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models. One of the popular techniques used, originating with Grimson andLozano-Perez [8], involves searching the correspondence space by traversing aninterpretation tree. In practice an exhaustive search is intractable so researchershave devised various constraint based methods to prune the tree [7]. The searchcan be terminated after a small number of feature correspondences have beenaccumulated, enough to constrain the transform between the model and imageframes, and a test performed to see which transformed model features havecorrespondences in the image. Such an algorithm belongs to the hypothesise-and-test paradigm [6, 4] and is adopted in this paper. In the last few years,stochastic methods, which we also employ, have become standard for handlingsensor uncertainty in vision and robotics [1, 5, 10].The aim of the paper is to investigate whether the hypothesis-and-testmethod using interpretation trees and stochastic techniques is fast enough forfusing range images. Our own sensor can acquire and process range images inabout two seconds so we want to fuse them in this time or less. Typically, animage will contain about ten surface patches while the world model will containthousands. We do not assume any prior knowledge of the position of the sensorrelative to the world model coordinate frame, rather this is something we wantto �nd out.Each surface patch in the image or model is described by the in�nite plane inwhich it is embedded, an outer boundary, the boundaries of any holes, a totalsurface area and a central point. The outer boundary consists of a sequenceof labeled straight line segments, the labels indicating boundary type (concavejoin, convex join and occluding or occluded edge) and any adjacency relationswith other surfaces. The true 4-dimensional parameter vector of the in�niteembedding plane, p, is a concatenation of the surface's outward normal vectorand �1 times its perpendicular distance from the coordinate origin such that[xT 1]p = 0 (1)for any point x in the plane. In practice what is speci�ed is an estimate, p̂, of pand a 4-by-4 covariance matrix, P , expressing the uncertainty associated withthe estimate. Similarly, the other numerical parameters (area, central point,and so on) are speci�ed by estimates and uncertainties.The next section describes interpretation trees. Stochastic techniques areused to provide constraint inequalities and transform estimates. The idea ofswitching from an exponential to a quadratic search when su�cient correspon-dences have been accumulated [3] is also explored. Section 3 then analyses thecomputation costs and predicts average running times for solving interpretationtree problems of a given size. A �nal section presents our conclusions and ideasfor further work. 2



2 Interpretation TreesThe interpretation tree [8, 7] is a mechanism for exploring di�erent combinationsof image features from a set fdig; 1 � i � D, with model features from a setfmjg; 1 � j �M . Usually, we cannot assume that each di has a correspondencein the set fmjg and an extra model feature, the often called wild card, must beadded, increasing the number of models to M + 1. In this case the number ofnodes in the tree is DXi=0(M + 1)i � (M + 1)D:It is immediately obvious that searching the entire tree will take too long whichis why constraints are used to �nd inconsistent combinations and cause thesearch to backtrack.2.1 ConstraintsIf some node in the tree is found to contain an inconsistency, all nodes belowit must contain the same inconsistency and so it is pointless to search for asolution amongst them. We examine below unary and binary constraints whichmust be satis�ed by consistent pairings.2.1.1 Unary ConstraintsUnary constraints are used to test whether a single pairing is plausible on thebasis of directly comparable attributes of the data and model features. In ourcase, since the features are surface patches, the most obvious attribute to use isarea. If (âi; Ai) and (b̂j; Bj) are the data and model surface area estimates andvariances then d = (âi � b̂j)2Ai +Bjis the Mahalanobis distance separating them which has a �2 distribution. Thegreater this distance, the less likely it is that the two measurements refer to thesame feature. In fact it is possible to choose a threshold on the value of d (froma �2 table) such that if it is exceeded then the probability that random noisealone has made âi and b̂j di�erent is less than a certain amount. For example,if d > 3:84 then there is only a 5% chance that the di�erence is due to noiseand if we decide, on that basis, that the two measurements are not of the samesurface then we have a 5% chance of being wrong.The problem with using area estimates is that they are often inaccurate dueto partial occlusion. The accuracy with which the area of a partially occluded3



Figure 1: The probability of two unrelated surfaces passing the unary constrainton area as a function of the fractional error in area.surface can be estimated depends on how much area is visible, so we associatea fraction � of the estimated visible area â with its standard deviation. Figure1 shows the empirically estimated probability, p1, of two unrelated surfacespassing the unary constraint as a function of �, the fractional error in area(here, and throughout the paper, we use a 5% threshold for �2 tests).2.1.2 Binary ConstraintsBefore adding a new pairing, (di+1;mji+1), to an existing partial interpretationat level i, Ii = f(d1;mj1); (d2;mj2); :::(di;mji)g;the new pairing can be checked against each old pairing to ensure that togetherthey satisfy any available constraints on pairs of pairings. These binary con-straints often involve notions of invariance: something is the same in both theimage and the model. They can be expressed as equations for the case in whichthe feature's parameters are known precisely or as inequalities when, as alwaysin practice, there is uncertainty. It is relatively straightforward to generate con-straint inequalities from constraint equations using stochastic techniques [1].Suppose g(v1;v2;u1;u2) = 04



is the constraint equation relating the true image parameter vectors v1 and v2to the true model parameter vectors u1 and u2. When we only know estimatesv̂i and ûi and if g is a linear function or the noise is small then2G = 2Xi=1 " @g@viVi� @g@vi�T + @g@uiUi� @g@ui�T# (2)is the covariance of g. Vi and Ui are the covariance matrices associated withthe estimates v̂i and ûi. The Mahalanobis distance isd = gTG�1g (3)(g and its derivatives being evaluated at the estimates) and has, to �rst order,a �2 distribution. Thus the constraint is sati�ed ifd < � (4)where � is taken from a standard tabulation of �2 thresholds for various numbersof degrees of freedom (the dimension of g) and various con�dence limits.For dealing with surface patches we use the constraints that the angle be-tween surface normals and the distance between central points is invariant. Inthe �rst case we can identify vi and ui with surface normals in the image andmodel respectively while the constraint function and its variance (which areboth scalars) evaluated at the estimates areg = v̂T1 v̂2 � ûT1 û2G = v̂T2 V1v̂2 + v̂T1 V2v̂1 + ûT2 U1û2 + ûT1 U2û1: (5)In the second case, namely the invariance of the (squared) distance betweencentral points, the parameters vi and ui are the central points and the constraintfunction and its variance (again, both scalars) areg = (v̂1 � v̂2)T (v̂1 � v̂2)� (û1 � û2)T (û1 � û2)G = 4[(v̂1 � v̂2)T (V1 + V2)(v̂1 � v̂2) + (û1 � û2)T (U1 + U2)(û1 � û2)]: (6)The e�ectiveness of such constraints as these depends on the probability ofunrelated features being able to conspire randomly to satisfy the constraint. Ifthis probability is too high, then the constraint will not be very e�ective atpruning the tree. Figure 2 shows the experimentally determined probabilityof two and three pairs of randomly generated planes conspiring to satisfy theinvariant angles constraint as a function of error. The error is the standarddeviation on each component of the planes' normal vectors. It is apparent that5



Figure 2: The probability that two and three pairs of random planes pass theinvariant angles binary constraint as a function of the error associated with eachcomponent of the surface normal vectors.as the error increases the probability of random combinations of planes beingable to satisfy the constraints also increases.The same trend appears in Figure 3 which shows the probability of twoand three pairs of central points conspiring to satisfy the invariant distanceconstraint as a function of the fractional error in area. There are two maindi�erences from the invariant angles case discussed previously. First, there is adependency on the volume of space in which the image and model points aredistributed since, for a given error, there is a greater chance of the constraint be-ing satis�ed if the points are sampled from a smaller volume. We have assumedthat the image points come from a cubic volume of 100m3 and the model pointsare distributed inside a volume of 10000m3, roughly simulating the situationwhere the robot is viewing a room while maintaining a model of a building.The second di�erence is in the size and shape of the error envelopes aroundeach central point. Surfaces are often partially occluded, either by the imageedge or by foreground objects, so the uncertainty in their central points can bemainly due to their full extent not being visible rather than to the limited rangeresolution of the sensor. However, this uncertainty occurs only in the plane ofthe surface. Perpendicular to the plane it is possible to locate the points with2De�ning the Jacobian @y=@x = [rxyT ]T6



Figure 3: The probability that two and three pairs of random planes will passthe invariant distance binary constraint as a function of the fractional error insurface area.the full accuracy of the sensor (about 0:02m in our case). To generate Figure 3we modeled the uncertainty accordingly by ensuring that the covariance matrixof each surface's central point had an eigenvector parallel to the surface normalwith a relatively small eigenvalue. The error perpendicular to the surface normalwe related to the fractional error in area, � (see Section 2.1.1), since once againthe uncertainty of the estimate depends on how much area is visible.Our own laser ranger typically gives errors of about 0:05 in the componentsof unit direction vectors and range errors of about 2cm. The uncertainty asso-ciated with surface central points will vary from case to case as di�erent partsand amounts of surfaces are occluded but an average value of 0:5 for � seemsreasonable. With these parameter values, we estimate the probabilities for twoand three pairs satisfying the combined binary constraints asp2 � 2� 10�2;p3 � 7� 10�5:7



2.1.3 E�cient Computation of Binary ConstraintsIn both invariant angle and invariant distance cases the expression for G, thecovariance of g, involves terms of the form xTAx, where x is a column vectorand A is a covariance matrix. Since covariance matrices are real and symmetric,we can use the Rayleigh-Ritz theorem [9] to set bounds on the terms xTAx, thenon G and, ultimately, on the Mahalanobis distance d (Equation 3). The pointof doing this is that calculating bounds on G is quicker than calculating itsvalue and the bounds may be su�cient for determining the result of the test inEquation 4. When the bounds include the threshold � the exact value G muststill be computed but, on average, the computation time for performing the testwill be reduced.The Rayleigh-Ritz theorem states that for a real symmetric matrix A whichhas minimum and maximum eigenvalues �min(A) and �max(A)�min(A) � xTAxxTx � �max(A) 8x 6= 0When a matrix is diagonal, its minimum and maximum eigenvalues are theminimum and maximum diagonal entries and so are easy to calculate. In thegeneral case there are no simple bounds on the largest and smallest eigenvalues.However, the eigenvalues of a covariance matrix, which is positive de�nite, areall positive so �max(A) � trace(A)because the trace of a matrix is the sum of its eigenvalues. So for covariancematrices we at least have an easy upper bound on G and a corresponding lowerbound on the Mahalanobis distance d (Equation 3). This is useful because mostof the time the constraint will be testing false hypotheses, d will be large andits lower bound will be greater than the threshold �.For the invariant angles constraint, noting that for unit directions ûTi ûi =v̂Ti v̂i = 1, G (Equation 5) is bounded above byG � trace(V1 + U1) + trace(V2 + U2)For the invariant distance constraint G (Equation 6) is bounded above by4 �trace(V1 + V2)(v̂1 � v̂2)T (v̂1 � v̂2) + trace(U1 + U2)(û1 � û2)T (û1 � û2)� :Most of the calculations involved in performing this quick test can be reusedif, when the lower bound on d is lower than �, the exact value of G still has tobe calculated. We found that the average computation time was reduced by afactor of about �ve by the incorporation of this quick test.8



2.2 Estimating a TransformationOnce a partial interpretation acquires three or more pairings which do not in-volve the wild card (we will call them proper pairings) it is possible to estimatethe transformation from the image to model reference frames. We use a similarformulation to Ayache and Faugeras [1] involving an iterated extended Kalman�lter [2]. The Kalman �lter is a tool for estimating a state vector and its co-variance from a number of observation vectors and their covariances and linearmeasurement equations relating each observation to the state. The iteratedextended form of the �lter is an adaptation for non-linear measurement equa-tions. In our case, each pairing of an image plane to a model plane contributesone 8-dimensional observation vector, [q̂Ti p̂Ti ]T , together with an 8-by-8 co-variance matrix, towards the estimation of a 6-dimensional state vector. Thestate vector, [rT tT ]T , contains the six parameters of the transformation fromimage to model frames: three for rotation, r, and three for translation, t. Themeasurement equation is pi = � R 0tTR 1 �qj (7)where R is a rotation matrix parameterised by r. We used the parameterisationwhere r is the product of the rotation angle and the rotation axis [1, 5, 11].Successively better estimates, [rTi tTi ]T , i = 1; 2; 3, and smaller state covariancematrices are generated by the �lter as each observation is processed. Somecare is needed in the choice of [rT0 tT0 ]T to initialise the sequence and ensure agood linearisation of the measurement equation [11]. We found that an e�ectivemethod was to use the three sets of estimates, [q̂Ti p̂Ti ]T , to generate an analyticsolution as if they were uncorrupted by noise and to use this as the initialestimate.Satisfaction of the binary constraints by three pairs of corresponding planepatches does not ensure that a transformation can be found which maps thedata planes onto the model planes, because the constraints discussed in Section2.1.2 do not exclude the possibility that the relationship between the two setsof planes involves a reection. Consequently we must impose consistency testson the observations used to estimate the transform and reject the three pairingsif any of the tests fail. Each test consists of evaluating the functiong(r; t;p;q) = p� � R 0tTR 1 �qand its covariance matrix, G, at the estimates r̂i�1 and t̂i�1 (derived fromthe previous i � 1 observations) and p̂i and q̂i from the current one. If theMahalanobis distance, gTG�1g, is larger than the appropriate �2 limit then thetest fails. With random data there is exactly one chance in two that there will be9



a reective component in the relationship between the data and model surfacespassing the binary tests, so the probability, pT , of obtaining a consistent andaccurate transform estimate is 0:5.2.3 Switching to a Quadratic SearchOnce in possession of a good estimate of position it is possible to transform theset of image plane parameters with their covariances, f(q̂i; Qi)g, into the worldmodel reference frame obtaining f(ŝi; Si)g. These can be compared with themodel plane parameters and their covariances, f(p̂j; Pj)g, using a Mahalanobisdistance of dij = (ŝi � p̂j)T (Si + Pj)�1(ŝi � p̂j)based on the measurement equation si � pj = 0.A similar technique to that used in Section 2.1.3 can be used here to speedup the average computation time for calculating and testing the value of dij. Alower bound on dij isdij � �min((Si + Pj)�1)(ŝi � p̂j)T (ŝi � p̂j)= (ŝi � p̂j)T (ŝi � p̂j)�max(Si + Pj)� (ŝi � p̂j)T (ŝi � p̂j)trace(Si + Pj) :We found that checking if this lower bound was greater than the chosen �2threshold before resorting to inverting the matrix (Si+Pj) resulted in a decreasein average computation time of about one order of magnitude.The �rst step of transforming all the image planes can be accomplished witha Kalman �lter. Equation 7 above (with pi replaced by si) is again used as themeasurement equation but this time with the observation vector [qTi rT tT ]T andstate vector si. Any further pairings of image and model planes passing the testare added to the original three and the complete set of pairings, together withits estimated transform (which can be further re�ned using the new pairings),are stored as a candidate solution.2.4 Interpreting the Candidate SolutionsWhen the tree has been completely searched the list of candidate solutionsis examined. If there are no candidate solutions then we can conclude thatall the surfaces in the image are being observed for the �rst time and mustsimply be inserted into the world model with covariances reecting the fact that10



little is known about where they are (unless there is some information from therobot's odometry). If there is only one solution we can transform all the imagesurfaces into the world frame, update those surfaces in the world model whichparticipated in the solution and insert the others as new additions observedfor the �rst time. The latter will be relatively accurately placed because thecorrespondence solution has enabled a good estimate of the image to modeltransform.If there is more than one candidate solution then there are two cases toconsider. In the �rst case, all the solutions are mutually exclusive (no twocontain the same pairing). One of these will probably correspond to the set ofstatic surfaces in the scene which haven't moved between building up the worldmodel and acquiring the image. The other solutions will correspond to groupsof three or more surfaces which have changed position together (i.e. belongto moving objects). These surfaces cannot be updated in the world modelbecause their parameters have changed. The old surfaces must be deleted andreplaced by their counterparts in new positions. Odometry, if there is any, canbe employed to help choose which solution corresponds to the static part of thescene. The alternative is to examine the kinds of surfaces participating in eachsolution. The static scene is likely to include more large surfaces (walls, oorsand so on) than the moving objects.In the second case not all candidate solutions are mutually exclusive and sothere are competing solutions either in terms of di�erent model surfaces for thesame image surface or di�erent transforms for the same pairings. Again, therobot's own position estimate might help in making the right choice, but in thelast resort it may be necessary to discard a particular image as presenting anunresolvable conict and instruct the robot to move somewhere else for the nextview of the world.3 Complexity AnalysisWe now derive an expression for the average time required to search the treeas a function of the critical parameters listed in Table 1. We examine thecase where both the model and image surfaces are randomly and independentlygenerated so that there is no correspondence between them. The analysis wouldbe somewhat di�erent if a correspondence existed but the case we examine isrelatively simple to analyse while still being a useful guide to the complexity.It will at least provide a lower bound to the time required to search a tree ofa given size. As well as search time, we want to predict how many spurioussolutions are likely to be produced by random conspiracies of surfaces in theimage and world model passing the consistency tests.Table 1 lists those parameters which are critical to the search time together11



description name estimateprobability of random pass of unary constraint p1 0.8probability of random conspiracy of two pairs p2 2� 10�2probability of random conspiracy of three pairs p3 7� 10�5probability of �nding a consistent transform pT 0.5time to evaluate one unary constraint tU 2� 10�5time to evaluate one binary constraint tB 2� 10�4time to estimate a transform tE 2� 10�1time to transform a data plane tT 2� 10�2time to compare two planes in the same frame tC 1� 10�4Table 1: Parameters used in the complexity analysis. Times are in seconds.with estimates for them. The probability p1 corresponds to the use of theunary constraint on area for a fractional error of � = 0:5 (see Figure 1). Theprobabilities p2 and p3, estimated in Section 2.1.2, determine how e�cient thebinary constraints are in pruning the tree. The probability pT (see Section 2.2) isthe probability of �nding a consistent transform for three pairs of planes whichpass the binary constraint tests. The bulk of the search time will be spentperforming either unary or binary tests, estimations of a transform from threepairings, transforms of data surfaces into the model frame and comparisons ofplanes in the model frame. Table 1 gives estimates of the average time, (inseconds), required to perform each of these tasks on a SUN Sparcstation. Thebinary test time, tB , and the plane comparison time, tC , correspond to thee�cient versions discussed in Sections 2.1.3 and 2.3, respectively.The number of unary tests that have to be carried out is only MD andthe time to compute one unary test is small compared to the other operations.Consequently, the contribution of unary tests to the overall running time isnegligibly small. The total number of binary constraint tests performed onaverage isp21M2� D2 �+ p2(1 + p2)p31M3� D3 � � p21M2D26 (3 + p1p2MD)(for M;D � 1 and p2 � 1). The �rst term arises from tests of the consistencyof nodes which have exactly two proper pairings. The second term arises fromtesting the consistency of a third proper pairing being added to those nodeswhich survived the previous test. The subterm (1 + p2) is explained by thefact that it is unnecessary to perform the second binary test if the �rst failswhen combining a third pairing with two existing ones. The total number oftransform estimates made at nodes which have three proper pairings and have12



survived the binary constraint tests isp3p31M3� D3 � � p3p31M3D36 :Only pT of these will give rise to a consistent transform estimate, the restwill involve reection. For each solution which survives after the transformestimate, D � 3 image surfaces have to be transformed into the world modeland so there are pTp3p31M3(D � 3)� D3 � � pTp3p31M3D46such transformations. Each transformed data surface has to be compared to allM model surfaces (since we allow the same model surface to match di�erentimage surfaces) and there are in totalpTp3p31M4(D � 3)� D3 � � pTp3p31M4D46of these comparisons. Thus the total time to search the tree is approximatelyp21M2D26 [(3 + p2p1MD)tB + p3p1MD(tE + pTD(tT +MtC))]:Note that as M and D get very large the search time is dominated by the terminvolvingM4D4, namely the time for the surface comparisons in the quadraticsearch.The number of solutions with at least three proper pairings, all spurioussince both the model and data surfaces are random, ispTp3p31M3� D3 � � pTp3p31M3D36 :Figure 4 shows the variation of search time (in seconds) with number ofmodel surfaces (M ) for three representative values for the number of image sur-faces (D). The estimates in Table 1 have been used for the critical parameters.Clearly, as M and D get large the search becomes intractable.These results show that even for moderate sized problems the search timeis too large. One way to reduce the search time in a dramatic fashion is tostructure the world model. Instead of treating it as a single collection of a largenumber of surfaces, treat it as multiple collections of small numbers of surfaces.The intuition here is that the sensor cannot be in two places at the same timeand the correspondence problem becomes the problem of recognising which partof the world model is being viewed. This makes our way of handling data fusion13



Figure 4: The variation of search time with M for three values of D.even more like object recognition because the image features are compared to anumber of di�erent models each with a relatively small number of features.To illustrate, suppose we have an image containing ten surface features and aworld model containing 50 groups of 20 surfaces each, for a total of 1000 features.From Figure 4 we see that such a problem, with M = 1000 and D = 10, wouldrequire a search time of about thirty days. If, instead of searching one largetree, we search 50 small trees with M = 20 and D = 10 then the search timereduces to 50� 14 seconds � 12 minutes.We do not yet know a good set of general principles for partitioning theworld model into separate parts. However, for indoor scenes, with which weare primarily interested, an obvious choice is to make each room one part,discovering rooms by the six or more large inward facing surfaces which enclosethem. As the robot could conceivably view two rooms at once, it may benecessary to base each part of the world model on the interfaces (doors) betweenrooms, thus allowing parts to contain the same features. For example, if roomA is connected to room B and B is connected to room C then the parts ofthe world model based on the doors connecting A to B and B to C will bothcontain the features of room B. The governing principle here is that whateverthe robot views it should all be contained in one part of the world model.14



4 ConclusionsGrimson [7] has shown that for recognising objects in cluttered environmentsthe basic interpretation tree approach leads to a search which is exponentialin the worst case, despite the use of unary and binary constraints. We haveshown that if a switch is made to a quadratic search when enough pairings haveaccumulated to make a motion estimate (three, in our case) then the averagetime complexity is a polynomial of low degree in the number of image andmodel features (D and M respectively). While this is better than exponential,the relatively expensive stochastic computations and the size of a typical worldmodel mean that large search times are inevitable. The single most e�ectivesolution to this problem is, we believe, to divide the world model into parts.This makes a considerable di�erence in the search time and also reduces thenumber of spurious solutions. We are currently investigating this method inmore detail.However, even with a good partitioning of the world model our work has someway to go before we can reach the goal of fusing a range image in two seconds andwe are exploring a number of other avenues for further improvement. Increasedaccuracy results in a decrease in the values of p2 and p3 and a strengtheningof the pruning power of the constraints, so more accurate sensing would help.Exploiting other sorts of information such as colour, texture or shape wouldstrengthen the power of the unary constraint (decrease the value of p1). Anotherway is to order the tree in terms of most likely pairings �rst, least likely last.This requires single attribute comparisons of the sort used for unary constraints(to do the ordering) along with some notion of what a \good" solution is (to stopthe search). Whenever a good solution is found, the model and image surfacesparticipating in it can be removed from consideration before continuing to searchfor any remaining correspondences. One �nal possibility is to be selective aboutwhich surfaces from the image and world model are allowed to participate in thesearch for a correspondence, in order to keep the values of M and D as low aspossible. It would make sense to focus on large unoccluded surfaces with smalluncertainties. It should be borne in mind that we are not assuming any priorknowledge about where the sensor is. In practice, although the robot may takea relatively long time to discover where it is starting from scratch, thereafter theknowledge gained about its whereabouts can be exploited to reduce the amountof search required for subsequent data, since it is not likely to move very farbetween successive observations.References[1] N. Ayache and O.D. Faugeras. Maintaining representations of the environ-15
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