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Abstract

This thesis is on the automation of diagrammatic proofs, a novel approach to mech-
anised mathematical reasoning. Theorems in automated theorem proving are usually
proved by formal logical proofs. However, there are some conjectures which humans
can prove by the use of geometric operations on diagrams that somehow represent
these conjectures, so called diagrammatic proofs. Insight is often more clearly per-
ceived in these diagrammatic proofs than in the algebraic proofs. We are investigating
and automating such diagrammatic reasoning about mathematical theorems.

Concrete rather than general diagrams are used to prove ground instances of a univer-
sally quantified theorem. The diagrammatic proof is constructed by applying geometric
operations to the diagram. These operations are the inference steps of the proof. A
general schematic proof is extracted from the ground instances of a proof. It is rep-
resented as a recursive program that consists of a general number of applications of
geometric operations. When given a particular diagram, a schematic proof generates
a proof for that diagram. To verify that the schematic proof produces a correct proof
of the conjecture for each ground instance we check its correctness in a theory of dia-
grams. We use the constructive w-rule and schematic proofs to make a transition from
concrete instances to a general argument about the diagrammatic proof.

The realisation of our ideas is a diagrammatic reasoning system DIAMOND. DIAMOND
allows a user to interactively construct instances of a diagrammatic proof. It then
automatically abstracts these into a general schematic proof and checks the correctness
of this proof using an inductive theorem prover. Unlike other existing systems which
use diagrams to construct essentially symbolic proofs, DIAMOND reasons with diagrams
directly, so all the inference rules of a proof are diagrammatic.

Despite a popular view of logicians from the past century that diagrams cannot be
used in formal proofs, we show the contrary. The general diagrammatic proof frame-
work presented in this thesis is a formalisation of diagrammatic reasoning. DIAMOND
provides an environment in which formal diagrammatic proofs of mathematical theor-
ems can be constructed.
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Chapter 1

Introduction

n?=1+3+5+ -+ (2n—1)

NICOMACHUS OF GERASA (circa A.D.100)
in NELSEN’s Proofs Without Words

This thesis is about mathematical reasoning with diagrams. Human mathematicians
often informally use diagrams when proving theorems. We investigate whether we can
mechanise this kind of diagrammatic reasoning in a formal computer proof system.
Diagrams have been used as an aid in mathematical reasoning as far back as the time
of Euclid. They seem to convey information which is easily understood by humans.
For example, it requires only basic secondary school knowledge of mathematics to
realise that the diagram above is a proof of a theorem about the sum of odd naturals.
We call such proofs diagrammatic proofs. In this thesis we present an investigation
into formalising diagrammatic reasoning, and a concrete result of this investigation, a
semi—automatic formal proof system, called DIAMOND, which allows a user to prove
theorems of arithmetic using diagrams.

1.1 Motivation

It is an interesting property of diagrams that allows us to “see” and understand so
much just by looking at a simple diagram. Not only do we know what theorem the
diagram represents, but we also understand the proof of the theorem represented by
the diagram and believe it is correct.



2 CHAPTER 1. INTRODUCTION

Is it possible to simulate and formalise this sort of diagrammatic reasoning on ma-
chines? Or is it a kind of intuitive reasoning particular to humans that mere machines
are incapable of?7 Roger Penrose claims that it is not possible to automate certain
diagrammatic proofs.! We are taking his position as a challenge and are trying to cap-
ture the kind of diagrammatic reasoning that Penrose is talking about so that we will
be able to emulate it on a computer. Our motivation is not to discover diagrammatic
proofs, but to study them in order to understand them better and be able to formalise
them.

The importance of diagrams in many domains of reasoning has been extensively dis-
cussed by Larkin and Simon [Larkin & Simon 87], who claim that “a diagram is (some-
times) worth ten thousand words”. The advantage of a diagram is that it concisely
stores information, explicitly represents the relations among the elements of the dia-
gram, and it supports a lot of perceptual inferences that are very easy for humans.
Diagrams have been extensively used in the history of mathematics to aid informal
mathematical reasoning. The use of diagrams in explanations of theorems and proofs
of geometry dates back to Ancient Greece, and the time of Aristotle and Euclid. Thus
it is surprising perhaps that more recently, starting with the invention of formal ax-
iomatic logic in the sense of Frege, Russell and Hilbert, diagrams have been denied a
formal role in theorem proving. It is generally thought by logicians that diagrams have
no accepted syntax nor semantic theory in a logical formalism which would make them
rigorous enough to be used in formal proofs. Only very recently, in the last two dec-
ades, there have been efforts to fill this gap and investigate whether and how diagrams
can be used in formal proofs ([Sowa 84], [Kaufman 91], [Barker-Plummer & Bailin 92],
[Barwise & Etchemendy 94|, [Stenning & Oberlander 95], [Shin 95|, [Hammer 95]).

Alongside the revival of research on formal aspects of using diagrams, investigations
have also been carried out in other directions with different perspectives on the use of
diagrams. These can be characterised into three groups of research perspectives:

e computational,
e cognitive,

e knowledge representation.

From a computational perspective, Lindsay devised a computational model of human
reasoning with diagrams [Lindsay 98], and claims that diagrams are sometimes more
efficient for solving problems than the logical machinery. Glasgow makes a distinction
between visual and spatial reasoning [Glasgow & Papadias 92]. Stenning and Ober-
lander in [Stenning & Oberlander 95] introduce computational models for interpreting
Euler’s circles [Euler 1795]. They also carry out a comparative analysis of the express-
iveness of diagrammatic and sentential representations in [Stenning & Oberlander 92].
From a cognitive perspective, Johnson-Laird [Johnson-Laird 83], and Hegarty and
Just [Hegarty & Just 93] argue that humans, at least in some cases, use diagrams
in their mental models of a situation. Mental imagery has been studied by Pylyshyn
[Pylyshyn 81], Pinker [Pinker 85] and Kosslyn [Kosslyn 93], amongst others. From the

! Roger Penrose presented his position in the lecture at International Centre for Mathematical Sciences
in Edinburgh, in celebration of the 50th anniversary of UNESCO on 8 November, 1995.
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knowledge representation perspective, a lot of work on various kinds of representations
has been carried out by Sloman and Hayes (see [Sloman 71|, [Hayes 74], [Sloman 96]).

Our work contributes in some sense to the effort in the research from the formal
perspective on the use of diagrams, especially that of automated reasoning systems
which use diagrams in the reasoning process. Automated reasoning systems have their
roots back in the fifties when the first programs were written that could automatically
prove simple theorems of propositional logic. As a result of growing interest in the
research on automated reasoning we have today many sophisticated systems such as
the theorem prover of Boyer and Moore (see [Boyer & Moore 90]) and Isabelle (see
[Paulson 89]) in which one can prove complex theorems of mathematics.

However, during all these years, perhaps due to the influence of axiomatic logic, re-
searchers have concentrated their efforts in improving the exact, rigorous and formal
proof searching algorithms for a particular formal system of logic. In their efforts they
have neglected the beauty and power of informal, intuitive reasoning of human math-
ematicians. There are exceptions including work by Gelernter (see [Gelernter 63]) and
Bundy. Bundy argued in [Bundy 83] that in order to progress in computational logic,
we need to go further and consider these informal aspects of human reasoning.

Our work supports this argument. We investigate informal human reasoning with
diagrams and formalise it so that it can be carried out on machines. We build a meta
theory in which diagrammatic proofs are formal. The issues which are addressed in
this process include formality, informality and rigour of diagrams in proofs. We hope
to gain an insight into the understanding of diagrammatic proofs.

1.2 Aims

The concise storage of information, the intuitive representation of relations amongst
elements of diagrams, and the support of perceptual inferences that humans seem to
find easy to understand, are the characteristics of diagrams that we exploit in the
research reported in this thesis. Our aim is to formalise diagrammatic reasoning and
to show that diagrams can be used for proofs in a formal system.

Diagrams are concrete in nature. Unless we use abstraction? devices to represent
the generality of a diagram (e.g. ellipsis), the diagram is a particular instance of the
general class to which it belongs. The use of abstraction devices in diagrams seems
to be problematic, because it is difficult to keep track of them while manipulating
a diagram. It seems that humans do not manipulate such abstractions, but reason
with concrete objects and infer the generality in some other way. We aim to capture
diagrammatic proofs in a similar fashion on a computer. We use the concreteness
property of diagrams and look into how theorems of mathematics can be expressed as
diagrams for some concrete values, i.e. ground instantiations of a theorem.

2 Note that in this thesis the word abstraction has two meanings due to a lack of two different
appropriate words. First, an abstraction refers to some abstraction device, such as ellipsis, used in
a diagram to represent its generality. Second, it refers to the abstraction mechanism which extracts
a general proof from examples of a proof. We avoid using both meanings in the same sentence as
much as possible.
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The initial diagrams are manipulated using some geometric operations which decon-
struct diagrams in different ways, but preserve certain properties. For instance, if a
diagram represents a natural number, then the collection of diagrams which is a res-
ult from applying some operation to the initial diagram represents the same natural
number. The sequence of geometric operations on a diagram represents the “inference
steps” of a diagrammatic proof. This is a novel approach to proving theorems, which
to the best of our knowledge, has not been undertaken before in other research on the
automation of diagrammatic reasoning (see the literature survey in Chapter 2). Rather
than using sentential formulae of some logic to prove a mathematical theorem, we use
visual manipulations of diagrams. The fact that the operations are visual seems to
make them intuitively easier to understand and use for humans. No specialised know-
ledge of logic is required, just some familiarity with spatial manipulations. A concrete
proof instance is called an ezample proof, and consists of a sequence of operations
applied to the concrete diagram. The set of all available operations defines the proof
search space.

As humans seem to use other machinery to infer the generality of a diagram, or a
theorem and its proof that the diagram conveys, we too need to find an alternative
mechanism to capture a general proof. We do so by extracting a general pattern
from several proof instances, and capture it in a recursive program, called a schematic
proof. This recursive program allows us to conclude a general diagrammatic proof for
the universally quantified theorem.

Finally, a general schematic proof which is inferred from the instances has to be shown
to be correct. It seems that humans sometimes omit this step all together. Human
machinery for extracting a general argument is usually convincing enough to reassure
them that the general argument is correct, e.g. consider the proof at the beginning of
this chapter. In an automated reasoning system, we need to show formally the correct-
ness of the induced general argument. This confirms that a diagrammatic schematic
proof is indeed a correct formal proof of a theorem. We use the constructive w-rule,
an existing technique in logic, to justify the step from schematic proofs to theorem-
hood. [Baker et al 92] investigated this rule in the domain of arithmetic theorems.
The constructive w-rule allows us to capture infinitary concepts in a finite way using
the diagrams. In this thesis we aim to investigate the entire process of constructing
examples, extracting a general proof, and showing that the general proof is correct.
Together, all three stages constitute our formalisation of diagrammatic proofs.

Having formalised the use of diagrams in proofs it is interesting to investigate the
relation between formal algebraic proofs and more “informal” diagrammatic proofs.
Usually, theorems are formally proved with the use of inference steps which often
do not convey an intuitive notion of truthfulness to humans in quite as easy way as
diagrams do. The inference steps of a formal symbolic (as opposed to diagrammatic)
proof are statements that follow the rules of some logic. The reason we trust that they
are correct is that the logic has been previously proved to be sound. Following and
applying the rules of such a logic guarantees that there is no mistake in the proof.
We hope to have such a guarantee in our proof system, and moreover, to gain a more
informal insight into the proof. Ultimately, the entire process of diagrammatically
proving theorems will illuminate the issues of formality, rigour, truthfulness and power
of diagrammatic proofs.
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1.3 Contributions

There are three main contributions made by our work. First, our research introduces a
novel approach to automated reasoning about mathematical theorems. There has been
little work done on the automation of systems which use diagrams in such a direct way
as our system DIAMOND, where all of the traditional formal rules of some logic which
are expressed as sentential formulae, are completely replaced by geometric operations
on diagrams. Thus, all the inference rules of DIAMOND are diagrammatic.

Second, the research reported in this thesis shows that diagrams can be used for formal
proofs. Moreover, formal proofs are not just aided by diagrams, but can be constructed
using only diagrams and operations on them. We formalise diagrammatic reasoning
in a particular domain of mathematics, and implement a reasoning system DIAMOND
which is capable of diagrammatically proving a number of theorems (Chapter 9).

Finally, we show how the constructive w-rule can be used to reason with particular in-
stances of diagrams rather than with abstractions in general diagrams. We demonstrate
how this technique can be used to capture general diagrammatic proofs (Chapter 4).

These three contributions are embodied in an implementation of a diagrammatic proof
system called DiIAMOND (Diagrammatic Reasoning and Deduction),> which auto-
mates diagrammatic reasoning and applies it to problem solving in mathematics. DIA-
MOND is a body of Standard ML of New Jersey code which interactively, via a graphical
user interface, allows a user to construct diagrammatic proofs.

The construction of diagrammatic proofs in DIAMOND consists of three steps.

e The user interactively constructs examples of proofs by choosing an initial dia-
gram which represents the theorem (Chapter 5), and then applies diagrammatic
operations (Chapter 6) to build a proof.

e DIAMOND then automatically extracts a general pattern from these instances,
and captures it in a recursive program, called a schematic proof. (Chapter 7)

e The final step is to check if the general diagrammatic proof is correct. DIAMOND
automatically verifies a given schematic proof. (Chapter 8)

The main criticism of DIAMOND is that its expressiveness of diagrammatic rules is
limited. It seems that there are rules which cannot be expressed as manipulations of
diagrams with the current repertoire. Indeed, there might be theorems which consist of
terms that cannot be expressed as diagrams. To overcome these weaknesses DIAMOND
needs to be extended with some additional diagrams and operations on them. Our
diagrammatic approach can also be applied to other problem domains (e.g. geometry,
hardware verification). Finally, an interesting direction for future work is to extend
DI1AMOND to a fully automated theorem prover which discovers diagrammatic proofs.

There is a potential for the ideas we present in this thesis to be used for exploring
human intuitive reasoning in a novel way. We think that humans find diagrammatic

3 1 should like to thank Gavin Bierman for inventing the name for this system.
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proofs easier to understand and more compelling than their logical counterparts. We
have only anecdotal evidence to support our belief. However, some comparative psy-
chological validity experimental study could be carried out. We propose that such a
study could use DIAMOND to provide an architecture where the diagrammatic proofs
can be constructed and explored in order to gain an insight into the understanding of
the proof.

1.4 Layout of Thesis

Here is the organisation and the layout of this thesis. We give a brief description of
each chapter in order to give an overall picture of the research reported in this thesis,
and to point the reader to a specific topic of interest.

Chapter 1, Introduction. This chapter. We introduced the topic of this thesis, i.e. the
formalisation of a diagrammatic reasoning system in mathematics.

Chapter 2, Literature Survey. We report extensively other people’s work on three
topics which are related to our work: the representation of diagrams, the ab-
straction mechanism for inducing general arguments from specific ones, and on
other automated diagrammatic reasoning systems.

Chapter 3, Diagrammatic Theorems and Problem Domain. We identify theorems
which lend themselves to diagrammatic representations. We devise a taxonomy
of diagrammatic theorems which helps us choose a domain of problems on which
we focus our attention.

Chapter 4, Constructive w-Rule and Schematic Proofs. We introduce a mathematical
basis, i.e. the constructive w-rule, for justifying the step of inducing a universally
quantified statement from its instances. In particular, the rule allows us to cap-
ture a general diagrammatic proof by a recursive program, i.e. a schematic proof,
which consists of applications of diagrammatic operations, and is extracted from
concrete examples of a proof using diagrams.

Chapter 5, Design Considerations. This is where the description of our diagrammatic
proof system DIAMOND starts. Several theoretical issues which need to be ad-
dressed in the design of DIAMOND are discussed here. They include DIAMOND’s
notion of a proof, the construction of examples of proofs, the representation of
diagrams, DIAMOND’s architecture and its interface.

Chapter 6, Diagrammatic Operations. The inference steps of a diagrammatic proof are
operations on a diagram, therefore we define them here and give some examples.

Chapter 7, Extraction of Schematic Proofs. A diagrammatic proof is captured by using
a schematic proof. We define the formalisation of schematic proofs. A mechanism
for abstracting a general schematic proof from examples of a diagrammatic proof
is described here.

Chapter 8, Verification of Schematic Proofs. The mechanism for extraction of a
schematic proof is an inductive inference algorithm. It is a machine’s attempt to
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make an “intelligent” guess of what the general proof is. This “guess” needs to
be verified and formally shown to be correct. In this chapter we define a way of
carrying out the verification, in particular, we devise a theory of diagrams where
we can check for correctness of a schematic proof.

Chapter 9, Results and Evaluation. We list some of the theorems that DIAMOND is
capable of proving, and go through one particular example of a theorem and its
diagrammatic proof. We also discuss some of the limitations of DIAMOND to
date.

Chapter 10, Related Work. We relate several aspects of our research to the work of
other researchers. One of these aspects is the comparison between DIAMOND and
other diagrammatic reasoning systems.

Chapter 11, Further Work. We describe possible future tasks which could improve
and extend DIAMOND. We also give some ideas for taking our research further
in another research project which looks at creating a completely automated dia-
grammatic theorem prover.

Chapter 12, Conclusions. Finally, we end with some concluding remarks.

Appendix A, More Ezamples of Diagrammatic Theorems. Some more examples of
theorems and their diagrammatic proofs are given here.

Appendix B, Complete Results. We present the diagrams, the schematic proofs and
their verification for all the diagrammatic proofs that DIAMOND can extract.

Appendix C, User Manual. We give the reader all the necessary information to be
able to use DIAMOND to construct diagrammatic proofs.

Appendix D, Code. We give the reader all the necessary information to obtain the
code and to install it on a computer to be able to run DIAMOND.



Chapter 2

Literature Survey

A
D
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— H. GELERNTER

Realization of a Geometry Theorem Proving Machine

This chapter is a survey of several aspects of the work done in the area of reasoning
and its automation. In particular, we identify four issues which are of interest in the
automation of diagrammatic reasoning system: the internal representation of diagrams,
the abstraction mechanism for inducing general arguments from specific ones, a general
survey of systems which mechanise the use of diagrams in some way, and the use of the
constructive w-rule in schematic proofs. The first three of these issues are discussed in
this chapter, whereas the last will be discussed in the Chapter 4.

In §2.1, we set the context within which we survey the work done on each of the
three topics. In §2.2, we discuss some possible techniques for internal representation of
diagrams on a computer. In §2.3, we present some abstraction mechanisms. Finally, in
§2.4 we describe some diagrammatic reasoning systems which have been implemented
in the past. The main intention of surveying the first two topics, i.e. the representations
of diagrams and the abstraction mechanisms, is to provide us with some choices from
which we can either select the appropriate technique which suits the requirements of
our research project, or use some features of these techniques in devising our own.
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2.1 Context

One of the aims of our research is to formalise a diagrammatic reasoning system which
proves theorems of mathematics with geometric operations on a diagram rather than
using formulae of some logic. The geometric operations on a diagram capture the
inference steps of the proof. Therefore, one of the important issues in the design of
such a system is the internal representation of diagrams. The intention is to exploit
the concreteness property of diagrams by which we mean that diagrams which are
used in the construction of a proof are of a particular rather than general magnitude.
For instance, if a proof involves carrying out some operations on a square, the user
manipulates a square of some concrete magnitude, rather than a general square of
magnitude, say, n. This proof procedure is only an instance of a general proof. A
general proof needs to be extracted from several instances, i.e. examples of proofs. We
refer to the extraction of a general proof from examples as an abstraction. Therefore,
another important issue which needs to be addressed in our research is the abstraction
mechanism which is used to infer general arguments from specific ones. Finally, we are
interested in existing diagrammatic reasoning systems which are related to the research
of the use of diagrams for proofs that we carry out and report on in this thesis.

Our intention is to introduce a suitable representation for the diagrammatic reasoning
system’s internal representation of objects and manipulations. These need to capture
the intuitiveness, rigour and simplicity of human perception when reasoning with dia-
grams. A computer does not yet possess the complex visual perception capabilities of
humans. Therefore, an appropriate representation of diagrams and operations on them
which enables a system to reason by non-visual means needs to be chosen. In §2.2 we
discuss some representations of diagrams which are available to us for the internal rep-
resentation of diagrams. These include Cartesian representation, projective geometry,
diagrams on a raster, vector representation and topological (relational) representation.
Our choice of the representation for implementation of diagrams and operations will
be discussed in §5.5.

As already mentioned, we intend to automate the abstraction of a general diagrammatic
proof from instances of a proof. There are many techniques for the implementation
of the abstraction mechanism which are available to us. The work on abstraction
techniques has been a very vibrant research topic in the area of machine learning. In
§2.3 we present several existing abstraction techniques. These include Plotkin’s least
general generalisation, Biermann’s method, Bauer’s method, Anderson and Kline’s
method, Mitchell’s version space, Quinlan’s ID3, Inductive Logic Programming, and
Baker’s method. Our choice of the abstraction technique will be discussed in §7.4.

Finally, in §2.4 we describe several other diagrammatic system which have been im-
plemented. They all use diagrams for reasoning in some way: to store information, to
reject false facts, to infer new facts, etc. We present systems whose problem domain is
Euclidean plane geometry, but we briefly mention other systems as well. We concen-
trate in more detail on Gelernter’s Geometry Machine, Koedinger and Anderson’s DC,
Barker-Plummer and Bailin’s GROVER, and Barwise and Etchemendy’s Hyperproof,
because these seem to be closest to our research in the use of diagrams for problem
solving.
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2.2 Representations of Diagrams

Generally, there are two main classes of representation, analogical and propositional.
However, there is also a mixed knowledge representation which contains elements of
both, analogical and propositional representation. Analogical and propositional rep-
resentations are perhaps too specialised forms of representation, whereas mixed rep-
resentation allows more flexibility. All three kinds of representations will be described
next.

2.2.1 Analogical Representation

Analogical representation is also sometimes called a direct or homomorphic representa-
tion. The syntax of such a representation models the semantics of the problem domain.
The definition of analogical knowledge representation comes from [Sloman 85]:

“If R is an analogical representation of T, then there must be parts of R
representing parts of T, [...] and it must be possible to specify some sort of
correspondence, possibly context-dependent, between properties or relations
of parts of R and properties or relations of parts of T, [...]”

Take for example, a cube to be the system T'. Its representation R might be some two
dimensional drawing of the cube where the lines in the diagram represent the edges
of the cube, points or dots might represent the vertices, dotted lines might represent
hidden edges, regions represent faces of the cube, etc. Furthermore, the properties
of T such as three dimensional configurations of edges and surfaces of the cube can
be analogically represented in R as different relationships between lines meeting at a
point.

Note that not all relations in R need to be analogically named from T'. It is difficult
for the angles between edges or between surfaces of the cube in T to be represented
correspondingly in R as angles between lines. Therefore, the interpretation of the
analogical representation might involve a large range of very complex procedures, where
some representations might even be ambiguous. Analogical representation seems to
be quite a specialised one which suits some problems better than others. We will
discuss our choice of representation in §5.5 after we present the requirements which
the representation of diagrams should meet.

2.2.2 Propositional Representation

Propositional representation is also called Fregean or sentential (see [Sloman 71] and
[Sloman 85]). The structure of R does not correspond to the semantics of T. Parts
and relationships of the representation of T' are not related to the problem domain.
For example, if T' is a cube, then its propositional representation R could be:

{(0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1,)}
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The structure of the phrase “lower-left-front vertex of the cube” and the semantics
of the point (0,0,0) do not correspond naturally. Their relationship is decided by
a convention. We just know (decided by the use of Cartesian representation) that
one represents the other. Programming languages, or natural languages, or predicate
calculus are propositional to some extent, because they use sentential representations
of the problem which do not correspond to the semantics of the problem. Their relation
is defined by a generally accepted convention.!

2.2.3 Mixed Knowledge Representation

Note that the two categories of knowledge representation given in §2.2.1 and §2.2.2 are
not exhaustive. A representation could be partly analogical and partly propositional
at the same time, or none of these at all. The representation could equally be a
flexible one, ranging between a domain dependent analogical representation and a
general propositional structure. We could perhaps say that the representations differ
in the degree that they are analogical or propositional. A balanced mix of analogical
and propositional representation is a good candidate for a problem if it allows us to
represent the problem so that the required detail is not abstracted away. At the same
time the problem should not be overloaded with unnecessary detail.

Ideally, we would like to use analogical representation for diagrams, because it seems
closer to human visual perception of diagrams. However, diagrams need to be repres-
ented on a computer, which is more suited to manipulating symbols. This suggests
using a propositional representation for diagrams. It appears that neither analogical
nor propositional representation alone is sufficient for mechanised diagram represent-
ation, which perhaps suggests we should use a mixed representation. In this section
we discuss various kinds of mixed representation. The analysis of, and the discussion
about our choice of representation for diagrams in the scope of the implementation of
our diagrammatic reasoning system will be given in §5.5.

The representations given in the subsequent sections do not fall under the two main
categories listed above (i.e analogical and propositional knowledge representation),
but rather contain an element of each. They are potential candidates for the flexible
representation mentioned:

[a—y

. Cartesian representation [Descartes 1637],
2. Projective geometry [Zisserman 92],

3. Diagrams on a raster [Furnas 90,

4. Vector representation [Larkin & Simon 87],

5. Topological (relational) representation.

! There are attempts to create analogical programming languages. Research in visual languages is an
example of this. For more information, the reader is referred to any issue of Journal of Languages
and Computing.
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2.2.4 Cartesian Representation

This is a commonly used representation in geometry. Examples of systems which
use Cartesian coordinates for internal representation of diagrams are the Geometry
Machine by [Gelernter 63] (see §2.4.1) and Polya by [McDougal & Hammond 93]. Dia-
grams are represented in terms of the coordinate system, typically two or three dimen-
sional. In a two dimensional space a point is a pair of numbers which is the coordinate.
Diagrams can be represented as lists of coordinates. For instance, a possible Cartesian
representation of a cube is as follows:

Cube = {(0,0,0), (1,0,0), (0,1,0), (1, 1,0), (0,0, 1), (1,0,1), (0,1,1),(1,1,1,)}

Carrying out operations on geometric objects represented by Cartesian coordinates
requires matrix or other kinds of symbolic manipulations. These manipulations can
be complex and unintuitive even for simple operations. For instance, a translation of
a cube as defined above for S units of magnitude along the z-axis can be defined as:

(S, {(X1,Y1,71),(X2,Y2,22),(X3,Y3,Z3), (X4,Y4, Z4),
(X5,Y5,75),(X6,Y6,26),(X7,Y7,Z7),(X8,Y8,28)})

z-translate

= [(X1+S,Y1,21),(X2+8,Y2, 22),(X3+ S,Y3,23),(X4+ S,V 4, Z4),

(X5+48,Y5,75), (X6 + S,Y6,76),(X7T+S,Y7,27), (X8 + S,Y8, Z8)})

However, computers are efficient at symbolic manipulations of diagrams represented
by Cartesian coordinates.

The reader is referred to the the next section to see how the Cartesian coordinates relate
to homogeneous coordinates, i.e. how Cartesian representation is used in projective
geometry.

2.2.5 Projective Geometry

We list here a few essential definitions that might prove useful in understanding the

projective geometry representation:?

Projective Geometry: geometry where only the properties that are preserved by
projective transformations are defined (e.g. collinearity of points, intersection of
lines, cross ratio; but not distance between points, angles between lines).

Projective Plane: a plane P? on which the projective geometry is defined. It is
modelled by a set of rays in a three dimensional space, where rays emanate from
a common origin.

Invariants: properties of geometric configurations which remain unchanged under
particular transformation (e.g. rotating and translating two points alters their
coordinates, but the distance between the points, i.e. the relative measurement,
remains unchanged).

* For more information, see [Zisserman 92] from where most of the definitions are taken.
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Homogeneous Coordinates: a 3-vector point representation, where a point in two
dimensional space is represented as a vector Z = (z1, 29, z3)", instead of (z,y)".
A plane is represented in homogeneous coordinates by three numbers (z1, 9, z3),
which represent a point Z. One can think about homogeneous coordinates as rays
through the origin in a three dimensional space. Only the direction of the ray is

important, so all points of the form A\ = (Az1, Aza, Az3)! are equivalent (with

A £ 0).

Projective Transformation: also called projectivity; it is a projection from one pro-
jective plane, II, to another, 7, represented as a non-singular 3x3 matrix acting
on homogeneous coordinates, where 7 are the coordinates of the image of X.

In projective geometry points, lines and shapes are represented by homogeneous co-
ordinates on the projective plane. For example, a line is represented by homogeneous
coordinates as follows:

lhx1 +loxg + 1323 =0 or 13 where [ = (ll,l2,l3)t

Note that points and lines of the plane in projective geometry have a symmetric role,
which is called a “Principle of Duality”. Thus, all the statements or theorems concern-
ing points in projective geometry hold also for lines, and vice versa.

2.2.6 Diagrams on a Raster

A raster is a regular, discrete, two dimensional assembly of picture elements (pixels).
The raster image is scanned and inspected, so that the relevant information, such as
shapes and objects, can be extracted from it. With appropriate processing operators
the information is interpreted, so that the system can reason about the components of
the diagram.

The first system developed using this sort of representation for diagrams was called
WHISPER, developed by [Funt 80]. It solved physical problems of stability of rigid
bodies. The diagram was used as a tool, interpreted through a retina component of the
system, and then modified according to the stability of the objects. Another system
using a raster-image for a diagram representation was developed by [Furnas 90] and
was called BITPIC.

The example of a raster diagram representation for a rectangle would be (note that
a different annotation is used for different element of the diagram; e.g. ‘x’ for border
lines, ‘o’ for interior of the rectangle, ‘X’ for the vertices):

XXXXXXXXXXXXXXXXXXXX X
X0000000000000000000X
X0000000000000000000X
X0000000000000000000X
X0000000000000000000X
X0000000000000000000X
XXXXXXXXXXXXXXXXXXXX X
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Raster representation of diagrams does not appear to be very efficient for implementa-
tion due to the fact that a large area of pixels has to be scanned, saved and interpreted
for every input or modification of a diagram. However, it could be argued that it is
analogous to human retinal image, for instance. Hence it could be considered to be
close to the way human perceive diagrams.

2.2.7 Vector Representation

Vector representation is sometimes also called “diagrams as graphs”. It seems to be a
popular way of representing diagrams in a computer, where a diagram is a combination
of a structural and a relational (topological) graph [Kulpa 94]. Purely topological
representation will be discussed in §2.2.8. Vector representation is overloaded with
information for problems that do not require an explicit representation of either the
relations amongst the elements of a diagram, or the structure of a diagram.

Nodes of the structural graph represent elements of the diagram, and edges of the graph
represent various relations between the elements of the diagram. More complex dia-
grams can require several simultaneous structural graph representations, one depicting
the topological structure of the diagram, another delineating the metrical information,
and so on. Figure 2.1 shows a diagram of a square using vector representation.

O—» Inference Rule: Split square diagonally

Sy

O-0 O

Figure 2.1: Vector representation of a square and an applicable inference rule.

The implementation of such graphs is easy in the form of a linked list of records.
Reasoning about the diagram is carried through a set of inference rules, which are
implemented as a set of graph rewrite rules, directly corresponding to the predicate
calculus implications (see Figure 2.1).

This type of diagram representation is not restricted to two dimensional diagrams, but
can easily be extended to three dimensional space. Moreover, it could be generalised
to represent any arbitrary representation scheme. This is referred to as model-based
reasoning, which is a generalisation of diagrammatic reasoning. Namely, an arbitrary
model of the problem, in the sense of logical model theory, is directly manipulated and
inspected in the process of reasoning.

2.2.8 Topological Representation

Topological (also called relational) representation is, in contrast to Cartesian represent-
ation, independent of any coordinates. It expresses the relations between the elements
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of the diagram. For instance, if we have a square ABC D, then its topological repres-
entation might look like this:

point(a) segment (ab) angle(abc)

point(b) segment(bc) angle(bcd)

point(c) segment (cd) angle(cda)

point(d) segment(da) angle(dab)
segment(XY)=segment(YX)  angle(XYZ)=angle(ZYX)
segment(XY)=segment(WZ)  angle(XYZ)=angle(QPR)

Topological representation is easy to implement on computers. It can vary in the degree
of detail explicitly represented. For instance, if the information about the angles of
a square is not needed to solve a problem, then such information does not need to
be specifically stated. The downside is that topological representation can be too
specialised for some problems, especially when numerical information about a diagram
is required to solve a problem.

GROVER by [Barker-Plummer & Bailin 92], for example, uses topological represent-
ation for internal representation of diagrams.

2.2.9 Conclusions About Representations

In §2.2 we presented three kinds of knowledge representation: analogical, propositional
and mixed. Analogical and propositional representation alone appear to be too special-
ised, so we concentrate on the mixed type of representation. We discussed five kinds
of mixed representation. The following table summarises the pros and cons of each of
these five mixed representations. We discuss our choice of diagram representation in
§5.5.

‘ Representation H Pros ‘ Cons
Cartesian efficient symbolic manipu- | unintuitive and complex
lation
Projective Geometry || efficient symbolic manipu- | unintuitive and complex
lation
Diagrams on raster | analogous to human per- | inefficient symbolic manip-
ception ulation, complex
Vector efficient and easy to imple- | specialised, too much in-
ment, intuitive formation
Topological efficient and easy to imple- | specialised

ment, intuitive

2.3 Abstraction Techniques

The term “abstraction” is used in this thesis to refer to the process of inferring general
arguments from specific ones. In computer science this process is often called inductive
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inference, inductive learning or generalisation.? Abstraction summarises a set of data
in a way, so that the new representation can predict new instances of the data set. In
particular, we refer to learning from examples, i.e. using a set of examples to find a
model that fits all the instances of our set. Sometimes mathematical models are used
for this. Using the model, we can infer new instances. We are in particular interested
in abstracting a general proof from instances of a proof. This is not a new problem
— many abstraction techniques have been around for a few decades (see [Plotkin 69],
[Winston 75], [Mitchell 78] and [Michalski 83]).

Abstraction has many different definitions. These range from our intuitive definition
to Vere’s definition of abstraction in [Vere 77], to learning from implications (more
generally from theorems) or conjunctions, to term abstraction and structural matching
[Kodratoff 88]. We are interested in the following general definition of abstraction
which assumes some propositional representation: I is more general than J (i.e. I > J)
if J is an instance of I. Using some substitution ¢ it follows that ¢(I) = J. In
particular, we are interested in learning from implications, where we need to introduce
universally quantified variables. For instance, if e1, e9, €3, ... , e; is our set of examples,
then we say that € is an abstraction of eq, €9, €3, ... , ¢; if for each n it follows that there

exists ¢, such that ¢,(e) £y en, where £3 is used to denote a computation carried out
by a computer. For example, ¢,, might be a function definition of Fibonacci numbers:

Fiby = 0
Fiby = 1
Fiby = 1
Vn >0 Fibyye = Fibyyi + Fiby,

thus ¢, = Fib,. So, if e, = 3 then ¢4 = Fiby = Fibs + Fiby =2+ 1= 3.

An important aspect of the abstraction mechanism which is of interest is not term
abstraction, but rather the abstraction of a recursive structure (in our case, the ab-
straction of a recursive computation: function definition of Fibonacci numbers is an
example of such computation) from the given set of examples.

There are two main classes of abstraction techniques:

e Analytic: learning from one example only (e.g. explanation based generalisation;
see [Mitchell et al 86]),

e Inductive: learning a concept from several examples.

Here, we are interested in the latter methods, .e. the inductive learning techniques.
In the next few sections we present some of the available abstraction techniques.

3 Note that generalisation in the sense of abstraction is different from generalisation in the context of
inductive theorem proving.
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2.3.1 Plotkin’s Least General Generalisation

In light of the definition of the abstraction given above, Plotkin came up with the
algorithm for what is known as least general generalisation [Plotkin 69], [Plotkin 71].
Given a set of examples E = {ej,ez,e3,... ,e,}, then the least general generalisation
of E is lg(E) = €; such that ¢; is an abstraction of E and for any other abstraction ¢;
of E it holds that ¢; > ¢; (we use the notion of is more general than, i.e. > as defined
earlier).

Two examples (words, in Plotkin’s terminology) are compatible if and only if they
are both terms or have the same predicate symbol. A set F of examples is said
to be compatible if and only if any two examples e; and e; in E are compatible.
Plotkin’s theorem states that every non-empty finite set of examples has a least general
generalisation if and only if any two examples in the set are compatible.

Therefore, let our set of examples be £ = {ej,e9,€e3,... ,e,}. Then the least general
generalisation of F is:

lg(E) =lg(e1,lg(ea,lg(... ,lglen—1,€n)-+)))

Now, the algorithm for least general generalisation of two compatible examples is as
follows:

1. Take 2 compatible examples, e; and es.
2. Let €1 = €1 and E9 = €9.

3. While there exist sub-examples of £; and &9, call them #; and ¢35, which have
the same place (i.e. index) in e; and &9 respectively, such that ¢; # t9, and such
that ¢; and ¢ begin with a different function symbol or at least one of them is a
variable do:

(a) Choose a variable z distinct from any in e; or es.
(b) Wherever ¢, occurs in the same place in €1 as t5 occurs in €9, replace each:

t1 and to by .

4. The least general generalisation of E is €1 (= €2) with all possible sub-examples
replaced.

Most of the abstraction techniques that we describe in the rest of this chapter were
influenced and use in some way Plotkin’s ideas for a least general generalisation.

2.3.2 Biermann’s Method

In [Biermann 72] and [Biermann & Krishnaswany 74] an algorithm which dealt with
the formation of procedures from sequences of instructions was devised by Biermann
(later jointly with Krishnaswany). This work was motivated by the aim to synthesise
programs, and was not seen as a generalisation or inductive learning problem that
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Plotkin tackled. The input to the system called autoprogrammer is example calcula-
tions, and the output of the system is programs (i.e. procedures) for these calculations.

Example calculations are recorded in traces that contain the information about the
complete memory contents at any one time (i.e. snap shots of all data structures), and
pairs of conditions and instructions executed at any time.

The algorithm for the synthesis of a procedure is defined in terms of four operat-
ors (Q1,Q2, Q3 and Q4. (1 is the operator which inserts into each example trace all
conditions which may have been omitted by the user. It takes an original trace as
an argument and produces a modified (i.e. completed) example trace. @y takes two
arguments: the modified trace and a set of integer labels which are applied to the
instructions in a trace in the synthesis of the procedure. Qs produces a set of triples
which constitute an incomplete procedure if the labels have been chosen properly. A
set of ascending integers is an example of a set of labels which yields a linear procedure
with no branching. (J3’s role is to find a procedure which is more interesting than this
linear one. ()4 converts incomplete procedures with initial states into complete pro-
cedures. Some error detection and correction is possible in autoprogrammer, however
the user still needs to be very precise and detailed in the instructions applied in the
example traces for the system to be able to extract a procedure and correct errors.
The system includes a convenient subroutine feature with recursion, the backup fea-
ture, local and global modes, and the ability to add and remove data structures at
will. An example of a synthesised procedure is quicksort. We give an example (taken
from [Biermann & Krishnaswany 74]) of how the algorithm is executed on an example
list (2,7,1,6,3) in order to create a routine called quicksort. The user needs to spe-
cify that quicksort(A, L,U) takes three arguments, where the first one is the example
list, the second the lower bound and third the upper bound on the elements of the
list. quicksort reorders the entries A(L + 1), A(L +2),... A(U). The user specifies the
following execution:

Set pointers P1 to L and P2 to U. 2 7 1 6 3

T T

P1 P2

Advance pointer P1 until A(P1) > A(P2). 2 7 1 6 3

T T

P1 P2

Exchange those entries. 2 3 1 6 7

T T

P1 P2

Decrease P2 until A(P1) > A(P2). 2 3 1 6 7
T 1
P1 P2

Exchange those entries. 2 1 3 6 7
T 1
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Increase P1 until P1 = P2. 2 1 3 6 7

T
Pl = P2

Decrease P1 by one and call recursively quicksort(A, L, P1) and
quicksort(A, P2,U).

The user now gives two more traces of execution in the same way for the lists (2, 1) and
(3,6,7) (which is already sorted). For the specification of the quicksort routine that
autoprogrammer extracts, the reader is referred to [Biermann & Krishnaswany 74].

2.3.3 Bauer’s Method

[Bauer 79] devised an algorithm which synthesises a procedure from a set of examples.
He extended Biermann’s work to permit more variation and flexibility in the class of
examples handled by the synthesis algorithm. The examples are instances of a proced-
ure when given some initial values. The algorithm is capable of grouping instructions
to form loops, recognising that different variables are used in different examples of
the same procedure, and replacing constants when they are used as instantiations of
parameters.

Bauer uses a Computation Description Language (CDL) to express the examples from
which the procedure is learned. This language has a well-defined syntax. Using CDL,
example computations are organised in a computation-tree. Each statement of an ex-
ample computation forms a node. The tree branches to two subtrees each representing
one of the truth values of the statement.

The synthesis algorithm (i.e. the abstraction algorithm) takes a set of computation-
trees consisting of example instructions and groups the nodes of the tree into classes.
For instance, an occurrence of the same instruction is grouped into the same class.
When the set of classes is obtained, the algorithm checks that the set meets certain
consistency conditions. For instance, one condition is that variables must be in the
same position in the node.

To obtain a set of classes of instructions, the algorithm uses a similarity condition. The
following process determines if all instructions in a set are similar. First, substitution
is used for predicates, procedure calls and function applications. A substitution o is
defined to be a set of pairs {(W;|t;)} such that the following holds [Bauer 79]:

1. W; is a variable,
2. t; is a variable other than W; or is a constant,

3. for pairs (W;|t;) and (W;|t;) in o, t; = t; (W; can be replaced by at most one
variable or constant),

4. for pairs (W;[t;) and (W;|t;) in o and t; a variable, W; = W; (a variable t; can
be replaced by at most one variable).
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If s is a function application, predicate or a procedure call, a substitution o is applied
to s which simultaneously replaces each W; by ¢; in s.

Next, the algorithm uses a pair of substitutions for assignments, one for each side of the
assignment. After instructions are classified and all substitutions are carried out we
have a least general generalisation (in Plotkin’s sense, see §2.3.1). If a set of instructions
has a least general generalisation, then all instruction in the set are called similar.
Ultimately the least general generalisation of each class will become a single instruction
in the synthesised abstracted procedure. To obtain a set of classes of instructions, the
synthesis algorithm also uses the consistency condition (see [Bauer 79]).

Using the similarity and the consistency conditions for obtaining the set, the algorithm
generates a body of the abstracted procedure and attempts to form a parameter list for
the procedure. A discovery of a parameter list is essentially an enumerative procedure.

2.3.4 Anderson and Kline’s Method

[Anderson & Kline 79] devised a scheme for abstraction, which starts with specific
hypotheses and generates more general hypotheses when it encounters new instances
(i.e. examples). When it comes across counter-examples, more specific hypotheses
are generated. The scheme can generate conjunctive and disjunctive descriptions of
hypotheses. Such a method of abstraction is sometimes called a combined method,
because it moves from specific to general as well as from general to specific descriptions.

The algorithm for abstraction uses maximal common abstraction (generalisation, in
Anderson and Kline’s terminology) of two productions, developed by Vere in [Vere 77].
The algorithm compares pairs of similar productions e; and ey and generates a new
production e; with the following characteristics:

1. &7 applies in the circumstances that either e; or e5 do (and possibly new circum-
stances).

2. €1 has the same effect as e; or e, in the circumstances that e; or ey apply.

3. There is no production g9 that satisfies the first two characteristics above, and
only applies in a subset of the circumstances that 7 does.

Maximal common abstraction is not unique. Anderson and Kline choose one of the
abstractions randomly. The abstractions are formed by deleting clauses in the condi-
tions of e; and e9, and by replacing constants by variables. That is, the basic method
deletes terms on which the two productions e; and es differ and replaces them by local
variables. This is similar for Plotkin’s least general generalisation (see §2.3.1). In order
not to over-abstract (a more commonly used term is over-generalise), Anderson and
Kline introduce several heuristics in their process of abstraction. The most important
of these is the restriction on the number of constants that can be replaced by a variable.
Inspecting the two productions e; and ey, the one with the least number of constants
is used as a reference. Then the abstracted production €1 cannot have more than half
of these constants replaced.
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2.3.5 Mitchell’s Version Space

Unlike Anderson and Kline’s use of combined method for modifying one possible general
description, Mitchell’s abstraction algorithm uses two sets of descriptions. Mitchell
developed in his PhD thesis the idea of version spaces [Mitchell 82] which makes use of
a representation of the possible concepts that are compatible with the data (examples)
so far. Version space consists of two sets, G and S, where G is a set of most general
examples, and S is a set of most specific examples. The application of a combined
method of abstraction is twofold. The most specific descriptions S are modified by
specific-to-general method. The most general descriptions G are modified by general-
to-specific descriptions. Initially, S consists of the set of input examples.

VS <G,S>={eec E|forsomeseS,s<ce and for some g € G,e < g}

where € is a possible abstraction, and the < relation is the abstraction (generalisation,
in Mitchell’s terminology) relation, described in §2.3.

Version space V.S < G,S > (i.e. sets S and G) is pruned by the following methods
[Mellish 94]:

If s€ Sand Vg € G,s £ g, then s can be removed from S.

If g€ Gand Vs € 5,s £ g, then g can be removed from G.

If distinct s; and so € S and s; < s9, then sy can be removed from S.

If distinct g1 and go € G and g < g9, then g9 can be removed from G.

As new positive examples are encountered that are not covered by the elements of the
set of specific examples S, then S is transformed into a set of more general examples
using a specific-to-general method. On the other hand, when new negative examples
are encountered, the set of most general examples G is modified to exclude the non-
example subsumption by the abstraction in G. Here, we only consider the case of new
positive examples, as this relates to the requirements in our research. Now, let e be a
new positive example. Then S = | J, g abstract(s, e) where

abstract(ei,eg) = MIN{e € E | e; <¢,e9 <€}
and
MIN X ={ze X |Vye X, if y<zthenz =y}

The algorithm terminates when S and G consist of one identical element.

[Young et al 77] proposed a technique similar to version spaces, but less computation-
ally expensive, called focussing (see [Bundy et al 85] for a comparison of focussing with
version spaces).
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2.3.6 Quinlan’s ID3

The algorithms presented so far are developed for descriptions of examples in the form
of predicate calculus formulae. An alternative method was developed by Quinlan. 1D3
by [Quinlan 86] constructs decision trees from the set of examples. He refers to this
as Top-Down Induction of Decision Trees, where the decision tree is used to classify
data. Traversing the different possible paths from root to node results in translating
the decision tree into a set of rules in disjunctive normal form.

Every example input to ID3 is represented as a list of attribute-value pairs. The
resulting decision tree contains at each node a test to sort instances of examples in the
right alternative branch according to the classification. The class of any leaf node is
not discriminable any further.

The algorithm to construct the decision tree uses a procedure split(E) and works as
follows (taken from [Mellish 94]):

1. Let E be a set of examples.

2. If all the elements of the set of examples F have the same classification, return
a leaf node with this as its label.

3. Otherwise,

(a) Select a variable (“feature”) f with possible values vy, v9,... , vy,.
(b) Partition E into subsets Ey, Fs, ... , E,, according to the value of f.
(c¢) For each subset E; call split(E;) to produce a subtree Tree;.

(d) Return a tree labelled at the top with f and with subtrees Tree;, the
branches being labelled with appropriate v;.

ID3 uses several heuristics to optimise the formation of the decision tree. One of them
is the information theoretic heuristic, and the other is the idea of “windowing”. For
more information, see [Quinlan 86].

2.3.7 Inductive Logic Programming

Inductive Logic Programming (ILP), defined in [Muggleton 91], is a mixture of induct-
ive learning (machine learning) and logic programming, and thus it employs techniques
from both these research fields. ILP aims to derive techniques which synthesise (in-
duce) new knowledge (hypothesis) from observations (examples). Muggleton and Raedt
describe ILP as:

“Inductive logic programming extends the theory and practice of computa-
tional logic by investigating induction rather than deduction as the basic
mode of inference. Whereas present computational logic theory describes
deductive inference from logic formulae provided by the user, inductive lo-
gic programming theory describes the inductive inference of logic programs
from instances and background knowledge.” [Muggleton & De Raedt 94]
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ILP programs consist of a number of specialisation and generalisation inference rules
which enable a program to modify hypotheses in order extract in the end a general
algorithm which satisfies the given set of positive and negative examples. This approach
is similar to Anderson and Kline’s method (see §2.3.4). Muggleton and De Raedt give
a generic ILP algorithm on a queue of hypothesis QH:

repeat
Take H from QH
Choose the inference rules rq,... ,r; € R to be applied to H
Apply the rules rq,... ,r; to H to yield Hy, Hy,... , H,
Add Hy,... ,H, to QH
Prune QH

until stop-criterion(QH) satisfied.

The algorithm continues to delete and expand hypothesis H from the queue. Take
influences the search strategy (e.g. choose FIFO  first in first out). Prune discards
unpromising hypotheses from further consideration. The hypotheses are expanded
using the inference rules, and then added to the queue. This process continues until
the stop-criterion is satisfied.

One of the first ILP programs was the Model Inference System (MIS) by Shapiro (see
[Shapiro 81] and [Shapiro 82]), which was able to learn quite complicated algorithms,
e.g. append, member, etc.

We consider now an example of ILP system which tries to learn the sorting function
quicksort. Assume that a system has background knowledge of predicates partition,
append, < and >. A set of positive examples includes quicksort([ ],[ ]) and quick-
sort([1,0], [0, 1]), and a set of negative examples includes quicksort([1],[]) and quick-
sort([1,0],[1,0]). The hope is that an ILP systems with such background knowledge
K, and such a set of positive examples e and negative examples e~ is capable of
extracting the following quicksort procedure:

quicksort([],[])-
qiocksort(H|T, Result) :— partition(H,T, Listl, List2),
quicksort(Listl, Resultl),
quicksort(List2, Result2),
append(Resultl, [H|Result2], Result).

Although much background knowledge is required, there are ILP systems which are
capable of learning quicksort from as few as six to ten examples (e.g. GOLEM by
[Muggleton & Feng 90] and FOIL by [Quinlan 90]).

The shortcomings of ILP systems to date include the need for an extensive background
knowledge which sometimes may not be available. All of the mode and type information
of the predicates in the background knowledge needs to be provided by the user. The
ILP systems also in general require a large number of positive and negative examples.
The search strategy in specialising or generalising, and deleting or adding hypothesis
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to the queue of possible hypothesis is too committed, and cannot go back to change the
choice. ILP systems to date cannot deal effectively and efficiently with the numerical
data.

2.3.8 Baker’s Method

Baker’s work on the implementation of the constructive w-rule in [Baker 93] is closely
related to our work. In particular, we are extending her work (which will be explained
in the subsequent chapters of this thesis), thus her approach to abstracting a general
proof is of interest. Baker did not use any of the above mentioned methods in obtaining
an abstracted proof from a set of example proofs. She devised an algorithm which was
specific to her encoding of an example of a proof. It is not clear why Baker did
not use any of the standard abstraction algorithms. Perhaps the reason is in the
fact that all of the mechanisms that we described here have a fairly specific problem
domain. For instance, none of the algorithms are targeted at a mathematical domain
to abstract from numbers.* Furthermore, none of the existing abstraction mechanisms
abstracted proofs. The closest to a proof abstraction is Biermann’s and Bauer’s work
on abstracting programs. Baker claims that the choice of the abstraction mechanism
is not crucial, because any mechanism with appropriate modifications should suffice.

The basic principle of Baker’s technique is that the input to the abstraction algorithm
is a few instantiations of a proof. From these example proofs the algorithm needs
to extract a general proof, which by instantiation generates them. In particular, the
number of times that each inference rule is applied in the proof needs to be abstracted
into a function which produces particular numbers of times that this rule is applied
in instances of a proof. Essentially, this mechanism is very similar to that of Bauer.
The difference is that Baker uses proofs and applications of rewrite rules rather than
traces of program behaviour, which are instances of the execution of this program. The
particular focus for Baker is the abstraction of the number of applications of rewrite
rules in the proof. On the other hand, the focus of Bauer’s work is on abstraction of
the conditions which satisfy a structure in a program (e.g. if ... then ... else
is an example of such a structure).

Baker’s abstraction algorithm takes the first example proof and makes an initial ab-
straction of it by replacing the constant numbers of applications of rewrite rules by
general functions which generate them. She provided the system with a library of
possible functions. An ordering is used to decide which function of n in the library of
functions computes the number of times an inference rule is applied. For example, the
algorithm first guesses that given that the instance of a proof is for n = 2, and that the
number of times a rule is applied in the instance of a proof is f(n) = 4, then the first
function f which is guessed is f = An.n + 2, then the algorithm guesses f = An.2n,
and then f = An.n?.

The next example proof is taken, and it is checked that the same rule is applied in the
same place in the proof, and that it is applied a number of times which is computed
by the function chosen in the first step of the algorithm. If so, then the function which

* Some work on abstracting from a number, has been done by [O’Rorke 87], but he abstracted from
one example only (which is analytic abstraction).
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computes the number of times this rule is applied in the proof, and was looked up
in the library of functions is more likely to be correct. The algorithm continues to go
through all of the rules applied in the proof in this manner. If at any point the function
chosen initially is found to be inappropriate for a particular example proof, then the
abstraction algorithm backtracks and tries another function from the library of possible
functions, until it finds one that satisfies all of the example proofs considered so far.
When this process stabilises and the general proof does not change for a certain number
of times, then this is the guessed abstraction. The induced general proof however, still
needs to be verified. For more information, the reader is referred to [Baker 93].

To clarify Baker’s algorithm we give an example of the abstraction from two examples
of proofs. Let there be two examples of proof traces for n = 2 and n = 3:

examplel (2, [rulel([1],4)])
example2(3, [rulel([1],6)])

Let the ordering of possible dependency functions in the library be [An.n 4+ 2, An.2n,
An.n, An.n?]. The first step of the abstraction algorithm takes the first example and
abstracts it by replacing 4 with the first function from the library which satisfies the
equation f(2) =4. This is f(n) = n + 2. So we have the first abstraction:

general([rulel([1],n + 2)])

Now, consider the second example. The rules match, i.e. we have rulel as the only
rewrite rule applied in the proof, and the positions in the term where they are applied
match as well (i.e. we have [1] in both cases). The dependency function needs to
compute f(3) = 6. In the first step we chose f(n) = n+ 2, but f(3) #3+2 =05,
so the first chosen dependency function is inappropriate. The algorithm backtracks
and finds the second function from the library, which is f(n) = 2n. Now we have
f(2) =2x2=4, and f(3) =2 x 3 = 6, thus both instantiations of a function satisfy
the examples. After a number of examples are checked and the dependency function
does not change for a set number of times, then it is decided that this is the abstracted
general proof:

general([rulel([1],2n)])

Note that Baker still needs to check formally that the abstracted general proof is
correct. The abstraction algorithm just produced an educated guess of a general version
of a proof.

2.3.9 Conclusions About Abstraction Mechanism

In §2.3 we introduced various kinds of abstraction techniques developed over the years.
By abstraction we mean concluding a general argument from examples of it. One of the
first algorithms for abstraction was introduced by Plotkin and is known as least general
generalisation [Plotkin 69] [Plotkin 71]. Many subsequently introduced abstraction
algorithms were influenced by the least general generalisation and use some ideas from
it. One of the exceptions is Biermann’s abstraction mechanism [Biermann 72]. He
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devised an algorithm which learns from examples of execution traces of a program
and thus synthesises the program. Bauer [Bauer 79] extended Biermann’s program
synthesis algorithm to make it more powerful and general. At the same time he used
ideas from the least general generalisation to abstract a program from its execution
traces.

Anderson and Kline’s abstraction algorithm [Anderson & Kline 79] also extracts gen-
eral conclusions from examples. Unlike the algorithms introduced so far, it uses ex-
amples as well as counter examples to extract an abstraction. Furthermore, it combines
the existing approach of moving from specific to general, with a new one of moving
from general to specific examples. The algorithm uses some ideas similar to least
general generalisation. The combined method of abstraction is also used by Mitchell
[Mitchell 82]. However, he introduced the idea of version spaces where there are two
sets of descriptions. The set of general descriptions is modified by general-to-specific
method. The set of specific descriptions is modified by specific-to-general method. The
algorithm finds the abstraction when both sets are the same.

Rather than using descriptions expressed as predicate calculus formulae, Quinlan de-
veloped an idea of constructing decision trees from examples [Quinlan 86], where ex-
amples are represented as lists of attribute-value pairs.

An alternative approach to abstraction was inductive logic programming (ILP) intro-
duced by [Muggleton 91]. It combines techniques of logic programming and inductive
learning. It’s abstraction mechanism is similar to Anderson and Kline’s method of us-
ing examples and counter examples, and have specialisation and generalisation rules.
ILP is used to synthesise new knowledge.

Finally, we described Baker’s abstraction mechanism [Baker 93], because our work
is an extension of hers. Baker’s mechanism abstracts general proofs from example
proofs. The abstraction is similar to that of Bauer, but applied to the domain of
arithmetic proofs. One of the most important features of Baker’s abstraction is the
ability to extract a general function which by instantiation generates the examples it
was extracted from.

In §7.4 we analyse the abstraction techniques presented in this chapter with respect
to the requirements of our research. Furthermore, in §7.5 we discuss our choice of
abstraction mechanism.

2.4 Diagrammatic Reasoning Systems

Roughly, Diagrammatic Reasoning Systems are those which use a diagram to aid the
search for the solution of some problem. The first one was Gelernter’s Geometry
Machine described in §2.4.1. Others share much with Gelernter’s Geometry Machine,
e.g. a problem domain of Euclidean plane geometry. They are all diagrammatic in the
sense that they make some use of a diagrammatic representation of the problem.

We distinguish between visual and diagrammatic representations. A visual representa-
tion is a visual display of a diagram on a computer screen so that it can be seen by the
user. A diagrammatic representation describes a diagram in some way which depicts
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its visual characteristics. For example, Cartesian coordinates describe the elements
of a diagram by indicating their position in the coordinate system. A diagrammatic
representation does not necessarily have to be presented visually so that the user can
see, i.e. visualise it on a computer screen. Instead, some non-visual representation may
be used. For example, a diagram can be described using some predicates for relations
among its elements. In most cases, diagrams are represented by Cartesian coordinates,
in some cases by the bitmap or raster matrix, and in some cases they are in fact visual
(i.e. the user interface allows the display of a visual image of the diagram). All of
the mentioned representations are diagrammatic, however, they vary in the degree to
which they are visual.’

The systems presented here are described according to their architecture and their
main features, with particular focus on their use of the diagram. For each system we
give an example of the problem that it can solve.

2.4.1 Gelernter’s Geometry Machine

The first implemented systems which used diagrams for reasoning was Gelernter’s
Geometry Machine [Gelernter 63]. The novelty of Gelernter’s work was its use of a
diagram to control the search for a proof of a theorem. The geometry machine controls
the proof search by using a diagram as a model of the goal to be proved. In the
beginning of this chapter we showed an example of a theorem and a diagram which
the Geometry Machine used to prove the theorem.

The Geometry Machine operated on statements expressed as strings of characters in a
formal logical system.5 The problem is a statement, and the solution, i.e. the proof, is
a sequence of statements. A proof of a theorem starts from some axiom that the system
chooses, and is related to the theorem. Then it continues inferring further theorems
based on the existing axioms or other theorems. The final statement of the solution is
the problem itself.

Working from the axioms in a complete theory ensures that the sequence under con-
sideration as a solution indeed terminates in the required theorem. However, the
problem-solving tree still has a high degree of branching. To prune the search tree,
the Geometry Machine uses heuristic properties of the diagram to reject false subgoals.
This means that the subgoals are tested against measurements of a coordinate diagram,
and if the subgoal is false in the diagram, then it is rejected.

The Geometry Machine consists of three components:
Syntax/Logic: (also called a syntax computer) it manipulates the formal system by
generating strings of hypothesis (premises, subgoals).

Model/Semantics: (also called a diagram computer) the theorem to be proved is

® Related to the discussion about the difference between visual and diagrammatic representations is
Glasgow’s work [Glasgow & Papadias 92] where she distinguished between visual and spatial rep-
resentations.

5 The reader is referred to Gilmore’s rational reconstruction of Gelernter’s geometry machine for a
more formal definition of the logical theory of Geometry Machine [Gilmore 70].
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represented in a coordinate system. Also, it contains a series of qualitative de-
scriptions of the diagram.

Search Control: (also called a heuristic computer) it is the main component of the
system. It compares sequences of strings generated by the syntax component
and their interpretation in the diagram. The search control component rejects
subgoals not supported by the diagram. Furthermore, it recognises the syntactic
symmetries of classes of strings and does modifications and improvements to the
system.

The flow of control in the Geometry Machine is such that it allows the syntax com-
ponent to communicate with the model component and vice versa only through the
search control component (see Figure 2.2 which was adapted from [Gelernter 63]).

Search Control

Logic/ Syntax / \ Model / Semantics

Figure 2.2: The architecture of the Geometry Machine.

It is important to note that the system does not generate its own diagram. Rather, the
diagram is supplied by the user. The diagram is supplied to the Geometry Machine in
the form of a list of coordinates for points named in the theorem. A second list, also
supplied by the user, specifies points joined by segments.

The diagram has two roles. Its negative role is to reject hypotheses (subgoals) proposed
by the search control component that are not true in the diagram. In this way the
search space is pruned. The positive role of the diagram is to shorten the inference
paths by assuming various facts that are obvious in the diagram as true, i.e. it verifies
the correctness of simple goals by checking them in the diagram (e.g. a certain point
lies between two others).

In summary, Gelernter’'s Geometry Machine is a theorem prover guided by a user-
supplied model in the form of a diagram.

2.4.2 Koedinger and Anderson’s DC

[Koedinger & Anderson 90] implemented a geometry problem solver called the Dia-
gram Configuration (DC) model. The interesting characteristic of this system is that
the authors based the configuration of the model of the system entirely on the empir-
ical data from testing how human experts solve geometry problems. Thus, supported
by their empirical evidence, they claim that DC reasons the way humans do.

The key feature of the system is that its data is organised in perceptual chunks, called
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diagram configurations. These are analogous to key features of diagrams that humans
recognise when they inspect a diagram. During the process of generating a solution
path, DC infers the key steps first, and ignores along the way the less important features
of the input diagram, i.e. the less important inference steps.

The Diagram Configuration model (DC) consists of:

Diagram Configuration Schemas: are major knowledge structures of DC. They
are associated with elementary or more complex geometric structures in the
form of clusters of geometry facts (e.g. congruent-triangles-shared-side scheme,
perpendicular-adjacent-angles scheme). A scheme consists of the following parts:

Configuration: storage for a geometric image, i.e. a diagram. It is a configur-

ation of points and lines which is part of the geometric diagram.”

Whole—statement: is a geometry statement referring to the whole of the con-
figuration (e.g. AXYZ = AXZW).

Part—statements: are geometry statements referring to the the relationships
among the parts of the diagram (e.g. ZY = £7).

Ways—to—prove: lists subsets of part—statements that are sufficient to prove
the whole statement and hence all of the part statements.

DC'’s Processing Components: DC consists of three major processing stages:

Diagram Parsing: it recognises configurations in the input diagram and in-
stantiates their corresponding schemas. The recognition is done on two
levels: low-level simple object recognition and high-level plausible configur-
ation hypothesising.

Statement Encoding: it deciphers the meaning of the given and goal state-
ments, and represents them as part statements which are tagged either
“known” or “desired”.

Schema Search: using forward and backward inferences, schemas that are pos-
sibly true of the problem are iteratively identified (i.e. the system searches
through possible schemas until the link between the given and a goal state-
ment is found).

Note that a whole-statement can be viewed as a conjecture of the schema, and ways-
to-prove are hypotheses which are sufficient to prove the conjecture provided that the
hypotheses are proved as well.

The main idea of DC is that it uses schemas instead of statements of geometry to plan
the search for solution to a problem. In the first stage, the input diagram is parsed and
the possible schemas are instantiated. This is done by inspecting the elements of the
input diagram and identifying the schemas that are related to particular features of the
input diagram (for example, if the input diagram contains a right angle triangle then
the schema for right angle triangles is instantiated). Hence, the input diagram triggers
the identification of several schemas. However, a configuration of the schema, might

" Note that this is a diagram of the schema and not an input diagram.
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have other features that are not identified by the parsing of the input diagram. DC
adds such schemas to the solution space as well. Hence, establishing one schema may
enable establishing another. No problem solving search is done at this stage, however,
the biggest part of the work of the system is done by restricting the solution space by
input diagram parsing. Figure 2.3 shows a problem definition and the solution space
of the problem after the diagram parsing and the instantiation of schemas (taken from
[Koedinger & Anderson 90]). The boxes show the schemas that have been recognised
and the lines connect schemas to their part-statements.

Given:

B
rt ZADB
Input Diagram: BD bisects ZABC
Goal:
D

c D midpoint of AC
A D C
Bisected A A [}

ABD =~ cBD AD=pc| ABZBC /AS.cC
GIVEN GOAL

Figure 2.3: DC’s problem definition and solution space.

Schema
Configurations

1t~ CDB ZADB = ,CDB

After diagram parsing, the given/goal statements of the problem definition are encoded
by tagging them as “known” (or “desired”) if they are already part-statements or whole-
statements of a certain schema. Finally, to find the solution the system searches for a
path from the givens to the goal statements. Note that the constraints which are listed
in the ways-to-prove component of the schema have to be met when searching for the
solution path. There may be several solution paths.

In summary, Koedinger and Anderson’s DC system controls search for a solution of
a problem by organising the proof search space into smaller spaces which deal with
specialised concepts, i.e. schemas. These, when identified to be related to a problem,
allow us to apply a smaller set of rules. DC’s schemas can be thought of as derived
rules of inference which are identified by the diagram and can be applied in the proof.

2.4.3 Barker-Plummer and Bailin’s “&” /GROVER
“&” JGROVER, developed by [Barker-Plummer & Bailin 92] is an automated reason-
ing system which uses information from a diagram to guide proof search.

The architecture of “&”/GROVER system consists of the “&” automated theorem
prover, based on the sequent calculus for Zermelo set theory,® and GROVER which

8 See [Bailin & Barker-Plummer 93] for more information on Zermelo set theory.



2.4. DIAGRAMMATIC REASONING SYSTEMS 31

is the diagram interpreting component of the system. GROVER passes the crucial
information to prove the theorem from the inspected diagram to the “&” theorem
prover. In the scope of this thesis we are mainly interested in the GROVER diagram-
maftic reasoning component.

The architecture of GROVER is shown in Figure 2.4 (from [Barker-Plummer et al 95]).

Graphical Editor | Diagram Local/GIopal Parsing Formulae Allows user to check
) »| Of thediagram »| resultsof parse
ViewRunner Geometry2L ogic Verify Logic
Formulae
Conjecture Determines goals to prove AIIowsluser to check
»| resulting strategy
Create Strategy Verify Strategy
Associate with Diagrams
Existential Solve Goals
Determine Hypotheses
Proof Strategy (induction et al) Y

Produces Proofs of Goals

&

l Proofs

Figure 2.4: The architecture of GROVER.

GROVER consists of the following components:

ViewRunner: is the graphical editor tool, and GROVER’s interface. It enables users
to draw a diagram consisting of fairly elementary components. The diagram is
saved as an abstract description of the geometry of the diagram (e.g.: describing
arcs, circles, arrows, dots, etc.).

Geometry2Logic: is an expert system component. It parses the abstract description
of the diagram and translates the logical content of the diagram into formulae
expressed in the “&” language. It works in a bottom-up fashion. This means that
it first analyses the objects of the diagram, then relationships between objects
and finally the collection of atomic formulae to determine more complex formulae.

Verify Logic: is an inspection tool allowing the user to examine and modify the logical
content (i.e. logical formulae description) of the input diagram. This description
is derived by the Geometry2Logic component from the graphical representation
of the diagram.

Create Strategy: constructs a sequence of goals which relate the logical formulae
determined from the diagram to the conjecture that the user wants to prove.
This sequence of goals can then be proved by the “&” theorem prover. It is the
second of the most important components of the system.
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Verify Strategy: allows the user to inspect the sequence of goals generated by the
Create Strategy component. If it is decided that they are acceptable, then the
sequence is passed to the “&” theorem prover to verify that they are indeed
provable.

The main idea of how GROVER works is that the information is extracted from the
diagram and translated into logical formulae in the language of “&” which are then
proved by “&”. Then they are used as additional hypotheses to the main proof of
the conjecture. Thus, the formulae that are extracted from the diagram are in fact
additional lemmas used when searching for a proof in “&” of the main conjecture.

GROVER in conjunction with “&” is similar to the Geometry Machine in that it also
uses the diagram as a model of the goal which is to be proved. Moreover, the diagram
specifies the subgoals themselves. Therefore, it constrains the high-level structure of
the proof. Also, it specifies the ordering in which the subgoals are applied. In order to
prevent a high degree of branching of the proof search tree, GROVER considers only
subgoals that are known to be true in the diagram, and in this way prunes the proof
search space in “&”. An in-depth comparison of our work to “&”/GROVER will be
given in §10.1.2.

2.4.4 Barwise and Etchemendy’s Hyperproof

Hyperproof by [Barwise & Etchemendy 91] is an educational tool for teaching logical
reasoning, and in particular first-order logic. Its domain of reasoning is a blocks world.
The system uses a sentential representation of first-order logic, as well as a diagram-
matic representation to describe situations in the blocks world. The user learns how
to construct proofs of both consequence® and non-consequence'?, proofs of consistency
and inconsistency, and independence'' proofs. Hyperproof automatically checks the
logical validity of each type of proof.

A proof in Hyperproof starts with a blocks world situation described in a diagrammatic
form using a graphical display. This is the initial information for the proof. In addition
some sentences of first-order logic might be given using the sentential representation.
All of the initial information is called given information. The aim is to show that
some conjecture about the given information is a consequence or a non-consequence
of the given information. Such a conjecture is normally represented using a sentential
representation.

Figure 2.5 gives an example of the type of reasoning that Hyperproof is designed
for. The picture in the upper part of Hyperproof’s screen is the initial information
given. The aim is to determine whether block ¢ and block d are of the same shape:
SameShape(c,d), which is a consequence of the given information. The given inform-
ation also consists of two sentences: Dodec(c) — Dodec(d) and Small(c).

The first step in the proof applies the second piece of sentential information to the

9 A proof of consequence is an argument which establishes a proposition from a set of givens.
10" A proof of non-consequence demonstrates from the set of givens that a proposition may not hold.

' An independence proof shows that a proposition cannot be proved on the basis of a set of givens.
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Figure 2.5: Hyperproof’s proof.

diagrammatic situation. It identifies the one small block in the situation and labels it
with c. The user then observes that ¢ in indeed a dodecahedron. Using the first piece of
given sentential information, the user then concludes that d is a dodecahedron as well.
Since there are two dodecahedra, there are two possible ways of assigning label d to
two different blocks. Therefore, there are two possible new situations. Hence, the two
diamonds in the following proof steps, which describe these two possible situations. In
each of the situation the user can observe that the two blocks ¢ and d have the same
shape.

2.4.5 Other Related Systems

Besides the diagrammatic reasoning systems presented so far, there exist several oth-
ers. They are perhaps less related to the system described in this thesis, but are
nevertheless interesting in the diagrammatic features that they use or implement. We
briefly mention Goldstein’s Basic Theorem Prover, Nevins’ geometry theorem prover,
and McDougal and Hammond’s Polya. The problem domain for all these systems is
Euclidean plane geometry.

In the domain of qualitative physics, the following systems are of interest: Funt’s
WHISPER [Funt 80], Iwasaki, Tessler and Law’s REDRAW [Iwasaki et al 95], and
Furnas’ BITPIC [Furnas 90]. For more information on these systems, the reader is
referred to the cited literature.
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Along with all the research that has been done on diagrammatic reasoning there are
several journals and conferences that deal specifically with this topic. Some of them
are Journal of Visual Languages and Computing, IEEE Workshops on Visual Lan-
guages and IEEE Conferences on Visualisation. The more significant events in this
branch of research have been the AAAI Spring Symposium on Reasoning with Dia-
grammatic Representations in March, 1992 (the working notes were later edited by H.
N. Narayanan and published in [Narayanan 92)), AAAI Fall Symposium on Reasoning
with Diagrammatic Representations ITin November, 1997 (the working notes were later
edited by M. Anderson and published in [Anderson 97]), and the release of the book
on Diagrammatic Reasoning by [Chandrasekaran et al 95].

Goldstein’s Basic Theorem Prover

Goldstein in many ways extended Gelernter’s Geometry Machine by implementing his
diagrammatic reasoning system called BTP - Basic Theorem Prover [Goldstein 73].
His system solves problems from a small part of plane Fuclidean geometry.

The input to BTP is a diagram, which is represented in the form of Cartesian coordin-
ates of the points and a list of connections between the points, the hypotheses and the
objective, i.e. the goal. BTP’s way to prove theorems is to start with the conclusion
and try to get to the hypotheses. It consists of strategies containing goals and sub-
goals, canonical names which identify synonyms for geometrical entities, corollaries of
hypotheses previously proved, experts and diagrams. A diagram is parsed and used to
reject goals that are false in the diagram.

Nevins’ Geometry Theorem Prover

Nevins implemented a geometry theorem prover [Nevins 75] which at the time was
claimed to be one of the most powerful geometry expert systems. The key feature
of his system is forward reasoning strategy. He claims this is the way humans think
- although this is by no means resolved within psychology. Certain features of the
diagram cue the inference steps, which are made using a number of paradigms. The
paradigms are guided by the diagram and can make multiple conclusions. They are
capable of making inferences that require multiple steps. In many ways Koedinger and
Anderson’s DC (see §2.4.2) system extends the Nevins model. However, Nevins’ system
does not visualise the diagrammatic model, nor does it use the numerical information
from the diagram.

McDougal and Hammond’s Polya

McDougal and Hammond’s Polya [McDougal & Hammond 93] is a geometry theorem-
prover. Its input is a list of givens, a goal and a diagram. Its output is a proof which
is arrived at after a series of interpretations of plans for visual search and plans for
writing proofs. The diagram is described in terms of Cartesian coordinates, marks
for segments and marks for angles. For more information see [McDougal 93] and
[McDougal & Hammond 95].
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2.4.6 Conclusions About Diagrammatic Reasoning Systems

In §2.4 we surveyed several existing diagrammatic reasoning systems. Gelernter’s Geo-
metry Machine was the first system which used a diagram to aid the search for the
proof of a theorem. Another diagrammatic system was the Diagram Configuration
model which consisted of derived rules about geometrical facts which were used to
construct the search space if the problem was related to the diagram used in the rule.
Two systems that are perhaps of more interest are Hyperproof and GROVER. Using
Hyperproof the user can constructs proofs by using first-order predicate logic rules and
also the diagrammatic rules derived from the diagram situations in a blocks world.
GROVER uses the diagrams to guide a proof in the domain of well founded relations.
All of the described diagrammatic reasoning system use diagrams in the search for an
essentially algebraic proof of a theorem.

2.5 Summary

In this chapter we surveyed some of the work done in the area of automation of reason-
ing. The aim was to introduce a plethora of available techniques for particular aspects
of our research which would enable us to choose an appropriate method for use in
the implementation of our diagrammatic reasoning system. In particular, internal rep-
resentations of diagrams and abstraction techniques are of interest. Furthermore, we
surveyed diagrammatic reasoning systems.

There are several types of representation available to us. These can be categorised
into three classes: analogical, propositional and mixed. The former two representa-
tions seem to be too specific, but the latter seems to be the representation which gives
the most scope for implementation. In the mixed class of representations, we intro-
duced Cartesian representation, projective geometry, diagrams on a raster, vector, and
topological representation. Our choice of internal representation of diagrams will be
discussed in §5.5.

Similarly, there are several abstraction techniques which are available to us. Our in-
terest lies in the learning from several examples type of abstraction (rather than learn-
ing from one example). We surveyed Plotkin’s least generalisation, Biermann’s method,
Bauer’s method, Anderson and Kline’s method, Mitchell’s version space, Quinlan’s
ID3, Inductive Logic Programming, and finally Baker’s method. These techniques
will be compared and analysed with respect to the requirements in our diagrammatic
reasoning system, and the chosen abstraction technique will be discussed in §7.4.

Finally, we presented other diagrammatic reasoning system. It turns out that most of
the systems implemented in the past have Euclidean plane geometry as their problem
domain. Systems with other problem domains (e.g. qualitative physics) were just
briefly mentioned. However, Hyperproof [Barwise & Etchemendy 91] and GROVER
[Barker-Plummer et al 95] seem to be the most closely related to our system DIAMOND.
An in-depth comparison with Hyperproof, GROVER and our system DIAMOND will
be carried out in Chapter 10.



Chapter 3

Diagrammatic Theorems and
Problem Domain

— “THE ANCIENT GREEKS” (as cited by Martin Gardner)
in NELSEN’S Proofs Without Words

One of the aims of the work reported in this thesis is to show that proofs which use
diagrams and manipulations of diagrams rather than symbolic formulae of some lo-
gic can be automated and emulated on a machine. Humans often understand more
easily diagrammatic proofs than logical (algebraic) proofs. Before mechanising such
diagrammatic proofs the class of theorems which lend themselves to diagrammatic
representation needs to be identified. Once we know what type of theorems can be
represented diagrammatically, and can be manipulated via some diagrammatic oper-
ations, we devise a taxonomy which enables us to choose the domain of problems on
which we focus in our research.

In this chapter we present some examples of theorems which can be represented and
proved in a diagrammatic way. Diagrams are often perceived as an informal rather
than formal aid to reasoning, so we discuss in §3.1 their use in proofs, and the general
issues about the formal and informal role of diagrams in proofs. In §3.2 we present some
examples of theorems that can be proved diagrammatically by showing the diagrams
and the manipulations on them. Based on these examples, a taxonomy of diagrammatic
proofs is introduced in §3.3. Another factor which is considered in our choice of the

36
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problem domain is the use of abstractions (e.g. ellipsis) in diagrams, which is discussed
in §3.4. Finally, in §3.5, the taxonomy helps us choose the domain of problems that
we subsequently concentrate on in our research.

3.1 Diagrams and Proofs

“There is no more effective aid in understanding certain algebraic identit-
ies than a good diagram. One should, of course, know how to manipulate
algebraic symbols to obtain proofs, but in many cases a dull proof can be
supplemented by a geometric analogue so simple and beautiful that the truth
of a theorem is almost seen at a single glance.” [Gardner 86|

This is a quote by Martin Gardner where he discusses the “look-see” proofs. The name
itself, “look-see” proofs, indicates that Gardner writes about diagrams that guide hu-
man mathematical thought, and enable a mathematician to understand instantly the
problem represented by the diagram, how to go about solving the problem and why
the solution is correct. In the everyday use of the word, “seeing” often means un-
derstanding. Diagrams as objects which convey information in a visual way often
seem to be more easily understood than other representations, such as symbolic for-
mulae. The debate about the formal and informal use of diagrams is a long standing
one [Larkin & Simon 87]. In this thesis we explore the intuitiveness and transparent
understanding of the use of diagrams in mathematical proofs.

Diagrams were used to solve problems as far back as Ancient Greece. In those times
there were two modes of representation that coexisted, but only rarely mixed. They
were the Aristotelean logic, or what we now call symbolic or sentential reasoning, and
Euclidean geometry which used diagrams for inferencing. It was Descartes who brought
the two modes of reasoning together, and showed that sentential and diagrammatic
reasoning can complement each other in solving problems. Descartes showed this by
the invention of analytic geometry. However, at the turn of this century sentential
representation took over as the only rigorous mode of reasoning. The founders of
modern logic, Frege, Russell and Hilbert, advocated that all arithmetic concepts be
defined in logical terms, and all arithmetic knowledge be expressed and derived from the
axioms and definitions of the logic. Reasoning was considered to be rigorous only if it
was expressed in the formal language of some logic. The diagrammatic representation
became neglected, not only due to the power that logic provided, but also due to
some carelessly constructed diagrams the use of which turned out to be faulty (see
[Maxwell 59], [Dubnov 63]). Diagrams lost their legitimate role in formal proofs. They
were not thought to be rigorous and formal enough for the use in proofs.

However, in the last twenty years, researchers from various fields, such as cognitive
science, artificial intelligence, computer science, physics, and mathematics returned to
the use of diagrams and tried to re-establish a formal role of diagrams in proofs. Some of
the work has already been mentioned in Chapter 2, but let us just mention the rigorous
analysis of Venn diagrams as a formal system by Shin in [Shin 91] and [Shin 95|, Sowa’s
work on Pierce’s existential graphs in [Sowa 84], and the use of diagrams in category
theory [MacLane 71]. It seems that the neglect of formal use of diagrams in proofs has
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motivated many researchers to explore whether diagrams can indeed be part of a formal
system, and whether the formal symbolic (sentential) and “informal” diagrammatic
reasoning can complement one another in order for such a system to solve problems
in a more understandable, intuitive and efficient way. A good source of examples
which indicates how extensive this research area has become is [Narayanan 92] and
[Chandrasekaran et al 95].

One of our aims is to explore the role of diagrams in mathematical proofs. We want
to prove theorems of mathematics by manipulations of a diagram which capture the
inference steps of a mathematical proof. Our aim is to devise a formal system which dia-
grammatically proves theorems of mathematics, and to show formally that the proofs
are correct. The hope is that the truth and understanding of the proof remains trans-
parent to the user of such a system through various combinations of diagram manip-
ulations in the process of proving a theorem. We want to show that diagrams can be
rigorous enough to be used for formal proofs. Moreover, we hope to capture in our
system some of the intuitiveness and understanding of a proof which uses diagrams.

The examples of theorems proved by manipulations of diagrams that we present in
this chapter are our starting point for the investigation of the use of diagrams in
formal proofs. In §3.5 we choose the domain of problems that we concentrate on in
our pursuit to automate this type of diagrammatic reasoning in mathematics. As well
as exploring the formality of diagrams in proofs, we also want to challenge Penrose’s
claim that diagrammatic reasoning cannot be automated for emulation on machines.
We present here some of the type of diagrammatic reasoning that Penrose described. As
already mentioned, Penrose presented his view in the lecture at International Centre for
Mathematical Sciences in Edinburgh in November 1995. In [Penrose 94a] he discusses
in greater detail his disbelief in the possibility that computers may emulate reasoning
with diagrams in any meaningful way, because mathematical visualisation lies beyond
any kind of purely computational activity. Our work could be seen as an attempt to
disprove Penrose. However, this is not the only motivation for the research reported in
this thesis. Our research explores the possibility of emulating diagrammatic reasoning
on machines, and in fact, automates a small subset of it.

3.2 ‘Diagrammatic’ Theorems

We are interested in mathematical theorems that admit diagrammatic proofs. In order
to clarify what we mean by diagrammatic proofs we first give some examples. We ana-
lyse these and devise a taxonomy, which helps us characterise the domain of problems
under consideration.

Most of the examples presented here are taken from [Nelsen 93]. This is an excellent
source of numerous examples of proofs without words. Gardner refers to proofs without
words as “look-see” proofs. Nelsen’s book is a collection of proofs without words from
Ancient China, classical Greece, and twelfth-century India, but most of them are more

of America journals.

Other examples can be found in [Dudeney 42], [Gamow 62], [Lakatos 76], [Gardner 81],
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[Gardner 86] and [Penrose 94a]. For the ones that are presented here, we give the sym-
bolic (sentential) statement of the theorem first. Then, we show the diagrammatic
representation of the theorem together with the geometric operations of the diagram-
matic proof. Finally, we describe informally how the diagrammatic proof is carried
out. Note that the informal descriptions of diagrammatic proofs are not necessary,
because the proofs can be understood just by analysing the diagrams. Therefore, the
reader is invited to look at the picture representing a mathematical statement and try
to see why it is true without reading the explanation under the picture.

3.2.1 Commutativity of Multiplication

The commutativity of multiplication theorem states that the order in which you mul-
tiply two numbers does not matter:

axXxb=bxa

The diagram that we present here is for any real number a and b. The diagrammatic
proof would be the same if the theorem was expressed in a natural number arithmetic.
In fact, the proof for real numbers subsumes the proof for natural numbers. The
diagrammatic proof goes as follows: take a rectangle of any length a and height b.
This represents a multiplication a x b. Rotate this rectangle by 90 degrees. This
results in a rectangle of length b and height a, which represents a multiplication b x a.
The area of the rectangle is clearly preserved, hence a x b = b x a. Note that this is
true for any values a and b.

3.2.2 Pythagoras’ Theorem

Pythagoras’ Theorem states that the square of the hypotenuse of a right angle triangle
equals the sum of the squares of its other two sides. Here is one of the many different
diagrammatic proofs of this theorem, taken from [Nelsen 93, page 3] (we give another
example of a diagrammatic proof of Pythagoras’ Theorem in Appendix A):



40 CHAPTER 3. DIAGRAMMATIC THEOREMS AND PROBLEM DOMAIN

a? + b =2

c

b a b a

The proof consists of first taking any right angle triangle. Along the hypotenuse ¢, join
this triangle to another identical right angle triangle, to make a rectangle. Join to this
a square on the longer side a of one triangle, and a square on the shorter side b of the
other triangle. Join to both squares, along their adjacent sides another two identical
original right angle triangles. This completes the bigger square.

Now re-arrange the triangles into the bigger square so that each side of the square
is formed from one side of one and the other side of another triangle. Thus, the
magnitude of the bigger square is preserved and the square in the middle is the square
on the hypotenuse. Clearly, when we subtract the areas of the four triangles from the
original bigger and the new square, the sum of the squares on the sides of the right
angle triangle (in the original bigger square) equals the square on the hypotenuse of
this triangle (in the new square).

3.2.3 Triangular Equality for Even Squares

The following is a theorem about the equality of triangular numbers for even squares.
A triangular number is defined to be Tri, =14+2+3+---+n = % The example

is taken from [Nelsen 93, page 101]. The theorem states the following:
(2n)? = 8Tri, | +4n

Note that were we not to use the definition of triangular numbers, the theorem could
be stated as (2n)? = 8(1+2+3+---+ (n—1)) +4n. The diagrammatic proof is given
as follows:

The proof consists of taking a square of magnitude 2n for a particular value of n. We
then split it into four squares. Note that each of these four squares will be of magnitude
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n. Split each of these four squares diagonally. For each square two triangles will be
formed, one of magnitude n and one of magnitude n — 1. For the four triangles
of magnitude n, split from them one side. Note that the triangles will become of
magnitude n — 1 and the sides are of magnitude n. Thus we have eight triangles of
magnitude n — 1, hence 87'ri,— and four sides of magnitude n, hence 4n.

3.2.4 Sum of Odd Naturals

This example is also taken from [Nelsen 93, page 71]. The theorem about the sum of
odd naturals states the following:

n*=1+3+-+2n-1)

If we take a square we can cut it into as many ells (which are made up of two adjacent
sides of the square) as the magnitude of the side of the square. Note the use of
parameter n in the number of applications of geometric operations. Note also that one
ell is made out of two sides, i.e. 2n, but the shared vertex has been counted twice.
Therefore, one ell has a magnitude of (2n — 1), where n is the magnitude of the square.

3.2.5 Sum of Squares of Fibonacci Numbers

The theorem about the sum of squares of Fibonacci numbers states that the sum of
n squares of Fibonacci numbers equals the product of n-th and (n + 1)-th Fibonacci
number. The example is taken from [Nelsen 93, page 83]. Formally, the theorem is
stated as:

Fib, x Fib, 1 = Fibi2 + Fiby> + --- 4 Fib,?
The formal recursive definition of Fibonacci numbers is given as (note that Fiby = 0):
Fiby = 1

Fiby = 1
Fibyio = Fiby1 + Fiby
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The diagrammatic proof consists of taking a rectangle of length F'ib, 1 and height
Fib,, for some particular n. Decompose this rectangle by splitting from it a square of
magnitude F'ib,, which is the magnitude of the smaller side of the rectangle. Continue
decomposing the remaining rectangle in a similar fashion until it is exhausted, i.e. for all
n. Note the use of parameter n. Note also that the sides of the created squares represent
consecutive Fibonacci numbers. Clearly, the longer side of every new rectangle is equal
to the sum of the sides of two consecutive squares, which is precisely how Fibonacci
numbers are defined.

This proof can be carried out inversely. We first take a square of unit magnitude (i.e.
Fib?) and joining it on one of its sides with another square of unit magnitude (i.e.
Fib3). Therefore, a rectangle has been created. Take this rectangle and join to it a
square of the magnitude of its longer side. A new rectangle will be created. Repeat
this procedure for all n.

3.2.6 Sum of Hexagonal Numbers

The theorem about the sum of hezxagonal numbers states that the sum of n hexagonal
numbers equals n cubed:

n® = Hexy + Hexy + --- + Hexy,

Hexagonal numbers can be formally defined by the recursive definition (note that
Hexy = 0):

Hexry = 1

Her,+1 = Hex,+6xn

The informal definition of hexagonal numbers could be presented in a series of hexagons
where the hexagonal number is the number of dots in a hexagon:
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The diagrammatic proof of the sum of hexagonal numbers consists of breaking a cube
into a series of half-shells. A half-shell consists of three adjacent faces of a cube. The
example is taken from [Nelsen 93, page 109] and [Penrose 94a, pages 118-121].

.q@qj

If each half-shell is projected onto a plane, that is, if we look at the top-right-back
corner of each half-shell down the main diagonal of the cube from far enough, then a
hexagon can be seen. So the cube is then presented as the sum of all half-shells, i.e.
hexagons.

3.2.7 Geometric Sum

This example is also taken from [Nelsen 93, page 118]. The theorem about a geometric

sum, of ]n as n tends to infinity states the following:
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Note the use of ellipsis in the diagram. Take a square of unit magnitude. Cut it down
the middle. Now, cut one half of the previously cut square into halves again. This will
create two identical squares making up a half of the original square. Take one of these
two squares and continue doing this procedure indefinitely.
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3.2.8 Geometric Series

This example is also taken from [Nelsen 93, page 121]. The theorem about a geometric

. 1 . 1 . . .
series of @y (or equivalently ;) as n tends to infinity states the following:
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Note the use of ellipsis in the diagram. Take a square of unit magnitude. Cut it into
four squares. Note that each of the four squares is of magnitude %, thus the area of one
of the four squares is %. Take one of the four squares and repeat the procedure. Note
that this leaves three squares on which the procedure is not repeated (in the diagram
above they form sort of an ell shape). The areas of each newly created square is now
% X % = 11—6 Continue to carry out the same procedure indefinitely. Note that the black
squares are a third of the three squares on which the procedure is not repeated. As
the number of such three-square structures tends to infinity, they comprise the entire
original square of unit magnitude. Thus, the sum of all black squares is a third of the

unit square.

3.3 Classification

It is our aim to choose from the examples represented in this chapter (and many
more, some of which are given in Appendix A) the class of theorems for which the
extraction of diagrammatic proofs will be automated. The classification of examples
requires depicting certain properties of the examples and deciding the importance of
each property. The examples are then evaluated and compared according to these
properties, and finally classified into categories which all have common features.

The features that are interesting to us are:

e concreteness versus generality of diagrams,
e the need for induction to prove the general case of the theorem,

e the space of problems,
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e the need for abstractions in the representation of a diagram,

e the number of proof steps.

These properties are by no means exhaustive, but they are the ones which help us to
categorise the examples presented here.

By concreteness of diagrams we mean the property that as a diagram is drawn it as-
sumes a concrete magnitude, i.e. it represents particular values. By generality of a
diagram we differentiate between diagrams that are the most general, i.e. they rep-
resent the whole class of diagrams, and diagrams that represent only an instance of a
particular class of diagrams.

Some theorems need mathematical induction to prove them. These are usually univer-
sally quantified over some parameter. We distinguish between theorems that have and
those that do not have a notion of a universally quantified variable. Moreover, we are
interested in theorems that are universally quantified over one parameter.

We distinguish between a continuous space and discrete space of problems. Continuous
space allows reasoning about real numbers, whereas discrete space only allows reasoning
about natural numbers.

By abstractions in diagrams we mean the use of abstraction devices such as ellipsis to
represent the generality of a diagram. In continuous space the abstractions are avoided
by labelling of a diagram. For instance, if a right-angle triangle is drawn in a continuous
space, then it inherently assumes a concrete magnitude. Each side of the triangle could
be labelled with some variable which indicates that the variable can assume any real
value. Thus, a particular right angle triangle is a representative of any right-angle
triangle. The concreteness of diagrams is more problematic in a discrete space where
diagrams are represented with points (or dots or counters etc.) on a grid. A diagram
in a discrete space is an instance of the class that it is part of. The generality of a
diagram in a discrete space can be represented with the use of abstraction devices such
as ellipsis. We discuss the difficulty of using abstraction in §3.4.

Some proofs of theorems consist of a number of proof steps dependent upon the instance
(i.e. the value of the parameter) for which they are given. Such proofs are called
schematic proofs. We distinguish between proofs that are schematic and those that
are not. We discuss and formally define schematic proofs in Chapter 4.

The properties just discussed are the ones on which we base our analysis of examples
given in the previous section. The analysis will enable us to devise a taxonomy for
theorems that admit diagrammatic proofs.

3.3.1 Analysis

Theorems about the commutativity of multiplication, Pythagoras’ theorem, geometric
sum and geometric series are theorems of continuous space. Diagrams in the proofs
are represented using lines. The main feature of diagrams which is appealed to in
order to convey proofs is the manipulation of diagram areas. For instance, the proof
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of commutativity of multiplication appeals to the fact that if we rotate the diagram by
90 degrees, its area remains the same.

Proofs of commutativity of multiplication and Pythagoras’ theorem use diagrams which
are general, i.e. they are representative of the entire class which represents the theorem.
In other words, there is only one diagram for all instances of a theorem. There is no
need to use abstractions (e.g. ellipsis) to represent the general case of a theorem. For
example, a rectangle in the proof of commutativity of multiplication is representative of
a rectangle of any magnitude, i.e. a and b stand for any real values. The same is true
for a right-angle triangle in the Pythagoras’ theorem. There is no induction needed to
prove the general case of a theorem. Generalisation is required in the end to show that
the theorem holds for all values of universally quantified variables. For both of these
theorems, i.e. commutativity of multiplication and Pythagoras’ theorem, the number
of proof steps does not depend on any parameter, it is fixed.

On the other hand, proofs of geometric sum and geometric series do need abstractions
to represent the theorem. In fact, there is no notion of instances of the theorem, be-
cause there is no universally quantified variable in the theorem. Therefore, there is
only one case of a diagram, the one which represents the theorem. This case requires
induction to prove the theorem. We say that theorems like these are inherently in-
ductive. The number of diagrammatic operations is infinite.! Note however, that a
universally quantified variable could be introduced, which would allow an extraction
of a diagrammatic proof. For example, the theorem about the geometric sum would
instead of 1 = %—I—%—I—%—i—--- be stated for all n > 0 as:
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Thus, a diagrammatic proof for a particular instance of n looks as follows:
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Note that there is no longer any need for abstractions in the representation of an
instance of the theorem and its proof. The same could be done for the theorem about

the geometric series — the new version of the theorem for all n would be: 1 = ((2})2

(2;)2 + (2;)2 + o+ (Qi)2) + (Qi)Q. However, such an introduction of a universally
quantified variable transforms a theorem into a different theorem than the original one

which was under examination.

! On the other hand, such theorems do admit finite logical (as opposed to diagrammatic) proofs.
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Theorems about triangular equality for even squares, sum of odd naturals, sum of
squares of Fibonacci numbers and sum of hexagonal numbers are theorems of a discrete
space, in fact, the natural numbers. Diagrams that represent theorems and their proofs
are drawn using dots, where a dot represents the natural number 1. An empty diagram,
i.e. no diagram, is the number 0. The main feature of diagrams which is used to
convey proofs is the manipulation of dots and its effect on the numbers that particular
collections of dots represent.

The diagrams representing the proofs of these four theorems of discrete space are
instances of a corresponding theorem. The universally quantified variable has been in-
stantiated to a value and the diagram is drawn for this particular value. The diagram
which is a representative of a particular instance of a theorem does not need abstrac-
tions. However, were we to represent a general case of a theorem, then abstraction
would be needed in the diagram.

For theorems about sum of odd naturals, sum of squares of Fibonacci numbers and sum
of hexagonal numbers, the number of proof steps is dependent on the particular value
for which the diagram is drawn, i.e. the value of a parameter for which the theorem
is instantiated. The proof requires mathematical induction to prove the general case
of the theorem. For the theorem about a triangular equality for even squares the
number of proof steps does not depend on the value of the parameter for which the
instance of the proof is given. We could say that the number of proof steps is trivially
dependent on the value of the parameter, i.e. the number is constant. Abstraction of
the magnitude of the discrete diagram is required in the end to show that the theorem
holds for all values of the parameter. In a way, this is similar to the theorem about
the commutativity of multiplication and Pythagoras’ theorem.

3.3.2 Taxonomy

From the analysis of the examples that we presented in §3.2, and many others, some
of which are given in Appendix A, three categories of proofs can be distinguished:

Category 1: Non-inductive theorems. Usually, there is only one representative dia-
gram for all instances of the theorem. There is no need for induction to prove
the general case: proofs are not schematic. Simple geometric manipulations of
a diagram prove the individual case. Abstraction is required to show that this
proof will hold for all a,b. Theorems are of continuous space. Example theorem:
commutativity of multiplication, Pythagoras’ theorem.

Category 2: Inductive theorems with a parameter. A diagram is a representative of
a particular instance of a theorem. Proofs are schematic: they require induction
for the general diagram of magnitude n (a concrete diagram cannot be drawn
for this instance). An alternative method can sometimes be used to capture the
generality of the proof. Theorems are of discrete space. Example theorem: trian-
gular equality for even squares, sum of odd naturals, sum of squares of Fibonacci
numbers, sum of hexagonal numbers.

Category 3: Theorems whose proofs are inherently inductive: for each individual
concrete case of the diagram they need an inductive step to prove the theorem.
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Every particular instance of a theorem, when represented as a diagram requires
the use of abstractions to represent infinity. Theorems are of continuous space.
Example theorem: geometric sum, geometric series.

Note that these categories are by no means exhaustive. We choose these, because they
conveniently enable us to define our problem domain.

3.4 Abstractions in Diagrams

Abstraction devices, such as ellipsis, are conventions and notations which are used
to represent generality or abstraction of a structure. They can be used in sentential
(symbolic) reasoning (e.g. n? = 1+3+---+(2n—1)) or in diagrammatic reasoning. For
example, were we to represent the most general representation of a theorem about the
sum of odd naturals and its proof, we would need to use ellipsis to represent a general
diagram and a general number of applications of geometric operations on a diagram.
Figure 3.1 shows the representation of an abstract square and the operations forming
a proof of the theorem about the sum of odd naturals.
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Figure 3.1: Abstract representations of a square in the proof of the sum of odd naturals.

The fact that diagrams are concrete in nature is an inherent problem in drawing dia-
grams. Using ellipsis is one of the conventions to represent generality. However, the
problem in using such abstract diagrams is to keep track of what has been ellided in
the representation of an abstract diagram. Moreover, it is difficult to count how many
more occurrences of geometric operations still need to be applied. Note that a general
version of geometric operations also need abstractions to represent their generality.

In sentential representation there are formalisations of abstractions which are tractable
throughout the manipulations in the proofs. For instance, the sentential representation
of the theorem about the sum of odd naturals is often expressed as: n? = Y21
where the definition of ) is given recursively. Variables and other constructors such
as Y are the abstractions.

In diagrammatic representations the formalisation of abstractions seems to be more
difficult. It is one of the topics that could be tackled in the future (see Chapter 11).
The problem lies in the manipulation of such abstractions. It is difficult to see how to
automatically keep track of the consequences of operations being applied to the ellided
parts of abstract diagrams. The inherent problem with ellipsis is its ambiguity. The
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pattern on either end of the ellipsis needs to be induced by the system. For instance,
it is ambiguous whether the abstract square given in Figure 3.1 is in fact a square, or a
rectangle. Some ambiguities can be removed by adding additional clues such as giving
another layer of a diagram and having each corner of an abstract square be instantiated
to a square. However, most of ambiguities remain: is the square in Figure 3.1 of even
magnitude or is it of odd magnitude? The problem becomes more acute when dealing
with more complex structures. To recognise the pattern that the ellipsis represents the
systems needs to carry out some sort of pattern recognition technique which deduces
the most likely pattern and stores it in an exact internal representation. This guessed
pattern might still be wrong.

There is a possibility to resort to a different abstract notation of diagrams which uses
the exact internal representation rather than ambiguous ellipsis. The exact notation
which would normally have to be deduced by the pattern recognition mechanism could
be used in reasoning for internal representation of abstractions. FEzxternally, to the
user of the system, this exact formalisation could be made visual through a sort of
pretty-printing technique. For instance, a general square of magnitude n which is
given in Figure 3.1 and uses ambiguous ellipsis could internally be stored using an
exact representation square(n). All the internal reasoning can be carried out using
this exact representation, yet the pretty-printing function would display to the user
a square with ellipsis. The computational difficulty of extracting a pattern from an
abstract notation has in this way been passed to the pretty-printing function. For
further discussion of the kind of possible formalisation of abstractions in diagrams the
reader is referred to §11.5.

Using such exact representation to store internally abstract diagrams and externally
portray them using abstractions is open to many objections. The question can arise
of how diagrammatic (visual) or non-diagrammatic (non-visual) this exact represent-
ation is. Are we not in essence carrying out sentential reasoning which is the same
as using n? instead of square(n)? Where is the border which divides sentential and
diagrammatic reasoning, especially when automated on machines? Trying to estab-
lish what is visual (or graphical or diagrammatic) and what is sentential in reasoning
with a computer has been a topic of discussion amongst scientists in the fields like
cognitive science, cognitive psychology, philosophy, computer science and artificial in-
telligence many times (see [Narayanan 92], [Olivier 96], [Blackwell 97], [Anderson 97],
etc. ). A whole new area of programming using visual languages has been established
(see [Burnett & Baker 94]). Yet, we have not come closer to defining any precise dis-
tinction between the two. It seems that scientists adopt a distinction which is suitable
within the scope of their research. We adopt here an informal notion that square(n)
and n? are sentential representations, because they have no properties that are ana-
logous to our visual comprehension of a square. On the other hand, the representation
of a square given in Figure 3.1 is considered to be diagrammatic.

3.5 Problem Domain

In §3.2 we introduced the notion of diagrammatic theorems through a number of ex-
amples. We discussed in §3.3 their common features which enabled us to categorise
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them. The categorisation is by no mean exhaustive, but it helps us choose our problem
domain.

First, we choose mathematics as our domain for theorems since it allows us to make
formal statements about the reasoning, proof search, induction, generalisations, ab-
stractions and such issues. All of these are important when automating a system that
carries out the type of diagrammatic reasoning represented by the examples in §3.2.

Second, we narrow down the domain to a subset of theorems that can be represented
as diagrams without the need for abstraction (e.g. the use of ellipsis, as in the above
example theorem for geometric sum). Conducting proofs and using abstractions in
diagrams is problematic, as explained in §3.4, since it is difficult to keep track of
these abstractions while manipulating the diagram during the proof procedure. This
excludes the whole of theorems of Category 3 in §3.3.2. We also reject representing
general diagrams of Category 2 (as the one in Figure 3.1), but only concrete (i.e.
instantiated) versions of them (as the one in §3.2.4). Therefore, theorems of Category
2 will be instantiated to particular values, and the reasoning will be carried out on
these instances. The generality of the proof will be captured in an alternative way.

Third, we consider diagrammatic proofs that require induction to prove the general
case (i.e. Category 2 given in §3.3.2). Such theorems are universally quantified over
one parameter. This includes theorems of Category 1 and Category 2. Diagrams can
be drawn only for concrete situations and objects. An n x n square in Figure 3.1,
for example, cannot be drawn without using ellipsis. On the other hand, theorems of
Category 1 can be drawn without abstractions. They are concrete, however they are
the general representatives of the class that they belong to. Our challenge is to find a
mechanism for extracting a general proof that does not require using abstractions in
diagrams. The generality of the proof will be captured in a different way.

Fourth, to date we consider theorems of natural number arithmetic only. This area
is rich, interesting and different to other research domne in this area (see a survey of
diagrammatic reasoning system in Chapter 2), because arithmetic theorems are not
as obviously amenable to diagrammatic representations as geometric theorems are.
Diagrams that represent theorems of natural number arithmetic are represented using
dots. The problem space is two or three dimensional and discrete. Notice that the
domain of theorems that we can prove diagrammatically is not limited to only theorems
which are expressed as degree two or three polynomial equations, and which have
an obvious two or three dimensional diagrammatic representation. We give here an
example of a theorem which is stated using an equation of degree three polynomial, yet
the diagrammatic proof uses diagrams of a two dimensional space only. The theorem
is about the sum of cubes and is stated as:

(I+243+--+n)2=1+2 43 4... 40’

The diagrammatic proof is given for n = 4 as follows (the example is taken from
[Nelsen 93, page 85]):

2 We use schematic proofs which will be introduced in Chapter 4 to capture the generality of the
proof.
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te

The diagrammatic proof of this theorem consists of taking a square of magnitude
(14+2+3+--- +n)? for some particular n (in the case of n = 4 the square is
of magnitude 1 + 2+ 3 + 4 = 10) and splitting it into strips of ells each one unit
thicker than the previous one. This explains why the original square is of magnitude
(14+2+3+---+n)2. For each thick ell we split it now to as many squares of magnitude
which is equal to the width (i.e. thickness) of an ell as possible. For instance, an ell of
thickness 3 can be split to three squares of magnitude 3. Thus 3 x 3% = 3%. Note that
for each ell of even thickness k, only k& — 1 squares of magnitude k fit into an ell, plus
two bits at the end of an ell which form half of the square of magnitude k, hence both
of them together form another square of magnitude k. So, 2x % = k2. Therefore, for
each ell of even thickness we have ((k—1) xk?)+(2x %) = (k—1)xk>+k? = kxk? = k3.
To be more accurate, the diagrammatic proof given here proves the following version
of the theorem: (14+2+3+4---4+n)? =1x124+2x 2243 x 3?44+ n xn?, because we
are not appealing to any three dimensional property of a cube. A three dimensional
version of this diagrammatic proof is to think of dots as spheres, and take for each
thick ell, all of the sectioned squares and join them one on top of another to form a
cube.

The example just given shows that the degree of the polynomial in the equation stating
the theorem does not uniquely determine the dimension of a space in which a diagram-
matic proof can be carried out. Another example which demonstrates this is a theorem
which uses polynomials of degree four. Some humans find it difficult to picture four
dimensional space, yet this does not limit us to prove such theorems. For instance, if
4 3 in a three dimensional space for

we have a term n” we can alway represent it as n xn

some concrete n.

There are some limitations to theorems which we can prove diagrammatically. If we
can appeal to the feature of a diagram which conveys the truth of the theorem in two
or three dimensional space, then we can prove a theorem diagrammatically. In the
example above, we proved the theorem about the sum of cubes by appealing to the
fact that n3 is equivalent to n x n? and were thus able to prove the theorem in a
diagrammatic way in a two dimensional space. Only theorems for which such features
are accessible to appeal to, can be proved diagrammatically.

The system that we present in this thesis proves theorems of Category 2 which are uni-
versally quantified over one parameter. The number of proof steps may be dependent
on this parameter, thus the proofs are called schematic. We might consider extending
the problem domain to continuous space, whereby the proofs for real numbers, such as
geometric theorems of Category 1 would be automated as well.
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One of the possibilities for future work (see Chapter 11) is to consider a need for a
more precise problem domain definition. For instance, a complete characterisation of
the class of theorems that can be proved diagrammatically could be devised. However,
formalising this characterisation of theorems seems to be a very difficult task.

3.6 Summary

In this chapter we introduced examples of theorems that admit diagrammatic proofs
which we call diagrammatic theorems. The formal role of the use of diagrams in
proofs within a historical context has been discussed. Diagrams have been used to aid
reasoning throughout the history of mathematics. However, at the turn of this century,
with the invention of modern logic, diagrams seemed to have lost their validity in formal
proofs. Only recently, much research has been done to re-establish the formal role of
diagrams. The research reported in this thesis is part of this trend.

We continued by presenting examples of diagrammatic theorems, which gave us a fla-
vour of the type of diagrams which are of interest. We presented the following theorems
with diagrammatic proofs: commutativity of multiplication, Pythagoras’ theorem, tri-
angular equality for even squares, sum of odd maturals, sum of square of Fibonacci
numbers, sum of hexagonal numbers, geometric sum and geometric series. More ex-
amples are given in Appendix A. We then went on to state the features on these
examples which are of interest to us. Based on these features we analysed our ex-
amples and categorised them into three categories.

The difficulty of using abstractions in diagrams was discussed next. We concluded
that there is scope to avoid the need for abstractions (which are ambiguous) by a
different type of notation that is exact and requires a sort of pretty-printing function
to represent the proof externally in a diagrammatic way. However, it was questioned
whether such a notation can still be called diagrammatic, or has it been reduced to a
sentential notation.

Finally, we choose our problem domain which is theorems of natural number arith-
metic which require induction to prove them in the general case. This means that we
are dealing with discrete space whereby natural numbers are represented using dots.
Thus, diagrams used in proofs are various collections of dots. We chose theorems of
Category 2 to further restrict our domain of problems. They are universally quantified
over one parameter. The numbers of proof steps in such theorems is dependent upon
the parameter: they are called schematic proofs. We indicated that there is a possibil-
ity to extend the problem domain to include continuous space which would enable us
to prove theorems of Category 1 as well.
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In the previous chapter we presented some of the examples of theorems which we prove
diagrammatically. One of the aims of the work presented in this thesis is to formalise
a method for automatic extraction of such diagrammatic proofs. The proof process is
carried out on concrete rather than general diagrams. The generality of the proof is
captured in a different way. The topic of this chapter is to give a way of capturing
diagrammatic proofs without the need to resort to general diagrams which use abstrac-
tions to represent them. The mathematical basis for capturing the generality of the
proof is in the use of the constructive w-rule in schematic proofs, which is explained in
detail in this chapter.

In §4.1 we put our choice of the technique for extraction of diagrammatic proofs in the
context of automated reasoning. We go on in §4.2 to explain the w-rule, the problem in
automating its use, and the constructive version of the rule (in §4.3) as the solution to
the problem. In §4.4, we define the concept of schematic proofs. In §4.5 we explain how
to extract schematic proofs and give an example of a schematic proof in arithmetic.
The discussion about the motivation for using schematic proofs follows in §4.6. In
§4.7 we challenge Penrose’s argument that diagrammatic proofs cannot be automated.
In §4.8, we propose how to use schematic proofs for representation of diagrammatic

93
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proofs. Finally, in §4.9, we give structured informal schematic proofs for examples of
Category 2 proofs given in Chapter 3.

4.1 Motivation

In Chapter 3 examples of diagrammatic proofs of theorems of natural number arith-
metic were presented. When selecting the problem domain in §3.5 it was decided that
general diagrams which use abstractions (such as ellipsis) to capture their generality
will not be used. The problem of using abstractions in diagrams was discussed in §3.4.
The theorems that we choose to prove are those which require the use of mathematical
induction in a formal logical proof. In a diagrammatic proof this necessitates the use
of general diagrams with abstractions, which we are trying to avoid. We proposed
an alternative way of capturing the generality of a diagrammatic proof of a theorem,
namely by the use of schematic proofs.

We sketch here the basic idea behind schematic proofs, but define them fully in §4.4.
The formalisation of diagrammatic schematic proofs and the implementation of the ex-
traction of schematic proofs is discussed in Chapter 7. A schematic proof is a program
with some parameters. By instantiation of these parameters the program generates
ground examples of a particular proof. For instance, a schematic proof in arithmetic
may consist of a number of applications of rewrite rules which are applied to an ini-
tial expression. In a diagrammatic proof the rewrite rules are replaced by geometric
operations on a diagram. Thus, a diagrammatic schematic proof is a program which
applies geometric operations to diagrams when given some value of the parameter. In
this way, we eliminate the need for general diagrams, and instead use a general number
of applications of geometric operations.

A universally quantified schematic proof is extracted from a number of ground instances
of a proof for a corresponding ground instance of a theorem. This process is referred
to as inductive inference or abstraction, because it induces general conclusions from
particular examples [Winston 75]. In Chapter 2 we presented some of the possible
techniques for drawing general conclusions from examples. The choice of a particular
technique is relevant to the implementation of the extraction of a schematic proof. In
§7.4 we discuss in detail the use of abstraction in the implementation of extraction
of schematic proofs. In this chapter, in §4.4, we state an algorithm for extracting
schematic proofs.

4.2 w-Rule

Let us define the w-rule as in [Sundholm 83] (note that s is a successor function):



4.2. w-RULE 95

Definition 1 (w-Rule)

The w-rule allows inference of the sentence Yx. P(x) from an infinite sequence P(n)
for n € w of sentences

P(0), P(s(0)), P(s(s(0))), ...
Vn.P(n)

In this section we motivate the use of the w-rule instead of the rule of mathematical
induction within automated deduction, show the problem of its use within implement-
ations, and propose a solution to this problem.

4.2.1 Motivation for using w-rule

One of our aims is to implement a system which proves theorems of mathematics using
diagrammatic inference rules. Since our diagrams of Category 2 are a form of rep-
resentation for natural numbers, we need to formalise a theory of diagrams which is
equivalent to at least a part of natural number arithmetic, and is suitable for automa-
tion. Important and desirable properties of such a theory and the formalised logic are
consistency, soundness and completeness. Only systems that axiomatise mathematics
strongly enough may have such properties. There are two main reasons for using the
w-rule in the formalisation of a theory of diagrams. The first one is that the Peano
axioms plus the w-rule form a complete theory [Orey 56], and the second reason is that
the use of the w-rule eliminates the need for the cut rule [Prawitz 71]. The cut rule
used in Gentzen’s formalisation of sequent calculus is as follows:

A?2HC 7FA
7FC

The cut rule enables one to prove C using A. A is referred to as the cut formula. A is
then eliminated by proving it from from 7.

Godel’s first incompleteness theorem says that for any formal theory of natural number
arithmetic there will always be true statements for it, that are not theorems of this
theory [Godel 31]. Hence we can never completely formalise all truths of arithmetic.
The usual formalisation of arithmetic using Peano axioms and induction rule is limited
since Godel’s first incompleteness theorem applies to this formalisation. However,
[Shoenfield 59] showed that a complete formalisation of arithmetic can be constructed
from Peano axioms and the w-rule, thus Godel’s incompleteness theorem does not
apply here. Peano axioms plus the w-rule is a semi-formal system because the proofs
are infinite, and is therefore not a formal system in the required sense (see [Orey 56]).

The second reason for using the w-rule is that it removes the need to use the cut
rule. For reasons such as consistency and restriction of search space, it is a desirable
property of a system that cut elimination is valid (see [Schwichtenberg 77]). The cut
elimination theorem for predicate calculus states that every proof may be replaced by
one that does not require the use of a cut rule. The theorem was proved for first order
logic by [Gentzen 69] and for Peano axioms plus the w-rule by [Prawitz 71]. This has
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a significant impact on the search space in the automation of a reasoning system. If a
proof is not cut-free, then any cut formula can be introduced to the proof, hence there
is a potentially infinite branching of a search space. However, if the cut elimination
theorem holds for a logical system, then any cut formula need not be used in the proof,
hence branching of a search space is finite.

Cut elimination is not valid for the inductive formalisation of arithmetic, e.g. Peano
axioms plus induction, as shown by [Kreisel 65]. The problem which arises is that
induction in Peano arithmetic is blocked for some theorems (e.g. the associativity of
addition stated as (z + x) + z = = + ( + z)), because P(s(z)) cannot be given in
terms of P(z). Using the rules in the recursive definition of addition, 0 + z = z and

s(x) + x = s(x + ), and cancellation of successor function, the following equations
represent the derivations from P(s(z)) to P(z) (reasoning backwards). More precisely,
all the possible pairwise combinations of the left hand side and the right hand side of
the equations represent all the possible derivations from P(s(z)). Note that the term
structure is different in the two sides of equations for the second arguments of both
additions:

(s(z) +s(z)) +s(x) = s(z)+(s(z) +s(z)) = P(s(x))
s(z+s(z)) +s(z) = s(z+(s(z)+s(x)))
s((z+ s(z)) +s(x)) = s(z+s(z+s(x)))

(z +s(z)) + s(x) T+ s(z + s(z)) # P(x)

From a heuristic point of view, a generalised form of the theorem is required. This
extends the problem to finding what this generalised formula might be. Arbitrarily
finding it is an ad hoc approach, and potentially requires an infinite branching of
a search space. In the example about the associativity of addition just given, one
possible generalisation of a formula is (z + y) + y = 2 + (y + y). For reasons such
as these, automatic theorem proving using the usual formalisation of arithmetic, i.e.
Peano axioms plus induction, is made very difficult. A solution might be to embed the
arithmetic in a stronger system, where there is no need for generalisation. An example
of such a system is Peano arithmetic plus the w-rule.

4.2.2 Example of Using the w-rule

One way of putting the w-rule into effect is to require that there is a formalisation
of the derivation which proves each premise. For example, one could code proofs by
numbers by means of a recursive function which generates them. Such a formalisation
would be constructive. However, the rule as it is stated above is not constructive, and
it is not suitable for implementation, since it has an infinite number of premises. It is
hard to automate on a computer proofs with an infinite number of premises.

Take, for example, a theorem about the associativity of addition:
Vo (z+z)+x =2+ (z+ 1)

As seen in §4.2.1 the inductive proof is blocked, so some sort of generalisation is
required. In such a case the correct proof is difficult to find automatically. However,
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the proof can be found using the w-rule, given that the proofs of the following premises
can be generated:

0+0)+0 = 0+ (0+0)
(s(0) +s(0)) +s(0) = s(0)+ (s(0) + s(0))
(s(s(0)) + s(s(0))) +s(s(0)) = s(s(0)) + (s(s(0)) + s(s(0)))

We restrict the w-rule so that the infinitary proofs which are needed possess some
important properties of finite proofs. One such restriction is the so called constructive
w-rule. This rule essentially requires that there is a recursive function which generates
by instantiation all instances of a proof. A possible implementation of the recursive
function, required by the constructive w-rule, is by finding a general pattern of a proof
from examples of proofs for instances of a theorem (such as the ones given above), and
capturing it in a recursive program. This can be done by abstraction. An algorithm
which can be used to recognise automatically the general pattern abstracts an initial
set of rewrite rules describing an instance of a proof, and then updates this abstraction
according to other instances of a proof, until the general proof representation satisfies
all of the (large number of) cases considered. Any abstraction algorithm can be used
to guess the w-proof from individual proof instances.'

We now go on to define the constructive w-rule and show its use in schematic proofs.

4.3 Constructive w-Rule

Here we define the constructive w-rule, which we later propose (in §4.8) to use in prov-
ing diagrammatic theorems of Category 22 in a similar way that the rule is used to
prove theorems of arithmetic. Baker investigated the constructive w-rule and schem-
atic proofs for theorems of arithmetic [Baker et al 92].> Here, we explain the idea
behind the constructive w-rule and schematic proofs and how they can be applied to
diagrammatic proofs.

Definition 2 (Constructive w-Rule)

The constructive w-rule allows inference of the sentence Vx. P(xz) from an infinite
sequence P(n) for n € w of sentences

P(0), P(s(0)), P(s(s(0))), ...
Vn.P(n)

such that each premise P(n) is proved uniformly (from parameter n).

! Possible abstraction mechanisms have been discussed in Chapter 2. The algorithm chosen for the
implementation is discussed in §7.5.

2 The taxonomy of diagrammatic theorems was given in §3.3.

3 More information on Baker’s work can be found in [Baker & Smaill 95] and [Baker 93].
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Surprisingly perhaps, the formalisation of arithmetic using Peano axioms and the con-
structive w-rule in place of induction has the desired property of cut elimination and
is known to be complete [Shoenfield 59].

The uniformity criterion is taken to be the provision of a uniform computable procedure
describing the proof of P(n). [Takeuti 87] defined the constructive w-rule so that the
computable procedure gives the Godel number of P(n) for every natural number n.
The requirement for a uniform procedure is equivalent to the notion that the proofs
for all premises are captured in a recursive function. The computable procedure in
[Yoccoz 89a] definition of the constructive w-rule is a recursive function. Yoccoz uses
this recursive function as an alternative to the Godel numbering approach. To allow
the use of infinitary rules, such as the w-rule, in automated reasoning systems, these
rules are often restricted to their stronger recursive versions [Yoccoz 89b]. This means
that a proof tree and a function describing the use of different rules in a proof need to
be recursive. We call such uniform recursive functions schematic proofs.

4.4 Schematic Proof

Here we formally define a schematic proof.

Definition 3 (Schematic Proof)

A schematic proof is a recursive function which outputs a proof of some proposition
P(n) given some n as input.

Let a recursive function proof be a schematic proof. The function proof takes one
argument, namely a parameter n. By instantiation, i.e. by assigning a particular value
to n and passing it as an argument to the function proof, proof(n) generates a proof for
a particular premise P(n). More precisely, proof(n) describes the use of rewrite rules
in proofs for each P(n). Now, proof(n) is schematic in n, because we applied some rule
R a function of n (or a constant) number of times. That is, the number of times that
a rule R is applied in the proof depends on the parameter n. This recursive definition
of a proof for all premises is used as a basis for implementation of the schematic proofs
(see §7.3).

4.4.1 Example of Schematic Proof in Arithmetic

To illustrate the use of the constructive w-rule in schematic proofs, we give here an
example of a schematic proof of a theorem of arithmetic. The proof is an instance of
the theorem about the associativity of addition, stated as z + (z + z) = (z + =) + =.
The recursive definition of plus is given as follows:

0+Y =V (4.1)
s(X)+Y = s(X+Y)

We also need a reflexive law VA. A = A.
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The constructive w-rule is used on z in the statement of the associativity of addition.
We write any instance of z as s"(0). By s"(0) is meant the n-th numeral, i.e. the
term formed by applying the successor function n times to 0. Next, the axioms are
used as rewrite rules from left to right, and substitution is carried out in the w-proof,
under the appropriate instantiation of variables. We use the following instance of the
constructive w-rule in our example:

(s™(0) + s™(0)) + s™(0) = s"(0) + (s™(0) + s™(0))
Ve, (z4z)+zxz=z+(x+x)

where n is the parameter. We construct a schematic proof in terms of this parameter
where the parameter n in the antecedent captures the infinity of premises actually
present, one for each value of n. The aim is to reduce both sides of the equation to
the same term. The schematic trace of proof(n) is then represented in bold blocks of
rewrite rules which are being applied:

(5"(0) +"(0)) +57(0) =  5"(0) + (5"(0) + 5"(0))
Apply rule (4.2) n times on both sides

S0+ 5"(0)) + s7(0) = s"(0+ (s"(0) + s"(0)))

Apply rule (4.1) on both sides
SEO) +80) = S (0) +57(0))

Apply rule (4.2) n times on left

s"(s"(0) +"(0)) = s"(s"(0) +"(0))

Apply Reflexive Law
true

Hence, for any parameter n the recursive function proof can be expressed as follows:

proof(n) = n x rule (4.2) on LHS,
n x rule (4.2) on RHS,
1 x rule (4.1) on LHS,
1 x rule (4.1) on RHS,

n X rule (4.2) on LHS,

1 x Reflexive Law.

Note that the number of proof steps depends on n, which is the instance of x we are
considering. We see that the proof is schematic in n certain steps are carried out a
number of times depending on n.
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4.4.2 Schematic Proof and Generalisation

The constructive w-rule and schematic proofs can be used to prove theorems, such as
the associativity of addition, which in the usual axiomatisation of arithmetic require a
proof involving mathematical induction. The fact that some theorems are not induct-
ively provable without generalisation, but they are “schematically” provable using the
constructive w-rule, is one of the reasons that Baker used this formalisation of arith-
metic in her implementation of an automatic theorem prover.? It is hard to automate
generalisation in a theorem prover. Baker investigated the fact that proofs in Peano
arithmetic with the constructive w-rule do not require generalisations that are needed
in usual inductive proofs,® and used it in her automation of the use of the constructive
w-rule.

From a practical point of view, the constructive w-rule and schematic proofs elimin-
ate the need for proofs of an infinite number of premises. Moreover, they provide a
technique which enables an automation of search for proofs of universally quantified
theorems from instances of proofs, and eliminate the need for generalisations.

We go on now and show how schematic proofs of universally quantified theorems can
be found using several heuristics.

4.5 Finding a Schematic Proof

The constructive w-rule defined in §4.3 requires that there is a schematic proof which
generates proofs of all premises. We capture a schematic proof using the recursive
function proof. Here we describe a way of finding such a function proof from instances
of proofs of a theorem.

A schematic proof can be generated by considering individual examples of proofs for
instances of a theorem, and then extracting a general pattern from these instances.
This general pattern can be captured in a recursive function proof. The idea is that in
order to extract a general structure common to all instances of a proof, the particular
examples of proofs of a theorem which are considered need to be some general repres-
entatives of all instances, and not special cases. These are normally taken to be some
intermediate values, e.g. 99 and 100, rather than the initial values, e.g. 0 and 1, since
the proofs for initial values of a parameter n are almost always special cases. Therefore,
we use such intermediate values, e.g. P(99) and P(100) and correspondingly proof(99)
and proof(100), to extract the pattern, which is hopefully general. A structure which
is common to the considered examples is extracted by abstraction mechanism. The
extraction process is referred to as abstraction of a general schematic proof. If the
instances for the intermediate values that were considered are not representative of all
instances, so that the abstraction was carried out on incomplete information, then the
extracted recursive function proof could be wrong. Therefore, the function proof needs
to be verified to be correct. This involves meta level reasoning about the proof, and
showing that proof(n) indeed generates a correct proof of each P(n).

* Another reason for Baker’s use of constructive w-rule is to study generalisation [Baker 93].

% This result was originally established by [Girard 87].
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The following procedure summarises the essence of using the constructive w-rule in
schematic proofs:

1. Prove a few particular cases (e.g. P(99), P(100), ...).
2. Abstract proof(n) from these (e.g. from proof(99), proof(100), ...).
3. Verify that proof(n) proves P(n) by meta induction on n.
The general pattern is extracted (guessed) from the individual proof instances by

(learning type) inductive inference, i.e. abstraction (see §7.5). We explain now the
notion of meta induction.

4.5.1 Meta Induction for Verification of Schematic Proofs

By meta mathematical induction we mean that we introduce system META such that
for all n:

FnigpTa Proof(n) @ P(n)
where “” stands for “is a proof of”. Baker used PA, (i.e. Peano arithmetic with
w-rule) for the system META [Baker 93]. The meta inductive rule is defined as follows:

FMETa Proof(0) @ P(0) proof (1) : P(r) Fpyrpa Proof(s(r)) : P(s(r))
FMigTa VR proof(n) @ P(n)

This essentially says that by using the rules on P(s(n)) we can reduce it to P(n).
By meta induction we need to show in the meta theory that given a proposition P(n),
proof(n) indeed proves it, i.e. it gives a correct proof tree with P(n) at its root, and ax-
ioms of some chosen logic at its leaves. Meta induction differs from standard induction
in that it makes an assertion about proofs rather than object level formulae.

In order to show in the meta theory that proof(n) proves the proposition P(n) we
need to encode P(n), so that the proposition is transformed from the object level
statement to the meta level statement. This can be done via parametrised syntaz. The
formalisation of a system in which the meta level reasoning can be carried out can be
found in [Baker et al 92] and [Baker 93]. We will not use this method for verification
of our diagrammatic proofs in our use of schematic proofs, but will propose a different
way, which will be discussed in Chapter 8.

4.6 Why Use Schematic Proofs?

We discuss here several informal motivations for using schematic proofs, and pro-
pose some reasons why schematic proofs are worth while studying. Since we have no
empirical evidence that our speculations are correct, we would like to suggest some
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hypotheses for which empirical tests could be carried out by cognitive scientists to
either support or reject our speculations.

The history of mathematics has taught us that there are plenty of faulty proofs in
mathematics. One famous example is the history of Euler’s theorem [Lakatos 76].5
Euler’s theorem states that for any polyhedron V. — E + F = 2 holds, where V is the
number of vertices, £ is the number of edges, and F' is the number of faces. Lakatos
initially gives a proof, historically due to Cauchy, of the theorem which is a uniform
method for proving instances of Fuler’s theorem. Thus, the method is a schematic
proof, however parts of the method are not explicitly stated, but seem very convincing
when applied to simple polyhedra.” Analysing this proof, Lakatos proceeds to present
a number of counter examples in which the method fails. It turns out that the initial
theorem does not hold for all polyhedra. It seems plausible that humans use some sort
of schematic procedure to find general proofs of theorems. In particular, humans often
use examples of proofs for certain instances and then abstract them into a general
proof. If not all the cases are covered by the examples, then the general proof might be
incorrect, as in the case of the proof of Fuler’s theorem mentioned above. If a counter
example is encountered, then the method needs to be revised to exclude such cases.

If all proofs of theorems that people find followed rules of some formal logic, then there
would be no explanation for how erroneous proofs could arise. The errors would always
be detected as syntactical errors, provided that the rules used to prove the theorem
are correct. We propose that humans often use a procedure similar to the one for
extraction of schematic proofs, given in §4.5, but omit the last step of the procedure
which checks the correctness of the proof. We propose further, that omitting the last
step of such a procedure accounts for erroneous proofs. For instance, if one has not
considered all the representative examples, then the schematic proof may not prove all
cases of the theorem. A counter example could be found.

We propose that schematic proofs seem to correspond better to human intuitive proofs.
This observation was also made by Bundy in [Bundy 94]. For example, take a rotate-
length theorem about rotating a list its length number of times, stated as

rot(len(l),l) =1

(where len(l) gives the length of a list I, and rot(a,[) takes the first a elements of a list
I and puts them at the end of it). Consider a schematic proof of this theorem. First
we give an example proof for some instance of a theorem. An example proof for the
instance len(l) = 5 goes as follows. Let the list [ consist of five elements. We take the
first element of the list and put it to the back of the list. Now, we do the same for the
remaining four elements.

rot(len([a,b,c,d, €]), [a,b,c,d,e]) =
rot(5, [a,b,c,d,e]) =
rot(4,[b,c,d, e, al) =
rot(3, [c,d, e, a, b))

8 Another example is Fermat’s last theorem, which had hundreds of “proofs” hefore it was finally
formally proved by [Wiles 95].

" See §A.5 for a full explanation of the proof procedure.



4.7. PENROSE, GODEL ARGUMENT AND CONSTRUCTIVE w-RULE 63

rot(2,[d, e, a,b, c)
rot(1,[e.a.b, c.d)
[(I;’ b’ C’ d’ e]

It is very easy to see that this process gives us back the original list. Moreover, it
is clear that if we follow the same procedure, i.e. schematic proof, for a list of any
length, we always get back the original list. Sloman reported to Bundy that this was
the procedure he and many other people used [Bundy 94]. However, not everybody
agrees. McAllester, for instance, claims that he “sees” the invariant in the rotate-
length theorem immediately, which does not seem to be a common experience. Boyer
objects that when using schematic proofs the induction is postponed until the meta
level verification of a schematic proof [Bundy 94].%

In contrast to a schematic proof of the rotate-length theorem, this theorem is not easy
to prove by a conventional (non-diagrammatic) theorem prover. The inductive proof
of the rotate-length theorem consists of a generalisation: e.g. rot(len(l),app(l,k)) =
app(k,l), where app is the list append function. It is harder to see that this theorem
is correct. Schematic proofs avoid such generalisations. Baker used schematic proofs
to exploit this fact for theorems of arithmetic[Baker et al 92].

Schematic proofs and the constructive w-rule also explain why one or more examples
can represent proofs. We will propose in §4.8 to use schematic proofs for diagrammatic
proofs of the kind we presented in Chapter 3, precisely because they allow us to use
examples to extract general proofs. There is no longer a need for abstract diagrams
which use ellipsis to represent generality. We can use concrete examples of diagrams
and use schematic proofs to capture the generality by a general number of applications
of geometric operations on a diagram. The intricacies of how schematic proofs can be
used for a formalisation of diagrammatic proofs will be discussed in §4.8.

4.7 Penrose, Godel Argument and Constructive w-Rule

We already mentioned in Chapter 1 that the research reported in this thesis was par-
tially inspired by Penrose’s talk in 1995 to the Centre for Mathematical Sciences in
Edinburgh. In this talk Penrose argued that the aim of the strong programme in Artifi-
cial Intelligence” (AI) is impossible. He claimed that there is something fundamentally
non-computational in human mathematical reasoning, which therefore cannot be car-
ried out on machines. There are several books in which Penrose argues his viewpoint
on the difference between human mathematical reasoning and mathematical reasoning
simulated on machines. See for example, [Penrose 89|, [Penrose 94b] and [Penrose 94a).

Penrose uses the Godel argument that comes from Godel’s first incompleteness theorem

8 Aaron Sloman, David McAllester and Bob Boyer communicated their opinions about the rotate-
length theorem to Alan Bundy via email.

9 There is a spectrum of opinions about what the aim of strong AT is. We think that a generally
accepted notion of strong Al is perhaps that we can create intelligence. Weak AI, on the other
hand, argues that we can create behaviour on machines which in humans would be considered to be
intelligent.
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(see §4.2.1 and [Gddel 31]) to convince us of the non-algorithmic nature of human
mathematical thought.'® He argues that humans are capable by “insight” to see and
check the correctness of any mathematical proof. By Godel’s first incompleteness
theorem this is impossible for any formal system, and thus for machines:

“.. it seems to me that it is a clear consequence of the Godel argument

that the concept of mathematical truth cannot be encapsulated in any form-
alistic scheme. Mathematical truth is something that goes beyond mere
formalism.” [Penrose 89, page 145]

The question arises whether the completeness of the system of Peano axioms with the
constructive w-rule disproves Penrose’s argument. According to Penrose, the w-rule
and its constructive counterpart also suffer from the Godel argument, namely that
they are computationally infeasible. This is due to the infinitary nature of the rules.
Although a complete formalisation of arithmetic can be devised using Peano axioms
and the constructive w-rule, it turns out that the Godel argument does apply to some
meta system in which the verification of the recursive function capturing the proof of a
theorem is carried out.!! Unfortunately, this appears to support Penrose’s argument.
However, our hypothesis is that humans often omit the inductive verification step.
Curiously, Penrose himself omits this step in his argument. In order to convince us
that human mathematical reasoning is fundamentally non-computational and hence
cannot be simulated on a machine, Penrose uses a procedure similar to the algorithm
for implementation of the constructive w-rule (given in §4.4).'2

In his lecture in Edinburgh, Penrose gave an example of human mathematical reasoning
in mathematical visualisation, and claimed that such reasoning cannot be carried out
by machines. The example that he used is the diagrammatic proof of a theorem
about the sum of hexagonal numbers. This diagrammatic proof has been presented in
§3.2.6. The theorem about the sum of hexagonal numbers states that the sum of first
n hexagonal numbers is n cubed. In his proof Penrose demonstrated only one instance
of the proposition P, namely for n = 3. Thus, the sum of the first three hexagonal
numbers (i.e. 1,7 and 19) is three cubed (i.e. 27). He invited us to consider a cube
of magnitude three and showed us how one can decompose this cube into three half-
shells.!3 Each of these half-shells can be projected onto a plane to give a hexagonal
number. Then, he asked us to consider how general this procedure is, and that it would
work for all values of n. To convince us, Penrose exhibited the trace for the proof for
n = 3, i.e. proof(3), explained how to extract from this a general proof procedure

10 Godel’s first incompleteness theorem has been used in the past by Lucas, similarly to Penrose, to
point out the distinction between reasoning by humans and reasoning by machines (see [Lucas 70]).

' Recall that in §4.4 we gave a three-stage algorithm of how to apply the constructive w-rule, and
that the third stage was to verify is some meta system that the recursive function which uniformly
captures the proof is indeed correct.

12 Most of the information about the line of argument that Penrose took at his talk in Edinburgh was
communicated to me by Alan Bundy. Most of the analysis of Penrose’s argument which is discussed
in this section, is also due to [Bundy 96].

13 Recall that a half-shell consists of three adjacent faces of a cube. This terminology is not the one
that Penrose used, but is due to Alan Bundy.
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proof, and claimed that proof(n) is correct, i.e. for each n it always gives a proof of the
proposition P(n).

Recall again the algorithm for using the constructive w-rule in schematic proofs which
was given in §4.4. Penrose’s argument very closely follows this algorithm.

1. He proved one special case of the proposition. In particular, he gave proof(3)
which is a proof of the proposition P(3).

2. He discussed how to extract (abstract) a general proof procedure proof(n) from
proof(3).

3. He claimed that proof(n) always proves P(n).

Careful consideration of Penrose’s argument reveals that he is doing less than our
algorithm in §4.4:

e He considers only one example of a proof.
e He does not formalise proof(n).

e He does not prove that proof(n) always proves P(n).

Penrose’s method of proving theorems is hence fallible. Potentially, a counter example
could be found, i.e. a value of n for which proof(n) does not prove P(n). However, it
seems that humans often use Penrose’s method for solving problems. We, as human
mathematicians, consider examples of proofs of a proposition and try to ensure that
we take care of all special cases and various types of examples. This corresponds to the
first stage of Penrose’s method. We then trust that our abstraction procedure is general
enough to encompass all the examples given in the first stage. This corresponds to the
second stage of Penrose’s method. Last, we rely on our judgement that the first two
stages were carried out correctly, so we do not address the third stage of the method
to check that our general proof is indeed correct. As mentioned in §4.6, this can be a
possible explanation for existence of erroneous proofs.

What is then an adequate automated proof checker, according to Penrose? An answer
to this question bears importance in understanding Penrose’s argument against strong
AL If we consider the three stages involved in his method of extracting proofs (and
consequently in the implementation of the constructive w-rule), then it seems that
there should be no particular difficulty in automating each stage in a proof checker.
Such a system would fulfill Penrose’s requirements if the requirements are such as
he uses in his own reasoning, namely they correspond to his own method of proof
extraction. In this thesis we present a system, called DIAMOND, which implements
the procedure for extraction of schematic proofs as given in §4.4, and therefore fulfils
Penrose’s requirements discussed in this section.
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4.8 Diagrams and Schematic Proofs

In part of the research in this thesis we extend Baker’s work on schematic proofs to
our diagrammatic proofs so that the generality of the diagrammatic proof is embedded
in the schematic proof. Thus, we eliminate the need for abstractions in diagrams. A
general schematic proof is extracted from geometric manipulations on concrete rather
than general diagrams.

The notion of proof in formal logical theories is embedded in the application of rewrite
rules. A theorem at hand is proved in a logical way (as opposed to a diagrammatic
way) when the sentence expressing the theorem is reduced to a truth value, through
an application of rewrite rules.

The notion of proof in diagrammatic proofs of the kind that we presented in Chapter 3
is perhaps less obvious. The rewrite rules of a logical proof are replaced in a diagram-
matic proof by geometric operations on a diagram. These could be seen as rewrite
rules if they were part of some logical theory of diagrams.'* The geometric operations
transform a diagram in some way. Theorems that are part of our problem domain are
theorems of natural numbers (see §3.5), therefore diagrams are represented using dots.
The notion of a diagrammatic proof is embedded in the transformation of diagrams
representing one side of the equality (which states the theorem symbolically) into dia-
grams representing the other side of the equality. All operations preserve the number
of dots composing a diagram. In this way, we can appeal to the visual characteristic of
the composition of dots (e.g. six rows of six dots, one on top of another form a square
of magnitude six), and at the same time retain the notion of equality in the theorem
(represented as an equation) throughout the application of geometric operations. The
visual characteristic of the composition of dots gives us some sort of intuitive under-
standing of what a particular number represents (e.g. 62 is a square of magnitude six).
The preservation of dots in a diagram convinces us that the operations are valid “dia-
grammatic rewrite rules” and that the equality is preserved. A diagrammatic proof
is completed when one side of the equation is transformed into the other side of the
equation (or equivalently, when the two sets of diagrams representing the two sides of
the equation consist of identical diagrams). The notion of a proof, as implemented in
our diagrammatic reasoning system DIAMOND, will be discussed in §5.3.

The process of a diagrammatic schematic proof starts with a few particular concrete
cases of the theorem represented by diagrams. The diagrammatic manipulations (i.e.
operations) on the diagram are performed next, capturing the inference steps of the
diagrammatic proof. This step corresponds to the first step of the schematic proof
procedure given in §4.4.

The second step is to abstract the operations involved to form a schematic proof for
n. Note that the generality is represented as a recursive program which specifies a
sequence of diagrammatic operations that are used on a diagram, and not as a general
representation of a diagram. More precisely, the basic idea is to consider proofs for
n + 1 which can be reduced to proofs for n (or conversely, such proofs for n which
can be extended to proofs for n + 1 by adding to them some additional sequence of

' For example, Hammer formalised a logical theory of Venn diagrams [Hammer 95].
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operations). The difference between the proof for (n 4+ 1) and the proof for n, i.e. the
additional sequence of operations in the proof for (n + 1) with respect to the proof for
n is referred to as the step case of the abstracted schematic proof.

The last step in the schematic proof procedure is to prove by meta induction that the
abstracted diagrammatic schematic proof is correct. We need to show that proof(n)
proves P(n) for all n. One way of proving the correctness of schematic proofs is to
create a theory of diagrams that models the processes in a diagrammatic reasoning
system and prove correctness there. This will be discussed in Chapter §.

We can see that the constructive w-rule and schematic proofs can indeed be applied to
diagrammatic theorems so that we can formalise diagrammatic schematic proofs. In
the next section we give examples of schematic proofs for theorems of Category 2 which
were presented in Chapter 3. The implementation of the formalisation of diagrammatic
schematic proofs and their extraction will be the topic of Chapter 7.

4.9 Schematic Diagrammatic Proof for Theorems of
Category 2

We can now structure diagrammatic proofs in a more formal way. Identifying the
geometric operations that are required to prove a theorem helps us define a sufficient
repertoire!® of such operations which are used in diagrammatic proofs. Diagrammatic
proofs of Category 2 from §3.2 are structured here so that although the example proofs
were given for particular values of a parameter n, we present the proofs here in a general
form. These general proofs are generated by extracting a general pattern from the
trace of the example proof procedure. In Chapter 7 we present how general schematic
proofs are extracted automatically in DIAMOND. There are choices in the diagrammatic
representation of (part of) a theorem, which will be discussed in more detail in §5.3.1.
For now it suffices to say that our choice of a diagrammatic representation of a theorem
is arbitrary.

4.9.1 Schematic Diagrammatic Proof for Triangular Equality for
Even Squares

S
S

)? = 8Triy 1 + 4nd

15 By sufficient repertoire we mean a set of diagrams and operations which enable us to prove a
significant range and depth of theorems. We discuss these issues in greater detail in §9.1.1.
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Here we list the proof for the theorem about the triangular equality for even squares
(given in §3.2.3) as a sequence of steps that need to be performed on the diagram. The
theorem 1is stated as (277,)2 = 8Trin—1 + 4n. Recall that the triangular numbers T'ri,
were defined in §3.2.3. Let us choose to represent (2n)? with a square of magnitude 2n
for some particular n. Note that there could be other diagrammatic representations of
(2n)2. Also, let us represent T'ri, 1 as a triangle of magnitude n — 1, and n as a line
or a side or a column or a row of magnitude n. The aim is then to transform a square
of magnitude 2n into eight triangles of magnitude n — 1 and four sides (or lines or
columns or rows) of magnitude n, for some particular n. A schematic proof, however,
is given for a general n:

1. Split a square of magnitude 2n into four identical squares (note that each of the
four squares is of magnitude n).

2. Split each new square down the main diagonal (note that for each square, two
triangles are created, one of magnitude n and one of magnitude n — 1).

3. For each bigger triangle (of magnitude n), split from it one side (note that this
creates another four triangles of magnitude n — 1 and four sides of magnitude n).

Therefore, these steps are sufficient to transform a square of magnitude 2n representing

the LHS of the theorem to eight triangles of magnitude n—1 and four sides of magnitude
n representing the RHS of the theorem.

4.9.2 Schematic Diagrammatic Proof for Sum of Odd Naturals

n?=1+34+ - +2n-1)

e0o0/00

Here we state the proof for the theorem about the sum of odd naturals (given in
§3.2.4) as a sequence of steps that need to be performed on the diagram. Let us
again arbitrarily choose that n? is represented by a square of magnitude n, (2n — 1) is
represented as an ell and a natural number 1 is represented as a dot. The second step
in the proof procedure justifies the choice of ell representing (2n — 1):

1. Cut a square into n ells, where an ell consists of 2 adjacent sides of the square.

2. For each ell, continue splitting from an ell pairs of dots at the end of two adjacent
sides of the ell until only 1 dot is left (note that for each ell of magnitude n, we
will have n— 1 pairs of dots plus another dot which is a vertex of the two adjacent
sides, i.e. 2(n — 1) + 1).
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Therefore, these steps are sufficient to transform a square of magnitude n representing
the LHS of the theorem to n ells of increasing magnitudes representing the RHS of the
theorem.

4.9.3 Schematic Diagrammatic Proof for Sum of Squares of Fibonacci
Numbers

Fib, x Fib,1 = Fiby? + Fiby> + --- + Fib,?

Here we give the proof for the theorem about the sum of squares of Fibonacci numbers
(given in §3.2.5) as a sequence of steps that need to be performed on the diagram. Let
Fib, x Fib,y1 be represented (arbitrarily) by a rectangle of length F'ib, and height
Fib,1q, and Fib,? by a square of magnitude F'ib,:

1. Repeat splitting a square which is of a magnitude that is equal to the smaller
side of a rectangle until a rectangle is exhausted (note that aligning squares of
Fibonacci numbers in this way is a method of generating Fibonacci numbers, i.e.
L1L,L1+1=2,142=3,2+4+3 =25, etc.)

Therefore, these steps are sufficient to transform a rectangle of magnitude Fib, 1 by
Fib,, to a representation of the RHS of the theorem, i.e. n squares of magnitudes that
are increasing Fibonacci numbers.

4.9.4 Schematic Diagrammatic Proof for Sum of Hexagonal Numbers

n® = Hexy + Hexo + --- + Hexy,

.ﬁ@ﬁ
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Here we state the proof for the theorem about the sum of hexagonal numbers (given
in §3.2.6) as a sequence of steps that need to be performed on the diagram. Let n? be
represented by a cube of magnitude n and Hez, by an n'* hexagon:

1. Split a cube into n half-shells (recall that a half-shell consists of three adjacent
faces of a cube).

2. For each half-shell project it down the main diagonal of a cube from a three-
dimensional space onto a plane (note that this forms a hexagon).

Therefore, these steps are sufficient to transform a cube of magnitude n representing
the LHS of the theorem to n increasing hexagons representing the RHS of the theorem.

4.10 Summary

In this chapter we showed how schematic proofs can be used for diagrammatic proofs.
A schematic proof is a recursive program which by instantiation at n gives a proof of
each proposition P(n). The constructive w-rule justifies that such a recursive program
is indeed a proof of a proposition for all n. The constructive w-rule enables us to
capture infinitary proofs in a finite way by a uniform procedure.

We first motivated the use of the w-rule, which cannot be used for implementation
due to its infinitary nature, and the constructive version of the w-rule, which can be
used for implementation. The constructive w-rule requires a provision of a uniform
procedure to prove a theorem. The uniformity of procedure is captured in a recursive
program proof(n).

Then, we demonstrated how the constructive w-rule is used in schematic proofs. In
particular, we presented a procedure which implements its use to extract a recursive
program that is a proof of a theorem at hand. [Baker et al 92] investigated the use of
constructive w-rule for the automation of schematic proofs of arithmetic theorems. We
gave an example of a schematic proof in arithmetic for a theorem about the associativity
of addition.

Next, we went on to discuss some reasons for, and consequences of using schematic
proofs in proving theorems. We speculated that humans use a procedure similar to
the one for extraction of schematic proofs, but they omit the stage which verifies the
recursive program. This may account for existence of some erroneous “proofs”.
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Part of the inspiration for the research presented in this thesis came from Penrose and
his talk in Edinburgh. We challenge Penrose’s argument that human mathematical
reasoning is fundamentally non-computational, and thus it cannot be automated.

Finally, we showed how schematic proofs can be used for diagrammatic proofs. A
diagrammatic schematic proof consists of an application of geometric operations on a
diagram. Instead of using general diagrams which use abstractions, we capture the
generality of a proof in a general number of applications of geometric operations. We
gave examples of structured proofs (but not yet formalised into schematic proofs) for
theorems of Category 2. We now go on and show how these ideas are formalised and
implemented in a diagrammatic reasoning system DIAMOND.
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DIAMOND
the System

One of the aims of the research reported in this thesis is to show that diagrams can
be used for formal proofs. Moreover, we want to demonstrate that diagrammatic
reasoning can be automated. To realise the formalisation of diagrammatic reasoning we
implemented a system called DIAMOND which proves theorems by using diagrammatic
inference steps. DIAMOND is a diagrammatic proof checker, which interactively proves
theorems of mathematics by applying geometric operations to diagrams. In this chapter
some of the design issues for the implementation of this proof system are discussed.

In §5.1, a brief overview of DIAMOND is given. The architecture of DTAMOND is presen-
ted in §5.2. In §5.3 we describe the basic notion of a diagrammatic proof. In §5.4 we
explain the construction of example proofs. Finally, the discussion of other design
issues for construction of proofs is given. They include the representation of diagrams
in §5.5, and DIAMOND’s graphical interface in §5.6.

5.1 Overview of DIAMOND

The DIAMOND system is an embodiment of the ideas presented in this thesis. DIAMOND
stands for Diagrammatic Reasoning and Deduction. It is a diagrammatic proof system

72
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implemented in the functional programming language Standard ML of New Jersey
version 109.!

In DIAMOND we capture the generality of a diagrammatic proof by a diagrammatic
schematic proof (see §4.4). The extraction of a diagrammatic schematic proof in DIA-
MOND consists of three steps corresponding to the procedure described in §4.5.

e The interactive construction of example proofs.

This is the topic of this chapter. An example proof is constructed interactively
with the user. It consists of a sequence of geometric operations that are ap-
plied to the diagram. The repertoire of geometric operations will be discussed in
Chapter 6. This sequence in some way (explained in more detail in §5.3) justifies,
i.e. proves, some ground instance of the theorem. In particular, if a theorem is
expressed as an equality, then an instance of a proof transforms the diagram-
matic representation of the left hand side of the equality through a sequence of
operations into the diagrammatic representation of the right hand side of the
equality.

e The automatic extraction of a schematic proof.

D1AMOND abstracts the concrete, interactively constructed example proofs in or-
der to extract a schematic proof that will hopefully be applicable to any ground
instance. A schematic proof captures the generality using the general number
of applications of geometric operations to a diagram. This number of applica-
tions is some function of a parameter n, where n is a natural number. If two
instantiations of a proof procedure have a common structure, then this struc-
ture is automatically extracted and abstracted by DIAMOND. The constructive
w-rule, introduced in Chapter 4, is used to justify that a general schematic proof
does constitute a formal proof. The representation of schematic proofs and their
automatic extraction will be discussed in detail in Chapter 7.

e The verification of a schematic proof.

The schematic proof is an abstraction of the example proofs, and is an educated
guess induced by the abstraction mechanism. It still needs to be formally verified
that the schematic proof proves the theorem at hand. In particular, we need to
show that for any instance n a schematic proof generates a correct proof of a
proposition P(n). To prove that proof(n) proves proposition P(n), we would need
to re-introduce abstractions in order to be able to reason with general diagrams.
Abstractions in diagrams can be avoided by creating a theory of diagrams which
models the processes in DIAMOND, and by carrying out a meta level proof of
correctness in this theory. The verification of schematic proofs will be discussed
in detail in Chapter 8.

The rest of this chapter deals with the interactive construction of example proofs and
the design issues that are relevant for construction of example proofs.

! For more information on the Standard ML programming language, see [Paulson 91].
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5.2 Architecture

DIAMOND consists of a diagrammatic component and an inference engine. The dia-
grammatic component forms and processes the diagram. The inference engine deals
with the diagrammatic inference steps. It processes the operations on the diagram.

1) Inference engine: it is the main component of DIAMOND; it is the knowledge base
component of the system. It consists of several parts or submodules:

e Assertion submodule: it accepts from the user a suggested diagram from
which to start the diagrammatic example proof.

e Operations submodule: it generates strings of constraints and geometric
operations (instructions) that are to be carried out on a diagram. It accepts
from the user the diagrammatic operations to be used, and executes them.
See Chapter 6 for detailed discussion of the operations in DIAMOND.

e Example proof submodule: it keeps track of all the operations applied to
a diagram. The operations and the states of diagrams are recorded in an
execution trace referred to as an example proof. This was discussed in §5.4.

e Abstraction submodule: it contains the implementation of the abstraction
mechanism which is used to extract general schematic proofs from example
proofs. This extraction fulfils the requirement of the constructive w-rule
for a uniform computable procedure (see §4.3). See Chapter 7 for detailed
discussion of the abstraction method.

e Verification submodule: it checks that a schematic proof induced by the
abstraction mechanism is indeed correct, i.e. that a schematic proof proves
the proposition at hand. The verification is carried out in a theory of dia-
grams, which models the processes in DIAMOND. See Chapter 8 for detailed
discussion of the verification mechanism.

e Import submodule: it accesses previously stored diagrammatic proofs and
adds them to the library of accessible proofs.

e Replay submodule: it instantiates diagrammatic proofs for a particular user-
defined value of a parameter n. The effect is a simulation of an example
proof.

2) Diagrammatic component: this is the interface between the inference engine
and the user. The Cartesian representation of the diagram is used in this com-
ponent to draw diagrams on the screen. The effects of the operations that are
applied to the diagram by the inference engine are shown here. The interface is
presented in greater detail in §5.6.

5.3 DiaMonND’s Notion of Proof

DI1AMOND’s notion of a proof is captured in a sequence of diagrammatic operations
that need to be applied to an initial diagram. The initial diagram (or diagrams) that
the sequence of geometric operations is applied to is a diagrammatic representation of
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the left hand side (LHS) of an instance of a symbolically expressed theorem. The result
of applying all the operations of the diagrammatic proof to this diagram should be the
diagrammatic representation of the right hand side (RHS) of the same instance of the
symbolically expressed theorem.? A parametrised sequence of geometric operations
for a particular theorem that fulfils this requirement for all instances of the parameter
constitutes a diagrammatic proof.

D1AMOND is not a fully automated theorem prover. Rather, it is a proof checker.
With DIAMOND we are not trying to discover diagrammatic proofs, but rather we are
exploring and trying to understand them better. Thus, it is generally expected that
the user has a diagrammatic proof in mind. Although, if this is not the case, the user
can simply try various combinations of diagrams and operations on them to explore
their effects. It is up to the user to choose the appropriate diagrammatic representation
of the symbolic theorem which is to be proved. For instance, the usual representation
for the user to pick would be a square to represent n?. There are choices that can be
made and the user makes these choices according to the particular proofs that he or
she has in mind.

5.3.1 Diagrammatic Representation of Arithmetic Expressions

A theorem of natural number arithmetic can have a diagrammatic proof if it is ex-
pressed using terms that can be mapped into a diagrammatic form. There are some
obvious mappings that can be used. The table in Figure 5.1 gives some examples. Note
that a diagrammatic representation is described for a particular value of n and m.

Arithmetic Expression Diagram
n row of magnitude n
n column of magnitude n
n? square of magnitude n
nxm rectangle of magnitude n by m
n? cube of magnitude n

Figure 5.1: Some diagrammatic representations of arithmetic expressions.

There are also some less obvious mappings from arithmetic expressions to diagrams.
For example, one could choose two adjacent sides of a square to represent odd natural

numbers. A triangle of magnitude n represents "("‘;1), since the domain of theorems is

. . 2 .
natural number arithmetic (as opposed to %- for any real number n).2 A circumference

2 Rewriting the LHS to get the RHS of the equation is a common technique in automated reasoning
systems [Dershowitz & Jouannaud 90].

In continuous space one can think of an area of a right angle triangle of magnitude n as half of a

. . . . . . . 2 .
square of magnitude n if a square of magnitude is split along its diagonal, hence %-. However, in

discrete space a square is represented using dots. Splitting a square along its diagonal does not split
it to two identical triangles, because the corner dots on each side of the diagonal cannot be halved.
Hence this creates one triangle of magnitude n and one of magnitude n — 1. Taking a rectangle of

magnitude n by n+1 and halving it creates two triangles of magnitude n, hence a triangle represents
n(n+1)
—
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(also called a frame) of a square of magnitude n where n is a natural number can
represent n’ —(n—2)? or, equivalently, 4(n—1). These mappings do not necessarily need
to be obvious to a human. Rather, they can be constructed in a way which would make
the equivalence explicit in order for a human to understand what arithmetic expression
they represent. For instance, to explain that a frame of a square of magnitude n
represents n? — (n — 2)? one just has to imagine taking a square of magnitude n and
remove from it an inner square which is of magnitude n — 2. On the other hand, if two
rows and two columns of magnitude n — 1 are joined at the sides they form a frame,
hence 4(n — 1).

Clearly, the domain of theorems which can be proved in a diagrammatic way is re-
stricted by the possible diagrammatic representations of a theorem. A set of given
diagrams and operations on them can be used to construct the less explicit mappings
of arithmetic expressions into diagrams. The choice of which diagram represents which
expression depends on the particular example proof that the user has in mind. Some
choices are better than others, because an appropriate diagram enables the use of ap-
propriate operations on the diagram which are necessary to carry out the proof. For
instance, consider the theorem about the sum of hexagonal numbers given in §3.2.6.
The theorem states that the sum of n hexagonal numbers is equal to the cube of n.
The diagrammatic proof given in §3.2.6 consists of splitting “half-shells”* from a cube
of magnitude n, plus some additional operations. Were we to choose that n? is rep-
resented diagrammatically as n squares of magnitude n for some particular natural
number 7, then the proof could not be carried out, because the operation of splitting a
half-shell from a cube would not be possible. The selection of diagrammatic represent-
ation of an arithmetic expression corresponds to the induction selection or a choice of
a lemma in an algebraic proof (as opposed to a diagrammatic proof) of a theorem. If
the appropriate representation (in a diagrammatic proof) or induction scheme (in an
algebraic proof) is selected, then the proof can be carried out. This will be discussed
in greater detail when multiple representations of diagrams and operations on them
are introduced in §6.5.

The choices for the mapping of arithmetic expressions into diagrams could in principle
be automated to some degree but this is a topic for future work (see §11.7).

5.4 Construction of Example Proofs

D1AMOND’s example proofs consist of a sequence of applications of geometric operations
to a diagram. The operations are the inference steps of the proof. Example proofs are
interactively constructed for particular concrete values of a parameter n. DIAMOND
records a trace of the operations used in each example proof. The idea is to compare
example proofs and detect if there is a common structure between them. If so, then
we want to capture this common structure in a general way. We try to find a proof
such that proof(n) proves a proposition P(n) for all n. So, for example, consider two
instances i1 and i9 of a universally quantified variable n. Also, let example_proof; and
example_proofs be two example proof traces for i1 and i3. Then, we would at least

4 A half-shell is a combination of three adjacent faces of a cube.
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require that:

proof(i1) = example_proof;

proof(ia) = example_proofs

The aim is to find a uniform and effective characterisation of proof to capture the
generality of the proof, i.e. a recursive function proof parametrised over n. We employ
heuristics in automating the extraction of such a function. The formalisation and
extraction of the recursive program capturing a general proof will be described in
Chapter 7.

A particular formalisation of a recursive program depends on the structure of the
example proofs. For instance, if the example proofs consist of operations which can
be combined so that an example proof for n + ¢ can be constructed using an example
proof for n plus some additional operations, e.g.:

ezample_proof (n + ¢) = operationsi(n + ¢) then operationsi(n) ... operationss

then the parametrised recursive program for n 4+ ¢ can be formalised so that there is
only one recursive call to the program for a value of decreased parameter n, for some
natural numbers n and ¢, e.g.:

proof(n+c¢) = operationsi(n+ c¢) then proof(n)

proof(c) = operationssy

If for instance, an example proof for a particular n + ¢ needs to consist of operations
which can be reorganised into the following:

example_proof(n + ¢) = operationsi(n + ¢) then operationsi(n) ... operationssy

then operationsi(n) ... operationssy
then the formalisation of the recursive program can be:

proof(n+c¢) = operations;(n+ c¢) then proof(n) then proof(n)

proof(c) = operationss

where there are two recursive calls in the program.

Each of the different recursive programs gives a different proof. In DIAMOND we are
interested in proofs of theorems which have inductive proofs. Therefore, DIAMOND
expects the example proofs to be formulated in a particular way where the order of
operations is crucial. Example proofs are expected to be given with the same order
of operations, perhaps with some extra operations in the case of the proof for n + ¢
with respect to the proof for n for some particular n. There is some justification of
the constraint on the way the example proofs are expected to be formulated. The
constraint on the order of operations follows an inductive argument where instances
of theorems for n + ¢ can be proved using proofs of instances of theorems for n, which
can be proved using proofs of instances of theorems for n — ¢ etc. However, the user
is not constrained to provide example proofs for two consecutive values n and n + c,
but is allowed to provide any two examples of the same class, i.e. for n and n + kc
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for any k£ # 0. The importance of the order of operations is due to the limitation of
the abstraction mechanism (see Chapter 7). If the example proofs do not satisfy this
constraint, the abstraction technique cannot detect the common structure. It is part
of our future work to relax the constraint on the order of operations in example proofs
(see §11.2.3).

Consider the example for the sum of odd naturals. The theorem is symbolically stated
asn?=1+3+5+ -+ (2n —1). The user can choose a square amongst the available
diagrams to represent n? on the left hand side of the theorem. The user can also
choose operations such as splitting two adjacent sides from a square, and splitting the
ends from these two adjacent sides. These are the operations that will be used in the
example proof presented here. The example proof is given for concrete values. Take
n = 4 and the instance 4> =14+ 3 + 5+ 7, and n = 3 and the instance 3> = 1 4 3 + 5.
Figure 5.2 shows the interactively constructed example proof for n = 4 and Figure 5.3

1. Cut a square 4 times into ells, where an ell consists of 2 adjacent sides of the

square.
[
LCUTY) @ ®
_>
[ [ [

2. For each ell, split end dots from both edges (n—1) times (i.e. 3,2,1 and 0 times).

§ SPLIT_ENDS(3)
oo cc oo

Figure 5.2: Sum of odd naturals for n = 4.

shows another example proof for n = 3.

The first part of these example proofs decomposes a square into ells: in the case of
n = 3 into three ells, and in the case of n = 4 into four ells. This corresponds
to the number of elements summed in the instantiated theorem. The second part
shows that each ell represents an odd natural number, which corresponds to 2i — 1
for each 4 in the sum in the instantiated theorem. The execution trace for the ex-
ample proof where n = 3 that DIAMOND records consists of the following operations:
[lcut,split_ends,split_ends,lcut,split_ends,lcut].

After two example proofs are constructed, then DIAMOND needs to extract a general
schematic proof from them. The representation and extraction of schematic proofs will
be presented and discussed in Chapter 7.

The rest of this chapter discusses some design issues, which are relevant for the inter-
active construction of example proofs. These include the representation of diagrams,
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1. Cut a square 3 times into ells, where an ell consists of 2 adjacent sides of the
square.
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2. For each ell, split end dots from both edges (n — 1) times (i.e. 2,1 and 0 times).

®
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Figure 5.3: Sum of odd naturals for n = 3.

the architecture of DIAMOND and the user interface.

5.5 Representations

One of the important findings of mathematical reasoning research has been that the
representation of knowledge is critical to one’s ability to find the solution to the prob-
lem. It was Pdlya who was first to advise us on the importance of knowledge rep-
resentation [Pdlya 45]. Simon argued Pdlya’s point further in [Simon 96] by stating
that solving a problem means representing it so that the solution becomes trivial, or
at least transparent. In automated reasoning it is difficult to see how to use this ad-
vice, since there is normally only one representation scheme for the problem which is
available to the system. Amarel [Amarel 68] was the first one to consider this problem
more closely. There has been much research done in the area of the automation of the
representation design, but unfortunately not much achieved [Kulpa 94]. However, a
promising approach has been taken by [Van Baalen 89]. He proposed an automated
representation design method. Unfortunately, Van Baalen’s approach is targeted for
predicate calculus representation, rather than diagrammatic representation. The lack
of success in the automation of representation design dictates that researchers devise
their own appropriate representation.

In the DIAMOND system the construction of proofs is entirely diagrammatic, thus the
knowledge representation needs to be diagrammatic as well. In particular, one of the
design issues which needs to be considered in DIAMOND is the internal representation
of diagrams and operations on them. We choose a representation which we hope
captures the intuitiveness, rigour and simplicity of human reasoning with diagrams.
D1AMOND is able to inspect and manipulate diagrams in a way that does not allow
unsound inferences. Moreover, the manipulations (i.e. the operations on a diagram)
should be easily carried out by the system. The external representations of diagrams
via the user interface needs to be simple and comprehensible to any user. Considering
the advice of Pdélya and Simon about the importance of representation, we need to
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choose an appropriate problem representation so that the solution can be obtained
in the automation of diagrammatic proofs. With their visual perception humans can
observe and inspect diagrams directly and see (depending on how accustomed we are to
spatial mental manipulations) the inference that needs to be made to prove a theorem
in a diagrammatic way. We aim to capture some of the simplicity of human visual
perception, and represent diagrams in a way which enables a theorem prover to prove
theorems using diagrammatic inference steps.

There are several representations available to achieve this. They include:

e Cartesian representation [Descartes 1637],

Projective geometry [Zisserman 92],

e Diagrams on a raster [Furnas 90],

Vector representation [Larkin & Simon 87,

Topological (relational) representation.

In D1AMOND we use a mixture of Cartesian and topological representations. In the
next few sections we analyse the use of these two representations with respect to the
requirements in the implementation of DIAMOND. We justify our choice of mixed
representation and show how diagrams are represented internally in DiAMOND. For
more information on the other representations, the reader is referred to §2.2 for the
survey of representations, and to the literature cited above.

5.5.1 Why Not Cartesian Representation Alone?

Recall what the Cartesian representation is by referring to §2.2.4. We stated that an
advantage of using the Cartesian representation is the efficiency of symbolic manip-
ulation. For disadvantages we listed the complexity and unintuitiveness of geometric
manipulations. We analyse here why the Cartesian representation alone is not appro-
priate for the use in DIAMOND.

Usually, Cartesian representation can be effective for representing diagrams used in
theorems which are proved in a symbolic way (as opposed to diagrammatically). The
Polya system by [McDougal & Hammond 93] is an example of a geometry theorem
prover that uses the Cartesian representation of diagrams effectively, but reasons sym-
bolically. When proving conjectures symbolically, the complexity of matrix procedures
required to represent the geometric manipulations on objects is not a problem. Further-
more, in systems that reason symbolically the unintuitiveness of matrix manipulations
also does not seem to be a problem, because the system can still reason efficiently. On
the other hand, in DIAMOND we do not reason symbolically, and moreover, DIAMOND’s
operations should be intuitive and easily carried out. Take for instance, a geometric
operation that might be needed in DIAMOND: an operation which splits a face from a
cube. First, the system needs to distinguish which of the six faces is to be split from a
cube. When this is established (let it be the face closest to the user, where the origin
of the coordinate system is closest to the user in the left hand bottom corner), the
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operation can be carried out. The result of the operation is two cuboids. Using the
Cartesian representation of a cube, it is difficult to see which coordinates represent
this particular face of the cube, and which coordinates represent the rest of the cube.
In D1AMOND we would like such an operation to be readily carried out, whereby the
user points to the face of the cube and the system splits the face from a cube without
any complex matrix manipulations. It seems therefore, that Cartesian representation
alone is not appropriate for the internal representation of diagrams in DIAMOND.

5.5.2 Why Not Topological Representation Alone?

Recall what the topological representation is by referring to §2.2.8. We stated that the
advantages of using topological representation are the efficiency and ease of implement-
ation, and the intuitiveness of reasoning with diagrams represented topologically. For
a disadvantage we listed the fact that topological representation can be too specialised.
We analyse here why this representation alone is not appropriate for use in DIAMOND.

In §2.2.8 we gave an example of how to represent a square using a topological represent-
ation. It appears that the topological description of a square is a very specialised one,
particularly suited for problems that deal with relational characteristics of a diagram.
On the other hand, in DIAMOND we are not interested in the fact that some angles in
a diagram are equal to some others, for example. As in the human visual perception
of angles, this fact should be transparent in the representation of an object. Consider
again one of the operations that we might want in DIAMOND: to split a square along
its diagonal. It is not easy to see which parts of the square representation given in
§2.2.8 will represent one resulting triangle and which will represent the other resulting
triangle.

It seems that the problem with this sort of representation is that it might suit some
problems better than others. For instance, a system that used this kind of topological
representation is GROVER (see §2.4.3, developed by [Barker-Plummer & Bailin 92]).
The problems that GROVER was targeted at were very specialised, such as proving
the Diamond Lemma, which is a theorem in the theory of well-founded relations. In
DIAMOND we are interested in entirely different properties of diagrams, so we need to
use a different diagram representation to the special kind used in GROVER. Let us
now consider a mixture of Cartesian and topological representation.

5.5.3 Mixed Representation

Consider the problem domain (presented in Chapter 3) that DIAMOND is targeted
for. First, the problems we aim to prove are theorems of natural number arithmetic.
Diagrams represent natural numbers, so the representation of diagrams and operations
on them should reflect the effect that operations have on diagrams with respect to
natural numbers that particular diagrams represent. Considering the taxonomy of
diagrammatic theorems given in §3.3, in particular, theorems of Category 2, suggests
that in DIAMOND we are not interested in geometric properties of diagrams (such as
the magnitudes of angles or which segments are parallel to each other). Rather, we
are interested in the effect of splitting parts of diagrams apart in particular ways, and
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the effect of the operations on the natural numbers that the diagrams represent. The
representation of diagrams should be pertinent to the operations on them, so that the
operations can easily be carried out. For instance, were we to split a face from a cube,
then one of the good representations of a cube could be in terms of a sequence of faces
comprising a cube. Furthermore, were we to split a square along its diagonal, a good
representation of a square is in terms of two triangles.

It appears now that neither Cartesian nor topological representation alone meets these
requirements. Topological representation alone can represent a square consisting of two
triangles, but it does not specify how they are combined to form a square. Cartesian
representation alone specifies the position of the square, but a complex matrix manip-
ulation is required to split this square into, say, two triangles. Therefore, we decided
that in DIAMOND a mixture of Cartesian and topological representation is used for
the representation of diagrams. First, we introduce DIAMOND’s mixed representation,
and then we explain why combining the two representations does not combine their
individual disadvantages, but rather solves them.

It is essential to realise that we need to represent only concrete diagrams, that is, the
ones that are of a particular magnitude. The magnitude of a diagram is always a
natural number. We do not need to represent general diagrams, since the generality of
the proof is captured in a different way by a schematic proof (see Chapter 7). In this
way we bypass the need to formalise abstractions in diagrams.

The primitive object of DIAMOND is a dot, which represents the natural number 1.°
This primitive object dot carries the information about the Cartesian coordinates.
Thus we have dot (x,y) in the two dimensional space, and dot (x,y,2z) in the three di-
mensional space, where x, y and z are instantiated to concrete natural number values.
We shall refer to the primitive object as a ®. Besides the primitive object, DIAMOND
also has elementary and derived objects. Elementary objects are constructed from
dots. Examples of elementary objects include row, column, ell and frame. De-
rived objects are constructed using elementary objects or other derived objects. For
instance, a square can be represented in terms of two triangles. Such representation
renders splitting a square along its diagonal almost trivial. Examples of derived objects
include square, rectangle, triangle,... Figure 5.4 shows the internal representa-

Internal Representation  External Representation

row (e0e00) IEI

square ( row(®,® e @) XX
row(e.0.0.0) (N
row(®.0.0.0) o0 oo
row(e.0.0.0)) LA EE

Figure 5.4: Internal and external representation of a row and a square of magnitude 4.

® Were we to extend the system to a continuous space, we might want to consider a line or an area
to be a primitive object (see §11.6.1).
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tion of some diagrams (a row and a square), and their external representation, as they
appear on the user interface, and as humans usually think of them (considering that
the space is discrete).

Diagrams also have multiple representations. For instance, a square can be represented
as a collection of rows, or as a collection of columns, or as a collection of two adjacent
sides (referred to as an ell), etc. This will be discussed in more detail in Chapter 6
where the operations are presented.®

The question now is why combining two different types of representation does not com-
bine their problems. The reason is that the good sides of one representation remove
the bad sides of the other, and vice versa. Hence, only the advantages of both rep-
resentations remain. In particular, using topological representation solves the problem
of complexity and unintuitiveness of Cartesian representation. For instance, a square
can be represented as two triangles using the topological representation. This makes it
easy to split a square into two triangles. Since each triangle is represented using dots
with Cartesian coordinates, this makes it easy to see how these triangles are combined
together. Moreover, it removes the need to specify the relations between different
angles, for instance, and other specialised properties of diagrams, because these are
now implicit in Cartesian representation.

5.6 Interface

The graphical interface of DIAMOND has been implemented in SmITk,” which is a
Standard ML package providing a portable, typed and abstract interface to the user
interface description and command language Tcl/Tk.® It allows the implementation of
graphical user interfaces in a structured and reusable way, supported by the powerful
module system of Standard ML. Figure 5.5 shows a screen shot of a DIAMOND session.
There are three windows that are fired up when a DIAMOND session is started. They
are entitled DIAMOND — Diagrams, PROOF TRACE, and clam-server. Figure 5.5
only shows the first two. The main window where the geometric operations are applied
to a diagram is the DIAMOND window. It consists of a canvas where the diagrams
are displayed, the field where the value for the particular parameter n for which the
example proof is given is entered, the field where the theorem at hand is entered, the
Instantiate Theorem button which instantiates the entered theorem for the entered
value of n, and a menu. The diagram menu consists of the following options:

File : enables importing of previously saved schematic proofs (regardless of whether
they have been verified or not), saving schematic proofs, starting new example
proofs and quitting the DIAMOND session.

Diagram : enables the user to choose diagrams used in example proofs — square,
triangle, rectangle, ell, ...

5 Multiple representations are presented alongside the description of operations due to a close rela-
tionship and interdependence between the representations of diagrams and operations on them.

" SmITk has been implemented by Christoph Liith, Stefan Westmeier and Burkhart Wolff at the
University of Bremen, Germany. It is publicly available via the internet on the following site:
http://www.informatik.uni-bremen.de/ ~cx1/sml_tk/.

8 For more information on Tcl/Tk the reader is referred to [Welch 95].
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Figure 5.5: Screen shot of DIAMOND.
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Store Example : is a button which enables the user to store example proofs from
which a schematic proof is extracted.

Abstract Examples : is a button which executes the abstraction command, whereby
DIAMOND automatically abstracts from example proofs and extracts a schematic
proof parametrised over some n. As DIAMOND successfully extracts a schematic
proof, an additional option is added to the Save option in the File menu option,
which enables the user to save the current schematic proof.

Verify : is initially empty. When the user imports a file containing a previously
saved schematic proofs which was not checked for its correctness, or when a
schematic proof is successfully abstracted during the current DIAMOND session,
then the option of checking its correctness is added to this menu. It executes the
verification command which checks if a schematic proof is correct. The window
entitled clam-server displays the process of automatic verification.

Library : is initially empty. When the user imports files containing previously saved
schematic proofs, they are added to the library. The user can then choose to
browse through the library of schematic proofs, and use an existing schematic
proof within another schematic proof as a submodule.

Replay : is also initially empty. As schematic proofs are added to the library, they
can be instantiated for a particular value of n, and then simulated (replayed) on
the screen.

Operations on diagrams are accessed by clicking on the diagram (on the canvas) on
which the operation is to be carried out so that the pop-up menu is activated. These
pop-up menus are generated dynamically. They only enable a choice of operations that
are possible on a diagram of a particular type. For instance, split_frame is an operation
that is allowed on a square only. So, only the pop-up menu for a square will enable
the use of this operation. The various operations and the diagrams on which they can
be used will be discussed in detail in Chapter 6.

The second window entitled PROOF TRACE keeps track of the diagrams which are
created in each step of the proof, and the operations which are applied to diagrams.
It consists of three columns entitled Diagrams, Diagrammatic Operations and Algebra,
and a field Instance of Theorem where the instance of the entered theorem for some
entered value n is displayed. The Diagrams column displays the set of diagrams which
are present at each step of the proof. The Diagrammatic Operations displays the
diagrammatic operation which is applied to the diagrams at each corresponding proof
step. Finally, the Algebra column displays the algebraic effect of each corresponding
diagrammatic operation for a particular value of n. For instance, if we take a square
of magnitude 5, the algebraic equivalent is 52. If we apply lcut once, this changes
52 to 42 + (2 x 5 — 1). This will be discussed in more detail in §6.5. Note that we
display algebraic terms equivalent to diagrams in order to convey better the notion of
a proof. This algebraic representation of diagrams plays no role in the construction of
diagrammatic proofs.

The third window entitled clam-server is just a text box which displays the verification
process when the correctness of schematic proofs is checked. Verification of schematic
proofs will be discussed in greater detail in Chapter 8.



86 CHAPTER 5. DESIGN CONSIDERATIONS

5.7 Summary

In this chapter we introduced the DIAMOND system, which is an implementation of
the ideas presented in this thesis. DIAMOND is a diagrammatic proof checker which in-
teractively proves theorems of arithmetic. Three procedural aspects of DIAMOND were
identified: the interactive construction of example proofs, the automatic extraction of
schematic proofs from example proofs, and the verification of schematic proofs. This
chapter dealt with the first part: the construction of example proofs. The other two
parts will be presented and discussed in the subsequent chapters.

Several design issues relevant to the construction of example proofs in DIAMOND were
discussed. The internal representation of diagrams is clearly important. Analysis
of several techniques identified a suitable representation; a mixture of Cartesian and
topological representation. DIAMOND’s architecture, which consists of an inference
engine and a diagrammatic component, was presented. Finally, DIAMOND’s graphical
user interface was demonstrated.



Chapter 6
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A diagrammatic proof, as used in this thesis, consists of operations that are applied to a
diagram. The diagrammatic proof system DIAMOND, uses diagrams and operations on
them to carry out proofs. Rather that using the usual symbolic formulae of some logic
for inferencing, DIAMOND uses purely diagrammatic inference steps. The geometric
operations on diagrams capture the inference steps of the diagrammatic proof. These
operations need to be formalised in order to formalise diagrammatic proofs.

This chapter presents the geometric operations, which are available in DIAMOND. In
§6.1 the operations are classified into two main types: atomic and composite. These are
described and examples of each type of operations are given. Subsequently, multiple
representations of diagrams are introduced in §6.2. In §6.3, the relation between the
representation of diagrams and operations on them is discussed. In §6.4, the analysis
of the use of operations in tactics is given. Finally, in §6.5 the correspondence between
the choice of an operation on a diagram (and consequently, the representation of a
diagram), and the choice of an induction schema in an algebraic proof is demonstrated.

6.1 Classification of Operations

Operations are also referred to as manipulations or procedures. They capture the
inference steps of DIAMOND’s diagrammatic proof. Therefore, a fairly large number of

87
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such operations which are available to the user in the search for the proof, is identified
and formalised. The intention is that the set of available operations enables one to
prove theorems of significant range and depth. The justification of a significant range
and depth is informal and is discussed in more detail in §9.1.1. To date, DIAMOND has
been used to prove about fifteen diagrammatic theorems. We hope that by extending
the set of available diagrams and operations DIAMOND will be able to prove more
theorems. They range from non-inductive to inductive theorems. The book Proofs
Without Words by [Nelsen 93] has been used as the main source of examples. For the
discussion of results, see Chapter 9.

In Chapter 5 some of the kinds of operations that are needed in DIAMOND were de-
scribed in order to choose an appropriate representation for diagrams. To recap, DIA-
MOND is targeted to prove theorems of discrete arithmetic. Diagrams are a way of
representing natural numbers. The interest lies in the effect on the numbers that
diagrams represent after an operation has been applied to the diagrams. Thus, the
operations join and split diagrams apart in various ways. Some operations are just
simple ones (e.g. split a row from a square), and some are more complicated ones (e.g.
decompose a square into a sequence of rows). Hence, DIAMOND distinguishes between
two types of operations, atomic and composite:

Atomic operations: are basic one-step operations that can be combined into more
complex operations. The decision to classify these operations as atomic is arbit-
rary. Potentially they could be considered complex. Examples of such operations
are: rotate, translate, cut, split, join, remove, insert a segment,...

Composite operations: are more complex, typically recursive operations, composed
from simple atomic ones. One can think of them as tactics in automated reason-
ing. To date the composition function for all of the composite operations is of the
form “apply atomic operations x, then apply y”, where y is a recursive call of the
composition function. There is scope to allow more complex tactics (e.g. consist-
ing of conditional statements, etc.). Composite operations are defined in terms
of decomposition of different recursive representations of diagrams. Depending
on the theorem at hand, the diagram is viewed using a particular representation,
which enables one to use a particular recursive composite operation. Ideally, the
internal representation of the diagram is pertinent to the composite operation
that is being carried out on it. Such a representation would render an operation
very easy to apply. It would be just a simple decomposition of the representation
of a diagram. Examples of such operations are: recursive decomposition of a
square into rows, or columns, or ells, or frames,...

In the following section the relation between the representations of diagrams and the
operations on them will be explained.

6.2 Multiple Representations of Diagrams

The importance of problem representation has been acknowledged by many researchers
([Simon 96], [Amarel 68], [Van Baalen 89]). Amongst them is George Pélya who argues
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in his books “How to Solve It” ([Pdlya 45]) and “Mathematical Discovery” ([Pélya 65])
that the choice of representation of a problem is vital for finding its solution. In
automated reasoning systems it is difficult to see how to use this advice, since there
is normally only one representation scheme for the problem which is available to the
system. An example of a commonly used representation scheme in automated reasoning
system is predicate logic (see [Bundy 83]). In DIAMOND, however, Pdlya’s advice
of using alternative representations can be readily taken. Namely, diagrams can be
represented in a variety of different ways. Hence, theorems are represented in a variety
of ways. The reader may notice that for some cases there is a connection between a
representation of a diagram and induction schemas. This connection will be discussed
in greater detail in §6.5.

For instance, a square can be represented using several different compositions:

e a sequence of rows,

e a sequence of columns,

e a concentric sequence of circumferences, each of which is called a frame,
e a nested sequence of ells,

e a sequence of four squares, each of which is half the magnitude of the big one
(note that the big original square has to be of even magnitude, and that the
representation is recursive if the magnitude of the square if a power of 2),

a matrix of dots,

e a sequence of diagonals.

Figure 6.1 shows these possible representations.
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Figure 6.1: Multiple representations of a square.
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Some of the multiple representations of a rectangle are analogous to the ones of a
square, some are not applicable, and some are new. A rectangle can be represented as
follows:

a sequence of rows,

a sequence of columns,

a nested sequence of squares,
a matrix,

a sequence of diagonals.

Figure 6.2 shows these possible representations.
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Figure 6.2: Multiple representations of a rectangle.

Diagrams in DIAMOND are discrete, and are represented in terms of collections of
dots (or other diagrams) on a discrete two-dimensional net. This necessitates that all
triangles that are available in DIAMOND are equilateral. It is hard to represent discrete
triangles that are of any shape, i.e. the sides are of any magnitudes. Triangles are
represented in a discrete space which consists of a two dimensional net where dots can
be drawn only for discrete values of both coordinates. Hence, the triangles appear to
be right-angle triangles, despite the fact the all the sides of any triangle are of equal
discrete magnitude. Were we to extend DIAMOND to prove theorems of real arithmetic
(see §11.6.1), then there would be a need for a continuous space, and therefore scope
for triangles of any magnitude. A triangle in DIAMOND can be represented as:

a nested sequence of sides,
a nested sequence of ells,

a collection of two triangles and a square.

Figure 6.3 shows these possible representations.
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Figure 6.3: Multiple representations of a triangle.

6.3 Operations and Representations of Diagrams

The choice of representation that DIAMOND uses is important. Most of the proofs
that DIAMOND proves require some kind of recursive decomposition of a diagram.
If the appropriate representation of a diagram is available, then such decomposition
is possible. Clearly, the more representations of a diagram are available, the more
operations are possible on this diagram.

It is possible now to identify the available operations on a particular diagram. Given
the multiple representations of diagrams defined in the previous section, we now list
some of the operations that DIAMOND provides. One of the features of DIAMOND
is that it automatically restricts the operations offered to the user for each type of
diagram. In this way, the user cannot try to carry out a nonsensical operation (for
instance, to split a triangle into four squares). Here are the available operations for
some diagrams:

Square: split a row, split a column, split an ell, cut diagonally, split an outer frame,
split an inner dot, split into four squares.

Rectangle: rotate 90 degrees, split a row, split a column, split a square, cut diagonally.
Triangle: split a side, split an ell, split into two triangles and a square.
Ell: split row, split diagonal ends.

Thick Frame: split a frame, split into rectangles.

The particular set of available diagrams and operations on them was selected by the
analysis of examples of diagrammatic proofs, some of which are given in Chapter 3 and
Appendix A. The hope is that these enable the user to prove a significant range and
depth of theorems (see §9.1.1). There is a possibility to extend the set of diagrams and
operations on them. The reader is referred to Chapter 9 for a discussion of the results,
i.e. of theorems that the user can prove using DIAMOND.

A particular representation of a diagram is a way of viewing a diagram before making it
possible to carry out the operation. For instance, if a square is viewed as a sequence of
columns, then the operation that can be carried out on it is the recursive decomposition
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into a rectangle and a column. If a square is viewed as a nested sequence of ells, then
the operation that is possible on it is the recursive decomposition into a smaller square
and an ell.

New complex operations may emerge, if these few possible representations, presented
in this chapter, are combined in various ways. For instance, let a square be represented
as four smaller squares, and we use any other type of representation for each of the four
squares. This creates a new representation of a square, and as a consequence, allows a
new complex recursive operation on a square. Amongst the available representations
of diagrams, the recursive representations, in particular, give scope for many new
recursive decompositions of diagrams.

Clearly, depending on a theorem and its proof, different operations are required. Con-
sequently, diagrams need to be transformed into an appropriate representation. Some-
times, diagram representation needs to be transformed midway through the proof in
order for the user to be able to use a particular operation. These transformations of
diagram representations will be discussed next.

6.3.1 Transformation of Representations

D1AMOND has a notion of a default representation of diagrams. This representation
is used when a diagram is first chosen. It is typically a matrix or a sequence of sides
representation. As different operations are used, DIAMOND transforms the diagram
into an appropriate representation.

The transformation between different representations is readily achieved and is invisible
to the user. The idea is that the transformation of a diagram takes place behind the
scenes, as it were, as the user chooses the operation. So for instance, say that the
user wants to decompose a square into ells, then immediately a square is transformed
into a representation of a nested sequence of ells. Using an appropriate representation
enables easy handling of the operations. Figure 6.4 shows some of the transformations
in the case of a square.

Sometimes, the transformation between two representations is not possible. For in-
stance, a square of odd magnitude cannot be transformed into the “four squares” rep-
resentation of a square. On the other hand, if a representation is not available, then the
operation on a diagram is not possible, unless the same operation can be composed of
other operations. For example, consider the example proofs for the theorem about the
sum of odd naturals in Figure 5.2 and Figure 5.3 in the previous chapter. If a nested
ell sequence representation of a square was not available, then the user could not split
a square into an ell and a smaller square. However, the user could first split a row
from a square (thus the square would be transformed into a row representation), which
results in a rectangle and a row. Then the user could split a column from the resulting
rectangle (thus a rectangle would be transformed into a column representation). This
leaves the user with a square, where the two operations can be repeated. It is easy to
see that if none of the three representations of a square and a rectangle were available,
then the solution to the problem could not be found. It is obvious now how Pdlya’s
advice about the importance of problem representation is used. A careful choice of a
representation of the problem (i.e. diagrams) must be made in order to enable one to
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Figure 6.4: Transformation of representations of a square.

find a solution for it.

A question about the motivation for multiple representations might arise, especially
because all of the operations could potentially be carried out on, for example, a mat-
rix representation of diagrams. What are the advantages and disadvantages of using
multiple rather than single representations for diagrams? The advantage of using a
single representation for diagrams is that no transformations to other representations
need to be carried out. The disadvantage however, is that the operations on a single
representation are much more complex in comparison to operations defined on multiple
representations. Indeed, we argue that the operations should be simple, readily carried
out, and should reflect the simplicity of human manipulation of diagrams. Multiple
representations offer this advantage due to the close interdependence between a rep-
resentation and an operation which is available and pertinent to this representation.
This advantage outweighs the disadvantage of multiple representations which is that
they require a transformation of representations.

6.3.2 Destructor v. Constructor Operations

It is apparent from the definitions that all operations decompose diagrams. Con-
sequently, this reflects itself in the structure of diagrammatic proofs that can be gen-
erated using these operations. We distinguish between destructor operations, and
constructor operations. Destructor operations decompose diagrams in various ways
(i.e. they split diagrams into new diagrams), whereas constructor operations compose
diagrams in various ways (i.e. they join diagrams into new diagrams). Hence, diagram-
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matic proofs can be destructor and constructor.! Since no differences appear in the

usability of each type of operation in diagrammatic proofs, we arbitrarily choose to use
only destructor operations in DIAMOND.

6.4 Operations as Tactics

As said before, operations may be combined recursively into more complex ones. These
combinations of operations are referred to as tactics. An atomic operation (such as
splitting an ell from a square) is the simplest tactic. However, recursively applying this
operation until the diagram is exhausted results in a more complex recursive tactic.
Thus, tactics can use other tactics. Figure 6.5 gives an example of how different
tactics can be constructed from the example proof for the theorem about the sum of
odd naturals. Tactic 3 in Figure 6.5 consists of one atomic operation only. Tactic 2
uses Tactic 3 recursively to prove that an ell consists of an odd number of dots. Tactic
1 recursively repeats the splitting of ell operation and Tactic 2 until the diagram is
exhausted. Note that this is an instance of an example proof.

Figure 6.5 also represents how traces of example proofs are stored in DIAMOND, so
that a general proof can be extracted from them. A trace, i.e. a sequence of operations
used in an example proof, is recorded in DIAMOND using a tree structure. A linear
sequence is mapped to a tree structure using a parameter which stores the position
of the diagram in a sequence together with the operation which is applied to it. For
instance, the operation “split ell” in Figure 6.5 has a parameter [ | associated with it to
indicate that it is applied to the initial diagram. The parameter for the first application
of “split diagonal ends” is [1], and for its second application the parameter is [1,2].
Extraction of general proofs will be discussed in detail in Chapter 7. An example proof
is a tactic, because it consists of a sequence of diagrammatic operations.

6.5 Diagram Representation and Induction Schema

In §5.3.1 we showed how arithmetic expressions can be mapped into a diagrammatic
representation. It was also stated that a choice of a diagram and an operation on it
fixes the choice of an induction schema.? In this section we explain the relation between
the choice of a diagram representation and an induction schema in more detail.

Choosing a representation of a diagram makes it possible for an operation to be carried
out on a diagram. It is a way of viewing a problem and formulating it so that a decom-
position is readily achieved. Externally, the presentation of a diagram does not change.

! See Chapter 7 for a description of schematic proofs. Destructor schematic proofs are represented
by the step case part first, followed by the base case part. Constructor schematic proofs would be
represented in an opposite way.

2 By induction, as used in this context, we mean mathematical induction, and should not be con-
fused with learning type induction, also called philosophical induction, where general statements are
concluded from particular examples. We refer to the learning type induction as abstraction. The
abstraction of a general schematic proof, which will be discussed in Chapter 7, is an example of a
learning type induction.
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Figure 6.5: Operations as tactics.

A particular representation allows the use of a particular operation in the proof. Most
diagrammatic proofs recursively decompose a diagram in some way. Carrying out each
decomposition corresponds to doing a step case of a recursive decomposition. In an
algebraic (as opposed to a diagrammatic) proof this process is analogous to the step
case of mathematical induction. Therefore, choosing a representation of a diagram in
a diagrammatic proof is analogous to choosing an induction rule in an algebraic proof.

The analysis of recursive definitions and their structures which suggests induction
schemata and induction variables in the automation of inductive proofs dates back
to Boyer and Moore [Boyer & Moore 79]. Recursion analysis tries to find a suitable
induction schema and universally quantified variables for induction. Sometimes there
might be several induction schemata, or several variables over which to induct. If
a wrong schema or variable is chosen, then the proof attempt is doomed to fail. In
our diagrammatic proofs we define diagrams using different recursive definitions for
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the application of different geometric operations. We examine now examples of how
various recursive representations of a square (and thus the operations on it) correspond
to the choice of induction schemata in an analogous algebraic proof. We use mappings
as described in §5.3.1 to make the correspondence between a diagrammatic and an
algebraic proof explicit.

A square, when viewed as a collection of ells allows an lcut operation. If a square
of magnitude n represents an arithmetic expression n? and an ell of magnitude n
represents an arithmetic expression 2n — 1, then an lcut operation corresponds to the
following rewrite rule: s(n)? = n? + (2(s(n)) — 1). Figure 6.6 gives other possibilities
according to the representation of a square, and consequently an operation on it (we
use a constructor s to define a successor function):

‘ Operations and Diagrams ‘

(1) square of magnitude s(n)
lcut
=
square of magnitude n and ell of magnitude s(n)
(2) square of magnitude s(s(n))
split_frame T
=
square of magnitude n and frame of magnitude s(s(n))
(3) rectangle of magnitude s(n) x s(n)
split_row
=
rectangle of magnitude s(n) x n and row of magnitude s(n)
(4) rectangle of magnitude s(n) x s(n)
spliégcol

rectangle n x s(n) and column of magnitude s(n)

Figure 6.6: A square and the operations on it (n is a particular value).

The underlined parts of the expressions in Figure 6.6 are the recursion constructors
in the rules. They indicate the recursive argument which is used in the analysis to
identify the induction schema. The same recursive constructors will be identified in
the algebraic rewrite rules which correspond to the diagrammatic operations. To choose
the rewrite rule which corresponds to a diagrammatic operation we need to select an
appropriate mapping between the two. Let us use the following mappings for the
arithmetic expressions:

e a square of magnitude n for n?,

a rectangle of length n and height m for n x m,

an ell of magnitude n for 2n — 1,
e a row of magnitude n for n,

e a column of magnitude n for n,

a frame of magnitude n for 4(n — 1).
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Note that these mappings in a diagrammatic proof are given for particular values of
n. We use a variable n to represent every instance in order to demonstrate the corres-
pondence. Recall, that in DIAMOND there are no general diagrams, only concrete ones
for particular values of n. The choices of diagram representation, and consequently the
operations, given the mappings from diagrams to arithmetic expressions, correspond in
an algebraic proof to the following rewrite rules (again, note the underlined recursive
constructors) presented in Figure 6.7.

Diagrammatic Operation Algebraic Rewrite Rule
1) cut s(n) = 2+ (2(s(n) — 1)
(2) split_frame ﬁ(n))2 = n?+4(s(s(n)) —1)
(3) split_row s(n) x s(m) = s(n) x m+ s(m)
(4) split_col s(n) xs(m) = mnxs(m)+s(n)

Figure 6.7: Correspondence between diagrammatic and algebraic rules.

We may need a rule that says that for some n, a square of magnitude n is equal to a
rectangle of magnitude n x n to be able to use the latter two rules. In the algebraic
rewrite rules given above all the variables are implicitly universally quantified. Consider
again the tables in Figure 6.6 and Figure 6.7. Note how different recursive definitions
of operations in Figure 6.6 have different recursion constructions (they are underlined),
which occur in the recursive argument positions. The same is the case in the analogous
algebraic rewrite rules in Figure 6.7 (they are also underlined). Operations (rewrite
rules) (1), (3) and (4) have a one step recursive structure. Operation (rewrite rule)
(2) has a two step recursive structure. Each of these recursion structures (schemata)
corresponds to an induction schema. The one step induction schema is:

P(0) P(n) - P(s(n))
Vn. P(n)

The two step induction schema is:

P(0), P(s(0)) P(n) F P(s(s(n)))
Vn. P(n)

Choosing the representation of a square which allows (1), (3) or (4) fixes therefore, the
choice of an induction schema to a one-step induction schema in an algebraic proof.
Choosing the representation of a square which allows (2) fixes the choice to a two step
induction schema. However, notice that choosing the representation of a square which
allows (3) fixes the induction variable to be m, whereas choosing the representation to
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allow (4) fixes the induction variable to be n. In the diagrammatic proof the choice
of possible operations, and thus representation of a diagram, is dependent on how we
map the arithmetic expressions into a diagrammatic representation. These examples
demonstrate that the choice of a representation of a diagram and operations on them
in a diagrammatic proof is analogous to fixing the choice of an induction schema and
an induction variable in an algebraic proof.

On the other hand, it is interesting to notice that choosing an induction schema does
not necessarily fix the choice of the representation that can be used for diagrams, and
correspondingly the choice of possible operations. Rather, it restricts the set of pos-
sible diagram representations. For instance, were we to choose a two-step induction
schema to carry out the proof of a theorem, then the only representation that we could
use for a square would be the one that allows operation (2) (i.e. split-frame in Fig-
ure 6.7). Choosing a one-step induction schema restricts, but not uniquely determines
our choice of representation. However, in some cases the choice of an induction variable
may fix the choice of a diagram representation. For instance, if we choose m as an
induction variable, then this fixes the representation of a square to be the one that
allows operation (3).

6.6 Summary

In this chapter we presented the geometric operations available in DIAMOND. These
operations capture the inference steps of a diagrammatic proof. Two main classes
of operations were identified: atomic and composite. Some analysis of operations
indicated that representing diagrams in various ways is closely linked to the use of
geometric operations on diagrams. In particular, if no appropriate representation of a
diagram is available, then the operation on a diagram might not be possible. Defining
multiple representations of diagrams made it possible to identify all possible operations
on each type of diagram, given the limited repertoire of representations.

Different operations are required in different proofs. Thus, the representation of a
diagram sometimes needs changing midway through the proof. These transformations
were discussed next. It was also pointed out that all of DIAMOND’s operations are
of a destructor nature, i.e. they decompose a diagram in some way. Next, the use of
operations in tactics was discussed. A sequence of operations used in an example proof
is a tactic. Several such concrete tactics are abstracted into a general schematic proof.
How an abstraction is carried out will be discussed in the next chapter.

Finally, we demonstrated that the choice of operations in the diagrammatic proof
(and therefore the particular diagram representation) is analogous to the choice of
an induction schema in an algebraic proof. The recursion analysis of definitions of
diagrams identifies the recursion schema. Analogously, the recursion analysis of the
definitions of rewrite rules for an algebraic proof identifies the induction schema to be
used in an inductive algebraic proof.
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Extraction of Schematic Proofs
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The notion of diagrammatic proof presented in this thesis is captured in a recursive
program, referred to as a schematic proof. A schematic proof by instantiation generates
a proof of n for each proposition P(n). In this chapter we present how general schematic
proofs are automatically extracted from example proofs, and how they are formalised
in DIAMOND.

First, in §7.1 the explanation of what we mean by abstraction in the context of learn-
ing from examples is given. In §7.2, the abstraction of schematic proofs from example
proofs is discussed. In §7.3, the formalisation of schematic proofs is presented. A com-
parative analysis of available abstraction techniques from §2.3 follows in §7.4. Then,
in §7.5 the mechanism for abstracting for all linear dependency functions is given. The
possibility of further breaking down the abstracted proof is considered in §7.6. In §7.7,
proofs with case splits, and in §7.8 the recursive structure of proofs are considered.
Finally, in §7.9 a possible mechanism for abstracting a general proof from one example
proof is discussed.

99
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7.1 Context for Abstraction

In Chapter 4 schematic proofs were introduced. We argued that schematic proofs can
be used for diagrammatic proofs. A schematic proof of a theorem is a proof which
uniformly proves each instance of the conjecture. We use a recursive program proof to
capture the uniformity of the proof procedure. An algebraic schematic proof applies
rewrite rules to construct a proof. The number of applications of the rewrite rules is
dependent upon a parameter n. The recursive program provides by instantiation a
particular proof of a particular instantiation of the conjecture.

It is the geometric operations on a diagram which are used in the same way in a
diagrammatic schematic proof as the rewrite rules are in the algebraic schematic proof.
A schematic proof is extracted from examples of proofs of corresponding instantiations
of the premises. As mentioned in §5.4, example proofs are constructed interactively
with the user. We investigate the formalisation of reasoning with examples rather than
with general cases by the use of schematic proofs. We let the user explore instances of
proofs and we automate the extraction of a general proof from these instances. This
extraction is referred to as an abstraction of a general schematic proof from examples
of proofs. In §2.3 we presented some possible abstraction techniques. The next two
sections present how examples of proofs are stored in proof traces and how schematic
proofs are formalised. Then, in §7.4 we analyse the applicability of the abstraction
methods from §2.3 with respect to the requirements for abstraction in DIAMOND. This
analysis will enable us to choose the technique most suitable for our purposes.

7.2 Example Proof Traces

A schematic proof of a theorem is extracted from a few example proofs.! The construc-
tion of example proofs was presented in §5.4. DIAMOND expects the example proofs
to be formulated in a particular way in order for it to be able to abstract from them.
The aim is to recognise automatically the recursive structure of the proof from a linear
sequence of applications of operations, so that the structure common to the example
proofs for n and n+ 1 can be recognised and abstracted into a general schematic proof.
Notice that the example proofs do not need to be given for adjacent values of n. This
will be discussed further in §7.6.

Traces of example proofs are recorded as sequences of applications of operations. For
instance, take the two example proofs given in Figures 5.2 and 5.3 in Chapter 5. They
are example proofs for the theorem about the sum of odd naturals for the values of
n = 4 and n = 3. The example proof traces for n = 4 and for n = 3 consists of the
following operations given in Figure 7.1.

The sectioning of the tables indicates the structure common to the two example proofs.
This structure needs to be automatically detected by DIAMOND, and is reformulated
into the following representation:

! In DIAMOND we use two example proofs, which is enough to be able to extract linear dependencies
between the number of applications of geometric operations in the example proofs (see §7.5). In
§7.9 we discuss a possibility of abstracting from only one example proof.
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Value of n =4

Operation | No. of applications Value of n =3

lcut 1 Operation | No. of applications

split.ends | 3 (i.e. 4-1) lcut 1

lcut 1 split_ends | 2 (i.e. 3-1)

split_ends | 2 (i.e. 3-1) lcut 1

lcut 1 split_ends | 1 (i.e. 2-1)

splitends | 1 (i.e. 2-1) lcut 1

lcut 1 split_ends | 0 (i.e. 1-1)

split_ends | 0 (i.e. 1-1)

Figure 7.1: Example proof traces for n = 4 and n = 3 for sum of odd naturals.

proof(n =4) = A(4).A(3)A(2)
proof(n =3) = A(3)A(2)

where A(7) is the step case of the proof and consists of some sequence of operations
(in the example above these are Icut and split_ends) and B is a base case which also
consists of some sequence of applications of operations, or is empty (as in the example
above). The index i denotes the value of n for each particular step case. The sequence
of operations and the number of applications of operations in the step case is dependent
on the case of the proof, i.e. the value of n.

In a more general case of example proofs for n and n + 1 the representation can be
reformulated into the following:

proof (n) = A(n), Aln —1), A(n — 2)
n—1),A(n —2

JA(1),B
proof(n + 1) A(n+1), A(n), A( ), A( A(1),B

)7 st (1)7
It is possible that a theorem does not have a proof for all consecutive values of n, but
rather for all odd or even or any other subset of values of n. Thus, in a case of two

example proofs, the representation of a schematic proof can be reformulated for any
natural number ¢ and n into the following:

(n—2c),..., Al ),

prOOf(n) = A(n)aA(n - C)7 c+r),B
A n—c),Aln—2c),... ,Alc+r1),B

proof(n+¢) = A(n+c), A(n), A(

In the next section the formalisation of a recursive function proof is presented.

7.3 Formalisation of Schematic Proofs

We are interested in inductive diagrammatic proofs. More precisely, we consider proofs
for n 4+ ¢ which can be reduced to proofs for n (or conversely, such proofs for n which
can be extended to proofs for n + ¢ by adding to them some additional sequence of
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operations). It is precisely this difference between the proof(n + ¢) and proof(n), i.e.
the additional sequence of operations in proof(n + ¢) with respect to proof(n) that we
call the step case of the abstracted proof.

Sometimes proofs are not uniform for all values of n. A theorem could have a different
schematic proofs for say, even and odd natural numbers. Such a proof clearly contains
a case split: there is one schematic proof for odd naturals and another schematic proof
for even naturals. The abstraction mechanism that will be described in the next section
has to detect when a proof has a case split or not. If a schematic proof is the same for
all values of n, i.e. there is only one case of the proof, so ¢ = 1, we seek the following
recursive reformulation of a schematic proof.

proof(n+1) = A(n+1), proof(n) (7.1)
proof(0) = B

Note that proof(0) is often an empty list of operations, because often no diagram is
defined for n = 0, i.e. a diagram which consists of no dots.

The proofs that have the same structure for all n are called 1-homogeneous proofs.
Proofs can be c-homogeneous; then there are ¢ cases of the proof. We say that if all
instances of the proof (for instances of numbers that “equal modulo ¢”) have the same
structure and can be abstracted, then the proof is c-homogeneous. If there are ¢ cases,
then there are ¢ different abstracted proofs, one for each case. We seek the smallest
complete recursive definition of a proof, i.e. ¢ potentially different schematic proofs,
if there are ¢ cases. The following theorem and corollary will help us define what we
mean by the smallest complete proof:

Theorem 1 If a proof is c-homogeneous, then it is also (kc)-homogeneous for every
natural number k > 0.

The immediate consequence of Theorem 1 is:

Corollary 1 If a proof is not c-homogeneous, then it is also not f-homogeneous for
every factor f of c.

In a c-homogeneous proof we will denote by B, a base case for a branch of numbers
which give remainder r when divided by ¢. B, is actually a proof for the smallest
natural number that gives remainder r when divided by c.

A schematic proof is defined to be the smallest complete proof if there is no other
f-homogeneous proof obtainable from a c-homogeneous proof for any factor f of c,
and all f schematic proofs for f cases are defined.

The general representation of a destructor? proof is formalised as follows let:

en—=Fkc+r

2 The notion of destructor and constructor proofs has been introduced and discussed in §6.3.2.
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e where ¢ = number of cases and r < ¢

e and ¢ > 1.

Then the recursive definition of a general proof is:

proof(ic+ 1) = A, (ic+r), proof((i —1)c+r)
proof(r) = B,

where A, is a step case and B, is a base case for a class of proofs where n = r(mod
c). “ denotes a concatenation of operations in A, and proof. The formalisation of
abstracted proof for constructor proofs is symmetric to the one given above.

Note that more complex proof structures are possible, e.g.

proof(n +1) = A(n+ 1), proof(n), A'(n+1)
proof(0) = B

However, to date we have not come across proofs that would require more complex
proof structures than the one we formalised, hence we decided not to cater for them.

7.4 Comparison of Abstraction Techniques

In Chapter 2 we presented in some detail several possible mechanisms for extracting
a general pattern from some examples. They include: Plotkin’s least general gener-
alisation in [Plotkin 69] and [Plotkin 71]; Biermann’s method [Biermann 72]; Bauer’s
method [Bauer 79]; Anderson and Kline’s method [Anderson & Kline 79]; Mitchell’s
version spaces [Mitchell 82]; Quinlan’s ID3 [Quinlan 86]; Inductive Logic Program-
ming [Muggleton & De Raedt 94]; and Baker’s method [Baker 93]. We analyse now
how each of the techniques applies to the requirements of DIAMOND in order to choose
an appropriate technique for implementation in DIAMOND.

The analysis of abstraction techniques is carried out on an example of a typical ab-
straction that is needed in D1IAMOND. Consider an example proof trace for the theorem
about the sum of odd naturals given in Figure 7.1. The abstraction that we expect is:

For any value n + 1

Operation | No. of applications

lcut 1
splitiends | n
lcut 1
splitends | n—1
lcut 1

split.ends | n—2

lcut 1
split_ends
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Viewing this proof in another way, we seek the following recursive definition of an
abstracted schematic proof:

proof(n +1) = [(lcut, 1), (split_ends,n)], proof(n)
proof(0) =[]

Plotkin’s Least Generalisation: Note that the first example for n = 4 completely
subsumes the second example for n = 3. This is expected since the problems
which we consider in our domain (natural number arithmetic theorems) are in-
ductive, thus their proofs can be defined recursively. Therefore, there are no
differences in sub-examples where we could use a term substitution. The entire
second example proof trace for n = 3 is used for the substitution. Step 3 of
Plotkin’s algorithm generates the following abstraction:

Value of n =4
Operation | No. of applications
lcut 1
split_ends | 3 (i.e. 4-1)

R

The abstraction mechanism detected where to separate A(n + 1) from proof(n)
in the proof traces as required. However, it only detected the difference between
the two examples, but abstracted away the information to abstract a dependency
function. The number of applications of the same rules in DIAMOND’s example
proof trace differs for each example. These need to be abstracted according to
their dependency on the parameter n. However, the algorithm simply abstracts
these numbers into one variable, rather than detecting the dependencies. The
method is, therefore, not suitable for using in DIAMOND.

Biermann’s Method: The synthesis algorithm to generate a procedure from example
traces applies to DIAMOND’s example proof only partially. Unlike in Biermann’s
example traces, in our example there are no conditionals in the geometric op-
erations on a diagram. Biermann’s algorithm requires that the user explicitly
labels recursive procedures in the example trace. For instance, in the example of
quicksort (see §2.3.2), the user has to understand that the procedure calls itself
recursively, and needs to invoke it in the appropriate place of an example trace.
On the other hand, we would like DIAMOND to recognise the recursive structure
of the example trace automatically, rather than demand from the user to give it
to the system.

Bauer’s Method: The computation-tree for our example proof trace constructed us-
ing Bauer’s method does not consist of any branching points, because there are
no conditional geometric operations in the proof traces. The operations that are
performed several times are grouped into the same class. The constants indicat-
ing the number of applications of a rule are substituted by the same variable. The
resulting abstracted proof looks similar to the one extracted by using Plotkin’s
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least generalisation. The problem with this method is that the dependency of the
number of applications of operations on the parameter n is not detected. Rather,
it is abstracted away.

Anderson and Kline’s Method: This abstraction algorithm replaces terms that
differ in the two examples by local variables. Since the first example subsumes
the second, the algorithm abstracts from the example proof traces in a similar
fashion to Plotkin’s algorithm. The algorithm abstracted away the information
to abstract a dependency function about the number of applications of each op-
eration in the proof. Therefore, this technique is inappropriate for the use in
DIAMOND.

Mitchell’s Version Space: There is no notion of more general examples here. The
examples are all specific. We have no criteria which distinguishes between the
generality of one example and another example. Were we to decide, for instance,
that the first example is more general since it subsumes the second example, then
the resulting abstracted proof would be incorrect. The number of applications of
operations in such an abstracted proof would be specific, i.e. no dependency on
the parameter n would be detected. It seems that this abstraction method does
not meet the criteria in DTAMOND either. On the other hand, we could introduce
a most general program and try to specialise it given the examples traces. There
would still need to be a mechanism for detecting the dependency of a number of
applications of a rule on the parameter n.

Quinlan’s ID3: Following the algorithm for ID3, the examples need to be classified.
There should be a finite set of variables with a finite set of possible values. In our
examples, one variable is the number of times that a particular geometric oper-
ation is applied. Therefore, the particular values for the number of applications
in each example are dependent on n and need to be abstracted into a variable.
However, the resulting decision tree in the Quinlan’s algorithm branches in each
node the same number of times as the number of examples, instead of classifying
them. This process therefore does not end in an abstracted proof.

Inductive Logic Programming: Some of the ILP systems are sufficiently sophist-
icated and can extract a recursive structure from the given set of examples of
execution traces of the program which needs to be induced. Therefore, this would
seem a very good candidate for the use in DIAMOND. However, much background
knowledge needs to be encoded in such a system, and such background knowledge
might not be accessible in D1AMOND. Furthermore, the abstraction in DIAMOND
needs to detect dependencies between functions and numerals, however the ILP
systems to date are not efficient nor effective in dealing with numerical data.

Baker’s Method: Baker’s algorithm is tailored to the type of examples that we are
concerned with. Her abstraction method detects the abstractions of dependency
functions as we indicate them in our example given above. The dependency
functions that we deal with are not expected to be more complex than the ones
Baker’s algorithm can detect, so it would seem reasonable to use this algorithm.
Perhaps, we could extend the algorithm to detect more complex dependency
functions. However, Baker’s algorithm does not detect the recursive structure
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of the examples, which is one of the requirements for DIAMOND’s abstraction
mechanism.

Considering the comparative analysis of the techniques given it seems that there are
features of Biermann’s and Baker’s algorithm that we could use in DIAMOND’s abstrac-
tion mechanism. In particular, Biermann’s algorithm detects the recursive structure of
the example that is suitable for use in DIAMOND. Baker’s abstraction of dependency
functions is also a feature which we can use in our abstraction algorithm. We need to

structure, and Baker’s technique to more complex dependency functions than a few
fixed ones defined by Baker. Our abstraction mechanism is described in detail in the
next section.

7.5 Abstracting for All Linear Functions

As mentioned above, we aim to recognise the particular recursive structure of the given
example proofs. More precisely, we want to extract the step case A and the base case
B of the proof and then abstract them for all n. The general methodology employed
for doing this can be demonstrated as:

Given n=4 n=3

? ?
XY Y —» Y=AQR)Z —»

[X]=A(4)

where Y is the whole of an example proof for a particular n (in this case for n = 3) and
X is the difference between example for n + 1 and n (in this case a difference between
example proofs for n =4 and n = 3). X and Y consist of sequences of applications of
geometric operations. The difference X is a step case A of the schematic proof for a
particular value of n (in this case n = 4).

The first step of the abstraction algorithm is to extract the difference between the two
example proofs for ny and ny (ny > ngy), where ¢ = ny — ng, in the hope that this,
when abstracted, will be the step case A of the proof. Note that if there is more than
one case of the proof, say ¢, then n; and ns need to be given for the same case of the
proof. There will also be ¢ different step cases A, one for each case. The extraction
of A is done by commutative and associative matching which detects and returns the
difference between the two example proofs.> Now we have a concrete step case of the

3 See §7.8 for discussion of diagrammatic proof structure which motivates the choice for commutative
and associative matching. Using commutative and associative matching reduces sensitivity to the
order of proof steps.
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proof. This difference consists of a few, say m, operations op; each applied zj,,,, times
for some natural number k£, where 0 < &k < m.

To make a step case general, we need to find the dependency function between every
ZTkn, and ny. This demands identifying a function of n;, which would give a specific
Ty i-e. fr(n1) = 2, for some k and ny. DIAMOND assumes that the dependency is
linear: of the form an + b. This is a heuristically adequate choice.* Thus, let us write
for each opy a linear equation ani + b = zj,,, where ny and z,, are known. Note
that DIAMOND cannot cope with, for instance, exponential, logarithmic or polynomial
functions.

The subsequent stage of the abstraction is to extract the next step case from the rest
of the example proof for the corresponding new n (i.e. ng). If successful, continue
extracting step cases for the corresponding n’s from the rest of the proof until only the
base case is left.

Since we are dealing with inductive proofs, it is expected that every step case of a proof
will have the same structure,® i.e. will consist of the same sequence of application of
operations, but a different number of times. Thus, we could in the same way as above
for every operation opy write a linear equation angs + b = xy,,,,. However, the number
Zk,n, of applications of a particular operation opy, in the next step case is not known. A
possible value of z, ,, is acquired by counting the number z’ of times every operation
opy of the initial step case occurs in the rest of the proof. The actual value of the
number of occurrences of each operation could be any number from 0 to z’. Thus, we
branch for all such values and so we have:

ani +b = Ty,
ans +b = Tpg,

where n1,n2, Ty, and xy,,, are known, so the equations can be solved for a and b, and
Tk n, takes values from 0 to z’. This results in several possible potential abstractions
of the step case, where branching involves solving the following equations for each
operation of the step case:

any +b=mxyp,

ang +b=1{ 0, L. . Tkt

The aim is to eliminate those that are impossible. After checking if step cases for all
n down to the base case are structurally consistent (i.e. the number of applications of
geometric operations is as expected by instantiating the chosen dependency function)
one hopes to be left with at least one possible abstraction of the example proofs. The

4 See §11.2.2 for a possible extension of linear dependency functions to more complex, such as expo-
nential or polynomial functions.

% Recall that if there is a case split in the proof, then the step cases of the same case of the proof will
have the same structure. However, step cases of different cases of the proof might differ.
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step case is rejected when the sequence of operations in the subsequent step cases is
impossible, i.e. the functions were chosen incorrectly. This normally occurs when the
dependency function gives a negative number of applications of a particular operation,
when the calculated sequence is not identical to the rest of the example proof, or when
there is no integer solution to our equations. Usually, there will be only one possible
abstraction of the two given example proofs.

The example proof for the sum of odd naturals is abstracted to form the following step
case and base case:

A(n) = [(lcut, 1), (split_ends,n — 1)]
B = []

where the function in parentheses indicates the number of times that the operations
are applied for each particular n. Thus, the following is the schematic proof for the
theorem about the sum of odd naturals:

proof(n+ 1) = [(lcut, 1), (split_ends, n)], proof(n)
proof(0) =[]

7.5.1 Example of Abstraction

Consider the example proof traces for the theorem about the sum of odd naturals given
in Figure 7.1. We give here an example of how to abstract a schematic proof from the
two example proof traces.

The first step is to extract the difference between the two example proofs. In our case
this is LA(4) = [(Icut, 1), (split-ends, 3)]. Thus we have n; =4, op; = lcut, 14 = 1, and
opy = split_ends, 5 4 = 3.

Next, we need to find a dependency functions between n; =4 and 14 = 1, and ny =4
and 2 4 = 3, i.e. we need to find functions f; and fo such that f;(4) = 1 and f3(4) = 3.
We assume that the dependency function is linear: nia + b = x,,. Thus we have:
fi(d)=4a+b=1and fo(4) =4a+b=3.

The subsequent stage is to extract the next step case from the two example proofs.
We seek the linear dependency function nsa + b = zj 5, for each operation opy. The
value of ng is known (n = 3), but =y ,, can take any value from 0 to z’. Recall that z’
is the number of times that the operation opg occurs in the rest of the example proof.
So for op; = lcut, 2’ is 2. For ops = split_ends, z’ is 3. Therefore the possible functions
for op1: 3a+b=10,3a +b =1 and 3a + b = 2. Figure 7.2 shows the system of two
equations which need to be solved to find the dependency function for op;.

For op, the possible functions are 3a +b = 0,3a+b =1,3a +b = 2 and 3a + b = 3.
Figure 7.3 shows the system of two equations which need to be solved to find the
dependency function for ops.

Solving the system of two equations for op; to get the values for a and b, we get the
following possible functions fi:

e fi(ln)=n-3
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LCUT
da+b=1

I

3a+b=0 3a+b=1 3a+b=2

Figure 7.2: Branching of dependency function for Icut.

SPLIT_ENDS
4a+b=3

e N

3a+b=0 3a+b=1 3a+b=2 3a+b=3

Figure 7.3: Branching of dependency function for split_ends.

e fi(n)=1

e fi(ln)=5—-n

For opy the get the following possibilities for fo:

e fo(n)=3n—9
e fo(n)=2n—5
o foln)=n-1
o fa(n) =3

Instantiating these functions for any value of n < 4 and checking it with any of the two
actual example proofs eliminates impossible functions and identifies that fi(n) =1 is
the dependency function for op; = lcut, and fo(n) = n — 1 is the dependency function
for ops = split_ends.

7.6 Breaking c-Homogeneous to f~-Homogeneous Proof

Consider again the two example proofs for the sum of odd naturals (the example proof
consists of making n Icuts, and then showing that each ell consists of an odd number of
dots). If the user supplies two example proofs for values of n and n+1, for some concrete
n, then there is no problem, so DIAMOND will abstract normally and determine that
the proof is 1-homogeneous. However, should the user supply proofs for n and n + 2
for some concrete n, the first stage of abstraction would determine that the step case
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consists of two Icuts. However, a complete recursive function for abstraction requires
a step case to consist of one Icut only.

For instance, suppose a user supplies examples for some concrete n and n + 2 where
n is an even number in the proofs for the theorem about the sum of odd naturals and
the abstraction mechanism described so far extracts the following schematic proof:

proof(n +2) = [(lcut, 1), (split_ends,n + 1), (Icut, 1), (split_ends, n)], proof(n)
proof(0) =[]

Some inspection of the schematic proof indicates that this, first, is not a complete
definition (i.e. there is no definition of a schematic proof for odd natural numbers),
and second, that the step case of this schematic proof can be further broken down into
the following:

An+2) = [(lcut, 1), (split_ends,n + 1)]
An+1) = [(lcut, 1), (split_ends, n)]
./4(2). : .[(Icut, 1), (split_ends, 1)]
A(1) = [(lcut, 1), (split_ends, 0)]
B = []

This can be recursively re-defined as:

proof(n+ 1) = [(lcut, 1), (split_ends, n)], proof(n)
proof(0) = []

which is what we expect. This recursive definition is now a complete, i.e. defined for
all natural numbers, and the smallest schematic proof.

D1AMOND has a mechanism which detects whether a schematic proof can be further
broken down, as in the example just given. It checks this by trying to split the step
case into a further f structurally the same sequences of operations, for all factors f of
¢ in order to obtain an f-homogeneous proof. We give now a method for extraction
of an f-homogeneous proof from a c-homogeneous proof, where f is a factor of ¢. An
example of using this method to break down the step case for sum of odd naturals
follows in §7.6.1.

Let A(n) be the step case of the abstracted schematic proof, consisting of some se-
quence of operations. The number of applications for each operation is expressed as a
dependency function on n. The algorithm consists of the following steps:

1. For each operation opy count how many times it occurs in A(n). Therefore, we
have occ(opg) = an + b, where a and b are known.

2. For each factor f of ¢, assume that each operation opy occurs a(n — If) + 3
times for [ ranging from 0 to m, where m is such that mf < ¢, more precisely,
(m +1)f = c and thus m = § — 1. Therefore we have:
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occq (opy,) = an+p
occlopy) = aln—f)+p
occif(opy) - aln—1f)+p
ocemslopy) = aln—mf)+ 0

3. For each operation opy, and for each factor f of ¢, add all of the above equations.
After some simplification we get:

—1

e}

a(n*mf)Jrﬁz(§a)n+((7(0+f+2f+---
m=0
HG = D)et (5)8) =
= Can+ (- Pl A P
= (GO (FOF 1424+ D)ot (3))
c—fre—f
o (I
= (G + (- f (F—F——Da+ ()
= Capnt (FEEDEa+ ()
AT 2\ Ty Ty
— (Com (e F) <
= (G + (=5 e+ (7))

where f and ¢ are known.

4. For each operation opy, solve the system of equations in 1.) and 3.) for a and £.
Thus:

)oz—l-(%)ﬁ) =an+b

where a,b,c and f are known. Thus, by equating the coefficients of n and 1 on
both sides we get:

b+ C(Cff)
a= a; and 8= %
f
5. For these a and [, solve the equations of 2.), which results in the number of
occurrences of each operation opy for a particular factor f in a corresponding
part of the divided step case A(n). Furthermore, for each divided part of the
step case, the order of operations has to be preserved from the original step case

A(n).
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Using this algorithm, one can determine where to split the step case A(n) into f
structurally identical parts.

If the method fails, then there is no such f-homogeneous further abstraction of the
step case A(n). If the method succeeds, and DIAMOND finds a new abstraction of the
step case, call this A'(n), then it also needs to find a new base case B, if ' # 0, or B}
if v = 0, where the previous r for ¢ was such that n = k¢ +r and r < ¢, and the new
r’ is now such that n = kf + 7" and v’ < f. The proofs of soundness and completeness
(given the limitation of the algorithm — e.g. linear dependency function restriction)
of this abstraction algorithm can be obtained by appealing to the construction of the
algorithm.

7.6.1 Example of Abstracting an f-Homogeneous Proof

Consider again, the example of a schematic proof for which a step case A consists of
the following operations:

A(n) = [(lcut, 1), (split_ends,n — 1), (lcut, 1), (split_ends, n — 2)]

where the number in brackets indicates the number of applications of that particular
operation. Assume also that DIAMOND determined after the first abstraction attempt
that the proof is 2-homogeneous, i.e. it has two cases. We demonstrate now how the
algorithm in the previous section splits the step case of the proof further so that the
function proof becomes 1-homogeneous.

Recall from the previous section, that we want the step case to be A(n) = [(lcut, 1),
(split_ends,n — 1)] (while A(n — 1) = [(lcut, 1), (split_ends, n — 2)] as expected in order
to preserve the structure of the proof).b

The algorithm given in the previous section describes how to detect where to split the
step case A into f structures, yet retain the same structure for all split parts in terms
of dependency on n. Consider now how this algorithm works for the example just
given, where ¢ = 2 and f = 1. Following the algorithm given in the previous section
we have:

1. oce(lcut) = 2 where a = 0 and b = 2, and occ(split_ends) = (n—1)+(n—2) = 2n—3
where ¢ = 2 and b = —3.

2. We have:
(a) occo(lcut) = arm + By,

(b) ocei(leut) = ag(n — 1) + B,
(c) occo(split_ends) = agn + (s,

6 Note that in §7.6 we defined the step case A for n + 2, whereas here we define it for n where n is
even. Essentially we are considering the preceding instantiation of the recursive call in the schematic
proof. This is due to the mechanism being defined for A(n) rather than A(n + 2). Renaming of
variables could be used instead, e.g. n+ 2 can be renamed into m so the algorithm applies to .A(m).



7.7. PROOFS WITH CASE SPLITS 113

(d) oceq (split_ends) = as(n — 1) + .
3. Note that m = {0,1} so that mf < ¢ (f =1,¢=2). Then:

1
leut — Y on(n— mf) + B = (201)n + ((— Doy + (261))

m=0

split_ends — Z as(n —mf)+ By = 2as)n + ((—1)as + (252))

m=0

Thus:

(2(}{1)77, + ((*1)(}{1 + (2,31)) =2

(2a)n + ((—1)az + (262)) = 2n —3
SOO[] :0, ﬁ] :1, andagzl, ﬁgz—l.
4. Now we have:

a) occo(leut) =0n +1 =1,
) (leut) =0(n—1)+1=1,
(c¢) occo(split_ends) =1n—1=mn—1,
(d) occy(split_ends) =1(n—1) —1=n—2.

ocey

Therefore following the order of operations in the initial step case, we now have:
A(n) = [(lcut, 1), (split_ends,n — 1)] (while as expected A(n — 1) = [(lcut, 1),
(split_ends, n — 2)]). Hence the schematic proof can now be re-defined into:
proof(n +1) = [(lcut, 1), (split_ends, n)], proof(n)
proof(0) =[]

7.7 Proofs With Case Splits

A theorem could have structurally different schematic proofs for different classes of
values n. Such a proof contains a case split. The abstraction mechanism described in
§7.6 can deal with proofs that have uniform case splits, i.e. proofs that have different
structure for:

e 2 cases: classes of numbers that are:
divisible by 2 (even)
giving rest=1 when divided by 2 (odd)
e 3 cases: classes of numbers that are:
divisible by 3
giving rest=1 when divided by 3
giving rest=2 when divided by 3
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e 4 cases: classes of numbers that are:
divisible by 4
giving rest=1 when divided by 4

so the proof is said to be 2-homogeneous, 3-homogeneous, 4-homogeneous, and so on,
respectively (where a 1-homogeneous proof is trivial with one case only). As shown
in §7.6 DIAMOND can detect such linear case splits. However, the system cannot deal
with case splits that are homogeneous for any other non-linear sequence of numbers
(e.g. exponential, logarithmic, prime, etc).

Suppose the user constructs two example proofs for some particular values n and n+c.
As described in §7.6 DIAMOND first abstracts the recursive function proof(n) with ¢
as the difference in the value of n in subsequent recursive calls. Then it reduces this
c-homogeneous proof into an f-homogeneous schematic proof, where f is a factor of
¢, if such a proof exists. If there are no possible reductions to f-homogeneous proof,
then the proof is c-homogeneous and by Corollary 1 there is no f-homogeneous further
abstraction of the proof. Furthermore, if a proof is c-homogeneous, then DIAMOND
requests from the user to supply 2 x (¢ — 1) additional example proofs in order to be
able to abstract them for the other branches of the case split, and make the recursive
function proof which represents the schematic proof total. Note that for each branch
of the case split, the pairs of additional example proofs have to be a factor f of ¢, or
a multiple of f apart.

Suppose now, that a theorem does contain a case split, i.e. it is c-homogeneous and
¢ # 1, but the user supplies two example proofs that are not for the same case of the
proof (i.e. not for n and n + ke, for some particular values of n and any multiple of ¢,
say kc). Clearly, DIAMOND cannot abstract these example proofs to form a schematic
proof, because no such schematic proof exists. When DIAMOND fails to abstract a
schematic proof from the given examples, then there are several reasons to which it
can draw the user’s attention. One of them is that the two example proofs are given
for different cases, so DIAMOND can suggest to the user to supply another example
proof for each case, in order for it to be possibly able to abstract.”

7.8 Proof Structure Considerations
The schematic proofs that DIAMOND can extract all have a simple structure (for sim-
plicity of presentation, let there be only one case of the proof):

proof(n+1) = A(n+ 1), proof(n)
proof(0) = B

The way the geometric operations are defined allows for construction of example proofs
from which schematic proofs with this particular recursive structure can be extracted

T Another possible reason is that the restrictions that are imposed by DIAMOND’s abstraction mech-
anism have not been followed in the construction of the example proofs.
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(e.g. there is one recursive call to proof, and the step case A precedes it). All geometric
operations on diagrams decompose a diagram in some way. The sum of diagrams,
i.e. the existence of diagrams is associative and commutative, so diagrams can be
presented in any order. As a consequence, there are several equivalent legal orders for
the combination of operations in the example proofs. However, certain restrictions on
the order of operations still apply. An operation can be applied only to an appropriate
type of a diagram, so such a diagram needs to exist (i.e. be presented). If it does not,
then the diagram must be created via some other operation which will generate it.
Therefore, the latter operation has to be carried out before the aforementioned one.

Consider the example of the proof about the sum of odd naturals. The schematic proof
of this theorem consists of applying an Icut first, followed by the split_ends operations.
Then, we repeat these by recursion. Such a schematic proof has the following step case

A and base case B:

An+1) = [(lcut, 1), (split_ends, n)]
B = T[]

The particular characteristic of commutativity and associativity of the existence of
diagrams enables us to reorganise the proof in a non-recursive way into carrying out
all the applications of the Icut operation, followed by all the applications of split_ends
operation for each ell. The schematic proof in this case could be represented non-
recursively as:

n

proof(n +1) = [(lcut,n + 1), (split_ends, Z i)]
i=0

How does this relate to the schematic proof of the associativity of addition given in
64.4.17 Recall that the schematic proof of associativity of addition consists of the
following rewrite rules parametrised over n (rules (4.1) and (4.2) are given on page 58):

n X rule (4.2) on LHS),
1 x Reflexive Law)]

proof(n) = [(n x rule (4.2) on LHS),
(n x rule (4.2) on RHS),
(1 x rule (4.1) on LHS),
(1 x rule (4.1) on RHS),
(
(

The schematic proof of associativity of addition cannot be rearranged into a recursive
form that we use for our diagrammatic schematic proofs. To construct proof(n + 1)
from proof(n) we have to insert applications of 4.2 into the middle of the proof(n). One
cannot choose to insert them at the end. The order matters. In our diagrammatic
proof we can invariably rearrange the applications of operations in a number of orders.
This is due to the associative and commutative nature of the existence of diagrams.
Of course, certain restrictions in the diagrammatic schematic proof still apply. For
instance, we could not first carry out all applications of split_ends operation followed
by the applications of lcuts. However, it does not matter whether we carry out x



116 CHAPTER 7. EXTRACTION OF SCHEMATIC PROOFS

applications of lcut for some z, then followed by any number of applications of split_ends,
or whether we carry out z+y < n applications of Icut for some = and y, before carrying
out any number of applications of split_ends.

The discussion above shows that a diagrammatic proof can always be reformulated
into the recursive structure formalised in §7.3. This is due to the nature of geometric
operations available in DIAMOND which invariably split diagrams in some way. The
existence of diagrams, i.e. the order in which the diagrams are present is associative
and commutative. This enables various equivalent formulations of examples proofs
with different orders of applications of operations which can always be rearranged in
a general case into the recursive structure given in §7.3.

7.9 Abstracting From One Example

A question arises whether it would be possible to abstract a general schematic proof
from just one example proof. The explanation-based generalisation® provides a mech-
anism for doing just that (see [Mitchell et al 86] and [DeJong & Mooney 86]). It is a
technique which enables a formulation of general concepts from a specific training ex-
ample. It differs from other inductive abstraction techniques in that it ever only needs
one example to abstract from. The basic idea of a system that uses explanation-based
generalisation is that the system constructs explanations of why an object satisfies a
function definition. It employs a domain model. A domain model is used to construct
the explanation of why the training example satisfies the function definition. Then,
the training example is transformed using this explanation into the most general form
(usually by replacing constants with variables). The problem with this type of abstrac-
tion technique is that a considerable domain knowledge needs to be available before
any learning (i.e. abstraction) can take place. It is a deductive rather than an inductive
learning method. In a diagrammatic reasoning system there is no such extensive do-
main knowledge available in advance. It also cannot be built into the system, because
it does not exist prior to carrying out the examples. The entire principle is based on
the fact that a diagrammatic proof is induced (learned or abstracted) from a set of
examples without any prior knowledge of what the proof should look like.

For instance, one of the requirements in DIAMOND is to abstract the dependency
functions from the proof applications. Recall that the dependency function defines
the dependency between the parameter n for which a schematic proof is given, and the
number of applications of particular geometric operations. Consider, for instance, that
the training example was given for n = 2 and the number of applications of a particular
operation is 4. The dependency functions which could represent a general function for
these two values are: f(n) = 4, f(n) = 2n, f(n) = n?. Which one is the right one?
There is no piece of domain knowledge which could determine the preference of one
function over another. Were we to provide another example where n = 3 and the
number of applications of the same operation is 6, then the only choice from the ones
given if f(n) = 2n. It seems, therefore, that explanation-based generalisation (learning)
technique is not enough to induce a general diagrammatic proof from examples. There

8 Note that we refer to generalisation in the sense of inductive inference as abstraction.
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is not enough domain knowledge to abstract, or if we define such knowledge (e.g we
pick the preference for the given functions randomly), we might abstract incorrectly
(i.e. over-generalise, to use the usual terminology).

However, it could be argued that humans do see a pattern from just one trusted ex-
ample. This is probably more true for simple examples where the recursive structure of
the proof is transparent. Here, we consider exploring this feature of human “informal”
reasoning with diagrams. We present a plausible technique which hints very strongly
what the recursive structure of the proof looks like. This would enable a system to
exploit the hint given by the user in order for the system to be able to abstract a
general schematic proof of a theorem from one example only.

Consider the example proof for the theorem about the sum of odd naturals where n = 4,
given in Figure 5.2 in Chapter 5 and the corresponding example proof trace given in
Table 7.1. The recursive structure of the proof is inherent in the recursive structure
of a square. If we take a square of magnitude four and split and ell from it, and then
split end dots from the ell to show that it consists of an odd number of dots, we are
left with a square of magnitude three on which the same procedure is repeated. This,
when abstracted is the step case of the schematic proof, i.e. A(n). It is possible that
the user when constructing the example proof realises that the pattern repeats itself
after this first instance of an instantiated step case. This gives a potential to exploit
the user’s intuition about the repetition of a pattern in the application of geometric
operations. A feature can be designed which allows the user to carry out automatically
the repetition of the operations used so far, rather than specifically instruct the system
to apply each operation. Let this option be called “repeat...”.

The idea behind “repeat...” is that during the process of interactive construction
of example proofs the system records the operations carried out so far. If the user
indicates that the sequence of operations applied on the diagram constitutes a pattern
which needs to be repeated on the remaining diagram, this feature allows the user to
instruct the system to automatically repeat this sequences on the remaining diagram.
For example, consider the example proof trace for n = 4 given in Figure 7.1. It is
apparent that after carrying out the first section of the table: i.e. one lcut and three
split_ends, the pattern repeats itself on the rest of the square. “repeat...”
repetition. However, the operations can only be applied as far as possible, depending
on the magnitude of the diagram. For example, in the first application of “repeat...”
it is not possible to apply three occurrences of split_ends, but rather only two. It is
the role of the system to detect such constraints. If the pattern can be successfully
repeated until the diagram is exhausted, then this pattern of operations indeed forms
an instantiated step case of the example proof, i.e. A(4). No further example proof
is needed for the abstraction mechanism. The first step of the abstraction algorithm
given in §7.5 has been carried out by the user who provided the possible structure
A. The system can now make this step case general by first checking if the pattern
can be repeated, and then by finding a dependency function for the general number of
applications of operations in the step case of the schematic proof.

allows this

This seems a plausible technique which could be used in order to enable DIAMOND to
abstract from one example proof only. The command “repeat...” has been implemented
and incorporated in DIAMOND. In such a way the system would need only one example
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proof to find the schematic proof, if such a proof exists, but the abstraction from one
example has yet to be implemented.

However, the problem remains when a pattern which constitutes an instance of a step
case of a schematic proof is not apparent to the user. In a more complex example
the recursiveness of the proof might note be obvious at all. For instance, it might not
be clear to the user that two rectangles of magnitude 8 x 5 and 13 x 8 are instances
of the same recursively defined general diagram. Namely, a rectangle of magnitude
8 x 5 is a rectangle of magnitude Fibg x Fibs and a rectangle of magnitude 13 x 8 is
a rectangle of magnitude Fib; x Fibg, where Fib, is the z-th Fibonacci number. In
general, these are two instances of a general rectangle of magnitude Fib,,1 X Fib,.
We cannot expect that the user will always be able to detect a pattern in an example
proof. If this is so, DIAMOND needs two example proofs to extract a general schematic
proof. However, if the pattern is clear to the user, and the user indicates this by the
use of the “repeat...” feature, then DIAMOND could extract a general schematic proof
from one example proof only.

7.10 Summary

In this chapter we presented how diagrammatic schematic proofs are extracted from
examples of proofs for instances of a theorem. We use inductive inference to abstract
a general pattern from particular examples of proofs. We introduced the general pat-
tern that the abstraction algorithm has to detect. We formalised the representation
of schematic proofs, and captured it in a recursive program called proof which by
instantiation uniformly produces a proof of each instance of the premise.

We explained in detail the algorithm for abstraction, which extracts the pattern from
example proofs and abstracts it into a recursive program, i.e. schematic proof. To
clarify the algorithm, we then showed an example of the algorithm in action. Then,
we presented a refined version of the abstraction mechanism, which detects when an
abstraction can be further refined and when there are case splits in the proof. To
clarify the idea behind the algorithm, we showed an example of an application of the
algorithm.

Next, we discussed the detection and the representation of case splits in the schematic
proof. We considered the implications of the particular formalisation of schematic
proofs on a structure of example proofs. Finally, we discussed a technique which
enables an automatic extraction of a schematic proof from one example proof only.
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The process of construction of diagrammatic proofs has been presented so far in two
stages. The first stage is to prove diagrammatically ground instances of a conjecture at
hand (Chapter 5). The second stage is to extract a common proof structure from these
examples and capture this structure in a recursive program proof(n) called a schematic
proof. The common structure is extracted using an abstraction algorithm (Chapter 7).
The last stage is to prove the correctness of the induced schematic proof, i.e. we need
to show that a schematic proof indeed proves the proposition for all n. This ensures
that the transition from specific examples to a general proof is sound.

In this chapter we present a method which enables us to prove the correctness of
schematic proofs for particular theorems. We present a theory of diagrams in which the
verification is carried out. The idea is to show that when the geometric operations of a
particular schematic proof are applied to diagrams, they indeed result in the collection
of correct diagrams which represent the theorem. We define in this chapter what is
meant by a collection of correct diagrams. Furthermore, we define when a schematic
proof is an algebraically correct proof of a theorem. A meta level theorem which
states when a particular object level arithmetic conjecture can be diagrammatically

119
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proved using DIAMOND is needed in the end. It enables us to put all the pieces of
information together, and show how theorems can be proved diagrammatically starting
with a conjecture and finishing with a verified diagrammatic schematic proof of this
conjecture.

In §8.1, we motivate the need for verification of schematic proof and propose a theory
of diagrams as a verification mechanism. Then, we present some of the primitives
of the theory: the diagrams in §8.2, the operators in §8.3, the operations in §8.4, and
finally in §8.5, the function definitions and lemmas which are needed for the verification
of schematic proofs. In §8.6 we state the property of the correctness of a particular
schematic proof. In §8.7 we define the size of a diagram, which is used to make explicit
the link between a schematic proof and a theorem that it proves. In §8.8 we define
and prove a general desired property of algebraic correctness of schematic proofs. In
§8.9 we state and prove a theorem about the diagrammatic provability of an arithmetic
conjecture. Finally, in §8.10 we discuss the implementation of our theory of diagrams.

8.1 Motivation

The motivation for defining a theory of diagrams is to verify the correctness of schem-
atic proofs that DIAMOND generates, because the example proofs and their abstraction
which forms a schematic proof are fallible. The reader is referred to §7.3 for the form-
alisation and representation of schematic proofs. The verification ensures that the
transition from concreteness to generality of a diagrammatic proof is correct. In hu-
man reasoning this step is often omitted when humans are convinced that the examples
used to induce a general schematic proof uniformly account for all cases of a theorem.
This can sometimes result in erroneous proofs (see §4.6). In an automated reasoning
system, however, we should like to formally show the correctness of a schematic proof.

D1AMOND automatically extracts a schematic proof from two example proofs using
an abstraction mechanism. The abstraction mechanism is an inductive inference al-
gorithm and thus an unproven, but informed guess of a general schematic proof. The
requirement by the constructive w-rule, given in Definition 2 (see §4.3), is that there is
a uniform procedure which proves each premise. To ensure that the guessed schematic
proof is a procedure which proves each premise, we need to show in some meta theory
that proof(n) uniformly proves P(n) for all n. A meta level proof using diagrams of
general magnitude would be an obvious method for verifying our schematic proofs.
However, such meta level proof reintroduces the need for manipulating abstractions
(e.g. ellipsis) in diagrams which, as discussed in §3.4, we are trying to avoid.

One way of overcoming this problem is to define diagrams and operations in a theory
of diagrams where we can express abstract diagrams symbolically rather than dia-
grammatically. In this theory we can verify schematic proofs by defining the notion
of applicability of a posited proof. Given that a particular theorem is expressed as
an equality, its schematic proof is correct if applying the operations specified in the
schematic proof on the diagrammatic representation of the left hand side of the the-
orem results in the diagrammatic representation of the right hand side of the theorem.
There are two conditions that need to be satisfied. The first condition is that there is
an appropriate diagrammatic representation available for the mapping of the theorem
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into its diagrammatic representation. The second condition is that the operations of
the schematic proof are defined on those diagrams. A verification proof is a meta level
proof, because it is a proof about a property of an object level schematic proof.

Before we can state the definition of the correctness property of schematic proofs,
we need to formalise the machinery which will enable us to model the processes of a
diagrammatic proof. Therefore, we need to formally define diagrams, operations on
them, and the applicability of operations of a schematic proof.

8.2 Diagrams

Diagrams in the theory are defined to be of object type. Some examples of the different
kinds of object names in the theory are: row, column, ell, frame, square, rectangle, and
triangle.

Diagrams of the theory model natural numbers. DIAMOND’s primitive notion of a con-
crete diagram, a dot, is represented in the theory as the natural number 1. Objects are
introduced via a constructor function, diagram, which takes the name of the type of
a diagram and the list of parameters of its magnitude. Thus, the type of constructor
function diagram is name X pnat list — object. So for instance, a square of magnitude
4 is expressed in the theory as diagram(square,[4]). All elementary and derived con-
crete diagrams are expressed using a primitive object dot, hence in the theory they
can be expressed using a constructor function, the object name and some parameter
representing a natural number for the magnitude of the diagram.

Constant () denotes a null diagram, or in other words an empty diagram. We define
that any diagram that is of 0 magnitude is an empty diagram (note that a € b denotes
that a natural number a is an element of a list b; thus the type of an infix € is: pnat
X pnat list — boolean):

0 € s — diagram(z,s) = 0 (8.1)

Note also, that all triangles are equilateral (see §6.2). The reader is referred to §6.2 for
a reminder of diagrams and their names. Here are some examples of diagrams:

diagram(row, [n])
diagram(column, [n])
diagram(ell, [n])
diagram(square, [n])
diagram(square, [2n])
diagram(square, [2n — 1])
diagram(triangle, [n])
diagram(rectangle, [n, f(n)])
diagram(frame, [n])
diagram(thick_frame, [2n + 1])
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8.3 Operators

This section gives the operators available in the theory. First, we write diagrammatic
equality using 2 which denotes that two lists of diagrams are identical. Here is the
definition of <:

X £ Y« Vd. count(d,X) = count(d,Y)

where the function count can be defined by:

count(d,[]) = 0
count(d,d :: D) = 1+ count(d,D)
d # e — count(d,e :: D) = count(d,D)
Diagrammatic equality 2isa larger relation than an arithmetic equality =, because

it has all the properties of =, i.e. reflexivity, symmetry, transitivity and substitution
properties, plus an additional one the order of elements in a list does not matter.
Therefore, two lists of diagrams, X and Y, are diagrammatically equal, X 2 Y, even if
the orders in which the diagrams are listed in both lists differ.! We now define some
operators that introduce the existence of several diagrams. Note that the data type
pnat stands for non-negative natural number of Peano arithmetic.

e @ append on lists,

e :: and nil  list constructors (concatenation of elements onto a list, and an empty
list),

® pnat x object list — object list (it is an infix operator which introduces a
combination of a number of identical lists of diagrams),

e [ — pnat x pnat X (pnat — object) — object list (it denotes a collection of

diagrams of increasing magnitudes which are all of the same kind it is analogous
to Y for summation of integers).

Here is the recursive definition of Lﬂ:’: , forall a < b:?

! Note that our definition of diagrammatic equality of lists is equivalent to bag equality. The order of
the elements in a bag (sometimes called multi-set) does not matter. For further discussion of bags,
see §11.3.

2 Note that to simplify the notation we write &J?:a D(i) instead of instead (#(a,b, A\i.D(i)).
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L—lj diagram(name, f(i)) u [diagram(name, f(a))] (8.2)
et b

a<b— L—l_-J diagram(name, f (7)) 4 L—l_-J diagram(name, f(i))@
- tdiégram(name, f(b+1))] (8.3)

Note that f is some function which generates a list of natural numbers for a given
number 4. This list denotes the parameters of a magnitude of a diagram. Note also
that:

b
L—ij diagram(name, f(i)) u [diagram(name, f(a)),diagram(name, f(a + 1)), -,

i=a

diagram(name, f(b))]

8.4 Operations

Diagrammatic operations are represented via a function op : opname X object list —
object list. Figure 8.1 defines some operations on diagrams. Note that it is also possible
to define new operations in DIAMOND. This is done by adding a new operations to
the repertoire of operations available in the construction of example proofs, and to the
theory of diagrams, i.e. the verification mechanism. A diagrammatic operation is valid
if it preserves the sum of natural numbers that the resulting diagrams represent.

8.5 Function definitions

8.5.1 One_Apply and Apply

Here we define what it means to apply an operation on a diagram several times. We use
a function apply which is of the type apply: (opname x pnat) list x object list — object
list, and a function one_apply which is of the type one_apply : pnat X opname X object
list — object list. Let:

one_apply(0,opnm, D) L) (8.4)

one_apply(n + 1,0pnm, D) 4 op(opnm, one_apply(n, opnm, D)) (8.5)
d

apply([],D) = D (8.6)

apply((opnm, z) :: opss, D) 4 apply(opss, one_apply(z, opnm, D) (8.7)

Note that opss is a list of pairs of an operation and the number of times that this
operation is applied to a diagram.



op(lcut, diagram(square, [

n

op(lcut, diagram(triangle, [n

op(split_row, diagram(ell, [n

op(split_row, diagram(rectangle, [n, n

op(split_col, diagram(rectangle, [n, f(n)

op(split_col, diagram(square, [n +

op(split-col, diagram(rectangle, [n + 1, n,

op(split_col, diagram(rectangle, [n + 1, f(n + 1)
op(split_diagonally, diagram(square, [n +

op(split-diagonally, diagram(rectangle, [n + 1, n

op(split-diagonally, diagram(rectangle, [n,n +

op(splitinner_dot, diagram(square, [2n +
op(split2four, diagram(square, [2n
op(rotate90, diagram(rectangle, [n, f(n)
op(split_sqr, diagram(rectangle, [n + f(n),
op(split_sqr, diagram(rectangle, [n,n + f(n)
op(split_side, diagram(triangle, [n +
op(split_tst, diagram(triangle, [2n
op(split_tst, diagram(triangle, [2n +
op(split_dia_ends, diagram(ell, [n +
op(split_frame, diagram(frame, [n +

op(split_tframe, diagram(thick_frame, [2n +

)
)
)
)
)
)
)
)
1])
)
1])
op(split-outer_frame, diagram(square, [n + 2]) ::
1])
1)
)
n])
)
1])
1)
1])
1])
1])
1])

= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)

D)

= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)
= D)

[diagram(square, [n]), diagram(ell, [n + 1])]@D

n]), diagram(ell, [n + 2])]@D
n]), diagram(row, [n + 1])]@D
[diagram(square, [n]), diagram(row, [n])|@QD

[, f(n)]), diagram(row, [n])]@QD
[

n,n + 1]), diagram(column, [n + 1])]@D
[diagram(square, [n]), diagram(column, [n])]@D
[diagram(rectangle, [n, f(n + 1)]), diagram(column, [f(n + 1)])]@QD

[diagram(triangle,

[diagram(column,

[diagram(rectangle,

[diagram(rectangle,

[diagram(triangle, [n + 1]), diagram(triangle, [n])|@QD

(2 ® [diagram(triangle, [n])])@D

(2 ® [diagram(triangle, [n])])@D

[diagram(square, [n]), diagram(frame, [n + 2])]@QD
[diagram(thick frame, [2n + 1]), diagram(square, [1])]@QD
(4 ® [diagram(square, [n])])@D

[diagram(rectangle, [f(n), n])]@D

n]), diagram(square, [n])|@D
[diagram(rectangle, [n, f(n)]), diagram(square, [n])]@QD
[diagram(triangle, [n]), diagram(row, [n + 1])]@D

((2 ® [diagram(triangle, [n])])@[diagram(square, [n])])@QD
((2 ® [diagram(triangle, [n])])@[diagram(square, [n + 1])])@QD
[diagram(ell, [n]), diagram(column, [1]), diagram(row, [1])]@QD

[diagram(rectangle, [f(n),

((2 ® [diagram(row, [n])])@Q(2 ® [diagram(column, [n])]))@D
((2 ® [diagram(rectangle, [n + 1,n])])@(2 ® [diagram(rectangle, [n, n + 1])]))@D

Figure 8.1: Definitions of diagrammatic operations in the theory of diagrams.
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(8.30)
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8.5.2 Equations

Here we give an axiom about a null diagram defined in §8.2:

p:D £ D (8.31)
Here are some theorems.
op(opnm,D :: D,) = op(opnm,[D])@D, (8.32)
one_apply(n,opnm,D :: D,) 2 one_apply(n, [D])@Dy (8.33)
d
apply(ops,D :: D) = apply(ops, [D])@D, (8.34)

Proof of Equation (8.32)

The proof of (8.32) is carried out by a case analysis of the operations. We give here
an example of one case. All other cases of a defined operation on diagrams (i.e.
for (8.8) through to (8.30) in Figure 8.1) are similar. Let opnm = Icut and D =

diagram(square,[n + 1]) in op(opnm, D :: D) 4 op(opnm, [D])@D;. Then we have:

I~

op(lcut, diagram(square, [n + 1]) :: Dy) op(lcut, [diagram(square, [n + 1])]) @D,
(8.8) I (8.8)
[diagram(square, [n]),

diagram(ell, [n + 1])]@D4

I~

([diagram(square, [n]),
diagram(ell, [n 4 1])]Q[ ])@D,

Proof of Equation (8.33)

The proof is carried out by induction on n using the rules (8.4), (8.5), and (8.32).

Base case: n =10
one_apply(0,opnm,D :: D) 4 one_apply(0,opnm, [D])@D;,

(8.4) I (8.4)
D:D, £ [DaD,

Step case:
Hypothesis: one_apply(n,opnm,D :: D,) 2 one_apply(n, opnm, [D])@D;,

Conclusion:
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one_apply(n + 1,opnm, D :: D) 2 one_apply(n + 1,opnm, [D])@D;,
(8.5) (8.5)

I <=

op(opnm, one_apply(n,opnm,D :: D)) op(opnm, one_apply(n, opnm, D]))@Dy

hypothesis

I~ <=

op(opnm, one_apply(rn, opnm, [D])@D,) op(opnm, one_apply(n, opnm, [D]))@D,

generalise:

op(opnm, G@D,)

let one_apply(n,opnm, [D]) = G
op(opnm, G)@D,

s <=

Note that the case where G =[], i.e. one_apply(n,opnm, [D]) = [ | never arises, because
an operation opnm is applied in one_apply(n,opnm, [D]) = G to a non-empty diagram
list [D], and all the operations preserve the natural number that a diagram represents,
hence G cannot be empty either.

If G = Gy :: Gg then op(opnm, (G :: G5)@D,) 4 op(opnm, Gy :: G5)@D,, which is true
by applying (8.32) on both sides of the diagrammatic equality. "

Proof of Equation (8.34)

The proof is carried out by induction on the list ops using the rules (8.6), (8.7), and
(8.33).

Base case: ops = [ |

apply([],D = Dy) < apply([],[D])@D,
(8.6) I (8.6)
d

D : D, [D]@D,
Step case:
Hypothesis: apply(ops,D :: D,) 4 apply(ops, [D])@D,
Conclusion:
apply((opnm, n) :: ops,D : D,) £ apply((opnm, n) :: ops, [D])@D,
(8.7) U (8.7)
apply(ops, one_apply(n,opnm, D :: D)) 2 apply(ops, one_apply(n, opnm, [D]))@D
(8.33) |
apply(ops, one_apply(n, opnm, [D])@D ) 2 apply(ops, one_apply(n, opnm, [D]))@D,

let one_apply(n,opnm, [D]) = G
apply(ops, G)@D,

generalise:

apply(ops, G@D,)

s <=

Note that the case G = [ ] never arises for the same reasoning as in the proof of (8.33).

If G =Gy 2 Gs then apply(ops, (G1 :: Gs)@D,) 2 apply(ops, Gy :: Gs)@D,, which is true
by appealing to the hypothesis on both sides of the diagrammatic equality.
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8.5.3 Mapping relation dmap

Let dmap denote a relation between a particular class of statements of arithmetic and
their equivalent diagrammatic expressions in the theory of diagrams. The equivalence
is defined to be over the size of the diagram. The size of a diagram is defined to be the
number of counters (dots) in the diagram, i.e. the natural number that the diagram
represents. dmap takes two arguments, an arithmetic expression and a list of diagrams
which could collectively represent this expression. Hence, the type of the relation dmap
is pnat x object list. Here are some general mappings:

dmap(0,[]) (8.35)

dmap(n?, [diagram(square, [1])]) (8.36)

dmap(2n — 1, [diagram(ell, [n])]) (8.37)

dmap(n, [diagram(row, [n])]) (8.38)

dmap(n, [diagram(column, [n])]) (8.39)

dmap(n x f(n), [diagram(rectangle, [n, f(n)])]) (8.40)
dmap("("2+1), [diagram(triangle, [n])]) (8.41)

dmap(4(n — 1), [diagram(frame, [n])]) (8.42)

dmap((2n + 1)% — 1, [diagram(thick_frame, [2n + 1])]) (8.43)

m # 0 — dmap(n + m, D :: E) such that dmap(n, [D]) and dmap(m,E) (8.44)
dmap(320_, £(7). 18, D)) such that ¥j,a < j < b, dmap(f(5),[D;])  (8.45)

8.6 Correctness of Schematic Proofs

We have now formalised enough machinery to be able to define the correctness property
of a schematic proof.

Definition 4 (Correctness of Schematic Proofs)

proof is a correct schematic proof of a particular conjecture ¥n L(n) = R(n) if for alln
there exist two lists of diagrams D and E such that dmap(L(n),D) and dmap(R(n), E),
and

a

apply (proof (n), D) = E

It is possible to prove the property in Definition 4 only if L(n), R(n) and proof are
known, i.e. for a specific case of a conjecture and a schematic proof. Knowing L(n)
and R(n) allows us to infer some mapping relations which specify two lists of diagrams
D and E. This satisfies the first part of Definition 4. In the next section we prove the
correctness of a schematic proof for a particular conjecture at hand.
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8.6.1 Proof of Correctness of Schematic Proofs for an Example

Here we prove the property given in Definition 4 for an example of a schematic proof of
a theorem about the sum of odd naturals. The theorem is stated as n? = Y1 (2i —1).

The schematic proof of this theorem is given as:?
proof (0) = [] (8.46)
proof(n +1) = [(lcut,1)], proof(n) (8.47)

The proof of correctness of a schematic proof for this particular example requires
induction on n. The base case for n = 0 is trivial, since by (8.35) no operations are
applied to an empty diagram list which results in [ ]. We consider a step case of
induction.

Step case:

Hypothesis: for n
Using (8.36) notice dmap(n?, [diagram(square, [n])]),
hence let D = [diagram(square, [n])].
Using (8.45) and (8.37) notice dmap(} 1" (2i — 1), l¢J;_, diagram(ell, [i])),
hence let E = 4", diagram(ell, [i]).

apply(proof(n), [diagram(square, [n])]) u L—lj diagram(ell, [7])
i=0

Conclusion: for n + 1
Similarly to the hypothesis, D and E are mapped for n + 1.

n+1

apply(proof(n + 1), [diagram(square, [n + 1])]) 4 L—l_-J diagram(ell, [i])
=0
proof(n + 1) = [(lcut, 1)], proof(n) |
n+1
apply(((lcut, 1), proof(n)), [diagram(square, [n + 1])]) 4 L—lj diagram(ell, [7])
i=0
8.7 |
n+1
apply(proof(n), one_apply(1, lcut, [diagram(square, [n + 1])])) 4 L—l_-J diagram(ell, [i])
=0
(85) U
apply(proof(n), op(lcut, one_apply(0, lcut,
n+1
[diagram(square, [n + 1])])) < L—lj diagram(ell, [7])
i=0
(8.4) U

? For the brevity of presentation we take a simpler version of the schematic proof which does not
include the operation split_ends.



8.7. SIZE OF DIAGRAMS 129

n+1
apply(proof(n), op(lcut, [diagram(square, [n + 1])]) 4 L—ij diagram(ell, [i])
=0
(88) |
n—+1
apply(proof(n), [diagram(square, [n]), diagram(ell, [n + 1])]) 4 L—ij diagram(ell, [z])
i=0
(8.34) |
n+1
apply(proof(n), [diagram(square, [n])])@[diagram(ell, [n + 1])] 4 L—ij diagram(ell, [i])
=0
(RHS of hypothesis) |
n n—+1
L—l_—J diagram(ell, [i])@Q[diagram(ell, [n + 1])] 4 L—ij diagram(ell, [z])
i=0 i=0
(83) 4
n+1 n+1
| diagram(ell,[i]) £ |4 diagram(ell, [i])
i=0 1=0

8.7 Size of Diagrams

Definition 4 makes no claims about the link between a schematic proof and the theor-
emhood of a conjecture Vn L(n) = R(n). We still need to disprove the possibility of a
correct schematic proof of a false conjecture. To establish that the conjecture is true
when proved by a schematic proof, an explicit algebraic link between them needs to
be defined. We establish this link via the size of diagrams. We first define the size of
a diagram, and later, in §8.8, we state the theorem about the algebraic correctness of
a schematic proof for a given conjecture.

Let us denote the size of the diagram D by |D|. Here is a definition for the size of a
diagram:

Definition 5 (Size of Diagrams)
The size of a list of diagrams is equal to the value of the arithmetic expression that it
represents: if dmap(e,D) then |D| = e.

Note that the type of | | is: object list — pnat. Using the property of size defined in
Definition 5 on formulae from (8.35) to (8.45), we have the following:

= 0 (5.48)

| [diagram(square, [n])] | n’ (8.49)

| [diagram(ell, [n])] | 2n —1 (8.50)

| [diagram(row, [n])] | n (8.51)

| [diagram(column, [n])]| n (8.52)

| [diagram(rectangle, [n, f(n)])]| = n x f(n) (8.53)
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| [diagram(triangle, [n])]| — @
| [diagram(frame, [n]))]| = 4(n —1)
| [diagram(thick_frame, [2n +1))]| = (2n+1)% -1
E#[]—=|D=:E[ = [[D][+E]

b

b
o = Y IDj
j=a j=a

(8.54)
(8.55)
(8.56)
(8.57)

(8.58)

We state now a lemma about the equality of sizes of two diagrammatically equal object

lists.

Lemma 1 (Equality of Size of Two Diagram Lists)

Two diagrammatically equal lists of diagrams have the same size.

DLE—|D|=|E|

Proof of Lemma 1

The proof of Lemma 1 is straightforward by induction on the structure of D:

Base case: D =[]

d
[]=E — [[]I=E]
I by substitution property of 4

Step case:

Hypothesis: for D =B, so B LE | B| = | E| where E is universally quantified.

Conclusion: for D=A:: B

A:BLZE —— [A:B|=|FE|
E' # [ ] since it contains at least A
Let E"=A:F
then E' £ E” |
A:BLE' — |A:B|=|E"|
by substitution property of 4 [}
A:BLALF — |A:B|=|A:F|
U (8.57)
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A:BLAF — |[A]|+|B|=[A]|+|F]
XLy 57:xt7z.Yy | M=NSK+M=K+N
BZF — [B|=|F|
unify in hypothesis E with F ||

true

Now, we state a lemma about the preservation of the size of the sum of all resulting
diagrams when an operation is applied on a diagram. For all operations that were just
introduced, the following holds:

Lemma 2 (Size Invariance Under One Operation)

The size of the result of applying an operation to some diagrams is the same as the
size of the diagrams before the operation was applied. Let D be some diagrams such
that dmap(e, D) then:

| op(opname, D) | = D .

Proof of Lemma 2: Case analysis on operations
The proof of Lemma, 2 consists of a case analysis of operations and mappings of arith-
metic expressions. The case analysis is given in the table in Figure 8.2.
The proof consists of the following steps:
|op(opname,D)| = |D]

using rule R |
|DS|

D]

where the table in Figure 8.2 provides all cases. In particular, column 1 gives all cases
of opname. Column 2 gives corresponding rules R used in the rewrite of the proof.
Column 3 gives the corresponding cases of D. Column 4 gives the corresponding DS’s.
Column 5 gives | D|. Column 6 gives | DS|. Note that the values in column 5 and 6 are
calculated using the rules of size given in (8.48) through to (8.58). Also, let dmap(e, D),
hence |D| =e.

Finally, the rest of the proof calculates that the two values in column 5 and column 6
of the table in Figure 8.2 are the same. Note that in the calculation we subtract e from
both sides of the equality first. The reference to the right of the calculation corresponds
to the second column R in Figure 8.2.



opname R ] D DS | D] [DS]|
lcut 8.8 diagram(square,[z + 1])::D [diagram(square,[z]), diagram(ell,[z + 1])]@QD (z+1)? +e 2+ 2 +1)—1)+e
lcut 8.9 diagram(triangle,[z + 2])::D [diagram(triangle,[z]), diagram(ell,[z + 2])]@D (T'H)ZM +e % +2@+2)—-1)+e
split_row 8.10 diagram(ell,[z + 1])::D diagram(column,[z]), diagram(row,[z + 1])]@QD 20x+1)—1+e r+(zx+1)+e
split_row 8.11 diagram(rectangle,[z, x + 1])::D diagram(square,[z]), diagram(row,|z])|@QD z(x+1)+e 2+z+te
split_col 8.12 diagram(rectangle,[z, f(z) + 1])::D diagram(rectangle,[z, f(z)]), z(f(x)+1)+e z(f(z))+ax+e
diagram(row,[z])]@D
split_col 8.13 diagram(square,[z + 1])::D [diagram(rectangle,[z, = + 1)), (z+1)? +e zx+1)+(x+1)+e
diagram(column,[z + 1])]@D
split_col 8.14 diagram(rectangle,[z + 1, z])::D diagram(square,[z]), diagram(column,[z])]@QD (z+1)z+e 2+z+e
split_col 8.15 || diagram(rectangle,[z + 1, f(z + 1)])::D | [diagram(rectangle,[z, f(z + nn, | (x+ ) f(z+1)+e zf(x+ 1)+ fl(z+1)+e
diagram(column,[f(z + 1)])]@D
split_diagonally | 8.16 diagram(square,[z + 1])::D [diagram(triangle,[z + 1), (z+1)2 +e (I+])2(I+2) + I(zjl) +e
diagram(triangle,[z])|@D
split_diagonally 8.17 diagram(rectangle,[z + 1, z])::D 2 ® [diagram(triangle,[z])]|@QD (z+1)z+e 2% +e
split_diagonally | 8.18 diagram(rectangle,[z, x + 1])::D 2 ® [diagram(triangle,[z])]|@QD z(x+1)+e 2% +e
split_outer_frame | 8.19 diagram(square,[z + 2])::D diagram(square,[z]), diagram(frame,[z + 2])]@QD (z+2)2+e 22+ 4z +1) +e
split_inner_dot 8.20 diagram(square,[2z + 1])::D diagram(thick_frame,[2z + 1]), 2z +1)? +e Cz+1)? —1+17+e
diagram(square,[1])]@D
split2four 8.21 diagram(square,[2z])::D 4 ® [diagram(square,x)]@D (2z)% +e 4r7 +e
rotate90 8.22 diagram(rectangle,[z, f(z)])::D diagram(rectangle,[f(z), z])]@QD zf(z)+e f(x)r +e
split_sqr 8.23 diagram(rectangle,[z + f(x), z])::D diagram(rectangle,[f(x), z]), (z+ f(z))z+e flx)z+2% +e
diagram(square,[z])]@QD
split_sqr 8.24 diagram(rectangle,[z, z + f(z)])::D [diagram(rectangle,[z, f(z)]), z(z+y)+e Ty +12 +e
diagram(square,[z])|D
split_side 8.25 diagram(triangle,[z + 1])::D [diagram(triangle,[z]), diagram(row,[z + 1])]@D M])zﬁ +e @ +(x+1)+e
split_tst 8.26 diagram(triangle,[2x])::D (2 ® [diagram(triangle,[z])]) @ 27-(2271‘,—}—1) +e 2% +z2+e
[diagram(square,[z])]@QD
split_tst 8.27 diagram(triangle,[2z 4 1])::D (2 ® [diagram(triangle,[z])]) @ w +e 2@ +(x+1)2+e
[diagram(square,[z + 1])]@D
split_dia_ends 8.28 diagram(ell,[z + 1])::D [diagram(ell,[z]), diagram(column,[1]), 20@+1)—1+e (e —1)+1+1+e
diagram(row,[1])]@QD
split_frame 8.29 diagram(frame,[z + 1])::D 2 ® [diagram(row,[z])]) @ (2 ® 4r—1+1)+e 21+ 2x + e
[diagram(column,[z])])@QD
split_tframe 8.30 diagram(thick_frame,[2z + 1])::D (2® [diagram(rectangle,[z + 1,z])])) @ (2 ® | Qx4+ 1)Z —12+e | 2((z+ Dz) +2(x(z + 1)) +e

[diagram(rectangle,[z, x + 1])])@D

Figure 8.2: Case analysis of operations.
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(8.8) 2?2+ 2x+1) 1) = 22422+2 - 1=22+20+1=(z+1)?
(8‘9) @ + (2(’1’ + 2) _ 1) _ :1;2+m+2(221+471) _ m2+gm+6 _ ($+2)2($+3)
(8.10) z+(x+1) = 2x4+1=2z+1)-1

(8.11) ?4+r = x(z+1)

(8.12) (f(z) +z = x(f(z)+1)

(8.13) zz+1)+(z+1) = 22+z4+z+1=(z+1)

(8.14) ?’+r = (r+1)x

(8.15) w(f($+]1))2+f($+}) = @+Df+l)

(8.16) (z+ )2(:1;+ ) + m(:zz2+ ) _ = +3,1:+22+fr, +r _ 2z +24fr,+2 _ (’I’ + 1)2
(8.17) 22t = gz 4+1) = (¢ + 1)

(8.18) 22t gz +1)

(8.19) 2+ @4z +1) = 2’+4r+4=(z+2)>

(8.20) 2z +1)2-1+12 = (2z+1)2

(8.21) 4z = (22)?

(8.22) [ = of()

(8.23) f@)z+a? = z(f(z)+2)=(z+ f(2)z

(8.24) 2f@)+a? = (@) +a) = ala + [ (z)

(8.25) ”"(T2+ ) +(z4+1) = = ‘+m321+2‘ _ (’H' )Q(f’"'“‘ )

(826) 27’(’1";‘1) +$2 — 2:E2+22:E+2:Ez _ 4:1;22+2:r _ 2,’1“,(2;“,—{—1)

(8.27) 2w(:1:;r1) f(z+1)? = 2m2+2m+§m2+4m+2 _ 4.1:2+26rr,+2 _ (2:1:+1)2(2m+2)
(8.28) 2z —1)+1+1 = 2z+1=2(z+1)—1

(8.29) 2c +2x = 4dx

(8.30) 2((z + D)z) +2(z(z +1)) = 222+ 21+ 222+ 22 =42° + 42

= 4’ +dz+1-1=(2z+1)2 -1

The immediate consequence of Lemma, 2 is the preservation of size when an operation
is applied multiple times to some diagram.

Lemma 3 (Size Invariance Under Multiple Applications of One Operation)

The size of the result of applying an operation to some diagrams multiple times is the
same as the size of the diagrams before the operation was applied multiple times. Let
D be some diagrams such that dmap(e,D) then:

| one_apply(n,opname, D) | = |D|

Proof of Lemma 3

The proof of Lemma 3 is trivial by induction on n, using the rules (8.4) and (8.5) for
the recursive definition of one_apply, and Lemma 2. "

The immediate consequence of Lemma 2 and Lemma 3 is the preservation of size when
several operations are applied multiple times to some diagram.
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Lemma 4 (Size Invariance Under Multiple Operations)

The size of the result of applying a list of operations to some diagrams is the same
as the size of the diagrams before the list of operations was applied. Let D be some
diagrams such that dmap(e, D) then:

| apply(ops, D) | =|D|

Proof of Lemma 4

The proof of Lemma 4 is by straightforward induction on the structure of list ops,
using the rules (8.6) and (8.7) for the recursive definition of apply, and Lemma 3.

8.8 Algebraic Correctness of Schematic Proofs

Apart from being diagrammatically correct, we want every schematic proof to be al-
gebraically correct as well. A schematic proof is algebraically correct if the sizes of the
diagrams representing both sides of the proposition after the operations of the schem-
atic proof have been applied are the same. Theorem 2 states the property of algebraic
correctness for any schematic proof.

Theorem 2 (Algebraic Correctness of Schematic Proofs)

For all instances of a schematic proof P and for all pairs of lists of diagrams D and E,
a schematic proof P is algebraically correct if and only if

d
apply (P,D) = E—|D| = |E|

Proof of Theorem 2

The proof of Theorem 2 is straightforward by appealing to Lemma 1 and Lemma 4.

d
apply(P,D) = E — [D| = [E]
by Lemma 1 |
lapply(P.D)| = [E] — [|D| = |E|
by Lemma 4 |}
—

DI = [E]| DI = [E]|
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8.9 Arithmetic Conjecture and Diagrammatic Proof

There is one last theorem needed in the formalisation of diagrammatic theory which
will allow us to prove theorems of arithmetic using diagrammatic proofs. We state in
Theorem 3 the property about the diagrammatic provability of arithmetic arguments.

Theorem 3 (Diagrammatic Provability of an Arithmetic Conjecture)

A congecture ¥n L(n) = R(n) is diagrammatically provable if and only if for all n there
exist two lists of diagrams D and E such that dmap(L(n),D) and dmap(R(n),E), and

D[ =[E| — L(n) = R(n)

Proof of Theorem 3

The proof of Theorem 3 is trivial by the definition of size of a list of diagrams given in
Definition 5. n

8.9.1 Diagrammatic Provability for an Example

We consider now an example of an arithmetic conjecture and prove it diagrammatically
using a schematic proof that DIAMOND extracts. Let the arithmetic conjecture be

n
Vnn22227ﬁ71
=0

and the schematic proof proof that DIAMOND extracted be as defined in (8.46) and
(8.47). Here are the reasoning steps of the proof:

1. Appealing to Theorem 3 we can discharge the conjecture by:

e using (8.36) notice dmap(n?, [diagram(square, [n])]),
hence let D = [diagram(square, [n])],

e using (8.45) and (8.37) notice dmap(}>_; ,(2¢ — 1), |, diagram(ell, [i])),
hence let E = [, diagram(ell, [z]),

and proving for all n

| [diagram(square, [n])]| = L—ij diagram(ell, [7]) (8.59)

1=0

:

2. Appealing to Theorem 2 and proof(n) that DIAMOND extracted, we can discharge
the expression in (8.59) by proving for all n

apply (proof(n), [diagram(square, [n])]) 4 L—ij diagram(ell, [7])  (8.60)
i=0

3. Finally, notice that we already proved (8.60) in §8.6.1. .
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8.10 Implementation of a Theory of Diagrams

The verification mechanism that we formalised in this chapter is implemented in DI1A-
MOND using Clam. Clam is a proof planner developed in Edinburgh [Bundy et al 91].
It searches for a proof plan of a theorem. A proof plan is a high level proof specifica-
tion consisting of methods and strategies which specify clusters of inference rules that
need to be applied in the object level proof. An object level verification proof can
be obtained by executing the Clam proof plan in Oyster proof development system
[Bundy et al 90]. We are not interested in the intricacies of the object level verification
proof. Rather, we check if the verification theorem is true by finding a proof plan.
Hence, for the purposes of DIAMOND we do not execute a proof plan to obtain the
object level verification proof.

D1AMOND and Clam are linked together:* a Clam server sits on top of DIAMOND and
waits for Clam commands which are passed to it from DIAMOND.”

The implemented part of the verification mechanism checks for the correctness of an
extracted schematic proof, i.e. DIAMOND automatically checks whether the prop-
erty given in Definition 4 is satisfied for a particular schematic proof. We follow
the reasoning described in the previous section whereby the diagrammatic provability
(Theorem 3) and algebraic correctness (Theorem 2) are used to discharge the original
conjecture, and leave us with the need to prove the correctness property of a schematic
proof. The user can access the verification mechanism to check the correctness of a
particular schematic proof via a command available on one of the menus in the main
window of DIAMOND’s graphical interface.

To automate the verification mechanism, all the primitives of the theory need to be
loaded into Clam at the start of a DIAMOND session, i.e. the definitions of diagrams
given in §8.2, the operators defined in §8.3, the operations defined in §8.4, and axioms,
theorems and function definitions given in §8.5. Note that in the implementation of
the verification mechanism every diagram list used in the theory of diagrams is given
in terms of a list of tuples. The first element of any tuple is a diagram of object
type, and the second element is the information about the position of a diagram in a
proof tree. We add another property to the implemented definition of diagrammatic
equality — two lists of diagrams are diagrammatically equal regardless of the additional
information about the position of a diagram in the proof tree attached to each diagram
in the list. This modification is needed to specify where in the proof tree is a diagram
to which an operations is applied. Furthermore, the diagrammatic equality of bags is
not implemented yet. We use lists instead, and leave implementing bags for the future
(see §11.3). Both of these modifications can limit the number of schematic proofs that
we can verify in DIAMOND (see §9.5.3).

Considering Definition 4, when a schematic proof is to be verified, then the following
pieces of information need to be provided:

e the conjecture Vn L(n) = R(n),

* I am grateful to Richard Boulton for providing me with the code which links the SML and Prolog
programming languages.

5 A separate window displays all the information that is passed to and is produced by Clam.
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e the cases of the dmap relation which specify the two lists of diagrams D and E
for L(n) and R(n) respectively,

e the schematic proof proof,

e the verification theorem Vn apply(proof(n),D) 2 E with instantiated D and E.

Therefore, the user is required to input to DIAMOND the theorem of natural number
arithmetic expressed in a sentential representation (see §8.10.2). DIAMOND tries to
map the theorem using the relation dmap as defined in §8.5.3 into its diagrammatic
representation to find D and E. The schematic proof is translated into the syntax of
Clam, and loaded from DIAMOND into Clam as the definition of proof. DIAMOND
formalises the verification theorem using the provided information, and passes it to
Clam. This completes loading of all the definitions necessary for the correctness proof.
Finally, DIAMOND starts Clam searching for a proof plan of the verification theorem.
If a proof plan can be found, then Clam passes it to DIAMOND to display it and to
inform the user that the schematic proof is correct.

An interesting case to investigate would be a successful extraction of a schematic proof
of a theorem, but verifying the schematic proof in DIAMOND’s theory of diagrams
shows it is incorrect.® We are not interested in a trivial case of a theorem for which
there is no mapping to a diagrammatic representation, or where the operations are not
defined, so they cannot be used. We are interested in an example theorem for which
D1AMOND finds a schematic proof, but the verification shows that the schematic proof
is incorrect. In the testing of DIAMOND that we carried out so far (see Chapter 9), we
have not come across such cases.

An example of a false schematic proof is the diagrammatic proof of Fuler’s theorem
about polyhedra given at the beginning of this chapter. Check §A.5 for an explanation
of a diagrammatic proof, as given by Cauchy in [Lakatos 76]. Although we cannot prove
this theorem using DIAMOND, we can extract, as discussed in §4.6, a schematic proof,
i.e. a uniform procedure that proves instances of this theorem. This proof satisfied
human mathematician for a while, but it turns out that it is false, because not all of
the examples of polyhedra were considered. Cauchy later found a correct logical proof
of this theorem [Lakatos 76]. It would be interesting to identify other schematic proofs
that human mathematicians found, but did not verify. Verifying such schematic proofs
could potentially reveal that they are false.

8.10.1 Loaded Definitions and Lemmas

When a DIAMOND session is compiled, a Clam session is started as well, whereby all
the definitions for diagrams, operators, operations, functions and axioms are loaded
— equations from (8.1) to (8.31). The large number of operations makes their loading
into Clam quite slow. The lemmas that we load are the theorems (8.32), (8.33) and
(8.34) that were proved in §8.5.2.

5 Note that our implementation of verification mechanism in Clam does not show that a verification
theorem is false, it can only fail to find a proof plan.



138 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFS

The Clam proof methods and strategies which are available in the search of a proof
plan include apply lemma, base case, induction strategy and normalisation, plus all
the methods loaded to Clam by default. We use depth-first proof planning search.

8.10.2 Theorem Mapping

We require that a theorem of natural number arithmetic which is proved diagrammat-
ically be expressed as an equality with one universally quantified variable n, i.e. of the
form Vn L(n) = R(n). The user is required to enter this theorem using the appropriate
syntax. Here is the grammar for this syntax:

term = term = term

term + term

term — term

term/term,

term x term

sqr(term)

sum(term, term, \(term, term))
string

pnat

Note that in sum(term, term, A(term, term)) the first argument is normally a natural
number, the second argument is a variable, and the third argument is a lambda ex-
pression. The theory of diagrams is implemented over natural numbers. Therefore,
all integers used in the expression of the theorem need to be converted into a natural
number representation which uses a successor function s and 0 to represent them. This
is done automatically in DIAMOND before the theorem to be proved is passed to Clam.

By Definition 4 it is required that there is a mapping of L(n) to a diagrammatic
representation D, and R(n) to E. DIAMOND implements dmap as it is expressed in
§8.5.3 in relations from (8.35) to (8.45), and searches for a mapping of L(n) and R(n).
If no such mapping exists then the schematic proof cannot be verified.

8.10.3 Schematic Proof Encoding

Every time the user wants to verify a new schematic proof, a new recursive definition
for this particular schematic proof has to be added to the verification mechanism.
DIAMOND has built in functions which add new definitions to the implementation of
theory of diagrams in Clam. A schematic proof can either be defined recursively or non-
recursively. If the step case of the proof is empty,” and base case consists of operations
which are parametrised over n, then the schematic proof is defined non-recursively as
Vn proof(n) = ops.

" The reader is referred to §7.3 for a reminder of a formalisation of a schematic proof.
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8.10.4 Proof Plan

The proof plan for the verification of a schematic proof for the sum of odd naturals
consists of the following methods: induction, step case and base case. The proof plan
that Clam finds and passes back to DIAMOND looks as follows:

/* This is the pretty-printed form
induction([(n:pnat)-s(v0)])
[base_case,
step_case] then
base_case(...)

*/

Note that the base case method in the proof plan consists of simple symbolic evaluation
and rewriting. Besides base cases of inductive proofs it is also often used in non-
inductive proofs. The object level verification proof is given in §8.6.1. Its extraction
using the proof plan has not been automated, because it is not central to the ideas
presented here.

8.11 Summary

In this chapter we presented a mechanism which is used to check the correctness of
schematic proofs. We formalised a theory of diagrams in which the correctness proof
can be carried out. This constitutes the last stage of the procedure for extraction of
diagrammatic proofs as presented in §4.8. A schematic proof is correct if it proves
all cases (i.e. for all n) of the proposition. The language and the rules of the theory
enable us to define the notion of applicability of a schematic proof, and the correctness
property of schematic proofs. We then proved the correctness property for an example
of a schematic proof of a theorem.

Algebraic correctness of a schematic proof ties the original theorem of natural number
arithmetic to the diagrammatic schematic proof, and ensures that if the schematic proof
of a diagrammatically expressed theorem is correct, then the corresponding statement
of arithmetic is a theorem. The link between a diagrammatic theory and the theory of
natural number arithmetic is the size of a diagram, which selects the natural number
that the diagrams represents. This number is the number of dots in the diagram.
We stated and proved some lemmas about the size invariance under application of
diagrammatic operations.

We then stated a theorem about the diagrammatic provability of an arithmetic con-
jecture. This theorem is used to show that a particular theorem of natural number
arithmetic is provable diagrammatically using the diagrams available in DIAMOND. If
an extracted schematic proof is found to be correct, then the theorem of algebraic cor-
rectness and the theorem of diagrammatic provability can be used to formally justify
why a schematic proof is a correct diagrammatic proof of an arithmetic theorem.



140 CHAPTER 8. VERIFICATION OF SCHEMATIC PROOFS

Finally, we presented the implementation of the theory of diagrams in DIAMOND.
DIAMOND uses a proof planner Clam to implement the language and the rules of a
diagrammatic theory, and to search for the proof of correctness of a schematic proof.
D1AMOND finds a mapping of a theorem of arithmetic to its diagrammatic represent-
ation, and passes it along with the corresponding schematic proof to Clam to find a
proof plan. If such a proof plan exists, then the schematic proof is correct.

Other interesting properties of the theory of diagrams which could be investigated
include incompleteness and characterisation of the class of theorems that we can prove
in this theory. It would be interesting to show a non-trivial example of a non-theorem
and its schematic proof for which the proof of correctness does not work, and show in
this way that the theory of diagrams is incomplete. A characterisation of the class of
theorems we can prove seems to be a much more difficult task. The reader is referred
to Chapter 11 for a further discussion of these issues.



Chapter 9

Results and Evaluation
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EpwiN G. LANDAUER
in NELSEN’s Proofs Without Words

In this thesis we presented our research on the use of diagrams in proofs of mathemat-
ical theorems. This work has been realised in the implementation of a diagrammatic
reasoning system DIAMOND. In this chapter we evaluate the ideas discussed in this
thesis. The evaluation of the system is carried out by trying DIAMOND on some ex-
ample theorems.

We begin in §9.1 by identifying the issues which need to be considered in the evaluation
of DIAMOND. We then give in §9.2 a summary of theorems that DIAMOND proved.
Next, in §9.3, an elaborate description of the extraction of a proof using DIAMOND
for an example of a theorem is given. An account of theorems that we proved in
comparison to those that we could not prove is given in §9.4. The limitations of
Di1AMOND are discussed in §9.5, followed by the analysis of when DIAMOND fails to
extract a diagrammatic proof of a theorem in §9.6. In §9.7 we conclude with a summary
of this chapter.

9.1 Evaluation Issues

Diagrammatic proofs are interactively constructed via DIAMOND’s graphical user inter-
face which was demonstrated in Figure 5.5. It is expected, but not necessary, that users

141
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have some example cases of a diagrammatic proof in mind, so that they can choose
a diagram from which to start an example, i.e. a ground instance of a diagrammatic
proof. Furthermore, users need to choose the operations which are used as inference
steps during the proof procedure. In the course of the development of DIAMOND we
identified as many examples as was possible of the kind of theorems that we wanted
D1AMOND to prove. Some of them are given in Chapter 3 and in Appendix A. These
helped us identify a set of diagrams and operations on them, with which DIAMOND
needs to provide the user (Chapter 5 and Chapter 6). The hypothesis for evaluating
our ideas and the system is that DIAMOND and the techniques developed in this thesis
provide a feasible way of proving a limited class of theorems of mathematics. The
question now is whether the set of diagrams and operations available in DIAMOND
enables one to prove diagrammatically a sufficient number of theorems. We discuss
next the criteria for assessing that a number of proved theorems is sufficient.

9.1.1 Range and Depth of Theorems

In Chapter 6 we described the operations in DIAMOND and claimed that the set of
available operations should enable us to prove theorems of significant depth and range.
The definitions of both significant depth and significant range are informal. By sig-
nificant depth we hope to capture a set of examples which are not trivial to prove
diagrammatically. For instance, theorems which require proofs that consist of only one
inference step and are non-recursive, so the number of inference steps does not depend
on the parameter, are in general not considered to be of significant depth. An exception
is when a theorem is not trivial to prove with the usual logical machinery (e.g. due to
the need for lemmas which may not be available, or the need for generalisation), but is
trivial to prove diagrammatically, and the proof is a one step non-recursive proof, then
this theorem still contributes to the depth (and range) of theorems that DIAMOND
can prove (e.g. commutativity of multiplication). Theorems whose schematic proofs
are non-recursive, but the proof consists of several inference steps, i.e. diagrammatic
operations, are of significant depth. All theorems whose proofs are defined recursively,
so the number of inference steps in the proof depends on the parameter for which the
proof is given, are also of significant depth. Moreover, proofs of theorems which use
other proofs as lemmas are of significant depth.

By significant range we mean to capture a variety of examples which are different from
each other. For example, we claim that the set which contains recursively and non-
recursively defined proofs is of significant range. Other criteria for the range include a
variety of theorems about different natural numbers. For instance, proofs of theorems
about square numbers, triangular numbers, Fibonacci numbers, hexagonal numbers,
etc. form a set of proofs of significant range. Note that all of the mentioned proofs of
theorems contribute not only to the range but also to the significant depth of proved
theorems.

9.1.2 Source of Theorems

Our main source of examples is Nelsen’s book Proofs Without Words [Nelsen 93]. We
also found some examples in [Penrose 94a], [Lakatos 76], [Gardner 86], [Gardner 81],
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[Dudeney 42] and [Gamow 62]. Our choice of theorems of natural number arithmetic
rather than geometry means that the proofs which are considered to be formal proofs
of these theorems are usually logical rather than diagrammatic proofs. Nelsen’s book
indicated a way to prove some of these theorems diagrammatically. Also, a theorem of
geometry usually has an obvious diagrammatic representation, whereas a theorem of
natural number arithmetic may not. Often, Nelsen’s book helped us find a diagram-
matic representation of our chosen theorems. However, there was still a slight problem
in identifying a large corpus of theorems which can be represented diagrammatically,
and on which we could test DTAMOND. The sources mentioned above helped us identify
a significant number of such theorems. Further investigation could uncover additional
theorems which can be represented diagrammatically. Moreover, once we identified
theorems, we also had to find their diagrammatic proofs which we then interactively
constructed in DIAMOND.

It would be interesting to see if DIAMOND could automatically discover proofs of the-
orems, and moreover discover theorems which it can prove in a diagrammatic way.
If such an automatic theorem prover discovered diagrammatic proofs which have not
been known before, then this would support our evaluation hypothesis that using the
proof extraction methodology presented in this thesis enables us to prove theorems
of mathematics. However, to date DIAMOND is an interactive proof checker, so the
automatic discovery of proofs remains a topic for future work (see §11.7).

9.1.3 Methodology

The evaluation of DIAMOND consists of two stages. The first stage checks how many
schematic proofs we can extract using DIAMOND. The second stage checks how many
of these schematic proofs can be verified.

For the first stage we check whether DIAMOND is able to extract a schematic proof
from example proofs. This stage tests the expressiveness of the available diagrams
and operations (see Chapter 5 and Chapter 6), and the capability of the abstraction
mechanism (see Chapter 7).

The second stage checks whether the schematic proof is correct or not. The verification
proof is carried out in the theory of diagrams (see Chapter 8). The verification of a
schematic proof is done automatically. Some possible reasons for failing to verify a
schematic proof will be discussed in §9.5.

Given that DIAMOND is an interactive, rather than a completely automated, proof
checker, it is difficult to carry out any meaningful statistical analysis of how many
theorems DIAMOND is capable of proving in comparison to those for which it fails to find
a proof. The set of theorems on which we can test DIAMOND are those the system was
designed to be able to prove. A possible test, which is explained in §9.4, is to count the
number of theorems in natural number arithmetic that are diagrammatically proved
in Nelsen’s book Proofs Without Words, and compare this number to the theorems
proved with DIAMOND. Furthermore, in §9.5 we identify the problems which prevent
us from proving theorems diagrammatically.

Another test by which we can evaluate DIAMOND is to compare it with other theorem
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provers which construct proofs diagrammatically. However, not much work has been
done on the automation of diagrammatic theorem provers. Some of the relevant work
was surveyed in §2.4. Furthermore, in Chapter 10, we give a comparative analysis of
systems related to DIAMOND, where it is evident that DIAMOND is not a rival to these
other systems. The fact that our work is novel in the area of automated reasoning
makes it infeasible to give an evaluation based on a comparative statistical analysis of
D1AMOND and its proofs, with some other system.

9.2 Theorems Proved

The tables in Figure 9.1 list theorems that we proved using DIAMOND. We distinguish
between the development and the test set of theorems. This ensures that DIAMOND
has not been specialised for only a few theorems during the development stage. If a
number of theorems from the test set is successfully proved, or at least their schematic
proofs can be found, then we can conclude that DIAMOND is reasonably general.

The first column entitled Ref gives the reference number of a theorem which, together
with its proof, is given in Appendix B. The second column entitled Theorem expresses
a theorem in the usual sentential way. In some cases, we represent a theorem with both
the use of ellipsis and with the use of summation symbol ) together with the general
form of a term. The ellipsis clearly depicts the first few numbers, as well as the general
form of a number in the sequence in the summation. ) captures ellipsis in an al-
ternative way. The third column entitled Schematic Proof lists whether DIAMOND was
capable of finding a schematic proof for the particular theorem under consideration.
The fourth column entitled Type states whether the schematic proof which DIAMOND
found is defined recursively or non-recursively. Finally, the fifth column entitled Veri-
fication lists whether the schematic proof of a given theorem was successfully checked
to be correct in the theory of diagrams. The listing of complete results including the
pictures of the diagrams used and operations on them, the corresponding schematic
proofs, and the resulting verification proof plans are given in Appendix B.

Note also, that the theorem n(n + 1) = M + M is an instance of z = § + £.
The former theorem is about two triangles of equal magnitudes n which together form
a rectangle of magnitude n by n+ 1. The latter theorem is from a diagrammatic point

of view more general, where z = n(n + 1).

Furthermore, notice that theorem (B.13) is an instance of a theorem n x m = m x n
which is universally quantified over two parameters and so it cannot be proved in
DiAMOND. We arbitrarily chose to instantiate m to n + 3, but any other instance of
m would have the same diagrammatic proof.

The tables in Figure 9.1 do not include all the theorems that DIAMOND can prove. A
difficulty in listing all of the results is the choice of what is an interesting theorem (and
proof), and what is not. One criteria is that the theorem and its proof contribute to the
range and depth of theorems that DIAMOND proves. Therefore, we exclude theorems
that perhaps do not contribute to the range and depth of proved theorems.



‘ Development Set of Theorems

‘ Ref ‘ Theorem ‘ Schematic Proof ‘ ‘ Correctness ‘
(B.1) [n?=1+34+5+---+02n—-1)=) 1" ,2i—1 Found Recursive Proved
(B.2) w =14+243+---+n=>",i Found Recursive Proved
(B.3) Trions1 = Tripe1 + 3Triy, Found Non-Recursive Proved
Test Set of Theorems ‘
Ref Theorem ‘ Schematic Proof ‘ Type ‘ Correctness ‘
(B.4) Trign =3+ 7+ 11+---+(2(2n) — 1) = Y1 ,(2(2i) — 1) Found Recursive Proved
(B.5) 2n+1)? =14+ B8+16+---+4(2n)) =14+4> 1 2 Found Recursive Proved
(B.6) Fiby, x Fiby 1 = Fib] + Fib3 +---+ Fib2 =Y ¢, Fib? Found Recursive Proved
(B.7) | Trign1=14+5+94+---+(22n—-1)—-1) =7 ,(2(2i — 1) — 1) Found Recursive Not Proved
(B.8) on—1=0002) +1 Found Recursive Not Proved
(B.9) n(n+1)= @ + @ Found Non-Recursive Proved
(B.10) Trioy = TTip_1 + 3Triy, Found Non-Recursive Proved
(B.11) (2n +1)? = 8Tri, + 1 Found Non-Recursive Proved
(B.12) (2n)% = 8Tri, 1 +4n Found Non-Recursive Proved
(B.13) nx(n+3)=Mn+3)xn Found Non-Recursive Proved

Figure 9.1: Results: theorems proved using DIAMOND.
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However, since this definition is given informally, the choice is not strictly defined and
is a matter of opinion. Perhaps the fact that the theorems that we list are usually
not proved diagrammatically makes them interesting. For instance, rotating a rect-
angle of any natural number magnitude by 90 degrees diagrammatically proves that
multiplication of natural numbers (and indeed of real numbers as well) is commutat-
ive. Is this an interesting result? We think it is, because it demonstrates how simple
diagrammatic proofs can be. The corresponding sentential (logical) proof (in Peano
arithmetic, for instance) is less obvious. In fact, almost any combination of operations
on a diagram for which we can find a schematic proof using DIAMOND is an interesting
result. Therefore, another criterion for an interesting theorem could be the simplicity
of diagrammatic proof in comparison to its sentential proof in some logical theory. We
carried out a closer examination of this comparison in which it was revealed that the-
orems that appeal to the commutativity or associativity of addition and multiplication
in their logical proof are much easier to prove diagrammatically. For other theorems
no significant difference was noticed. The “interestingness” criteria of a theorem and
its proof is hard to pinpoint formally, and it can lend itself to much criticism. Hence,
we do not use it as a formal criteria in our selection of presented results which are of
significant range and depth.

The tables in Figure 9.1 list thirteen theorems for which D1AMOND found schematic
proofs. There were around fifteen other theorems which could perhaps be considered
as too simple or too similar to those in Figure 9.1 to be either interesting, or to
contribute to the depth and range of theorems that DIAMOND proves. Therefore, they
are omitted here. For instance, we excluded the following theorems which were proved
using DIAMOND, because their proofs are neither recursive nor do they consist of more
than one inference step:

en’=n(n+1)+n

e2n—1=n+(n—1)

(n+2)?2=n2+4((n+2)-1)

enx(n+3)=nx((n+3)—1)+n

D1AMOND used five different kinds of diagrams and eleven diagrammatic operations to
prove the theorems listed in Figure 9.1. The table in Figure 9.2 gives all the operations
and theorems from Figure 9.1 and indicates which operations were used in which
diagrammatic proofs of referenced theorems. This table gives an idea of the spread
and the generality of operations.

Amongst the eleven operations used, there are some that could be composed out of
others. For instance, an Icut operation splits two adjacent sides from a square. This
operation could be replaced by splitting first a row and then a column (or vice versa)
from a square. Using DIAMOND we can find different schematic proofs of the same
theorem, because the proofs might use different operations that result in the same
effect when applied to diagrams (i.e. rather than using a particular operation the
proof applies a combination of operations that comprise this particular operation).
Such theorems are listed in Figure 9.1 only once.
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Notice that the operations split_frame, split_tframe and split2four in Figure 9.2 are vir-
tually the same operation. They all split a frame of a particular thickness into four
diagrams. However, since they are applied to three different types of diagrams: a
frame, a thick frame and a square respectively (where a thick frame and a square are
made out of frames), they are slightly different operations that are generalised into
one. To clarify what these operations do, they are offered to the user of DIAMOND
under different names. The same is true for split_outer_frame and split_inner_dot. They
are instances of the same operation which splits a square of a particular magnitude
from a given square. In the former case the operation splits a square of magnitude
n — 2 from a square of magnitude n. In the latter case, the operation splits a square
of magnitude 1 from a square of magnitude n. Hence, only operations split_sqr and
rotate90 in Figure 9.2 are used only once. This suggests that these operations are too
specialised. However, split_sqr can be constructed using an existing operation split_side
(where a side is a row or a column). rotate90 is used only once because it is implicit
in other proofs, e.g. in any proof of a theorem about triangles, or squares, because
rotating a triangle or a square does not change a diagram. It also does not change
the natural number that the diagram represents, e.g. a square still represents n?, and
a triangle still represents w for some n. On the other hand, rotating a rectangle
of magnitude n by m changes it to a rectangle of magnitude m by n. In summary,
we could conclude that the operations available in DIAMOND are reasonably general.
We hope that in further testing we could reuse these operations to construct more
complicated operations which might be needed to prove new theorems.

All of the diagrammatic proofs for theorems in the tables in Figure 9.1 are interesting
in that they are easily intuitively understood. Furthermore, to the best of our know-
ledge, their diagrammatic proofs have not been mechanised before. All theorems for
which the schematic proofs are defined recursively use mathematical induction in their
logical (as opposed to diagrammatic) proofs. On the other hand, when constructing
a diagrammatic proof the user does not need to have any knowledge of mathematical
induction, which often proves to be difficult to comprehend. The reader is referred to
§9.3.2 for a further discussion of the built-in properties of diagrammatic proofs which
need to be explicitly present in logical proofs.

9.3 Example of DiAMOND’s Proof

We present now an example of a diagrammatic proof. The theorem under consideration
is (2n+1)? =1+4(3",2i). The main idea is that (2n + 1)? can be represented as a
square of magnitude 2n + 1 for some particular n. Consider the right hand side of the
theorem. 27 can be represented as a row of magnitude 2i. Multiplying this by 4 means
that we have four rows. A schematic proof consists of splitting a square into frames,
and then for each frame we split it into rows and columns (note that rows are the same
as columns in terms of which natural number they represent). If the magnitude of a
square is 2n + 1 then one row will be of magnitude 2n. Figure 9.3 shows an example
proof for the theorem under consideration where the parameter n is instantiated to 3.
The user provides DIAMOND with the value of the parameter n for which each ground
instance of a diagrammatic proof is constructed. The proof trace of an example proof
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1. Split a square of magnitude 7 (i.e. 2 x 3+ 1) three times into frames. This results
in three frames and a dot.
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2. For each frame, split it into rows and columns.

SPLIT FRAME(1) o000 0O
—>

Figure 9.3: 2n+1)2 =1+ (4(2x 1) +4(2 x2) +---+4(2n)) = 1 + 4>, 29)

for n = 3 consists of the following operations:

proof(3) = [(split_outer_frame, 1), (split_frame, 1),

(split_outer_frame, 1), (split_frame, 1),
(split_outer_frame, 1), (split_frame, 1)]

Another example proof is constructed by the user for n = 4 and its proof trace consists
of the following operations:

proof(4) =

[(split_outer_frame, 1), (split_frame, 1),
(split_outer_frame, 1), (split_frame, 1),
(split_outer_frame, 1), (split_frame, 1),
(split_outer_frame, 1), (split_frame, 1)]

9.3.1 DiaMoND’s Schematic Proof

The number of inference steps in the proof of the theorem (2n +1)? = 1 +4(3> ", 2i),
for which we showed an example proof in Figure 9.3, depends on the parameter n.
This means that the schematic proof of this theorem is defined recursively. The step
case of the proof consists of two operations — split_outer_frame and split_frame:

proof(n + 1)
proof(1)

[(split_outer_frame, 1), (split_frame, 1)], proof(n) (9.1)

= ]
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Robustness of Abstraction Mechanism

DIAMOND abstracted the schematic proof formalised in (9.1) and (9.2) from two ex-
ample proofs given for n = 3 and n = 4. We tested DIAMOND’s abstraction mechanism
for its robustness on two other sets of example proofs, i.e. for n = 3 and n = 5, and
for n = 3 and n = 9. DIAMOND abstracted the same schematic proof for both sets of
example proofs as shown above. This indicates that the abstraction mechanism is ro-
bust, i.e. it behaves as expected, irrespective of the different cases for which examples
are given. The same test has been successfully carried out on all the theorems listed
in Figure 9.1.

9.3.2 DiamMoND’s Verification Proof

The schematic proof that DIAMOND found and which was presented in §9.3.1 is auto-
matically verified in Clam and found to be correct. Using (8.36) DIAMOND maps the
left hand side of the equation expressing the theorem to diagram(square, [2n + 1]), and
using (8.36), (8.38), (8.39) and (8.45) DIAMOND can map the right hand side of the
equation of the theorem to diagram(square, [1]) :: (4 ® Lﬂ?:o diagram(row, [2n])). Notice
that there are other possibilities for the mapping of the theorem. The theorem which
Clam verifies is therefore stated as:

Vn  apply(proof(n), [diagram(square, [2n + 1])])
d

diagram(square, [1]) :: (4 ® l¥J;_, diagram(row, [2]]))

Note that proof(n) is defined by (9.1) and (9.2). DIAMOND passes the recursive defin-
ition of proof(n) to Clam. Clam finds a proof plan for this theorem which consists of
using an induction strategy on the universally quantified variable n, step case method,
followed by a base case method that consists of symbolic evaluation which rewrites
both sides of the equation to reach equality using various rewrite rules of the theory
(see Chapter 8).

/* This is the pretty-printed form
induction([(n:pnat)-s(v0)])
[base_case,
step_case] then
base_case(...)

*/

The step case of the inductive proof is carried out by rippling, which uses annotations
to guide rewriting.! We give here just an outline of the object level verification proof.
The base case for n = 0 of the induction strategy is trivial. No operations are applied.
After some symbolic evaluation both sides of the equation are equal to a list of one
diagram, namely a square of magnitude 1. The hypothesis for n of the step case in the

! For more information on rippling, the reader is referred to [Bundy et al 93].
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induction strategy is given above as the verification theorem. The outline of the proof
looks as follows:

e Conclusion:

apply(proof(n + 1), [diagram(square, [2(n + 1) + 1])])
d

diagram(square, [1]) : (4 ® Lﬂ?i& diagram(row, [27]))

e Using (9.1), (8.19), (8.29), the definitions of apply (8.6), (8.7), and one_apply (8.4),
(8.5), and the function which picks the right diagram from the list of diagram,
we have:

apply(proof(n),diagram(square, [2n + 1]) ::

((2 ® [diagram(row, [2(n + 1)])])@(2 ® [diagram(column, [2(n + 1)])])))
d

diagram(square, [1]) : (4 ® Lﬂ?i& diagram(row, [27]))

e Using a theorem that a column equals to a row, in addition to the definition of
® we have:

apply(proof(n), diagram(square, [2n + 1]) :: (4 ® [diagram(row, [2(n + 1)])]))
d

n+1

diagram(square, [1]) :: (4 ® ¥;Z diagram(row, [25]))

e Using (8.34) we have:

apply(proof(n), [diagram(square, [2n + 1])])@(4 ® [diagram(row, [2(n + 1)])]))
d

diagram(square, [1]) = (4 ® Lﬂ?i& diagram(row, [27]))

e Using the RHS of the hypothesis, (8.3) and definition of ® we have:

diagram(square, [1]) : (4 ® Lﬂ?i& diagram(row, [27]))
d

diagram(square, [1]) : (4 ® Lﬂ?i& diagram(row, [27]))

Object Level v. Meta Level Proof

Recall that by an object level logical proof we refer to a usual proof in some axiomatic
logic. Such a proof takes a theorem and applies some axioms and lemmas of this
logic to the theorem in order to prove it. In contrast, by a meta level verification of
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a schematic proof we refer to a proof in the theory of diagrams which shows that a
schematic proof proves the theorem. A schematic proof can be referred to as an object
level diagrammatic (rather than logical) proof. The verification proof is a meta level
proof because it reasons about the object level proof. Both object level and meta level
proofs are represented sententially.

The question which arises is what is the relation between an object level logical
proof and a meta level verification proof of the same theorem? Consider the the-
orem discussed earlier (2n + 1)2 = 1 + 4(3.7" ,2i). The reader is invited to work
out the details of the object level logical proof of this theorem by using the induc-
tion strategy. We just outline it here: the logical proof of this theorem consists of
using mathematical induction, hence carrying out the base case and the step case
of the induction. In the step case of the proof lemmas about the associativity and
commutativity of addition are needed in order to transform the left hand side of
the conclusion in the step case (2(n + 1) 4+ 1)? to a term that is similar to the hy-
pothesis plus additional terms, i.e. (2(n + 1) + 1)% to (2n + 1)? + 8n + 8, because
2n+1)+1)? = (2n+3)? =4n’+12n+9=4n> +4n+14+8n+8 = (2n+1)2 +8n +8.

It turns out that both the object level logical and the meta level verification proofs
use the same proof methods: an induction strategy with its step case and base case
methods. There are some additional lemmas which are used in the object level logical
proof (e.g. if a + b = ¢ then en = an + bn, so in the case above it is necessary to infer
that 12n = 4n+8b), which are avoided in the meta level verification of a diagrammatic
proof. Furthermore, the logical proof uses the associativity of addition which is not
used in a verification of a diagrammatic proof, because it is an implicit property of
diagrams. Therefore, the meta level verification of schematic proofs is less complex
than the object level logical proofs of theorems.

We considered other examples for the comparison between an object level and a meta
level proof of the same theorem. It appears that in most cases a meta level verification
proof is similar in structure to an object level logical proof, but an object level proof
uses more lemmas. This again suggests that the verification of a schematic proof of
a theorem is less complex than the object level logical proof. It also appears that
there are diagrammatic proofs which when verified in the theory of diagrams require
no mathematical induction, but the object level proof does need induction (e.g. com-
mutativity of multiplication). This is perhaps due to the fact that associativity and
commutativity of addition are built into the diagrammatic reasoning in DIAMOND, and
are therefore already built in the system. It would be interesting to investigate what
are other properties of diagrams which are built into the system by virtue of using
operations on diagrams rather than logical formulae to prove theorems. But this is left
for the future.

9.4 Theorems Not Proved

In §9.1.3 we mentioned that a possible test for evaluating DIAMOND is to compare the
number of theorems that we can and cannot prove using DIAMOND. We informally
describe this test here.
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We used Nelsen’s book Proof Without Words [Nelsen 93] as our source of theorems,
plus the additional ones that we invented or discovered while analysing the available
examples (see Chapter 3 and Appendix A). In [Nelsen 93] there are 44 theorems of
natural number arithmetic and they all have some kind of diagrammatic proof. 7 of
these theorems fall out of the scope in DIAMOND, because their diagrammatic proofs
appeals to some continuous space property of a diagram  e.g. the basic unit diagram
representing the natural number 1 is not a dot, but a square or a triangle, so the
proof appeals to the continuous space property such as the area of a diagram. Some
major redesign of DIAMOND would be required to enable us to prove these theorems in
Di1aMOND. Out of the remaining 37 theorems, we can prove 7 of them using DIAMOND.
We invented the proofs of further 6 theorems that are listed in the tables in Figure 9.1.

The reasons why we were unable to diagrammatically prove some of the theorems listed
in [Nelsen 93] can be classified into three categories — the inability to prove a theorem
due to:

1. an unavailability of appropriate diagrams, diagram representations or diagram-
matic operations 12 theorems could not be proved due to this reason,

2. there are multiple universally quantified variables involved in the theorem and its
proof, so the abstraction mechanism in DIAMOND cannot cope with such proofs
6 theorems could not be proved due to this reason,

3. the diagrammatic proof is for a three dimensional space 12 theorems could
not be proved due to this reason.

The modifications which are needed to be able to prove theorems that cannot be proved
due to reasons described in 1. are fairly straightforward. We discuss them in §9.5.1.
A significant redesign of DIAMOND’s abstraction mechanism would be required so that
theorems counted in 2. for multiple universally quantified variables could be proved.
Extending the interface to three dimensions as discussed in §9.5.4 would enable us to
prove the theorems described in 3.

In summary, if the limitations that we describe next are removed as we suggest in
Chapter 11, then it appears that most of the theorems in [Nelsen 93] could be proved
diagrammatically using DIAMOND.

9.5 DiaMOND’s Limitations

The number of theorems that DIAMOND to date can prove is limited by various factors.
These include limitations of:

e the number of diagrams and operations available to users — this corresponds in
§9.4 to reason 1. for failing to diagrammatically prove some theorems,

e the abstraction mechanism  in part this corresponds in §9.4 to failure reason 2.,
since DIAMOND’s abstraction cannot deal with more than one variable,
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e the verification module due to weaknesses in the implementation of the theory
and due to weaknesses in Clam,

e the user interface  this corresponds in §9.4 to failure reason 3., since DIAMOND
cannot display diagrams in three dimensions.

We discuss each of these in turn.

9.5.1 Limitations on the Diagrams and Operations

There are about eight different diagrams and fourteen different operations available in
DiAMOND. As discussed in §9.1.1, these should enable us to prove theorems of signi-
ficant range and depth, and as showed in §9.2 they do indeed. Clearly, implementing
additional diagrams and operations would allow us to prove more theorems. The ques-
tion is whether such additions contribute to the range and depth of diagrammatic
proofs we can extract in DIAMOND. Also, additional operations must be generally use-
ful and not ad hoc. It is our heuristic choice to limit the set of diagrams and operations
to the one which is implemented in DIAMOND to date. Potentially, additional or new
ones which subsume the existing ones can be added to the set, but this remains one of
the tasks for future work. The justification for such a heuristic choice is that with cur-
rently available diagrams and operations we are able to prove theorems of significant
range and depth, as showed in §9.2.

9.5.2 Limitations of Abstraction Mechanism

DI1AMOND’s abstraction mechanism has several weaknesses which limit the kind of
schematic proofs which it is capable of extracting. Some of them were pointed out in
the earlier sections, e.g. §7.5, where we introduced the abstraction mechanism employed
by DIAMOND. The limitations of DIAMOND’s abstraction can be divided into three
kinds — the inability to extract a schematic proof due to:

e a more complex structure of a schematic proof than the one formalised in D1A-
MOND,

e non-linear dependency functions, and finally,

e due to a different order of inference steps in the example proofs than expected
by the abstraction mechanism.

There was another limitation mentioned in §9.4 as reason 2. for failing to prove theor-
ems. This was that DIAMOND’s abstraction mechanism can only abstract proofs with
one universally quantified variable. It would be a non-trivial task to devise a new ab-
straction mechanism which could abstract proofs with multiple universally quantified
variables.
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Let us recall DIAMOND’s formalisation of a schematic proof which was given in equa-
tions (7.1) and (7.2).

proof(n+1) = A(n+1), proof(n)
proof(l1) = B

Now, consider a theorem which is stated as (27)? = II7_, (4 x 1%), and its example
diagrammatic proof for n = 3 given in Figure 9.4. The diagrammatic proof consists

—— SPLIT2FOUR for n=3

000000000
o000 000G SPLIT2FOUR for n=2
PEPIPSrIP I YT X SPLIT2FOUR for n=1

Figure 9.4: (2")% = 17, (4 x 12)

of applying the operation split2four an appropriate number of times. The schematic
proof of this theorem can be formalised as:

proof(n +1) = [(split2four,1)], proof(n), proof(n), proof(n), proof(n)
proof(1) = []

D1AMOND’s abstraction mechanism is not powerful enough to be able to extract this
type of complicated formalisation of a schematic proof. Any other structure of a
schematic proof than the one given in equations (7.1) and (7.2) cannot be extracted by
D1AMOND’s abstraction mechanism. This limits the range of theorems that DIAMOND
is capable of proving. In §11.2.1 we discuss how to remove this limitation.

DIAMOND can detect only linear dependency functions of the form f(n) = an + b. Tt
does not recognise schematic proofs which apply operations on diagrams a number of
times which is exponentially, logarithmically, or in some other non-linear way depend-
ent on the parameter. This limits the range of schematic proofs that DIAMOND can
extract. However, to date we have not encountered examples of theorems which need
a non-linear dependency function.

Finally, DIAMOND’s abstraction mechanism expects the example proofs to be formed
with a strict ordering of the operations carried out in the example proofs. This was
discussed in §5.4. For instance, consider the following example proof trace for n = 3:
[lcut, split_ends, split_ends, lcut, split_ends, lcut]. The abstraction mechanism success-
fully extracts a schematic proof from two example proof traces formed in the particular
way as given in this example. However, if the order of the operations in the example
proof was shuffled around into say, [lcut, lcut, Icut, split_ends, split_ends, split_ends| then
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the abstraction mechanism cannot extract a schematic proof. As discussed in §5.4 there
is some justification for such a restriction, based on the inductive nature of proofs and
the extraction of a recursive schematic proof (see §5.4). This limits the number of
theorems that DIAMOND can prove. In §11.2.3 we discuss how to lift this restriction.

The improvement of the limitations of the abstraction mechanism in DIAMOND remains
a task for future work, which we discuss in Chapter 11.

9.5.3 Limitations of Verification Mechanism

It is evident from the second table in Figure 9.1 that not all schematic proofs could be
verified automatically. We carried out an experiment on paper, and used the theory of
diagrams discussed in Chapter 8 to verify whether the schematic proofs listed in the
second table in Figure 9.1 are correct. We found that all of the schematic proofs were
indeed correct.

The reason that the verification of all schematic proofs cannot be carried out automat-
ically is due to the limitations of the implementation of the theory in Clam, and due
to the limitations of Clam itself.

In Chapter 8 we defined the diagrammatic equality of two diagram lists 2 as bag

equality.? We stated in §8.10 that bag equality has not been implemented yet. Fur-
thermore, we explained that the implementation of the verification mechanism uses a
diagrammatic equality over lists of tuples. A tuple consists of a diagram and a position
of this diagram in the proof tree. This information is necessary to enable the system
to pick from the list the right diagram to which an operation should be applied. We
implemented a function which picks the appropriate diagram (specified by the position
information) from a list and puts it to the front of it, i.e. it puts the diagram to the
position of the left-most leaf of the proof tree. The positions are computed as shown
in Figure 9.5 (e.g. the left-most leaf is in position (1,1,1)). A diagram has to be at the

D(1)
D(1,1) D(2,1) D(3.1)
D(1,1,1) D(21,1) D(1,31) D(231) D(331)
D(1,2,3,1)
|eft-most leaf

Figure 9.5: Left-most position of a diagram in a proof tree.

2 Bags are lists in which the order of elements does not matter.
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front of the list for the system to be able to apply an operation to it. This is because
all of the operations defined in §8.4 are applied to the front element of the list.

The manipulation of positions of diagrams in the proof tree as described here has a
consequence that the order of the list changes during the proof. This is the reason
that diagrams need to be manipulated in bags rather than in lists. However, bags have
not been implemented yet, hence the number of schematic proofs that DIAMOND can
verify is limited. The implementation of bags remains a task for future work, although
it is perhaps not a very interesting problem in itself.

A limitation of using Clam is that Clam is not very good with arithmetic rewriting and
non-zero conditionals in the induction strategy. For instance, Clam finds it difficult to
find a proof plan for the theorem which is not quantified over all natural numbers but
only over non-negative naturals. Clam is also not very good in using non-constructive
definitions in the induction strategy. For example, using a predecessor functions can
cause problems — rather than representing T'rig, = Tri,_1 + 3T, Clam prefers a
representation of T'rig(, 1) = T7rin + 3T7ip1 which can be quantified over all natural
numbers. We use this formulation when possible, but it is not possible it all cases. All
of these down-sides can prevent Clam from carrying out the verification of a schematic
proof. Considering the last column in the second table in Figure 9.1 the schematic
proofs of theorems (B.7) and (B.8) could not be verified. The reason for failing is that
Clam is not good with non-constructive functions such as the predecessor function.
The theorems can be restated so that they contain no predecessor functions, but their
schematic proofs would then be different.

9.5.4 Limitations of User Interface

Consider the theorem about the sum of hexagonal numbers given in §3.2.6. The dia-
grammatic proof which we presented consisted of taking a cube, looking down the main
diagonal and splitting it into half-shells?, and finally for each half-shell, we project it
from three dimensions onto a plane and observe that it forms a hexagon.

To be able to construct this diagrammatic proof, we need to have a three dimensional
environment in which diagrams such as cubes, and operations such as splitting a half-
shell from a cube are available to us. To date, DIAMOND’s interface is capable of
displaying two-dimensional images only. This clearly limits the number of theorems
which can be proved by DIAMOND.

However, we proposed to Farrow [Farrow 97| to design a three-dimensional diagram-
matic viewer which is capable of displaying two and three dimensional diagrams and
operations on them. Our idea was to link such a viewer to DIAMOND, so that the ex-
ample proofs are constructed in three dimensions using the viewer, but the schematic
proof is abstracted and verified in DIAMOND. Figure 9.6 shows how a cube is observed
down its main diagonal after being split into half-shells. This viewing makes the fact
that a half-shell forms a hexagonal number explicit.

Farrow’s diagrammatic viewer allows a user to construct example proofs in a similar

3 Recall that a half-shell consists of three adjacent sides of a cube.
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@ [F1Eg /Cuboid §

Figure 9.6: An example of three-dimensional virtual environment for diagrammatic
proofs.

way as DIAMOND. In the end, it produces example proof traces, which can be passed to
DI1AMOND, so that DIAMOND’s abstraction mechanism attempts to extract a schematic
proof. To date, Farrow’s diagrammatic viewer has not been linked to DIAMOND due
to the limited number of diagrams and operations which her viewer provides the user.
Extending the diagrammatic viewer to encompass all of the current diagrams and
operations of DIAMOND, plus the additional three-dimensional ones, would make it an
excellent candidate to become the main interface of DIAMOND. But this remains a
task for the future.

A possible test is to take a proof trace produced interactively by Farrow’s viewer
and manually feed it to DIAMOND’s abstraction mechanism to see, whether it can
abstract from it a general schematic proof. The test has not been carried out, but some
inspection shows that there is no reason that would prevent DIAMOND abstracting a
schematic proof given that the appropriate data types for diagrams (e.g. in the case of
the sum of hexagonal numbers the new diagrams are hexagons and cubes) are added
to DIAMOND. For instance, Farrow’s diagrammatic viewer allows the user to construct
the following example proof for the theorem about sum of hexagonal numbers (note
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that the proof trace is given for n = 4):

proof(4) = [(split_half_shell, 1), (project_to_2d, 1),

[

(split_half shell, 1), (project_to_2d, 1),
(split_half shell, 1), (project_to_2d, 1),
(split_half_shell, 1), (project_to_2d, 1)]

The proof trace for n = 3 is the same as this minus the first two operations:

proof(3) = [(split_half_shell, 1), (project_to_2d, 1),
(split_half shell, 1), (project_to_2d, 1),
(split_half_shell, 1), (project_to_2d, 1)]

Using the abstraction algorithm given in §7.5, the following schematic proof can be
extracted (recall that this has not been implemented yet):

proof(n + 1) = [(split_half_shell, 1), (project_to_2d, 1)], proof(n)
proof(0) = []

Finally, additional definitions for new diagrams and operations need to be added to
the theory of diagrams in order to verify this schematic proof. Again, we foresee no
particular obstacles in implementing these additions. Hence, in principle, using the
formalisation of proofs used in DIAMOND, we can abstract a diagrammatic proof of a
theorem about the sum of hexagonal numbers as presented by Penrose [Penrose 94a).

9.6 Failure Analysis

When does DIAMOND fail to find a diagrammatic proof? Given the discussion in
§9.4 and §9.5 about a list of theorems which cannot be proved and the limitations of
D1AMOND to date, there are several candidates which can be blamed: the abstraction
mechanism, the lack of certain diagrams and operations, or the implementation of the
theory of diagrams. It is not interesting to analyse a schematic proof which cannot
be automatically verified due to the limitations of the implementation of the theory of
diagrams. For instance, Clam fails to verify a schematic proof since it cannot equate
two lists of identical diagrams in a different order. This limitation can be removed by
implementing an equality of bags (see §11.3).

An interesting evaluation of DIAMOND would be an analysis of a successful extraction
of a schematic proof, but the verification of the schematic proof in the theory of dia-
grams shows that the schematic proof is incorrect. This means that a failed attempt
to find a correct diagrammatic proof is not due to the limitations of DIAMOND’s ab-
straction mechanism which were discussed in §9.5.2, or the limitations in the set of
diagrams and operations that DIAMOND provides, nor is it due to the limitations of
the implementation of a verification mechanism as discussed in §9.5.3.

To date, we have not come across such a schematic proof, so no failure analysis can be
given here. However, it is interesting to see where the extraction of a diagrammatic
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proof could fail (disregarding the perhaps, uninteresting candidates discussed above in
§9.5). One possible candidate for succeeding to extract a schematic proof, but failing
to verify it is the mapping relation between a sentential and a diagrammatic repres-
entation. Why is a particular diagrammatic proof a proof of a sententially expressed
theorem? The relation between a given theorem and an example of a ground instance
of a diagrammatic proof is chosen by the user in the first step in the extraction of a dia-
grammatic proof. The diagram that the user chooses to represent a theorem indicates
which one of the possible dmap relations is used in the proof (the possible dmap rela-
tions in DIAMOND were defined in §8.5.3). If the user makes an incorrect choice, then
the schematic proof can still be extracted, but it is not a proof of a theorem at hand.
Suppose the theorem under consideration is n? = > oig2i — 1 and the user chooses
an incorrect diagrammatic representation of a theorem, e.g. a triangle to represent n?.
The user then splits a triangle into a collection of sides, and thinks that these represent
Soiio2i — 1. A schematic proof that DIAMOND extracts is probably a correct proof
of a theorem that the user has in mind, but the verification mechanism fails to find a
proof plan for the theorem of correctness for this schematic proof, because the dmap
relation has been chosen incorrectly. DIAMOND expects that an ell represents 2n — 1,
so that " ,2¢ — 1 is a collection of ells rather than sides. The abstraction mechan-
ism correctly extracted a schematic proof, but the schematic proof is not a proof of a
theorem at hand.

It seems that the explanation of why a diagrammatic proof is a proof of a sententially
expressed theorem lies in the choice of dmap relation which transforms sentential rep-
resentations into diagrammatic. There are choices for this, the user is responsible for
an appropriate choice in order to be able to extract a correct diagrammatic proof.

A perhaps more interesting candidate for succeeding to extract a schematic proof, but
failing to verify it is where a schematic proof is successfully extracted, but it does not
apply to all cases of the theorem. An example of such a theorem and its schematic proof
is Cauchy’s proof of Euler’s theorem analysed in [Lakatos 76] and presented in §A.5.
The extraction of the schematic proof of Euler’s theorem has not been implemented.
However, using the methodology for construction of diagrammatic proofs presented in
this thesis, a schematic proof can be extracted, if we take a cube as a polyhedron, for
instance. The verification of this schematic proof would fail, because the schematic
proof is not applicable to all polyhedra, but only to the simple polyhedra. For an
account of various counter examples to the schematic proof, the reader is referred to
[Lakatos 76].

9.7 Summary

In this chapter we presented some of the results from the research project presented
here. We gave an informal description of when a set of proved theorems is of sufficient
depth and range. Our main source of examples for designing and testing the DTAMOND
system was [Nelsen 93], but we also listed some other sources. The methodology taken
to evaluate DIAMOND was first to evaluate for how many theorems DIAMOND’s ab-
straction mechanism can successfully extract a general schematic proof. The second
part of evaluation was to see how many of these schematic proofs were successfully
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automatically proved to be correct in the theory of diagrams. Figure 9.1 listed some
of the theorems that DIAMOND can prove. An example of a complete process of the
extraction of a diagrammatic proof was given next, including a presentation of an ex-
ample proof, a schematic proof, and the discussion of the verification of a schematic
proof in the theory of diagrams.

There are many reasons why DIAMOND cannot prove more theorems of natural number
arithmetic than the ones we listed in this chapter. These include the insufficient number
of available diagrams and operations, the limitations in the abstraction mechanism,
weaknesses in the implementation of a verification mechanism, and the limitations of
a user interface. A discussion of each of these limitations was given.

Finally, we stated that an interesting evaluation of DIAMOND would be to carry out
a failure analysis of an attempt to extract a diagrammatic proof, and successfully
constructing example proofs and abstracting then into a schematic proof, but the
verification discovers that the schematic proof is incorrect. However, we have not
come across such an example. Instead we discussed other potential candidates for
failing to extract a diagrammatic proof.
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This chapter relates and compares several aspects of the work reported in this thesis
with the work on related techniques of other researchers. The particular aspects that
are of interest are:

e the use of diagrams in a reasoning process with particular focus on other auto-
mated diagrammatic reasoning systems (as presented in Chapter 2) which is
discussed in §10.1,

e the use of the constructive w-rule in relation to its use in [Baker et al 92] which
is discussed in §10.2,

e the structure of a schematic proof in relation to its formalisation in Baker’s work
[Baker et al 92] which is discussed in §10.3,

e abstraction techniques in the sense of extracting recursive programs from example
traces which is discussed in §10.4.
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10.1 Diagrammatic Reasoning Systems

In §2.4 we described several diagrammatic reasoning systems. Hyperproof and GRO-
VER are perhaps the most closely related to DIAMOND. We analyse the similarities
and differences between these two systems with respect to DIAMOND.

10.1.1 Hyperproof and DIAMOND

Hyperproof by Barwise and Etchemendy [Barwise & Etchemendy 94] was briefly de-
scribed in §2.4.4. Hyperproof is an educational tool for teaching first order predicate
logic. It is an example of a heterogeneous logic system in the sense that there are two
logical systems which are intimately interleaved. The first one is sentences of first order
predicate logic, and the second one is diagrammatic situations in the blocks world.

The sentential part of Hyperproof consists of sentence connective rules (conjunction,
disjunction, negation, conditional rules), quantifier and identity rules (identity, exist-
ential quantifier, universal quantifier rules) and a set of axioms such as reflexivity,
transitivity, etc.

The diagrammatic part of Hyperproof consists of situations in the blocks world, and
some rules for connecting the diagrammatic and the sentential part of Hyperproof.
The blocks world consists of tetrahedrons, cubes and dodecahedrons which can be
large, medium or small. They are placed on a checker board. Each of these elements
of the situation in the world has a sentential predicate associated with it. For ex-
ample, Small(a) A Cube(a) says that a particular block in the diagram-situation which
is labelled by a is a small cube.

The rules which connect the sentential part and the diagrammatic part of Hyperproof
are Observe and Cases Exhausted (and a special case of the latter, Apply). The
Observe rule allows the user to extract sentential information from the diagrammatic
situation. Kleene three-value logic is used to establish the truth of the extracted
sentences. Cases Exhausted (and Apply) allows the communication to go in the
opposite direction, i.e. the sentential expressions are applied to the diagrammatic situ-
ation. Hyperproof allows the user to change labels of the names that are attached to
the blocks in the situation, to change their magnitude, location and shape.

An obvious similarity between Hyperproof and DIAMOND is the fact that they are
both automated proof checking systems which use diagrams in the reasoning process.
Their problem domains differ, blocks world for the former system, and natural number
arithmetic for the latter system.

The main difference between Hyperproof and DIAMOND is that unlike D1AMOND, Hy-
perproof has no diagrammatic inference rules. The diagrammatic situation in Hyper-
proof is never modified by a diagrammatic inference rule which has a diagrammatic
precondition and a diagrammatic postcondition. On the other hand, DIAMOND uses
only diagrammatic inference rules to construct proofs, except during the verification
stage.

Furthermore, Hyperproof constructs object level proofs of the conjecture in some logical
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theory, whereas DIAMOND does not. Hyperproof constructs object level proofs using
sentential and diagrammatic representations. The construction of a proof does not
consist of any meta level reasoning about the proof. Hyperproof’s reasoning process (on
the object level) goes in three directions (represented in Figure 10.1): from sentences

4 N\
Observe
Object Level Apol Diagrams
FOL Sentences ———2Y g
g J

Proof of Conjecture

Figure 10.1: The reasoning process direction in Hyperproof.

to sentences (using sentential rules of first order predicate logic), from sentences to
diagrammatic situations (using Apply) and from diagrammatic situations to sentences
(using Observe). Notice that there are no direct inferences from diagrams to diagrams.

On the other hand, DIAMOND does not construct object level proofs of a conjecture in a
logical theory. Rather, it constructs diagrammatic schematic proofs (see Figure 10.2).
The first part of a proof construction takes a sententially expressed theorem, maps

( N\
Object Level dmap Diagrammatic Operations
Sentences Diagrams (Schematic Proof)
Meta Level Theory of diagrams
Sentences (Verification of
Schematic Proof)
b J

Proof of Conjecture

Figure 10.2: The reasoning process direction in DIAMOND.

it into diagrammatic representation (using dmap relation, selected by the user), and
applies diagrammatic operations to a diagram in order to construct a diagrammatic
proof. This part of DIAMOND’s reasoning process is carried out only between diagrams.
The second part is meta level reasoning about the proof which verifies the proof in a
theory of diagrams. The meta level verification uses sentential representation, and
ensures that the diagrammatic proof is indeed a proof of an object level conjecture
in a formal logical sense. Therefore, DIAMOND’s reasoning process for constructing a
diagrammatic proof is not aided by the sentential representation, but the process of
ensuring that the diagrammatic proof is a proof of a conjecture is.
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There are no rules in DIAMOND which correspond directly to Hyperproof’s Apply and
Observe. The similarity between the two systems is indirect and twofold. Hyper-
proof’s actions which directly correspond to diagrammatic operations in DIAMOND are
the tools for editing a diagrammatic situation. These actions include tools for changing
the names, magnitudes, shapes and locations of the blocks in the situation. Another
way in Hyperproof to change a diagrammatic situation is to insert a sentence about
the blocks world, and then to use the rule Apply to reflect the sentence in the change
of a diagram. Observe-ing the diagram after the change transforms the diagrammatic
effects of the rule into sentences which are part of the proof. DIAMOND uses no specific
sentential rules of logic which can be applied to a diagram, but the end effect of Hyper-
proof’s logical rule applied to a diagram and DIAMOND’s geometric operation applied
to a diagram is the same in that they alter the diagram during the proof process. The
main difference is the fact that in DIAMOND these are the only rules of inference and
are entirely diagrammatic, whereas in Hyperproof they are combined with the usual
sentential rules of first order predicate logic.

A point of comparison between Hyperproof and DIAMOND is Hyperproof’s evaluation
schema in Kleene three-value logic, and DIAMOND’s verification mechanism. In Hy-
perproof, the condition for successfully observing the diagrammatic situation is that
the sentence which is to be inferred is checked to be true according to the evaluation
schema in Kleene logic. This ensures that every step of the proof is sound, given the
partial information in the proof. In the end, when Hyperproof declares that a complete
proof is constructed, then, given that all the steps of the proof are evaluated to be true
(Hyperproof communicates to the user if this is the case) then the proof is guaran-
teed to be correct. The correctness of a diagrammatic schematic proof in DIAMOND is
checked in the verification module, i.e. in DIAMOND’s theory of diagrams. No evalu-
ation of proof steps is carried out during the proof construction (which is different to
Hyperproof), but after a schematic proof is abstracted from instances of diagrammatic
proofs, the schematic proof is checked to be correct in order to allow us to assert a
universally quantified statement. Therefore, considering Hyperproof’s and DIAMOND’s
evaluation of correctness of a proof, the two systems are similar, because they are both
interested in theoremhood and the correctness of a conjecture.

Hyperproof uses a diagrammatic situation in order to check the consequence or a non-
consequence of a sentence, and constructs a proof of a theorem of first order predicate
logic in this way. DIAMOND constructs proofs by using ground sentences (instances
of a proof) and then infers universal sentences from them. In this sense, the two
approaches are similar to model checking approach where diagrams are used as a
model of a problem. The difference is that in the construction of instances of a proof
in DIAMOND diagrams are the only tool to model a problem, whereas in Hyperproof
predicate logic is used in addition to diagrams.

Finally, Hyperproof is designed to be purely an interactive proof checker, which helps
students to learn formal logical reasoning. On the other hand, although DIAMOND
to date is still an interactive proof tool for constructing diagrammatic proofs, it is
our intention to extend it to a fully mechanised theorem prover which can discover
diagrammatic proofs automatically. But this falls out of the scope of this thesis, and is
the topic for future work discussed in §11.7. It seems, however, that Hyperproof could
be extended to become a mechanised theorem prover in a similar way as DIAMOND. An
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exhaustive application of all logical rules and all the editing commands on all diagrams
in Hyperproof, and an exhaustive application of all the diagrammatic operations on
all the diagrams in DIAMOND would be an obvious start.

10.1.2 GROVER and DIAMOND

GROVER in conjunction with the “&” theorem prover is a diagrammatic theorem
prover which uses diagrams to suggest strategies for “&” to use during the proof. An
example of a strategy that could be suggested by a diagram is to use mathematical in-
duction to prove a theorem. GROVER was designed by [Barker-Plummer & Bailin 92]
and was briefly described in §2.4.3.

The main result achieved by using GROVER with “&” is the proof of the Diamond
Lemma. The Diamond Lemma is a non-trivial theorem in the theory of well-founded
relations. It can be stated as:

LCRR(’I") A WFR(’I") — GCRR(’I")

where LORp(z) states that the relation R | z (“R restricted to the set z”) has the
local Church-Rosser property (i.e. R is locally confluent), and GCRp(x) states that
the relation R | z has the global Church-Rosser property (i.e. R is globally confluent).!
W Fr(x) states that the relation R is a well founded one with no infinite sequences (i.e.
R is a terminating relation).

The diagram used to prove the Diamond Lemma is given in Figure 10.3. The authors

Figure 10.3: The diagram for the Diamond Lemma.

claim that this is a standard diagram which accompanies the proof of a Diamond
Lemma in textbooks. The user is expected to input the diagram to GROVER, i.e. it
is the user who who comes up with an appropriate diagrammatic representation of the
problem.

The external portrayal and the internal representation of diagrams in GROVER and
in D1AMOND differ. The diagram in GROVER is not portrayed in its visual format,

! The local Church-Rosser property says that for all a,b and ¢ in a set z, if aRb and aRc there there
exists a d € x such that bR*d and cR"*d. The global Church-Rosser property is similar to its local
counterpart, except that in place of R we use R™ to indicate the transitive closure of R.
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but rather it is sententially described by the user. Internally, GROVER’s diagrams are
represented using an abstract topological representation. The language which describes
diagrams in GROVER consists of statements such as “!” for universal quantification,
label(arcl,"R"), etc. On the other hand, in DIAMOND diagrams are portrayed visu-
ally with pictures rather than with sentential descriptions as in GROVER, i.e. DIA-
MOND has a graphical user interface whereas GROVER does not. Furthermore, in
DI1AMOND we use a mixture of Cartesian and topological representations rather than
just topological representation as in GROVER to represent diagrams internally on the
computer.

The diagram in Figure 10.3 does not justify the theorem as stated above, but rather
an equivalent representation:

Veyz.((z Zy ANz # 2) AN (R*(z,y) AN R*(2,2)) — Jw.(R*(y,w) A R*(z,w)))

GROVER automatically checks if the user-input diagram can be used as a model of
the problem in order to prove the theorem at hand. It does so by trying to match
the terms in the theorem with the elements of the diagram. An example of the use of
the diagram in Figure 10.3 for inferencing a step in the proof is the ability to deduce
Jw.(R*(y,w) A R*(z,w)). The system does this by deriving and using the transitivity
property of R* to find in the inspection of the diagram that there is a w which is
instantiated to h, where y = b and z = ¢ in the diagram.

As was the case with Hyperproof, GROVER is targeted at a different problem do-
main than DIAMOND. GROVER proves theorems of well-founded relations, whereas
DIAMOND proves theorems of natural number arithmetic.

GROVER is an expert system rather than a theorem prover. The diagrams in GRO-
VER are used to give information of how to conduct a proof and to indicate why the
theorem is true.? The underlying theorem proving is carried out by the “&” theorem
prover. This differs from DIAMOND in that DIAMOND constructs proofs directly (except
in the verification stage), rather than interprets diagrams in statements which are used
in the proof elsewhere. In a sense, GROVER uses diagrams to model the problem and
then prune the proof search space by adding additional hints in the forms of strategies
to the underlying theorem prover, and is therefore similar to the work done by Gelernter
on Geometry Machine (see §2.4.1 and [Gelernter 63]).

The inference steps in GROVER/“&” are the logical rules of sequent calculus for Zer-
melo set theory. In contrast to DIAMOND’s inference rules, they are not diagrammatic.
The diagram in GROVER serves to extract automatically the hints which help “&” to
prove the theorem. These hints are additional rules or lemmas or strategies in sequent
calculus. An example of a hint to the theorem prover is to suggest to use mathem-
atical induction at a particular point in the proof. Mathematical induction is usually
suggested when there is an ellipsis in the diagram, which the user input to the system.
Diagrams in GROVER are not intended to be used for applying inference rules on
them, as in DIAMOND. Rather, they are intended to guide a logical proof of “&”. In
this sense, the role of diagrams in GROVER is similar to the role of diagrammatic

? [Giunchiglia & Walsh 92] formalised the notion of a proof outline (a proof with some steps missing)
from a diagram and used GROVER’s example about the Diamond Lemma to test this formalisation.
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operations in the verification of a diagrammatic proof in DIAMOND. It could be said
that DIAMOND’s diagrammatic proof partially guides the proof search for its verifica-
tion in that it explicitly indicates some of the rules which are used in the proof (e.g.
diagrammatic operations), but it does not suggest others (e.g. the induction rule).

Another difference in the use of diagrams in GROVER and DIAMOND is that a diagram
in GROVER is a static object, which expresses dynamic knowledge of the intended
proof strategy. By static object we mean that the diagram is inspected only once, before
any theorem proving is carried out in “&”, and moreover, the diagram is not modified
during the proof process. By dynamic knowledge we mean that the diagram suggests
how the proof should be carried out. On the other hand, diagrams in DIAMOND are very
much dynamic objects which usually change after every application of an inference step
(i.e. the geometric operation on diagrams). Where GROVER interprets the knowledge
in a diagram, DIAMOND manipulates diagrams to acquire the knowledge from them.

Elements of the diagram in GROVER can be existentially or universally quantified.
“I” indicates that an element is universally quantified. On the other hand, diagrams in
DIAMOND have no notion of universal quantification. The idea in DIAMOND is to use
a few instances of the universally quantified theorem, and then extract the universal
statement from these.

The similarities between GROVER and DIAMOND are in the amount of input that is
expected from the user by both systems. GROVER and DIAMOND both expect the
user to input the diagram. In GROVER the user draws the diagram (or describes it in
an abstract form), and in DIAMOND the user chooses the initial diagram from a set of
available diagrams. GROVER and DIAMOND both expect the user to have a particular
strategy for the proof in mind. In GROVER this is by indicating in the diagram a
series of existential subgoals. In DIAMOND the user has to have a particular example of
the proof in mind, construct a few examples using the same strategy, and the system
extracts this strategy for a universal statement of the theorem.

10.1.3 Conclusions on Di1AMOND and Other Systems

Given the discussions in the previous two sections, Hyperproof and GROVER are sys-
tems which differ from DIAMOND, both in their use of diagrams, and in the underlying
reasoning process. As far as we are aware there are no other systems which are more
closely related to DTAMOND than the two mentioned. DIAMOND is not a rival to Hyper-
proof and GROVER. Rather, it complements them in that it concentrates on a different
problem domain, namely that of natural number arithmetic. DIAMOND uses diagrams
as dynamic rather than static objects which are part of the proof. Manipulations of
diagrams rather than their interpretation form the inference steps of DIAMOND’s proof.
Finally, the distinct difference between DIAMOND and these two systems is that only
diagrams and their manipulations are used to construct the proof. There are no other
sentential logical rules used in the construction of a proof. Sentential representation is
used in the meta level proof in DIAMOND’s theory of diagram in order to ensure that
a diagrammatic proof indeed proves a given conjecture. In this sense, this is similar
to the evaluation in Kleene logic in Hyperproof, but the difference is that Hyperproof
does the evaluation of an object level proof, whereas the verification in DIAMOND is on
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the meta level, i.e. no object level logical proof is constructed in DIAMOND. The sim-
ilarity between GROVER and DIAMOND is in using the diagram to suggest a strategy
for the proof in “&”, and using a schematic proof to partially guide its verification in
DIAMOND.

10.2 Constructive w-Rule

We examine here the similarities and the differences in the use of the constructive w-
rule in [Baker 93] in comparison to our use. The comparison is carried out with respect
to the following features of the use of the constructive w-rule:

e the problem domain in which the constructive w-rule is used,

e the use of the constructive w-rule as a rule of inference in a formal logical system,
and the finite nature of the rule,

e the use of the constructive w-rule when an inductive proof is blocked, when using
this rule avoids generalisation, and how using this rule can suggest generalisation
for an inductive proof.

One of the main differences between Baker’s and our work is the problem domain.
Similarly to Baker, we prove arithmetic theorems, however, Baker’s problem domain
are theorems of Peano arithmetic whose proofs are constructed using logical rewrite
rules. We, on the other hand, choose to prove theorems of natural number arithmetic
which can be expressed as diagrams, so the proofs consist of diagrammatic operations
on diagrams, rather than logical rules of inference which rewrite symbolic formulae.
Perhaps the two approaches are more similar with respect to the verification of schem-
atic proofs, which in DIAMOND, is carried out, as in Baker’s work, sententially in a
logical theory of diagrams. However, the verification is a meta level proof of correct-
ness. The object level construction of a diagrammatic proof is not sentential and differs
from Baker’s construction of proofs.

Baker used the constructive w-rule as an additional rule of inference in the theory
of Peano arithmetic which is referred to as PA.,. The theory of PA., is known
to be complete [Shoenfield 59]. The rule enabled her to construct finite rather than
infinite proof trees. She showed how the proof trees in PA., can be defined effectively,
which corresponds to the infinitary proof trees in the theory of Peano arithmetic with
the infinitary w-rule in place of induction. Her motivation for using the constructive
version of the rule is that an infinitary w-rule is not suitable for implementation (see
Chapter 4).

The motivation for using the constructive w-rule in our work is similar to Baker’s in
that the rule allows us to automatically capture the generality of a proof in a finite
way. We can use concrete diagrams rather than general diagrams with abstractions
(such as ellipsis). When a schematic proof that can generate a proof of any instance
of a conjecture is extracted, then the constructive w-rule allows us to conclude that
the universally quantified conjecture is true. DIAMOND formally verifies the fact that
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a general program indeed uniformly proves each instance of a conjecture in a meta
theory.

Another motivation in Baker’s research for using the constructive w-rule in schematic
proofs is the fact that schematic proofs overcome the problem of blocked induction (see
§4.2.1) in PA with induction as a rule of inference. For example, consider again the
special case of the arithmetic theorem about the associativity of addition (z+x)+x =
x + (z + z) and its schematic proof (we showed how induction is blocked in the proof
of this theorem in §4.2.1) that we gave in §4.4.1:

(s"(0) +s"(0)) +s"(0) = s"(0)+ (s"(0) + s"(0))
Apply rule (4.2) n times on both sides

s"(0+s"(0)) +s"(0) = s"(0+ (s"(0) + s"(0)))

Apply rule (4.1) on both sides
s"(s"(0)) +s"(0) = $"(s"(0) + s"(0))

Apply rule (4.2) n times on left

s"(s"(0) +57(0)) = s"(s"(0) +5"(0))
Apply Reflexive Law

In contrast, we are not interested in proofs for which mathematical induction is blocked.
Our motivation for using the constructive w-rule is to avoid reasoning about general
arguments which require manipulations of general diagrams. Rather, we want to reason
with ground instances, and then extract a general argument in an alternative way.

The main contribution of Baker’s work is showing how the use of constructive w-rule
in schematic proofs can suggest a generalisation which is required in order to complete
a proof in PA such that induction is no longer blocked. For the theorem above, this
is:

(r+y)+y=z+(y+y)

This generalisation is suggested by looking at what remains unaltered in the n** case
proof of the general proof, where n is a numeral. Note that what is meant by “un-
altered” is defined by what is unaffected by the rewrite rules.

(s(z) + s(z)) + s(z) s(z) + (s(z) + s(z)) = P(s(x))
s(z+s(z)) +s(z) = s(z+ (s(z)+ s(2)))
s((z+s(z)) +s(z)) = s(z+s(z+s(z)))
(x + 9(’1‘))+ s(r) = x4+ s(x+s(z)) # P(x)
X by

Note in Baker’s example, that the terms A remain unaltered. This suggests two possible
generalisations:

(z+y)+y=z+(r+y) and (z+y)+y=z+ (y+y)
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In order for the formula to be provable, it is clear that the second generalisation is
correct, but this is not an obvious conclusion using normalisation. Now, the equation
can be proved by induction on z.

Our motivation for using constructive w-rule is different. We are not interested in
the generalisation of a formula in order to prove it inductively. As discussed in §3.4,
inductive diagrammatic proofs would require reasoning with general diagrams of some
general magnitude, rather than concrete magnitude. This necessitates a formalisation
of abstractions (such as ellipsis) in the representation of general diagrams. Our mo-
tivation for using the constructive w-rule is that it allows us to step from the concept
of “universally provable ground instances” to a “provable” theorem. This means that
we can use specific examples of proof which need not use general but rather concrete
diagrams, and allows us to extract a general proof tactic which uniformly proves each
premise.

Baker’s motivation for using constructive w-rule is, apart from avoiding blocked in-
ductions and suggesting a generalisation of a formula, also to avoid generalisations in
inductive proof. We gave an example of the need for unintuitive generalisation in the
proof of rotate-length theorem in §4.6, and showed how using constructive w-rule in
schematic proofs avoids generalisation. Similarly to Baker, we too hope that diagram-
matic schematic proofs avoid unintuitive generalisations.

10.3 Schematic Proof Formalisation

Here, we compare Baker’s formulation of schematic proofs to ours, and highlight the
motivation for a different use of both.

Baker’s general schematic proof representation consists of a list of rules which are
applied in the proof, each with two attributes attached to it. The first attribute stores
the position of the term on which the rule is applied within the entire expression. The
second attribute stores the dependency function which computes the number of times
that the rule is applied to the term. The dependency function is dependent on the
universally quantified variable n. The following is Baker’s representation of a general
schematic proof:

general_proof ([Ri(Posi, fi1(n)), Ra(Posz, fa(n)),...]) (10.1)

where n is the universally quantified variable, Ry, is the k" rule applied in the proof,
Posy, is the position at which the k™ rule is applied, and f,(n) is the function of n
times that the k™ rule is applied.

Comparing the representation in (10.1) to the schematic proof representation given in
§7.3 in equations (7.1) and (7.2), we notice that Baker’s schematic proofs are defined
as a linear list of applications of rewrite rule, whereas diagrammatic schematic proofs
are represented recursively. An example of Baker’s schematic proof of a theorem of
arithmetic is the proof of associativity of addition (see §4.4.1). Recall the encoding of
the schematic proof for associativity of addition from §7.8 (where (4.1) and (4.2) are
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the equations for the recursive definition of addition):

proof(n) =
), X on LHS),
),1 x on RHS),
),1 x on LHS)
) )

,n x on LHS)]

As discussed is §7.8 where we analysed the structure of proof encoding, Baker’s schem-
atic proofs are not recursive. This is due to two reasons. First, most of the theorems
of arithmetic which are considered within Baker’s problem domain are the ones for
which standard mathematical induction is blocked (see §4.2.1). This means that the
proof for P(n 4+ 1) cannot be reduced to a proof for P(n), therefore no appeal to the
induction hypothesis can be made in the proof. Inversely, to construct the proof of
P(n + 1) we need to insert applications of rewrite rules “in the middle” of proof of
P(n). Since the order of the rules matters, proof of P(n + 1) cannot be expressed as
proof of P(n) with additional rewrite rules in front or at the end. Therefore, theorems
for which a standard inductive proof is blocked, have schematic proofs where the proof
for P(n+ 1) can be constructed only by inserting the additional rules in the middle of
the proof for P(n).

On the other hand, DIAMOND’s schematic proofs can be transformed into linear se-
quences of operations similar to Baker. For instance, DIAMOND’s schematic proof for
the sum of odd naturals given as

proof(n +1) = [(lcut,1)], proof(n)
proof(0) = []

—

can be linearised into
proof(n) = [(lcut, n)]

which is similar to Baker’s formulation. Although this is a more general formalisation,
we do not use it, because the verification of such schematic proofs is more complex
and requires meta induction on diagrams. As pointed out before, meta induction
reintroduces the need for abstractions in diagrams, which we reject.

Furthermore, the order of the rules in our diagrammatic schematic proofs does not
matter (see §7.8). More precisely, the order is associative and commutative, therefore
applications of geometric operations can invariably be rearranged into a recursive for-
mulation of a general schematic proof where the additional rewrite rules for the proof
of P(n + 1) are inserted in the beginning (or at the end) of the proof of P(n).

A nice feature of the recursive structure of a diagrammatic schematic proof is that
it usually corresponds to a recursive definition of a diagram. For example, take a
schematic proof of the sum of odd naturals, which consists of n applications of an lcut
operation. A schematic proof for n + 1 can be constructed by adding another instance
of an Icut to the proof for n. This corresponds to taking a square of magnitude n + 1
and removing from it an ell of magnitude n+1, and thus creating a square of magnitude
n on which the proof for n is repeated.
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An advantage of having a recursive formulation of a schematic proof as we defined
in (7.1) and (7.2) is the simplicity of carrying out the verification step (the reader is
referred to Chapter 8 to recall the method of verification of schematic proofs). The
definition about the correctness of a particular schematic proof given in Definition 4
(see §8.6) is universally quantified over one parameter. This means that the proof of
the theorem will probably consist of a mathematical induction in addition to other
proof methods. Having recursive definitions of terms used in the theorem simplifies
the automated verification proof. Baker on the other hand, used a relatively complex
schematic proof encoding into parametrised syntax in order to carry out the meta
inductive verification proof. For more information on Baker’s verification of schematic
proofs, the reader is referred to [Baker 93].

10.4 Abstraction Techniques

Our mechanism for abstraction of schematic proofs from traces of example proofs was
presented in §7.5. Considering other existing abstraction techniques described in §2.3
and their comparative analysis given in §7.4 it is evident that Baker’s technique is
perhaps the most closely related to ours. This is not surprising since we extend some
of the ideas in Baker’s work to diagrammatic reasoning by using schematic proofs to
prove theorems diagrammatically. Therefore, we compare in more detail Baker’s to
our work.

Baker’s abstraction algorithm consists of the following steps:

1. Take any instance X of n and the proof of P(n). Encode this example proof as:
proof (X, [R(I,X)(POS(I,X)a NO(I,X))a R x) (POS(Q,X)a NO(Q,X))a D)

where R x) is k' rewrite rule, applied in the expression at position Pos xy,
NO(k,X) times.

2. For each X and No x) go through the list of dependency functions and store
each function f; such that f;(X) = Nog, x) in a list of possible dependency

functions [f1, fa2. ... fj].

3. Rewrite the general representation of a schematic proof into (10.1) which is the
first guess of a general schematic proof (possibly an incorrect one).

4. Take another instance of n and repeat the first two steps. If the dependency
function for a corresponding rule in both cases of an example proof is different
then pick another function f; from the list of dependency functions which satisfies
the two cases considered, and update accordingly the general schematic proof
representation.

5. Now repeat the previous step for other instances of n until for each rule such
a dependency function rule is found which satisfies a large number of the cases
considered, and it has not changed for a certain number of times, i.e. the process
has stabilised.
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There are two main differences between Baker’s and our abstraction mechanisms. First,
Baker’s mechanism is not designed to detect recursive structures in the proof, whereas
recursion is a very important feature of our formulation of schematic proofs. This
was discussed in the previous section §10.3. However, it should be noted that Baker’s
abstraction algorithm is more powerful than ours. This is due to Baker’s non-recursive
formalisation of schematic proofs, which is more general than our recursive formalisa-
tion. Hence, Baker’s abstraction mechanism can extract more schematic proofs.

The second difference is that Baker allows for only a few different dependency functions,
which seem to be sufficient for a significant number of problems. These dependency
functions are: f(n) = k, f(n) = kn,f(n) = n 4+ k, f(n) = n?. Note that the first
three functions are special cases of the general function f(n) = an + b. In order to
choose the function which satisfies the number of applications of a rewrite rule for a
particular instance of a proof Baker requires a large number of proof instances. When
the function does not change for a large number of instances then Baker’s algorithm is
satisfied with the choice.

On the other hand, the number of dependency functions that DIAMOND’s abstraction
mechanism can detect is the entire class of linear function f(n) = an+b rather than just
three special cases as in Baker’s case. However, DIAMOND cannot detect exponential,
or any other non-linear dependency functions. To date, we have not encountered
examples of theorems, which would require more complex non-linear functions. In
contrast to Baker’s mechanism which requires a large number of examples to extract
the dependency function, DIAMOND generally needs only two, as explained in §7.5.

There are recursive structures of a schematic proof with which DIAMOND’s abstraction
mechanism cannot deal, whereas Baker’s can. For instance, DIAMOND cannot abstract
proofs which consist of two recursive calls. An example of this is the following schematic
proof structure:

proof(n+1) = A(n+ 1), proof(n), proof(n)
proof(0) = B

There are other abstraction mechanisms, e.g. Inductive Logic Programming systems
(see §2.3.7), which can automatically detect multiple recursive calls. However, such
mechanisms suffer from other drawbacks which deter us from employing them in DIA-
MOND (the reader is referred to §7.4 for a comparative analysis of existing abstraction
mechanisms). It remains a task for the future to devise an abstraction mechanism
which is capable of detecting and extracting functions with multiple recursive calls.

In summary, DIAMOND’s abstraction mechanism is very similar to Baker’s mechanism
with two main differences: it detects and extracts a recursive proof structure, and
any linear dependency function for the number of applications of an operation. Our
mechanism is not intended to be in competition with Baker’s technique. It is targeted
to problems that differ from Baker’s in that they can be represented recursively rather
than only linearly. DIAMOND’s abstraction mechanism is a new technique, but it is not
the main contribution of our work.
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10.5 Summary

This chapter related and compared our work to that of other researchers in the area
of mechanised mathematical reasoning. In particular, we concentrated on several is-
sues: existing diagrammatic reasoning systems, the use of constructive w-rule, the
formalisation of schematic proofs, and existing abstraction techniques.

Hyperproof and GROVER are two systems which are perhaps more closely related
to D1IAMOND. Although they both use diagrams, they in addition, use sentential (as
opposed to diagrammatic) logical rules to construct proofs of theorems of mathem-
atics. Hyperproof and GROVER’s diagrams are designed to aid sentential reasoning:
Hyperproof uses diagrams to model the problem and to extract or to show the effect of
sentential information on diagrams. From diagrams Hyperproof can sometimes extract
the sentential information which enables it prove the theorem, and which otherwise,
without the use of diagram, it would not be capable of. GROVER uses a diagram to
interpret the information from it in the form of additional subgoals or lemmas which
are used in the essentially sentential proof in “&” theorem prover. On the other hand,
D1AMOND uses only diagrammatic inference rules to construct proofs.

The constructive w-rule is used in Baker’s work as a formal logical rule of inference
which allows us to capture infinitary arguments in a finite way. Similarly, the rule
is used in DIAMOND as a mathematical justification for extracting universally quanti-
fied arguments from their ground instances by providing a uniform procedure which
enumerates them.

The formalisation of schematic proof in Baker’s work is different from our formalisa-
tion. In DIAMOND we extract a recursive tactic, whereas Baker formalises the schem-
atic proof as a linear sequence of rewrite rules. Linearisation of DIAMOND’s recursive
schematic proofs renders a linear sequence similar to that of Baker’s schematic proof.
In contrast, Baker’s linear sequence cannot be reformulated into a recursive tactic as
defined in DIAMOND where additional rules are attached to the front or the end of
the recursive call. In Baker’s schematic proofs, the additional rules can be inserted
in the middle of the recursive call. The difference between the two formalisations is
explained by the different motivations for using schematic proofs. Baker uses them
essentially when the usual logical inductive proofs are blocked. We, on the other hand
use schematic proofs to avoid the use of abstractions in diagrams.

Finally, we compared our abstraction technique to that of Baker. Both mechanisms
are very similar, which is perhaps expected, as we extend Baker’s work on arithmetic
proofs to diagrammatic proofs. Since the formalisations of schematic proofs differ, we
designed our abstraction mechanism so that it can detect recursive structures in the
examples of proofs. We also can detect a wider range of dependency functions in the
number of applications of diagrammatic (rewrite) operations (rules).

In conclusion, none of the aspects of our diagrammatic reasoning system that we dis-
cussed, is a rival to the existing ones. Rather, our research should be thought of as
complementary and novel approach to mechanised mathematical reasoning.
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Further Work

111!

PB4+ 43+ 4= (142434 +n)?

— AraN L. Fry
in NELSEN’s Proofs Without Words

The research presented in this thesis tackles a challenge of exploring and mechanising
“informal” human reasoning with diagrams. A concrete result of our work is an inter-
active diagrammatic proof checker DIAMOND. Throughout this thesis we pointed out
what DIAMOND’s limitations are, and now we propose ways of removing them. Apart
from implementation improvements, there are also other theoretical topics which sur-
faced during the course of our research and beg to be studied, but unfortunately, time
did not permit us to do so.

In general these topics can be divided into two main groups. The first one consists
of tasks for the medium—term future which are easier to tackle, and the second one
consists of more difficult tasks for the long term future. They include:

Medium—term goals — improvements in DIAMOND of the:

e diagram objects and operations on diagrams (§11.1),
e abstraction mechanism (§11.2),

e theory of diagrams (§11.3),

e interface (§11.4).

176
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Long term goals  investigations into:

the formalisation of abstractions in diagrams (§11.5),

e applying parts of DIAMOND’s techniques for extracting diagrammatic proofs
to other problem domains (§11.6),

a completely automated diagrammatic theorem prover which is capable of
discovering diagrammatic proofs (§11.7),

the characteristics and uses of various kinds of knowledge representation,
e.g. algebraic v. diagrammatic (§11.8).

11.1 More Diagrams and Operations

In §9.5.1 we stated that it was our heuristic choice to restrict the set of diagrams and
operations to the ones which are implemented in DIAMOND to date (see Chapter 6).
The available set seems to be sufficient to enable one to prove theorems of a significant
range and depth (see Chapter 9).

However, to enlarge the set of theorems that DIAMOND is capable of proving, additional
diagrams and operations could be implemented. There are three issues which need to
be considered with respect to enlarging this set.

First, if we are just interested in proving more theorems in DIAMOND, then the range
of proved theorems would perhaps not change much. However, it would still be worth
while pursuing as the number of theorems that DIAMOND can prove would increase,
as well as some existing operations might be reused. Some diagrammatic objects
which come to mind that could be implemented are pentagons, hexagons, rectangular,
pentagonal and hexagonal frames, etc. The additional operations which could be im-
plemented are splitting pentagons and hexagons into frames, splitting frames into sides,
splitting hexagons into triangles, etc. Another possible extension is the implementation
of additional multiple representations of diagrams (see §6.2). For instance, instead of
using a lattice of Cartesian coordinates on which the dots composing a diagram are
drawn, we could use some other type of net, which would allow the display of different
multiple representations of diagrams. Some of them are depicted in Figure 11.1.

Second, we could improve the user interface (see §11.4) to allow three dimensional
manipulations of diagrams. This would give scope to the implementation of three
dimensional diagrams (cubes, boxes, pyramids with a triangle, square, pentagon or
hexagon as a base), and operations on these new diagrams (splitting various faces from
diagrams, e.g. half-shells, splitting a diagram into various components, e.g. a pyramid
with a hexagon as a base into six pyramids with a triangle as a base, etc.).

Third, the problem domain in DIAMOND could be extended to continuous space (see
§11.6.1), or some completely different domain, e.g. hardware verification (see §11.6),
which would give scope to the implementation of a different kind of diagrams (e.g.
circles, ovals, triangles of any magnitude, circuit gates efc.) and operations (divid-
ing angles, projecting from three to two dimensions, stretching from three to two
dimensions, rearranging — rotating, translating, splitting diagrams in various way,
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Figure 11.1: Additional multiple representations of diagrams.

transforming, etc.). We discuss in more detail how the techniques in DIAMOND can be
applied to other domains in §11.6.

11.2 Improving the Abstraction Mechanism

Recall from Chapter 7 that DIAMOND’s abstraction mechanism can extract a recursive
function proof which is parametrised over one parameter n. The number of times that
an operation of a schematic proof is applied, is linearly dependent on n. The function
proof which encodes a schematic proof can be stated as (see §7.3):

proof(n+1) = A(n+1), proof(n)
proof(0) = B

One of the possibilities for improvement of abstraction mechanism in DIAMOND is to
devise an abstraction from one example only. The reader is referred to §7.9 for a
discussion of this proposal, and an indication of how to go about developing such an
abstraction technique.

In §9.5.2 we discussed various limitation of DIAMOND’s abstraction mechanism where
we divided them into three groups:

e restriction on the recursive structure of proof,
e insufficient complexity of dependency functions,

e insufficient flexibility in the order of diagrammatic operations in example proofs.

We propose now how to tackle these limitations.
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11.2.1 Restriction on Recursive Structure of Schematic Proof

DIAMOND can extract schematic proofs with one recursive call, and with additional
diagrammatic operations attached at the beginning, i.e. the schematic proofs are tail
recursive. This is adequate for many proofs. However, it would be desirable that D1A-
MOND could abstract and encode schematic proofs with additional operations attached
to the end of the recursive call, e.g.:

proof(n+ 1) = proof(n), A(n+1)
proof(0) = B

or with multiple recursions in the schematic proof, e.g.:

proof(n+1) = A(n+ 1), proof(n), proof(n), proof(n), proof(n)
proof(0) = B

or with insertions of additional operations in the middle of the proof, e.g.:

proof(n) = pri(n,[])
prf(n +1,P) = prf(n,A(n+1)QPQB(n + 1))
prf(0,P) = P

where the top level schematic proof proof can be instantiated for a particular value of
n by calling prf which uses an accumulator P to insert applications of operations in
the middle of the proof.

Extending DIAMOND’s abstraction mechanism to enable it to extract schematic proofs
which have the first proposed recursive structure should not be too difficult. Rather
than looking for the difference A at the beginning of the example proofs, the algorithm
would look for A at the end.

The second structure is a bit more difficult to detect. A technique that comes to mind is
to heuristically look for the difference either at the back or in the beginning of example
proofs, and then try to split the rest in various ways into two (for two recursive calls),
three (for three recursive calls), four etc. occurrences of identical structure proof(n).

The third structure of schematic proofs should not be too difficult to extract either.
Rather than trying to extract recursive structure, the mechanism can just extract a
linear sequence of diagrammatic operations, as [Baker et al 92] does in her work (see
§10.4), which is parametrised over n for the number of applications of each operation.
For instance,

proof(n +1) = [(lcut,1)], proof(n)
proof(0) =[]

would then become proof(n) = [(lcut,n)].

Additional information for extracting more complex recursive structures of schematic
proofs could be sought from the Inductive Logic Programming systems. ILP systems
[Muggleton & De Raedt 94] can deal with the problems of extracting various kinds of
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recursive structures from examples, however to date they are not good in dealing with
numerical data (the reader is referred to §2.3.7 for the description of ILP). Hence ILP
might be useful in giving clues how to extract complex recursive structures, but not
helpful for extraction of dependency functions in our schematic proofs.

An interesting investigation would be to see if the verification mechanism could still
check the correctness of a schematic proof which is expressed using any of the above
proposed recursive structures.

11.2.2 Complexity of Dependency Functions

The dependency function in DIAMOND is a linear function with some parameter n, i.e.
f(n) = an + b. Tt is attached to each diagrammatic operation which is to be applied
in a diagrammatic proof. When instantiated to a particular value of n it determines
the number of applications of the operation. Despite the fact that to date we have not
come across diagrammatic examples which require a non-linear dependency function,
it would be good to allow for them should such a case arise.

For example, dependency functions which are degree two polynomials could be extrac-
ted by demanding three rather than two examples, and solve three functions with three

unknowns:
2 _
any +bny +c¢ = x4
an% +bng+c = x9
an% +bng+c = x3

where nq,n9,n3, 71,79 and z3 are known, so the three equations can be solved for
a,b and ¢ in order to obtain a degree two polynomial function f(n) = an? + bn + c.
The same mechanism can be employed for detecting dependency functions which are
polynomials of higher degrees.

The problem is more difficult with non-polynomial functions, e.g. logarithmic. A pos-
sible solution would be to have a library of such functions and try to match the number
of applications of operations with one of the functions in the library. This is the method
that [Baker et al 92] used.

11.2.3 Flexibility in the Order of Diagrammatic Operations

In §5.4 we explained the restriction on the order of operations in the construction of
example proofs. The restriction follows an inductive argument so that in the con-
struction of proof(n + 1) all of the operations of proof(n) succeed those which make
up a difference between proof(n + 1) and proof(n), for some particular n. That is, the
operations of the step case A are applied before the rest of the proof. The restriction
is required due to a limitation of the abstraction mechanism which is incapable of
extracting a schematic proof if the order restriction is not satisfied.

DI1AMOND’s limitation on the order of operations could be improved, in particular the
restriction could be relaxed. Associative and commutative matching of the example
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proof traces detects the structure common to two example proof traces as well as
their difference while at the same time allowing any order in the two traces. Any
associative-commutative matching algorithm can be used, e.g. [Stickel 81].

Using associative-commutative matching in the abstraction mechanism would relax the
restriction on the order in the construction of example proofs. However the operations
in the extracted schematic proof would still have to satisfy some restrictions, because
some operations cannot precede others. For instance, starting with a square the oper-
ation split_ends can only be applied if the operation Icut has been applied previously
to create an ell. Hence, the associative-commutative matching algorithm would need
to be modified to consider such restrictions.

11.3 Extending the Theory of Diagrams

The theory of diagrams, as presented in Chapter 8, is modulo position information for
the position of the diagram in a proof tree. This information is used when selecting
a diagram from a list of diagrams to which the operation is applied. A function picks
the selected diagram from a list according to the position information (see §9.5.3).
D1AMOND’s verification mechanism fails to check the correctness of a schematic proof
if at any point the two lists representing each side of the equation of verification theorem
are in different order.

To remove this limitation we could use bags (also called multi-sets) rather than lists to
represent collections of diagrams on each side of the equality in the verification theorem.
A bag is a finite or infinite collection of elements in which the order of occurrences of the
elements is disregarded, but the multiplicity (i.e. the number of occurrences) of each
element is significant. Using bags in the theory of diagrams in DIAMOND is necessary
because the order of diagrams in a list does not matter. We want a collection of a
square and a triangle in that order to be equal to a collection of a triangle and a
square. In the current verification mechanism, these would be distinguished, hence the
verification would fail. For more information on the structures and functions necessary
for the implementation of bags, the reader is referred to [Manna & Waldinger 85].

The hope is that the repercussions of using bags for the automation of verification are
not detrimental, i.e. that the automation of reasoning with bags is not more complex
than reasoning with lists.

11.4 TImprovement of Interface

In §9.5.4 we discussed the limitations of DIAMOND’s interface. The main criticism is
that there are no three-dimensional diagrams or operations on them available to the
user.

This limitation can be mended by extending DIAMOND’s current interface along the
lines of Farrow’s work (see §9.5.4) in her Master’s Thesis [Farrow 97] to a three dimen-
sional diagrammatic viewer. To implement such an environment would be a non-trivial
task. It would require considering Farrow’s diagrammatic viewer, and improving it to
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allow for much more flexibility of manipulation of objects, more generality, and greater
number of available operations and diagrams.

11.5 Formalisation of Abstractions in Diagrams

In §3.4 we discussed the use of abstractions in diagrams. Figure 3.1 showed how
abstractions, namely ellipsis, are used to represent a general square of magnitude n. We
claimed that the formalisation of abstractions is hard. We also proposed that humans
do not seem to reason with abstract objects, but rather with concrete objects and
then they abstract from these a general structure of reasoning to conclude a universal
statement. The formalisation of diagrammatic proofs in DIAMOND reflects this proposal
in that concrete diagrams are manipulated in the construction of examples of proofs,
and an abstraction mechanism is employed in order to extract a general proof of a
universally quantified theorem.

The question is whether the use of abstractions could be formalised in order to reason
directly with general diagrams which use ellipsis or some other device to represent
the generality. Using abstract diagrams could potentially tackle theorems with more
than one universally quantified variable. In §3.4 we discussed internal exact and ex-
ternal ambiguous representations to distinguish between what is used internally on the
computer to represent the ellipsis (for instance, in algebra the internal representation
for summation is Y ), and what is portrayed externally on the screen to the user (for
instance, the external portrayal of " 12t —1is 14+3+5+---+ (2n —1)). Were we
to formalise ellipsis in our diagrammatic proofs, we would need to first formalise the
ellipsis in a diagram of a general magnitude. Then, we would have to formalise an el-
lided collection of diagrams, e.g. some general number of diagrams. Bundy formalised
an exact notation for internal representation of list of general length in [Bundy 95].
We present this formalisation here along with the formalisation of diagrams of general
magnitudes.

We will use an exact representation for diagrams which are defined non-recursively as:

e square(n),
e rectangle(n, m),
e triangle(n),

e cic.

where any diagrams of magnitude 0 is () which denotes an empty diagram.

Bundy uses O (in a similar way to ) or []) as notation for lists, sequences or other
n-ary operations. The idea is that the reasoning, internal to the computer, is carried
out using the exact notation O in place of abstractions. Externally, to the user, the
reasoning is portrayed using ellipsis in diagrams. So, internally, square(n) is used
to reason about a general square of magnitude n. However, externally this square
is portrayed as a square with ellipsis indicating that it is of magnitude n (e.g. see
Figure 3.1).
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O is a polymorphic, second order function of type:
O: (nat x (nat — 7)) — list(T)

Its first argument is the length of the list. It applies the function, its second argument,
to each of the natural numbers 1, 2, etc. up to this length and returns a list of the
results, i.e.

O, f) = [f(1),..., f(n)]
O can be defined recursively as follows:!

00,F) = [] (11.1)
ON+1,F) = O(N,F)Q(F(N +1) = nil) (11.2)

We now need an axiom which defines how lists can be put in O form, i.e.
VL :list(r),3In : nat,f : (nat — 7). L = O(n, f)
Functions, such as append (i.e. @) can now be defined as:
O(M, F)QO(N,G) = O(M + N,comb(M, F,QR))
where comb is defined by:

F(i) ifi<M

comb(M, F,G)(i) = { Gi—M) ifi>M

The definition of append should be portrayed as:

Let us examine the diagrammatic proof of the theorem about the sum of odd naturals
using this abstract notation. First, we need to give some definitions of diagrammatic
rewrite rules. For instance, an Icut can be defined as (where D is a list of the rest of
diagrams):

lcut

square(n+ 1) = D = square(n) :ell(n+1):: D (11.3)

The theorem is formally expressed as:

n2:zn:27j—1
1=0

2 corresponds diagrammatically to square(n), and 2i—1 to ell(i), so the theorem

where n
can be expressed diagrammatically using O as:

Square(n) v nil = D(n, )\ZE”(Z))

The theorem is proved by induction on n.

! Note that the definition of O is very similar to the definition of |4 in the theory of diagrams as
defined in Chapter 8.
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Base case: n =0

square(0) :: nil 0(0, Ai.ell(7))
definition of @ |} (11.1)
[] []

Step case:
Hypothesis for n: square(n) :: nil = O(n, Xell(i))

Conclusion for n + 1:

square(n + 1) ::nil = O(n + 1, Xi.ell(4))
definition of lcut(11.3) | (11.2)
square(n) :zellln + 1) :nil = O(n, Mi.ell(z))Q(ell(n + 1) :: nil)
hypothesis |} hypothesis
ellln+1):mnil = ellln+1)::mni

This proof is portrayed externally with diagrams whereby we take a square of mag-
nitude n + 1, apply an lcut to it, use rule (11.2) on the RHS of the theorem, and
finally apply the hypothesis to reach equality. As Bundy pointed out in [Bundy 95]
the problem of reasoning with abstractions is now transferred to portrayal function.
We would expect the portrayal function to display the theorem:

Square(n) v nil = D(n, )\ZE”(Z))

as shown in Figure 11.2. However, the problem lies in identifying which elements of

—— ——

Figure 11.2: Sum of odd naturals using abstract diagrams.

O to portray, and which not. The portrayal function needs to be context sensitive in
order to be able to identify the critical elements. For instance, Figure 11.3 shows an
incorrect portrayal of O(m + n,comb(m, Ai.square(i), Ai.ell(7))). On the other hand,
Figure 11.4 portrays the diagrams as we would expect with the first few elements and
the end elements of intermediate ellipsis portrayed. The problem is also in portraying
ellipsis within a diagram. Which concrete parts of a diagram are portrayed and which
parts are ellided? In order to gain an intuitive understanding of operations that are
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Figure 11.3: Incorrect portrayal of O(m + n, comb(m, Xi.square(i), Ai.ell(7))).
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Figure 11.4: Correct portrayal of O(m + n, comb(m, Asquare(i), Ai.ell(i))).

applied to a diagram, the choice of portrayed parts of a diagram is crucial. Figure 11.5
shows the ambiguity in the choice of portraying particular parts of a square of mag-
nitude n + 1. A formalisation of abstractions in diagrams as presented here seems to
be promising, especially in carrying out inductive proofs. However, the heavy burden
falls onto portraying functions. Sometimes, additional rewriting will be required to
portray the proof in a satisfying way. The choice of which parts of diagrams to portray
is also crucial. Much work is needed to investigate the issues of portraying abstract
diagrams, and it remains an open question whether a satisfying solution can be found.
There is also a question of psychological validity of reasoning with abstractions. To us,
they do not seem to be as easily understood as concrete diagrams. Perhaps an inter-
esting study for cognitive psychologists would be to devise an empirical experiment to
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Figure 11.5: Three different ways of portraying a square of magnitude n + 1.
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indicate whether humans are more likely to reason with abstract or concrete diagrams.
Furthermore, it would be interesting to investigate how complex an abstraction people
can reason with.

11.6 Diagrammatic Proofs in Other Problem Domains

The problem domain which we chose is natural number arithmetic, more precisely
defined in §3.5. This means that diagrams represent natural numbers, and are therefore
displayed using collections of dots in a discrete space. We devised a taxonomy for
diagrams in §3.3 and decided to concentrate on theorems of Category 2. Formalising
reasoning with abstractions, as discussed above in §11.5, would give scope to tackle
theorems of Category 3. A possibility is to extend DIAMOND to continuous space
which would enable us to prove theorems of Category 1, i.e. geometrical theorems (e.g.
Pythagoras’ theorem). Another possibility for extending the problem domain includes
hardware verification. We briefly discuss each of these domains.

The domain of natural number arithmetic already has a wide range of problems to
which we can apply our approach of proving theorems by diagrammatic inference rules,
of extracting a general proof from examples, and of verifying the schematic proof in
the theory of diagrams. In other domains, not all of these features of DIAMOND can
be applied. In geometry which typically reasons in the domain of real numbers we
use diagrammatic inference rules in a similar way as we use them in DIAMOND, but
not the abstraction mechanism. The verification of diagrammatic proofs of theorems
of geometry is similar to DIAMOND’s verification. In hardware verification, we use
diagrammatic rules, the abstraction mechanism and the verification in a similar way
to DIAMOND.

Amongst these domains, the most scope for further work lies, in our opinion, in geo-
metry. Despite the fact that it does not use the properties of the constructive w-rule
(because in geometry we also reason with real numbers), geometry does give scope for
proving a large range of new theorems. Hardware verification is interesting, because
all aspects of our work in DIAMOND can be applied, but much detail still needs to be
worked out.

11.6.1 Geometry

Theorems of Category 1 are usually geometric theorems of continuous space. As said in
§3.3 the common logical proofs of these theorems do not require induction, but rather
generalisation. Therefore, their corresponding diagrammatic proofs can be considered
to be a trivial case of schematic proofs, i.e. they are not defined recursively. The number
of applications of operations to a diagram is not dependent on the universally quan-
tified variables. Therefore, no notion of abstraction is needed, and thus DIAMOND’s
abstraction mechanism is not used. The generality of the proof is in continuous space,
where diagrams are assumed to be of general magnitude. Let us imagine that DIA-
MOND can construct diagrams in continuous space. In order to prove the Pythagoras’
theorem (as in §3.2.2 and in Figure 11.6) we need right angle triangles and squares. The
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Figure 11.6: Pythagoras’ theorem and continuous space.

only additional operation which is required in order to construct a proof is splitting a
square into two smaller squares and two identical rectangles. The diagrammatic proof
of this theorem consists of the following operations:

proof(a,b,c¢) = [(split_sqr2sqr_recs, 1),

cut_diagonally, 2),

move_x_direction(+a, trianglel),
(
(
(

move_y_direction(+a, triangle3),

move_x_direction(—b, triangle3),

[
(
( ), 1)
(move_y_direction(—b, triangle2), 1),
( ):1)
( ), 1)

Additional operations will involve moving diagrams in various directions (for instance,
in Figure 11.6 we indicated x and y direction), because in geometric theorems, the space
coordinates and relative location to other diagrams matter. Additional geometrical
knowledge would need to be built into the system. For instance, the sum of all angles
in any triangle is 180 degrees. Such knowledge would enable the user and the system
to observe certain geometrical facts. For instance, in our example, one observation is
that when triangles are rearranged the body inside the bigger square is a square as
well.

The proof of Pythagoras’ theorem in Figure 11.6 is not exactly the proof of a® +b% = ¢2.
Rather, it shows that (a+b)% = a? +b?+4% and also that (a+b)? = c2+4%, therefore

a? + b? +4”’7b =c? +4”’7b, and thus a? + b* = 2.

In the new continuous space, the diagrammatic equality needs to be redefined as it
is no longer over the number of dots that a diagram is composed of, but over the
area which a diagram assumes. All of the operations preserve the sum of areas of all
diagrams. The generality of a proof is embedded in the use of the continuous space,
where all diagrams are assumed to be of general magnitude. For instance, a right angle
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triangle in the proof above is for any value of a,b and ¢ such that they form a right
angle triangle.

11.6.2 Hardware Verification

Diagrammatic reasoning of the style employed in DIAMOND can be applied to hardware
verification. This is an important area for industrial manufacturing of circuits, where
there is a potential of big financial losses if the fabricated circuits are faulty. Much re-
search in this area has been carried out by [Gordon 95], [Cyrluk et al 94], [Barrow 84],
[Basin & Klarlund 95], [Cantu-Ortiz 97].

We show here an example of hardware verification problem using the approach from
DiAMOND. In particular, we indicate how an n-bit incrementer can be diagrammat-
ically verified. The same approach can be applied to an n-bit adder, an n-bit ALU
(arithmetic-logic unit), an n-bit shifter, an n-bit processing unit etc.

An n-bit incrementer is a recursive combinational circuit which is usually implemented
by a sequence of n interconnected half-adders. It takes as an input a word a of length
n and a Boolean carry input ¢;,, and produces as output a word of length n + 1 which
is a result of adding ¢;, to a. If ¢;, is true then x is incremented by 1, otherwise it is
left unchanged, and a carry output ¢y is produced. An implementation of an n-bit
incrementer is shown in Figure 11.7. The following predicate establishes equivalence

a(l)l a(2>l a(n)l

c-in c(2) c(2) c(n-1) c-out
— | half-adder ———| half-adder —» =+ = = * —=|half-adder ——»

(1) l s(2) l s(n) l

Figure 11.7: Representation of an n-bit incrementer composed of half-adders.

between the specification and the implementation of an n-bit incrementer (taken from
[Cantu-Ortiz 97]):

F Ve : bool, Ya : word. word2nat(inc(a,c)) = word2nat(x) + bool2nat(c)

where word2nat converts a word into a natural number representing its length and is
defined recursively, bool2nat converts true to 1 and false to 0, and inc is recursively
defined as half-adder attached to an inc of a word less one character.

An example of a diagrammatic proof could be composed for n = 5, whereby we con-
struct a 5-bit incrementer. The precondition is that a half-adder is verified to be
correct. For n = 5 we just compose diagrammatically five half-adders. For n = 6
we compose six half-adders. The abstraction mechanism like DIAMOND’s extracts a
schematic proof which consists of taking n half-adders to form an n-bit incrementer
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(or more precisely, taking a half-adder and attaching to it n — 1 more half-adders):

proof(n +1) = [(join_half_adder,1)], proof(n)
proof(1) = []

The verification of this schematic proof uses lemmas about the correctness of a half-
adder, but the correctness check of schematic proof boils down to carrying out induction
on n. There is also scope for exploiting symmetry in these proofs. All the intricacies
need to be worked out, but in principle the general approach in the domain of hardware
verification, although somewhat contrived, seems to work.

11.7 Complete Automation of Diagrammatic Theorem
Prover

We now propose a research project which in our opinion is the most promising and
interesting: making DIAMOND a completely automated theorem prover capable of dis-
covering diagrammatic proofs. This will contribute to two parallel research aims of
artificial intelligence and computer science: on the one hand it will enable computers
to achieve new goals and solve new problems, and on the other hand it will help us to
understand better diagrammatic reasoning.

We describe only the general methodology which could be employed in order to achieve
complete automation of a diagrammatic theorem prover. The intricacies of the system
are left to be investigated in the future.

There are two possible starting points for the proposed research. For the first one,
which is slightly easier than the second approach, the user presents the system with a
theorem expressed in a usual way using sentential representation of a theorem. Any
undergraduate mathematical text, especially in the domain of natural number arith-
metic would be a good source of problems. Then, a completely automated DIAMOND
uses the mapping relation dmap to map (parts of) the sententially represented theorem
into diagrammatic representations in order to find the initial diagrams to which the
operations are applied. Next, the system applies diagrammatic inference rules in the
hope to discover a diagrammatic proof. We discuss later the method for automatically
choosing the inference rules.

The second possible starting point for a diagrammatic reasoning system is not from a
sententially represented theorem, but from any combination of diagrams. The oper-
ations are applied in the hope that they result in some “interesting” combination of
diagrams. The mapping relation dmap is used to give the usual sentential interpret-
ation of the diagrams and the operations on them. Clearly, we need to define some
criteria as to what is an interesting combination of diagrams. Perhaps, a library of
sententially expressed theorems could provide a look-up facility to decide if the result
is in the library of interesting problems. Another possibility is for the user to decide
whether the proof of a theorem is of interest or not.

Next, we need to define a method of choosing the diagrammatic inference steps, i.e.
the operations that are applied to diagrams, which is employed in the search for a
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proof of a theorem. The first obvious mechanism that springs to mind to achieve auto-
matic discovery of proofs is to exhaustively apply the available geometric operations on
concrete cases of diagrams in the hope that something interesting will emerge. Given
simple initial diagrams and a limited repertoire of geometric operations this might
be tractable. Later, we could control search for the diagrammatic proof by encoding
several heuristics. For example:

e A heuristic which determines the particular kind (i.e. version) of an operation
that is possible, or is sensible, to be applied to the diagram (e.g. it is sensible to
cut a square so as to preserve right angles and respect the recursive definition of
a square whenever possible).

e Detect when it is impossible to generate a certain construction with the available
operations on a particular diagram (e.g. it is impossible to split a square of odd
magnitude into four identical squares).

e Additional pieces of knowledge of certain properties (e.g. geometric properties of
diagrams).

These heuristics could be encoded as proof methods, so we could employ proof planning
[Bundy 88] to use them to guide the search for a diagrammatic proof. Using the heur-
istics, several possible sequences of operations on concrete diagrams can be generated
automatically. Subsequently, they need to be abstracted to form a general proof. It
seems plausible that an appropriate representation of the problem might give us clues
as to how to achieve this. George Pdlya in his book Mathematical Discovery [Pdlya 65]
argues that the choice of the representation of the problem is vital to finding its solu-
tion. We could consider this suggestion more closely, as will be discussed next. It
appears that different representations of the same diagram will lead to a discovery of
different diagrammatic proofs, and subsequently different formal mathematical proofs.

11.8 The Nature of Various Knowledge Representations

Pélya suggests in [Pdlya 65] that if a problem is well represented it can become trivial
to solve. Of course, the difficulty is in finding a good problem (knowledge) repres-
entation which makes the solution transparent. Many people have given the same
advice, and studied how a good representation of a problem can be chosen. Some
of the most influential work in the field of knowledge representation has been done
by Simon [Simon 96], Larkin [Larkin & Simon 87], Sloman [Sloman 71], [Sloman 85],
[Sloman 96], Hayes [Hayes 74], Stenning and Oberlander [Stenning & Oberlander 95],
and many others.

Despite having so many books and papers published on the choice of a good repres-
entation, there is still no good answer as to how to find “the best” suited problem
representation. Many arguments have been debated about the expressiveness and ef-
ficacy of diagrammatic in comparison to sentential, usually logical, representations.
Rather than trying to establish the difference between these two classes of representa-
tion it might be more fruitful to look into how each can be used, and where each proves
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to be more useful. In addition, studies into how the two modes of representation can
be used in parallel can be carried out.

To investigate various types of knowledge representation in order to give some mean-
ingful characterisation of when a particular representation is better, e.g. when is it
better to use diagrams than sentential logical representation to teach logic to under-
graduate students, is an ambitious undertaking. The investigation could be broken
down into a number of tasks:

e identification of various types of knowledge representation (e.g. diagrammatic,
sentential, audible, etc.),

e characterisation of each type of knowledge representation (e.g. in terms of ex-
pressiveness, efficacy, etc.),

e psychological validity testing to determine when each type of representation is
used (e.g. when teaching geometry, algebra, etc.),

e devise tests to see when one representation is better than the other.

All of these tasks are hard and require extensive knowledge from various fields. The
suggested research could therefore, be carried out in collaboration between scientists
from various fields such as psychology, cognitive science, artificial intelligence, computer
science and mathematics. Useful and promising results of such a research project would
make a significant impact on the many different branches of science, but in particular
on the automation of reasoning systems.

11.9 Summary

The research reported in this thesis makes some advances in the investigation on the
automation of human mathematical reasoning with diagrams. There are many more
issues which we would like to study further, but fall out of the scope of this research
project. We reported on some of these in this chapter.

We divided the future tasks into two groups, namely the medium—term tasks and
the long term research ideas. Amongst the medium term tasks we discussed some
possible improvements of DIAMOND which correspond to its limitations discussed in
§9.5. We suggested to implement more diagrams and operations on them which could
enable a user to prove more theorems. Then, we suggested how to improve DIAMOND’s
abstraction mechanism which extracts a general schematic proof from ground instances
of proofs. Three aspects of the abstraction mechanism were of particular interest

the complexity of the structure of schematic proofs, the complexity of dependency
functions, and the flexibility of the order of diagrammatic operations in examples of
proofs. We suggested to improve the abstraction mechanism so that it can extract
schematic proofs of increased complexity of structure and dependency functions, and
greater flexibility of the order of operations. We then suggested how to improve the
implementation of the theory of diagrams to allow for a greater number of schematic
proofs to be verified. The last medium—term task we suggested was to improve the
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user interface to DIAMOND by devising a new or improving upon the three-dimensional
virtual reality type environment designed by [Farrow 97].

Amongst the long term research ideas that we proposed is a formalisation of abstrac-
tions in diagrams to enable one to reason with diagrams of general magnitude. We
suggested an exact internal sentential representation O which captures the general-
ity of a length of a list in much the same way as ) for the summation. A portray
function could be used to display diagrams externally on the screen to the user in a
diagrammatic form using abstractions such as ellipsis.

Another long term task is to extend the approach to reasoning in DIAMOND to other
domains. We suggested geometry in mathematics, and other fields like hardware veri-
fication in computer science.

To us, the most appealing long—term task for further work is to extend DIAMOND from
a semi-automatic proof checking system to a completely automated theorem prover
capable of discovering diagrammatic proofs of theorems. The first method that comes
to mind is to exhaustively apply diagrammatic operations on various (combinations
of) diagrams in the hope that something interesting will emerge. The proof search can
later be controlled by the use of heuristics which encode certain specialised knowledge
of geometry or other properties of diagrams.

Finally, another interesting research project which is suggested investigates the nature
of different kinds of knowledge representations. Many scientists have studied this field,
but it appears to be a difficult topic to study. We suggested some starting points for
research which we hope could lead to promising results.
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in PENROSE’s Mathematical Intelligence and in NELSEN’s Proofs Without Words

We hope that we have convinced the reader that diagrams are a reasoning tool worthy
of investigation. Despite the fact that humans frequently use diagrams when proving
theorems, diagrams are not generally accepted as a tool for formal reasoning. We have
shown that diagrams can be used in formal proofs, and moreover that such diagram-
matic reasoning can indeed be formalised and emulated on machines. Our formalisation
of automated diagrammatic reasoning is embodied in a semi-automatic diagrammatic
proof system DIAMOND which allows a user to construct diagrammatic proofs of math-
ematical theorems. In this way we responded to Penrose’s challenge of claiming that
diagrammatic proofs, such as the one he presented about the sum of hexagonal num-
bers (demonstrated in the picture above) cannot be automated. DIAMOND cannot yet
automatically find a diagrammatic proof of this particular theorem. Nevertheless, we
have shown that the approach to reasoning embodied in DIAMOND allows automa-
tion of a theorem prover which proves theorems, including the one given by Penrose,
diagrammatically.

193
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12.1 Contributions

In the introduction of this thesis, we set out three main contributions of our research.
Here we discuss each of these in more detail and argue whether we achieved the aims
and fulfilled the promises that we set ourselves. These three contributions are:

e our mechanisation of diagrammatic reasoning is a novel approach to automated
reasoning,

e we show that diagrams can be used in formal proofs,

e we show how general diagrammatic proofs can be extracted from examples of
proofs, so abstractions are not needed in diagrams.

12.1.1 Automating Diagrammatic Reasoning

The first automated reasoning systems were implemented in the Fifties when Newell
and Simon built a program that could prove simple theorems of propositional logic
[Newell & Simon 63]. There has been a lot of interest since in the automation of the-
orem proving, and as a result we nowadays have very many complex systems including
Ngthm by [Boyer & Moore 90], Isabelle by [Paulson 86], Nuprl by [Constable et al 86],
and Clam by [Bundy et al 91]. All of these reasoning systems use the usual sentential
logical representations, such as sequent calculus, for mathematical reasoning. The sys-
tems use the rules of some chosen logic in order to generate a proof of a theorem of
mathematics.

In subsequent years formal mathematical logic has been considered as one of very
few tools which is rigorous enough to base automated reasoning systems on. A more
“informal” aspect of human mathematical reasoning, such as the use of diagrams to
convey truths of statements, has been neglected. However, in the past two decades,
researchers have looked into how more “informal” aspects of human mathematical
reasoning, especially the use of diagrams, can these be incorporated to automated
reasoning systems. In particular, one of the first systems to use diagrams to guide a
search for proofs was Gelernter’s Geometry Machine [Gelernter 63]. The systems which
have been devised since (e.g. GROVER [Barker-Plummer & Bailin 92] and Hyperproof
[Barwise & Etchemendy 94]) use diagrams to model the problem and to guide the
search for what is essentially a sentential logical proof.

Our research and the realisation of DIAMOND is new in the area of automated reasoning.
In the realisation of DIAMOND we consider more closely how diagrams can be used for
reasoning. The usual sentential logical inference rules are replaced in DIAMOND by geo-
metric operations on diagrams. Rather than constructing proofs by chaining together
logical formulae, proofs in DIAMOND are constructed by applying various combinations
of geometric operations to diagrams. Unlike most existing theorem provers which use
only logical formulae in proofs, DIAMOND uses only geometric operations to construct
proofs. Moreover, unlike the Geometry Machine and other systems that use diagrams
in some way, and use a combination of sentential and diagrammatic inference rules,
DIAMOND uses only diagrammatic inference rules. No logical formulae are needed
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when constructing proofs. The construction of proofs in DIAMOND is supported by
machinery which ensures that DIAMOND’s diagrammatic proof is a correct proof of a
theorem.

In the realisation of DIAMOND we made several other contributions. These are:

e Multiple representations of diagrams have been devised. Their use is equivalent
to using different representations of a problem. The solution to a problem can
be obtained depending on whether the right representation is used. Such an
approach to knowledge representation illuminates how to use Pdlya’s advice on
the importance of appropriate representations [Pdlya 65].

e A graphical user interface which allows an easy interactive construction of dia-
grammatic proofs was implemented. Various kinds of diagrams and operations
on them have been implemented and are available to the user via this graphical
user interface. Previously implemented systems (such as the Geometry Machine)
have no or very limited graphical interface.

12.1.2 Can Diagrams Be Used In Formal Proofs?

Diagrams have been used as an aid in reasoning for centuries. At the turn of this
century the invention of rigorous axiomatic logical reasoning made a significant impact
on the notion of formal reasoning. Part of this influence was a belief that diagrams are
not rigorous enough to be used as a tool in formal reasoning. However, in the last two
decades this belief has changed, and we can observe an increased interest in research
on re-establishing a formal role of diagrams in reasoning.

Our semi-automatic proof system DIAMOND is a realisation of a formalisation of dia-
grammatic reasoning. Our research contributes to the effort of showing that diagrams
can indeed be used as a tool for formal automated rather than just informal human
mathematical reasoning. DIAMOND provides an environment in which diagrammatic
proofs of mathematical theorems can be constructed. The method of diagrammatic
proof construction in DIAMOND consists of three steps:

1. The user can construct instances of a diagrammatic proof using various combin-
ations of diagrams and operations applied to them. All diagrams are concrete,
drawn for a particular value of a universally quantified variable.

2. D1IAMOND then automatically extracts a general diagrammatic proof from these
instances. DIAMOND’s diagrammatic proof is captured by a recursively defined
schematic proof, and consists of a general number of applications of geometric
operations.

3. In DIAMOND we have a machinery which can formally show whether a diagram-
matic proof is correct or not. This machinery is embodied in a theory of diagrams
in which DIAMOND can automatically formally verify an extracted diagrammatic
schematic proof.
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The extraction of a schematic proof is an educated guess made by a machine of what
looks like the most likely proof of a theorem, given some example proofs. The diagram-
matic theory which is provided in DIAMOND is a formal theory in which DIAMOND can
check that this guess was indeed correct. In this way, we ensure that a diagrammatic
proof is a correct proof of a theorem in a formal logical sense.

We showed that the formalisation of diagrammatic reasoning that was devised in our
research can be extended from a natural number arithmetic to other domains, such as
geometry. Thus, diagrams can be used as a formal reasoning tool for problem solving
in other domains. The main conclusion that we can draw from this is that the neglect
of the use of diagrams in reasoning due to the belief that diagrams are not formal or
rigorous enough device is not justified. By implementing a diagrammatic reasoning
system DIAMOND we show that diagrammatic reasoning can be formal.

12.1.3 Diagrammatic Proofs

The research into machine learning techniques for generalisation or abstraction, as we
refer to it, was a vibrant area in the sixties and seventies. One of the first algorithms
for abstraction was devised by Plotkin ([Plotkin 69],[Plotkin 71]) which attempts to
find the least general term from specific examples. Since then, many variations of
Plotkin’s abstraction algorithm have been invented, all specialised for particular classes
of problems.

Another contribution which we made in the realisation of DIAMOND is a variation of an
algorithm for abstraction. The abstraction in DIAMOND is used to extract schematic
proofs from examples of interactively constructed concrete proofs. A schematic proof is
a recursive program which constitutes a diagrammatic proof of a theorem. DIAMOND’s
abstraction mechanism uses aspects of existing techniques, especially that of Baker
[Baker 93], and extends them in order to be able to abstract:

e the dependency function which specifies the number of applications of a geometric
operation to a diagram (this function is linearly dependent on the parameter n)
— previous techniques do not seem to be capable of doing this,

e the recursive structure of the schematic proof very few existing techniques
seems to be capable of extracting automatically a recursive structure from ex-
amples,

e a general schematic proof from only two examples — other abstraction tech-
niques (in the sense of inductive learning, rather than analytic learning from one
example) require more examples.

Baker explored the use of the constructive w-rule, a stronger alternative to the induction
rule, for logical proofs of arithmetic theorems. The constructive w-rule requires the
provision of a uniform computable procedure which by instantiation produces a proof
for a corresponding instance of a theorem. Baker used schematic proofs to provide this
uniform procedure. The use of constructive w-rule allows a technique for extracting
proofs from instances of proof by providing a justification that a correct schematic
proof is a formal proof of a theorem.
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We extended Baker’s work from arithmetic theorems to diagrammatic reasoning. Us-
ing the constructive w-rule in schematic proofs allows reasoning with instances of a
diagrammatic proof. Therefore, the diagrams which are employed in instances of a
proof can be concrete rather than abstract. In this way we avoid the need for a formal-
isation of abstractions (e.g. ellipsis) in general diagrams, and so avoid difficulties with
such representations.

Rather than using meta induction to verify schematic proofs, as Baker did, we devised
a diagrammatic theory where schematic proofs can be checked for their correctness
without any need for meta induction. Meta induction on diagrams is open to problems
because it requires reasoning with general diagrams which use abstractions. In our
theory of diagrams, the verification of schematic proofs seems to require only simple
standard induction, while at the same time it removes the need to formalise abstractions
in diagrams.

12.1.4 The Human Mathematician and DIAMOND

The realisation of DIAMOND is a valuable research project in its own right which is
evident by the contributions made to several aspects of computer science mentioned
in the preceding few sections. Here, we propose to cognitive scientists a potential
for using a D1IAMOND-like system in experiments which would test the psychological
validity of diagrammatic reasoning. The implications of a potentially positive result of
such testing could have an impact on various fields, but especially in teaching students
mathematics.

D1AMOND provides an architecture for the construction of diagrammatic proofs. Our
belief is that diagrammatic proofs of the kind that we presented in this thesis are more
easily understood by humans than their corresponding algebraic proofs. However,
we have not carried out any psychological validity testing on human mathematicians
which would empirically support our belief. DIAMOND provides an architecture which
could be used by cognitive scientists as a basis for testing to what extent novice or
expert mathematicians find diagrammatic proofs more intuitively understood than
algebraic proofs. Moreover, DIAMOND can be used as an environment which enables
users to explore reasoning with diagrams and thus, hopefully gain an understanding
into a diagrammatic proof of a theorem. If the outcome of such a comparative study
supports our belief, then this would suggest that DiAMOND-like systems could be a
useful teaching tool for studying elementary mathematics.

12.2 Have We Achieved the Aims?

We hope the reader is convinced by now that the aims which we set ourselves in the
beginning of this research project and were outlined in Chapter 1 have been achieved.
We automated parts of mathematical reasoning with diagrams in the domain of natural
number arithmetic — the realisation of our research is a semi-automatic proof system
DiaAMOND. Diagrammatic proofs are formed from examples that the user constructs
by applying geometric operations to diagrams. DIAMOND extracts the structure com-
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mon to these examples and represents it in the form of a recursive program, called a
schematic proof, which consists of a general number of applications of operations to
diagrams. We devised a theory of diagrams in which DIAMOND formally verifies the
correctness of a schematic proof. If the schematic proof is correct, then it constitutes
a formal diagrammatic proof of a theorem.

Our research shows that despite the fact that diagrams have been denied a formal role
in theorem proving, they can be used as a formal tool for mathematical reasoning.
Unlike many other existing systems, diagrams in DIAMOND are not used as a model of
a problem to find an essentially algebraic proof of a theorem, but are used directly to
reason with them.

There are many aspects of our research which could be developed and extended further.
DI1AMOND could be extended to continuous space, and thus geometry, or even further
to other fields of science, such as hardware verification in computer science. Ultimately,
we hope that DIAMOND could be extended to a theorem prover capable of discovering
diagrammatic proofs for itself.



Appendix A

More Examples of Diagrammatic
Theorems

Here we give more examples of theorems and their diagrammatic proofs. These ex-
amples, in addition to the ones given in Chapter 3 plus others from [Nelsen 93],
[Lakatos 76] and [Gamow 62], are analysed to motivate a taxonomy of diagrammatic
theorems in order to choose a problem domain (see §3.5) for this research project.

The examples are given in terms of diagrams to which operations are applied, followed
by a description of the proof. Finally, we examine these proofs to identify the required
repertoire of geometric operations, and to formalise the general structure of diagram-
matic proofs. The following examples of theorems are presented: Pythagoras’ theorem,
two different triangular equalities, sum of all naturals, and FEuler’s theorem. Note that
the proof of Fuler’s theorem is an example of an erroneous schematic proof. Some dis-
cussion about this proof was carried out in §4.6, but for more information, the reader
is referred to [Lakatos 76]. The theorems that a user can prove using DIAMOND are
both triangular equalities and the sum of all naturals. For a set of complete results,
i.e. all the theorems which can be proved using DIAMOND, see Appendix B.

A.1 Pythagoras’ Theorem II

Pythagoras’ Theorem states that the square of the hypotenuse of a right angle triangle
equals the sum of the squares of its other two sides. Here is another diagrammatic
proof of this theorem which is different to the one given in §3.2.2 and is taken from
[Nelsen 93, page 4]:

2 =a?+b?
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The diagrammatic proof demonstrated in the picture consists of taking any right angle
triangle with a hypotenuse ¢ and two sides ¢ and b. We now join to this triangle along
its shorter side another identical right angle triangle with its longer side touching the
shorter side of the first triangle. We take a third identical right angle triangle and join
to the second triangle in the same way as before. We repeat the same process for the
fourth triangle which is joined to the third and also the first triangle. Notice that this
process forms a square of magnitude ¢ which is the hypotenuse. Note also that in the
middle, there will be another smaller square formed. Therefore, this formation justifies
the following equation ¢? = 4%” + small_square.

Now, we rearrange the diagram forming the square of magnitude ¢ by moving two of
those right angle triangles, and joining them along their hypotenuse to the remaining
two triangles. Notice now that the smaller square is joined to the shorter side on a
triangle to form its longer side, thus the magnitude of the smaller square is a —b. Hence
we have that ¢ = 4% + (a — b)? = 2ab + a® — 2ab + b* = a® + b2

We now give a structured diagrammatic proof:

e 3Xx join a triangle with its shorter side along the longer side of another triangle
(to create 90 degrees angle),

e 2x move a triangle and join it along a hypotenuse of another triangle.

A.2 Triangular Equality for Odd Squares

The following is a proof of the equality of triangular numbers for odd squares. The
example is taken from [Nelsen 93, page 101]. The theorem and its diagrammatic
proof can be demonstrated as follows:

(2n 4+ 1) =8T, + 1

The proof consists of taking a square of magnitude 2n + 1 for a particular value of
n. We then split from it the middle dot. This results in a thick frame. We split
this frame into four rectangles. Note that two of the rectangles will be of magnitude
(n+1) xn, and two of them will be of magnitude n x (n+1). We split now each of the
rectangles diagonally. This results in the formation of eight triangles of magnitude n.
Considering the dot in the beginning we have (2n+1)? = 8T}, + 1. Here is a structured
diagrammatic proof:
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e 1x split a middle dot from a square,
e 1x split a frame into rectangles,

e 4x split a rectangle down its diagonal.

A.3 Even Triangular Sum

The following is a proof of the equality of even triangular numbers. The example is
taken from [Nelsen 93, page 104]. The theorem and its diagrammatic proof can be
demonstrated as follows:

TQn = 3Tn + Tnfl

Note that without using the definition of triangular number, this theorem could be
restated into the following:

1+2+3+- 4+ =31+243+ - +n)+(1+2+3+---+ (n—1))

The diagrammatic proof of this theorem takes a triangle of magnitude 2n for some
particular value of n (in the example above n = 4). This triangle is then split into the
biggest possible square and two other triangles. Notice that this operation creates two
triangles of magnitude n and a square of magnitude n. Next, a square is split down the
middle, which results in two triangles, one of magnitude n and the other of magnitude
n — 1. Hence, we have three triangles of magnitude n and one of magnitude n — 1.

Here is a structured diagrammatic proof:

e 1x split a triangle into two triangles and a square,

e 1x split a square down its diagonal.

A.4 Sum of All Natural Numbers

The theorem about the sum of natural numbers and its diagrammatic proof are taken
from [Nelsen 93, page 69]. They can be stated as follows:
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nx (n+1)

5 =1+4+2+3+-+n

A diagrammatic proof starts by taking an n by n + 1 rectangle. Cut it down the
diagonal so that two identical isosceles triangles whose sides are of length n are formed.
Now, take one of the triangles and split a side from it. Continue splitting sides until
a triangle is exhausted. Note that in this way one gets the enumeration of natural
numbers forming a triangle, and one triangle is half of the enumeration of points of
the rectangle. Note also that we apply operations to both sides of the equality. Here
is a structured diagrammatic proof:

e 1x split a rectangle down its diagonal,

e nx split a side from a triangle.

A.5 Euler’s Theorem

Euler’s theorem about polyhedra states that:
V-E+F=2

where V' is the number of vertices, F is the number of edges, and F' is the number of
faces of a polyhedron. The example is taken from [Lakatos 76] and [Gamow 62, pages
47-48]. The diagrammatic proof of this theorem goes as follows:

(@ (b) ©

@ © ("
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Take any simple polyhedron (note that in our case, we take a cube, but the result
is the same for any simple polyhedron). Imagine that it is hollow, and that its faces
are made out of rubber (see (a) of the diagram above). Now, remove one face from
the polyhedron, and stretch the rest of the polyhedron onto the plane (see (b) of
the diagram). Note that since we have taken one face off, our formula should be
V — E+ F = 1. Note also that the relations between the vertices, edges and faces are
preserved in this way. Triangulate all of the faces of this plane network (i.e. we are
adding the same number of edges and faces to the network, so the formula remains
the same — see (c) of the diagram). Now, start removing the boundary edges (see
(d) of the diagram). This will have the effect of removing an edge and a face from
the network at the same time, so our formula is still preserved. We continue removing
edges in appropriate order (see (e)), thus preserving the formula, until we are left with
one triangle only. Clearly, for this triangle V — E + F = 1 where there are three
vertices, three edges and one face. Here is a structured diagrammatic proof:

e remove one face from any given polyhedron,

stretch the rest of the polyhedron onto the plane,

triangulate all of the faces that are not triangles already,

remove the boundary edges one after another, until you are left with a single
triangle.

Notice that this structured diagrammatic schematic proof is erroneous when applied
to any polyhedron. The reader is referred to [Lakatos 76] for a number of counter
examples for this theorem and its proof. We describe it because it helps us to analyse
various kinds of diagrammatic proofs in order to define a problem domain in §3.5. The
erroneous diagrammatic schematic proof is also of interest in the discussion about the
psychological validity of schematic proofs addressed in §4.6. The theorem holds for all
simple polyhedra.
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Complete Results

Here we present the complete set of results corresponding to the table in Figure 9.1.
The results are given in terms of:

e an example proof for a particular value of the parameter n including the pictures
involved in the construction of a proof,

e the schematic proof that DIAMOND automatically extracts, and,
e the statement of a verification theorem which needs to be proved to ensure that

the schematic proof is a correct proof of a theorem, and a result of this verification,
i.e. if Clam succeeded to find a proof plan of this theorem.

B.1 Sum of Odd Naturals

Example Proof

e00/00

i=0
This diagram is given for n = 6.
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Schematic Proof

proof(n +1) = [(lcut,1)], proof(n)
proof(0) = ]

Verification Proof

The verification theorem is expressed as:
n
apply(proof(n), [diagram(square, [n])]) = L—lj diagram(ell, [1])
i=0

which is proved by an induction strategy (i.e. base case and step case) and the base
case method.

B.2 Sum of All Naturals

Example Proof

n
n(n+1) -
7 =
i=0
This diagram is given for n = 5.
Schematic Proof
proof(n 4+ 1) = [(split_side,1)], proof(n)

proof(0) =[]

Verification Proof
The verification theorem for proof is expressed as:

apply(proof(n), [diagram(triangle, [n])]) = L—Ij diagram(side, [i])
=0
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which is proved by an induction strategy (i.e. base case and step case) and the base
case method.

Notice that the example proofs are generated using only the solid part of the diagram,
i.e. the triangle. The right hand side part of the diagram shows that a triangle is
half of the rectangle of size (n + 1) by n. This will be diagrammatically proved in the
next section. We use the right hand side part of the diagram, because other literature
[Nelsen 93] uses this diagram to demonstrate a proof of the sum of all naturals. There,
it is assumed that in the proof half of a rectangle is cut away. However, in DIAMOND
the operations are based on the preservation of dots, hence diagrams can only be split
apart. Using the dotted part of the diagram, the theorem for DIAMOND would read:

n

(n+)n = (;z’) + L”‘; D)
B.3 0Odd Triangular Sum
Example Proof
°
°o0
oo o
XXX
XXX
' N XX NI
XN X EILN)
o0 000000
o0 000000

Trigns1 = Trigsr + 3T,

This diagram is given for n = 4.

Schematic Proof

proof(n) = [(split_tst,1), (cut_diagonally, 1)]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(triangle, [2n + 1])])

diagram(triangle, [n + 1]) :: (3 ® [diagram(triangle, [1n])])

which is proved by the base case method.
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B.4 Even Triangles

Example Proof

Tv@nzzij(u2wgfn

1=0
This diagram is given for n = 4.
Schematic Proof
proof(n +1) = [(lcut,1)], proof(n)
proof(0) =[]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(triangle, [2n])]) = L—ﬂ diagram(ell, [21])
i=0

which is proved by an induction strategy (i.e. base case and step case) and the base
case method.

B.5 0Odd Square

Example Proof

n
2n+1)2=14+4(> 2i)
i=0
This diagram is given for the instance n = 3.



208 APPENDIX B. COMPLETE RESULTS

Schematic Proof

proof(n + 1)
proof(1)

[(split_outer_frame, 1), (split_frame, 1)], proof(n)

[]

Verification Proof
The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(square, [2n + 1])])
d

diagram(square, [1]) :: (4 ® l¥J;_, diagram(row, [2]]))

which is proved by an induction strategy (i.e. base case and step case) and the base
case method.

B.6 Fibonacci Sum

Example Proof

n
Fib, Fiby1 = > Fib;
=0

This diagram is given for n = 4.
Schematic Proof

proof(n + 1)
proof (0)

[(split_sqr, 1)], proof(n)

[
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Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(rectangle, [F'ib(n + 1), Fib(n)])])

;- diagram(square, [F'ib(i)])

which is proved by an induction strategy (i.e. base case and step case) and the base
case method.

B.7 0Odd Triangles

Example Proof

i=0
This diagram is given for n = 4.
Schematic Proof
proof(n +1) = [(lcut,1)], proof(n)
proof(0) =[]

Verification Proof

The verification theorem for the schematic proof is expressed as:

n
apply(proof(n), [diagram(triangle, [2n — 1])]) = L—ij diagram(ell, [27 — 1])
=0
A proof plan for this verification theorem cannot be found using the verification mech-
anism implemented in Clam, because Clam is not good with non-constructive functions
such as the predecessor function. The theorem can be restated so that it contains no
predecessor functions, but its schematic proof would then be different.
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B.8 0Odd Naturals

Example Proof

This diagram is given for n = 5.

Schematic Proof

proof(n +1) = [(split-dia_ends, 1)], proof(n)
proof(1) =[]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(ell, [n])])

diagram(row, [1]) :: (i7" diagram(row, [1]))@(l¢J}",' diagram(column, [1]))

A proof plan for this verification theorem cannot be found using the verification mech-
anism implemented in Clam for the same reasons as in §B.7.

B.9 Sum of Two Triangles

Example Proof

nin+1) =

This diagram is given for n = 5.



B.10. EVEN TRIANGULAR SUM 211

Schematic Proof

proof(n) = [(cut_diagonally,1)]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(rectangle, [n + 1, n])])

[diagram(triangle, [n]), diagram(triangle, [n])]
which is proved by the base case method.

B.10 Even Triangular Sum

Example Proof

Trioy = Trig_1 + 3Tri,

This diagram is given for n = 4.

Schematic Proof

proof(n) = [(split_tst, 1), (cut_diagonally, 1)]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n + 1), [diagram(triangle, [2(n + 1)])])

[diagram(triangle, [n])]@Q(3 ® [diagram(triangle, [n + 1])])

which is proved by the base case method. Note that the verification proof is for n + 1
rather than n to eliminate the need for a predecessor function which is required in
Tri,_1. This is needed because Clam cannot deal effectively with the predecessor
functions. The transformation of a verification theorem so that it is for n 4+ 1 is done
on an ad hoc basis.
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B.11 Triangular Equality for Odd Squares

Example Proof

1)? =8Tri, + 1

DN
S
+

(

This diagram is given for n = 3.

Schematic Proof

proof(n) = [(split_inner_dot, 1), (split_tframe, 1), (cut_diagonally, 4)]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(square, [2n + 1])])

(8 ® [diagram(triangle, [n])]@[diagram(row, [1])])

which is proved by the base case method.

B.12 Triangular Equality for Even Squares

Example Proof

(2n)? = 8Tri, 1 + 4n

This diagram is given for n = 4.
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Schematic Proof

proof(n) = [(split2four, 1), (cut_diagonally, 4), (split_side, 4)]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n + 1), [diagram(square, [2(n + 1)])])

(8 @ [diagram(triangle, [n])])@(4 ® [diagram(row, [n + 1])])

which is proved by the base case method. Note that the verification proof is for n + 1
rather than n to eliminate the need for a predecessor function which is required in
T’I“?jnfl.

B.13 Commutativity of Multiplication

Example Proof

o000 0O
o000 0O 000000
0000 00000000
00000 —— > 00000O0O0CO
o000 0O 000000
o000 0O 000000
0000
0000

nx(n+3)=(n+3)xn

This diagram is given for the instance n = 5. Note that this is not a general case
of commutativity of multiplication, because the second argument of multiplication is
not independent of the first argument. DIAMOND can extract schematic proofs for one
universally quantified variable. Hence, if the second argument of multiplication was
another universally quantified variable then DIAMOND would be incapable of extracting
a schematic proof.

Schematic Proof

proof(n) = [(rotate90,1)]

Verification Proof

The verification theorem for the schematic proof is expressed as:

apply(proof(n), [diagram(rectangle, [n,n + 3])])

[diagram(rectangle, [n + 3,n])]
which is proved by the base case method.
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User Manual for DiIAMOND

Here we give some basic instructions for constructing diagrammatic proofs using Di1A-
MOND. In §C.1 we explain how to start up a DIAMOND session. In §C.2 we show the
user how to construct examples of a diagrammatic proof. Some discussion about the
abstraction of a schematic proof is given in §C.3, and about its correctness in §C.4.
In §C.5 we explain how to store diagrammatic proofs and how to reuse them in some
other proofs. Finally, we address some miscellaneous issues in §C.6.

C.1 Starting Up

D1AMOND is a proof system which allows you to construct diagrammatic proofs. There
are three main principles that you should keep in mind:

e DiaMOND allows the user to construct theorems of natural number arithmetic
with one universally quantified variable — parameter n (see Chapter 3). Note
that natural numbers are represented in DIAMOND as collections of dots forming
a diagram.

e The user needs to construct two instances of a diagrammatic proof, i.e. for two
values of the parameter n (see Chapter 5 and Chapter 6).

e DIAMOND can automatically extract a general schematic proof (see Chapter 7)
and check if it is a correct proof of a theorem (see Chapter 8).

The software needed to run DIAMOND includes Standard ML of New Jersey Version

109, Tcl/Tk, SmlTk, Clam, and of course, DIAMOND. In Appendix D we give detailed
instructions for obtaining all the necessary code.

The user starts by running SmlTk. At the prompt, you write:
use "root.sml";

and then wait for about five minutes, depending on how fast your machine is. Note
that during loading DIAMOND a window called clam-server will pop up. When the
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code for DIAMOND is compiled and loaded, you can start DIAMOND. To begin with a
DIAMOND session you type at the prompt:

Diamond.go () ;

Two more windows will emerge, the main one called DIAMOND and another one called
PROOF TRACE. You will construct proofs in the main window. The menus of the
main window called DIAMOND are explained in more detail in §5.6. The PROOF
TRACE window keeps track of all your steps, so you can see what has been done so
far. Now you are ready to construct diagrammatic proofs with DIAMOND.

C.2 Constructing Examples of Proofs

If you just want to explore various combinations of diagrams and operations, then
choose from the menu a diagram of your choice and click on the diagram to choose the
operations available to you.

If you want to construct a diagrammatic proof, then you should have in mind a theorem
for which you want to find a proof. Type the theorem into the field labelled by Theorem:
using the syntax of DIAMOND (see §8.10.2). The theorem should be expressed as an
equality. Now type into the field labelled by Value of n: the instance of the theorem
for which you will construct an example proof.

Now choose from a Diagram menu diagrams that you think represent one side of the
theorem. Note that the instance of each diagram that is chosen has to be the same as
the value of n that you entered. You can apply the operations that are available to you
for a particular diagram by pointing to a diagram and clicking on it with the middle
button of your mouse. The left button of your mouse can be used to move diagrams
around.

Once you are finished with the operations, and you have transformed the initial dia-
grams so that they now represent the other side of the equality expressing the theorem,
you can save your example proof by clicking on the button called Store Example.

To get a general proof you will need to construct another example proof for another
instance of a theorem, i.e. value of n. You may choose any instance, apart from the
base case of the proof, because the base case might be a special case, i.e. different
from the other uniform cases. If there are more cases of proofs, say one for even n and
one for odd n then you need to construct two example proofs for the same case of the
proof. Enter the the value of n in the appropriate field. Also, make sure you follow the
restriction on the order of operations in both example proofs (see §5.4 and §11.2.3).
Once you have another example proof remember to store it.

C.3 Abstracted Schematic Proof

By this point you should have two examples of a diagrammatic proof constructed and
saved. To try to get a general schematic proof click on a button called Abstract
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Examples.

If the abstraction is successful and the proof is 1-homogeneous (see §7.3) then the
abstracted schematic proof is complete. You should proceed to verify that it is correct.

If the abstracted schematic proof is c-homogeneous, then there are ¢ cases of the proof.
You have constructed only the proof for numbers that give a remainder r when divided
by ¢, where r < ¢. To derive the smallest complete definition of a schematic proof, you
need to supply examples proofs which when abstracted form schematic proofs for the
numbers that give the other remainders ' when divided by ¢, where 7’ # r and 7’ < c.
See §7.3 and §7.6 for more explanation of c-homogeneous schematic proofs.

If the abstraction from example proofs that you constructed is not successful, then
there are various things that might have gone wrong. Please, check the limitations
of DIAMOND in §9.5 for some restrictions that need to be followed in DIAMOND to
date. If these requirements are not satisfied in the construction of example proofs then
D1AMOND’s abstraction mechanism fails to extract a schematic proof.

C.4 Is it Correct?

You now should have the smallest complete recursive definition of a schematic proof
called proof. The schematic proof needs to be checked to be correct to ensure that it is
a correct formal proof of a theorem. Read some limitations of DIAMOND’s verification
mechanism in §9.5.3 to check which kinds of schematic proofs you cannot verify in
DI1AMOND to date.

You should be able to verify 1-homogeneous schematic proofs. To do so, choose Verify
from the menu and select Verify Schema which will check the correctness of your
currently abstracted schematic proof. You can follow the verification process, which is
carried out in Clam, in the window called clam-server. DIAMOND will inform you if
the schematic proof could be verified. If the verification fails, you can check for some
possible reasons in §9.5.3.

C.5 Import — Export

Once you have verified the schematic proof you can save it on disk for future investig-
ation or use in other proofs. Note that you can also save unverified schematic proofs.
To do so, choose Save from the File menu.

In case you want to use previously stored proofs in your current example proof, you
can add them to your currently available library by selecting Import Schema from the
File menu. The schematic proof will be added to the Library and Replay menu.
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C.6 Miscellaneous

Other features that DIAMOND provides include replaying schematic proofs and brows-
ing through the library of schematic proofs. Given that a schematic proof has been
stored on the disk and then imported into the current DIAMOND session, then the proof
is available for browsing at any point during the session from the Library menu.

The user can also watch a simulation of an example proof process by instantiating an
available, 4.e. imported, schematic proof. This is called a “replay”. The user is required
to provide the value for n, i.e. the instance for which a replay should be simulated.
Selecting Replay from the menu will start a simulation.
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Code

Here we give instructions for obtaining the code for DIAMOND by anonymous ftp or by
accessing the ftp site web page of the Mathematical Reasoning Group in the Depart-
ment of Artificial Intelligence at Edinburgh University.

D.1 Ftp and Web Site Instructions

The code for DIAMOND is available by anonymous ftp from dream.dai.ed.ac.uk in
the directory pub/misc.

D.1.1 Step by Step Instructions

To retrieve a copy of the code from the ftp server please follow this example.

% ftp dream.dai.ed.ac.uk

220 achtriochtan FTP server (Sun0S 4.1) ready.

Name : anonymous

Password: (please enter your email address)
(it is not seen on the screen )

ftp> cd pub/misc

ftp> binary

ftp> get Diamond.v1.0.tar.Z (or latest numbered version )

ftp> quit

% uncompress Diamond.v1.0.tar.Z
If you want to use a web browser then access the following web page

file: //dream.dai.ed.ac.uk/pub/misc/

and click on the file named Diamond.v1.0.tar.Z and save it into your file space.
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You now have a tar file Diamond.v1.0.tar which can be extracted into the code
for the system. If you do not have uncompress or tar please contact your sys-
tem administrator. If you encounter any problems with this service please email
gordon@dai.ed.ac.uk with details.

D.2 Other Software Needed

You will also need the following software:

Standard ML of New Jersey version 109 : Publicly available from the following
web page:
http://cm.bell-labs.com/cm/cs/what/smlnj/index.html

Tecl/ Tk Publicly available from the following web page:
http://www.scriptics.com/

SmlTk Publicly available from the following web page:
http://www.informatik.uni-bremen.de/” cx1l/sml_tk/

Clam version 2.7.0 Publicly available from the following web page:
http://dream.dai.ed.ac.uk/

D.3 Getting Started

Follow the instructions on the listed web pages to install all the systems. The top level
file is called root.sml. To run DIAMOND you will need to change the path names in
the file root.sml to reflect the location of the files on your system. Consult the User
Manual in Appendix C for instructions on how to start a DIAMOND session.
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Abstract Diagram

An abstract diagram is a general diagram given for some general value, and uses
abstractions such as ellipsis to represent the generality (cf. concrete diagram).

Abstraction

Abstraction is sometimes referred to as inductive inference, inductive learning or
generalisation. It is a process of extracting a general argument from its examples.
In this thesis it refers to extracting a schematic proof from example proofs.

Another meaning of abstraction in this thesis is to refer to an abstraction device,
such as ellipsis, to represent general diagrams (c¢f. abstract diagram)

Algebraic (Logical) Proof

An algebraic proof is a proof in some logical theory consisting of chains of logical
formulae of this theory. The proofs starts from some axioms and applies the
chain of formulae to the axioms to arrive at the statement of the theorem.

Concrete Diagram

A concrete diagram is an instance of an abstract diagram, and is given for some
particular values. No abstractions are needed to represent it (¢f. abstract dia-
gram).

Dependency Function

A dependency function is a linear function which by instantiation generates a
natural number. This natural number indicates how many times a geometric
operation is applied to the same instance of a diagram.

Diagrammatic Inference Steps

Diagrammatic inference steps are the geometric operations applied to a diagram.
Chains of diagrammatic inference rules, specified by the schematic proof, form
the diagrammatic proof of a theorem.
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Diagrammatic Proof

A diagrammatic proof is a schematic proof which has been checked to be correct
(¢f. schematic proof).

Example Proof

An example proof is a proof of an instance of a theorem of natural number
arithmetic. It is an instance of a general diagrammatic proof. It is a list of
operations applied in the proof. Several example proofs are used to extract a
general diagrammatic proof.

General Diagram

See abstract diagram.

r-Homogeneous Proofs

An z-homogeneous proof is a schematic proof for which there are z cases of
the proof, for all values less or equal to . The proof is z-homogeneous if all
instances of the proof (for instances of numbers that equal modulo z) have the
same structure and can be abstracted to a schematic proof. All = cases need to
be defined to have the smallest complete definition of a general diagrammatic
proof.

Instance of Proof

See example proof.

Instance of Theorem

An instance of a theorem is an instantiation of a universally quantified theorem
for a particular value of a quantifier.

Instantiation

Instantiation is a process of replacing a variable with some value. Instantiation
of a function is a process of assigning values to the arguments of the function
and evaluating the function for these values.

Internal Representation

An internal representation of a diagram is a structure, or a data type used in-
ternally on the computer to represent a diagram.

Meta Induction

A meta induction is a rule of inference in some logical theory which makes an
assertion about proofs rather than object level statements.
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Meta Level Statement

A meta level statement is a statement about an object level statement, using
some logical theory.

Multiple Representation

A multiple representation of a diagram is a collection of different ways of viewing
the same diagram. For instance, a square can be viewed as a collection of columns
or as a collection of rows.

Object Level Statement

An object level statement is a well-formed term, proof or inference step of the
logic in use.

Operations

See diagrammatic inference steps.

Proof Method

A proof method is a partial specification of a tactic. Applying a method to a
goal generates a list of subgoals that need to be proved. A method specifies the
proof steps that the tactic performs to construct an object level proof.

Proof Plan

Proof plan is an abstract proof specification consisting of methods which need to
be applied to get an object level proof. A proof plan is found by proof planning.

Proof Planning

Proof planning is a technique for finding proofs for mathematical theorems. The
possible operators available at any stage are restricted to a set of tactics, whose
preconditions are specified as methods.

Proof Tactic

A proof tactic is a program whose execution carries out part of a proof. It consists
of a sequence of inference rules in some proof checking system.

Recursive Function

A recursive function is a function which appeals to itself without an infinite
regression.

Rippling
Rippling is a process of rewriting formulae using special annotations (for more
information see [Bundy et al 93]).
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Schematic Proof

A schematic proof is a recursive function describing a proof of some proposition
P(n) in terms of n. A diagrammatic schematic proof specifies the geometric
operations which need to be applied in the proof.

Sentential Inference Steps

Sentential inference steps are logical rewrite formulae (c¢f. diagrammatic inference
steps) used in an algebraic (logical) proof.

Standard Induction

A standard induction is a rule of inference in some logical theory which makes
an assertion about an object level statements (cf. meta induction).
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