the formation of eight triangles of magnitude n.Considering the dot in the beginning we have (2n+1)2 = 8Tn+1. Here is a structureddiagrammatic proof:



A.3. EVEN TRIANGULAR SUM 201� 1� split a middle dot from a square,� 1� split a frame into rectangles,� 4� split a rectangle down its diagonal.A.3 Even Triangular SumThe following is a proof of the equality of even triangular numbers. The example istaken from [Nelsen 93, page 104]. The theorem and its diagrammatic proof can bedemonstrated as follows: T2n = 3Tn + Tn�1

Note that without using the de�nition of triangular number, this theorem could berestated into the following:1 + 2 + 3 + � � �+ 2n = 3(1 + 2 + 3 + � � � + n) + (1 + 2 + 3 + � � �+ (n� 1))The diagrammatic proof of this theorem takes a triangle of magnitude 2n for someparticular value of n (in the example above n = 4). This triangle is then split into thebiggest possible square and two other triangles. Notice that this operation creates twotriangles of magnitude n and a square of magnitude n. Next, a square is split down themiddle, which results in two triangles, one of magnitude n and the other of magnituden� 1. Hence, we have three triangles of magnitude n and one of magnitude n� 1.Here is a structured diagrammatic proof:� 1� split a triangle into two triangles and a square,� 1� split a square down its diagonal.A.4 Sum of All Natural NumbersThe theorem about the sum of natural numbers and its diagrammatic proof are takenfrom [Nelsen 93, page 69]. They can be stated as follows:



202 APPENDIX A. MORE EXAMPLES OF DIAGRAMMATIC THEOREMSn� (n+ 1)2 = 1 + 2 + 3 + � � � + n
n + 1

n

A diagrammatic proof starts by taking an n by n + 1 rectangle. Cut it down thediagonal so that two identical isosceles triangles whose sides are of length n are formed.Now, take one of the triangles and split a side from it. Continue splitting sides untila triangle is exhausted. Note that in this way one gets the enumeration of naturalnumbers forming a triangle, and one triangle is half of the enumeration of points ofthe rectangle. Note also that we apply operations to both sides of the equality. Hereis a structured diagrammatic proof:� 1� split a rectangle down its diagonal,� n� split a side from a triangle.A.5 Euler's TheoremEuler's theorem about polyhedra states that:V �E + F = 2where V is the number of vertices, E is the number of edges, and F is the number offaces of a polyhedron. The example is taken from [Lakatos 76] and [Gamow 62, pages47-48]. The diagrammatic proof of this theorem goes as follows:
(a) (b) (c)

(d) (e) (f)



A.5. EULER'S THEOREM 203Take any simple polyhedron (note that in our case, we take a cube, but the resultis the same for any simple polyhedron). Imagine that it is hollow, and that its facesare made out of rubber (see (a) of the diagram above). Now, remove one face fromthe polyhedron, and stretch the rest of the polyhedron onto the plane (see (b) ofthe diagram). Note that since we have taken one face o�, our formula should beV �E + F = 1. Note also that the relations between the vertices, edges and faces arepreserved in this way. Triangulate all of the faces of this plane network (i.e. we areadding the same number of edges and faces to the network, so the formula remainsthe same | see (c) of the diagram). Now, start removing the boundary edges (see(d) of the diagram). This will have the e�ect of removing an edge and a face fromthe network at the same time, so our formula is still preserved. We continue removingedges in appropriate order (see (e)), thus preserving the formula, until we are left withone triangle only. Clearly, for this triangle V � E + F = 1 where there are threevertices, three edges and one face. Here is a structured diagrammatic proof:� remove one face from any given polyhedron,� stretch the rest of the polyhedron onto the plane,� triangulate all of the faces that are not triangles already,� remove the boundary edges one after another, until you are left with a singletriangle.Notice that this structured diagrammatic schematic proof is erroneous when appliedto any polyhedron. The reader is referred to [Lakatos 76] for a number of counterexamples for this theorem and its proof. We describe it because it helps us to analysevarious kinds of diagrammatic proofs in order to de�ne a problem domain in x3.5. Theerroneous diagrammatic schematic proof is also of interest in the discussion about thepsychological validity of schematic proofs addressed in x4.6. The theorem holds for allsimple polyhedra.



Appendix BComplete Results
Here we present the complete set of results corresponding to the table in Figure 9.1.The results are given in terms of:� an example proof for a particular value of the parameter n including the picturesinvolved in the construction of a proof,� the schematic proof that Diamond automatically extracts, and,� the statement of a veri�cation theorem which needs to be proved to ensure thatthe schematic proof is a correct proof of a theorem, and a result of this veri�cation,i.e. if Clam succeeded to �nd a proof plan of this theorem.B.1 Sum of Odd NaturalsExample Proof

n2 = nXi=0 2i� 1This diagram is given for n = 6. 204



B.2. SUM OF ALL NATURALS 205Schematic Proof proof(n+ 1) = [(lcut; 1)]; proof(n)proof(0) = [ ]Veri�cation ProofThe veri�cation theorem is expressed as:apply(proof(n); [diagram(square; [n])]) = n]i=0 diagram(ell; [i])which is proved by an induction strategy (i.e. base case and step case) and the basecase method.B.2 Sum of All NaturalsExample Proof
n + 1

n

n(n+ 1)2 = nXi=0 iThis diagram is given for n = 5.Schematic Proof proof(n+ 1) = [(split side; 1)]; proof(n)proof(0) = [ ]Veri�cation ProofThe veri�cation theorem for proof is expressed as:apply(proof(n); [diagram(triangle; [n])]) = n]i=0 diagram(side; [i])



206 APPENDIX B. COMPLETE RESULTSwhich is proved by an induction strategy (i.e. base case and step case) and the basecase method.Notice that the example proofs are generated using only the solid part of the diagram,i.e. the triangle. The right hand side part of the diagram shows that a triangle ishalf of the rectangle of size (n+ 1) by n. This will be diagrammatically proved in thenext section. We use the right hand side part of the diagram, because other literature[Nelsen 93] uses this diagram to demonstrate a proof of the sum of all naturals. There,it is assumed that in the proof half of a rectangle is cut away. However, in Diamondthe operations are based on the preservation of dots, hence diagrams can only be splitapart. Using the dotted part of the diagram, the theorem for Diamond would read:(n+ 1)n = ( nXi=0 i) + n(n+ 1)2B.3 Odd Triangular SumExample Proof

Tri2n+1 = Trin+1 + 3TrinThis diagram is given for n = 4.Schematic Proof proof(n) = [(split tst; 1); (cut diagonally; 1)]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(triangle; [2n+ 1])])=diagram(triangle; [n+ 1]) :: (3
 [diagram(triangle; [n])])which is proved by the base case method.



B.4. EVEN TRIANGLES 207B.4 Even TrianglesExample Proof
Tri2n = nXi=0(2(2i) � 1)This diagram is given for n = 4.Schematic Proof proof(n+ 1) = [(lcut; 1)]; proof(n)proof(0) = [ ]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(triangle; [2n])]) = n]i=0 diagram(ell; [2i])which is proved by an induction strategy (i.e. base case and step case) and the basecase method.B.5 Odd SquareExample Proof
(2n+ 1)2 = 1 + 4( nXi=0 2i)This diagram is given for the instance n = 3.



208 APPENDIX B. COMPLETE RESULTSSchematic Proofproof(n+ 1) = [(split outer frame; 1); (split frame; 1)]; proof(n)proof(1) = [ ]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(square; [2n+ 1])])d=diagram(square; [1]) :: (4
Unj=0 diagram(row; [2j]))which is proved by an induction strategy (i.e. base case and step case) and the basecase method.B.6 Fibonacci SumExample Proof

FibnFibn+1 = nXi=0 Fib2iThis diagram is given for n = 4.Schematic Proof proof(n+ 1) = [(split sqr; 1)]; proof(n)proof(0) = [ ]



B.7. ODD TRIANGLES 209Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(rectangle; [Fib(n+ 1); F ib(n)])])=Uni=0 diagram(square; [Fib(i)])which is proved by an induction strategy (i.e. base case and step case) and the basecase method.B.7 Odd TrianglesExample Proof

Tri2n�1 = nXi=0(2(2i � 1)� 1)This diagram is given for n = 4.Schematic Proof proof(n+ 1) = [(lcut; 1)]; proof(n)proof(0) = [ ]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(triangle; [2n� 1])]) = n]i=0 diagram(ell; [2i � 1])A proof plan for this veri�cation theorem cannot be found using the veri�cation mech-anism implemented in Clam, because Clam is not good with non-constructive functionssuch as the predecessor function. The theorem can be restated so that it contains nopredecessor functions, but its schematic proof would then be di�erent.



210 APPENDIX B. COMPLETE RESULTSB.8 Odd NaturalsExample Proof
2n� 1 = (n�1Xi=1 2) + 1This diagram is given for n = 5.Schematic Proof proof(n+ 1) = [(split dia ends; 1)]; proof(n)proof(1) = [ ]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(ell; [n])])=diagram(row; [1]) :: (Un�1i=1 diagram(row; [1]))@(Un�1i=1 diagram(column; [1]))A proof plan for this veri�cation theorem cannot be found using the veri�cation mech-anism implemented in Clam for the same reasons as in xB.7.B.9 Sum of Two TrianglesExample Proof

n

n

+

1n(n+ 1) = n(n+ 1)2 + n(n+ 1)2This diagram is given for n = 5.



B.10. EVEN TRIANGULAR SUM 211Schematic Proof proof(n) = [(cut diagonally; 1)]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(rectangle; [n+ 1; n])])=[diagram(triangle; [n]); diagram(triangle; [n])]which is proved by the base case method.B.10 Even Triangular SumExample Proof
Tri2n = Trin�1 + 3TrinThis diagram is given for n = 4.Schematic Proof proof(n) = [(split tst; 1); (cut diagonally; 1)]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n+ 1); [diagram(triangle; [2(n+ 1)])])=[diagram(triangle; [n])]@(3
 [diagram(triangle; [n+ 1])])which is proved by the base case method. Note that the veri�cation proof is for n+ 1rather than n to eliminate the need for a predecessor function which is required inTrin�1. This is needed because Clam cannot deal e�ectively with the predecessorfunctions. The transformation of a veri�cation theorem so that it is for n+ 1 is doneon an ad hoc basis.



212 APPENDIX B. COMPLETE RESULTSB.11 Triangular Equality for Odd SquaresExample Proof
(2n+ 1)2 = 8Trin + 1This diagram is given for n = 3.Schematic Proofproof(n) = [(split inner dot; 1); (split tframe; 1); (cut diagonally; 4)]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(square; [2n+ 1])])=(8
 [diagram(triangle; [n])]@[diagram(row; [1])])which is proved by the base case method.B.12 Triangular Equality for Even SquaresExample Proof
(2n)2 = 8Trin�1 + 4nThis diagram is given for n = 4.



B.13. COMMUTATIVITY OF MULTIPLICATION 213Schematic Proofproof(n) = [(split2four; 1); (cut diagonally; 4); (split side; 4)]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n+ 1); [diagram(square; [2(n+ 1)])])=(8
 [diagram(triangle; [n])])@(4 
 [diagram(row; [n+ 1])])which is proved by the base case method. Note that the veri�cation proof is for n+ 1rather than n to eliminate the need for a predecessor function which is required inTrin�1.B.13 Commutativity of MultiplicationExample Proof
n� (n+ 3) = (n+ 3)� nThis diagram is given for the instance n = 5. Note that this is not a general caseof commutativity of multiplication, because the second argument of multiplication isnot independent of the �rst argument. Diamond can extract schematic proofs for oneuniversally quanti�ed variable. Hence, if the second argument of multiplication wasanother universally quanti�ed variable thenDiamond would be incapable of extractinga schematic proof.Schematic Proof proof(n) = [(rotate90; 1)]Veri�cation ProofThe veri�cation theorem for the schematic proof is expressed as:apply(proof(n); [diagram(rectangle; [n; n+ 3])])=[diagram(rectangle; [n+ 3; n])]which is proved by the base case method.



Appendix CUser Manual for Diamond
Here we give some basic instructions for constructing diagrammatic proofs using Dia-mond. In xC.1 we explain how to start up a Diamond session. In xC.2 we show theuser how to construct examples of a diagrammatic proof. Some discussion about theabstraction of a schematic proof is given in xC.3, and about its correctness in xC.4.In xC.5 we explain how to store diagrammatic proofs and how to reuse them in someother proofs. Finally, we address some miscellaneous issues in xC.6.C.1 Starting UpDiamond is a proof system which allows you to construct diagrammatic proofs. Thereare three main principles that you should keep in mind:� Diamond allows the user to construct theorems of natural number arithmeticwith one universally quanti�ed variable | parameter n (see Chapter 3). Notethat natural numbers are represented in Diamond as collections of dots forminga diagram.� The user needs to construct two instances of a diagrammatic proof, i.e. for twovalues of the parameter n (see Chapter 5 and Chapter 6).� Diamond can automatically extract a general schematic proof (see Chapter 7)and check if it is a correct proof of a theorem (see Chapter 8).The software needed to run Diamond includes Standard ML of New Jersey Version109, Tcl/Tk, SmlTk, Clam, and of course, Diamond. In Appendix D we give detailedinstructions for obtaining all the necessary code.The user starts by running SmlTk. At the prompt, you write:use "root.sml";and then wait for about �ve minutes, depending on how fast your machine is. Notethat during loading Diamond a window called clam-server will pop up. When the214



C.2. CONSTRUCTING EXAMPLES OF PROOFS 215code for Diamond is compiled and loaded, you can start Diamond. To begin with aDiamond session you type at the prompt:Diamond.go();Two more windows will emerge, the main one called DIAMOND and another one calledPROOF TRACE. You will construct proofs in the main window. The menus of themain window called DIAMOND are explained in more detail in x5.6. The PROOFTRACE window keeps track of all your steps, so you can see what has been done sofar. Now you are ready to construct diagrammatic proofs with Diamond.C.2 Constructing Examples of ProofsIf you just want to explore various combinations of diagrams and operations, thenchoose from the menu a diagram of your choice and click on the diagram to choose theoperations available to you.If you want to construct a diagrammatic proof, then you should have in mind a theoremfor which you want to �nd a proof. Type the theorem into the �eld labelled by Theorem:using the syntax of Diamond (see x8.10.2). The theorem should be expressed as anequality. Now type into the �eld labelled by Value of n: the instance of the theoremfor which you will construct an example proof.Now choose from a Diagram menu diagrams that you think represent one side of thetheorem. Note that the instance of each diagram that is chosen has to be the same asthe value of n that you entered. You can apply the operations that are available to youfor a particular diagram by pointing to a diagram and clicking on it with the middlebutton of your mouse. The left button of your mouse can be used to move diagramsaround.Once you are �nished with the operations, and you have transformed the initial dia-grams so that they now represent the other side of the equality expressing the theorem,you can save your example proof by clicking on the button called Store Example.To get a general proof you will need to construct another example proof for anotherinstance of a theorem, i.e. value of n. You may choose any instance, apart from thebase case of the proof, because the base case might be a special case, i.e. di�erentfrom the other uniform cases. If there are more cases of proofs, say one for even n andone for odd n then you need to construct two example proofs for the same case of theproof. Enter the the value of n in the appropriate �eld. Also, make sure you follow therestriction on the order of operations in both example proofs (see x5.4 and x11.2.3).Once you have another example proof remember to store it.C.3 Abstracted Schematic ProofBy this point you should have two examples of a diagrammatic proof constructed andsaved. To try to get a general schematic proof click on a button called Abstract



216 APPENDIX C. USER MANUAL FOR DIAMONDExamples.If the abstraction is successful and the proof is 1-homogeneous (see x7.3) then theabstracted schematic proof is complete. You should proceed to verify that it is correct.If the abstracted schematic proof is c-homogeneous, then there are c cases of the proof.You have constructed only the proof for numbers that give a remainder r when dividedby c, where r � c. To derive the smallest complete de�nition of a schematic proof, youneed to supply examples proofs which when abstracted form schematic proofs for thenumbers that give the other remainders r0 when divided by c, where r0 6= r and r0 � c.See x7.3 and x7.6 for more explanation of c-homogeneous schematic proofs.If the abstraction from example proofs that you constructed is not successful, thenthere are various things that might have gone wrong. Please, check the limitationsof Diamond in x9.5 for some restrictions that need to be followed in Diamond todate. If these requirements are not satis�ed in the construction of example proofs thenDiamond's abstraction mechanism fails to extract a schematic proof.
C.4 Is it Correct?You now should have the smallest complete recursive de�nition of a schematic proofcalled proof. The schematic proof needs to be checked to be correct to ensure that it isa correct formal proof of a theorem. Read some limitations of Diamond's veri�cationmechanism in x9.5.3 to check which kinds of schematic proofs you cannot verify inDiamond to date.You should be able to verify 1-homogeneous schematic proofs. To do so, choose Verifyfrom the menu and select Verify Schema which will check the correctness of yourcurrently abstracted schematic proof. You can follow the veri�cation process, which iscarried out in Clam, in the window called clam-server. Diamond will inform you ifthe schematic proof could be veri�ed. If the veri�cation fails, you can check for somepossible reasons in x9.5.3.
C.5 Import | ExportOnce you have veri�ed the schematic proof you can save it on disk for future investig-ation or use in other proofs. Note that you can also save unveri�ed schematic proofs.To do so, choose Save from the File menu.In case you want to use previously stored proofs in your current example proof, youcan add them to your currently available library by selecting Import Schema from theFile menu. The schematic proof will be added to the Library and Replay menu.



C.6. MISCELLANEOUS 217C.6 MiscellaneousOther features that Diamond provides include replaying schematic proofs and brows-ing through the library of schematic proofs. Given that a schematic proof has beenstored on the disk and then imported into the current Diamond session, then the proofis available for browsing at any point during the session from the Library menu.The user can also watch a simulation of an example proof process by instantiating anavailable, i.e. imported, schematic proof. This is called a \replay". The user is requiredto provide the value for n, i.e. the instance for which a replay should be simulated.Selecting Replay from the menu will start a simulation.



Appendix DCode
Here we give instructions for obtaining the code for Diamond by anonymous ftp or byaccessing the ftp site web page of the Mathematical Reasoning Group in the Depart-ment of Arti�cial Intelligence at Edinburgh University.D.1 Ftp and Web Site InstructionsThe code for Diamond is available by anonymous ftp from dream.dai.ed.ac.uk inthe directory pub/misc.D.1.1 Step by Step InstructionsTo retrieve a copy of the code from the ftp server please follow this example.% ftp dream.dai.ed.ac.uk220 achtriochtan FTP server (SunOS 4.1) ready.Name : anonymousPassword: (please enter your email address)(it is not seen on the screen )ftp> cd pub/miscftp> binaryftp> get Diamond.v1.0.tar.Z (or latest numbered version )ftp> quit% uncompress Diamond.v1.0.tar.ZIf you want to use a web browser then access the following web pagefile : ==dream:dai:ed:ac:uk=pub=misc=and click on the �le named Diamond.v1.0.tar.Z and save it into your �le space.218



D.2. OTHER SOFTWARE NEEDED 219You now have a tar �le Diamond.v1.0.tar which can be extracted into the codefor the system. If you do not have uncompress or tar please contact your sys-tem administrator. If you encounter any problems with this service please emailgordon@dai.ed.ac.uk with details.D.2 Other Software NeededYou will also need the following software:Standard ML of New Jersey version 109 : Publicly available from the followingweb page:http://cm.bell-labs.com/cm/cs/what/smlnj/index.htmlTcl/Tk Publicly available from the following web page:http://www.scriptics.com/SmlTk Publicly available from the following web page:http://www.informatik.uni-bremen.de/~cxl/sml tk/Clam version 2.7.0 Publicly available from the following web page:http://dream.dai.ed.ac.uk/D.3 Getting StartedFollow the instructions on the listed web pages to install all the systems. The top level�le is called root.sml. To run Diamond you will need to change the path names inthe �le root.sml to reect the location of the �les on your system. Consult the UserManual in Appendix C for instructions on how to start a Diamond session.



Glossary
Abstract DiagramAn abstract diagram is a general diagram given for some general value, and usesabstractions such as ellipsis to represent the generality (cf. concrete diagram).AbstractionAbstraction is sometimes referred to as inductive inference, inductive learning orgeneralisation. It is a process of extracting a general argument from its examples.In this thesis it refers to extracting a schematic proof from example proofs.Another meaning of abstraction in this thesis is to refer to an abstraction device,such as ellipsis, to represent general diagrams (cf. abstract diagram)Algebraic (Logical) ProofAn algebraic proof is a proof in some logical theory consisting of chains of logicalformulae of this theory. The proofs starts from some axioms and applies thechain of formulae to the axioms to arrive at the statement of the theorem.Concrete DiagramA concrete diagram is an instance of an abstract diagram, and is given for someparticular values. No abstractions are needed to represent it (cf. abstract dia-gram).Dependency FunctionA dependency function is a linear function which by instantiation generates anatural number. This natural number indicates how many times a geometricoperation is applied to the same instance of a diagram.Diagrammatic Inference StepsDiagrammatic inference steps are the geometric operations applied to a diagram.Chains of diagrammatic inference rules, speci�ed by the schematic proof, formthe diagrammatic proof of a theorem.220



GLOSSARY 221Diagrammatic ProofA diagrammatic proof is a schematic proof which has been checked to be correct(cf. schematic proof).Example ProofAn example proof is a proof of an instance of a theorem of natural numberarithmetic. It is an instance of a general diagrammatic proof. It is a list ofoperations applied in the proof. Several example proofs are used to extract ageneral diagrammatic proof.General DiagramSee abstract diagram.x-Homogeneous ProofsAn x-homogeneous proof is a schematic proof for which there are x cases ofthe proof, for all values less or equal to x. The proof is x-homogeneous if allinstances of the proof (for instances of numbers that equal modulo x) have thesame structure and can be abstracted to a schematic proof. All x cases need tobe de�ned to have the smallest complete de�nition of a general diagrammaticproof.Instance of ProofSee example proof.Instance of TheoremAn instance of a theorem is an instantiation of a universally quanti�ed theoremfor a particular value of a quanti�er.InstantiationInstantiation is a process of replacing a variable with some value. Instantiationof a function is a process of assigning values to the arguments of the functionand evaluating the function for these values.Internal RepresentationAn internal representation of a diagram is a structure, or a data type used in-ternally on the computer to represent a diagram.Meta InductionA meta induction is a rule of inference in some logical theory which makes anassertion about proofs rather than object level statements.



222 GLOSSARYMeta Level StatementA meta level statement is a statement about an object level statement, usingsome logical theory.Multiple RepresentationA multiple representation of a diagram is a collection of di�erent ways of viewingthe same diagram. For instance, a square can be viewed as a collection of columnsor as a collection of rows.Object Level StatementAn object level statement is a well-formed term, proof or inference step of thelogic in use.OperationsSee diagrammatic inference steps.Proof MethodA proof method is a partial speci�cation of a tactic. Applying a method to agoal generates a list of subgoals that need to be proved. A method speci�es theproof steps that the tactic performs to construct an object level proof.Proof PlanProof plan is an abstract proof speci�cation consisting of methods which need tobe applied to get an object level proof. A proof plan is found by proof planning.Proof PlanningProof planning is a technique for �nding proofs for mathematical theorems. Thepossible operators available at any stage are restricted to a set of tactics, whosepreconditions are speci�ed as methods.Proof TacticA proof tactic is a program whose execution carries out part of a proof. It consistsof a sequence of inference rules in some proof checking system.Recursive FunctionA recursive function is a function which appeals to itself without an in�niteregression.RipplingRippling is a process of rewriting formulae using special annotations (for moreinformation see [Bundy et al 93]).



GLOSSARY 223Schematic ProofA schematic proof is a recursive function describing a proof of some propositionP (n) in terms of n. A diagrammatic schematic proof speci�es the geometricoperations which need to be applied in the proof.Sentential Inference StepsSentential inference steps are logical rewrite formulae (cf. diagrammatic inferencesteps) used in an algebraic (logical) proof.Standard InductionA standard induction is a rule of inference in some logical theory which makesan assertion about an object level statements (cf. meta induction).
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