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Abstract

We investigate the use of interpretation trees to solve the correspon-
dence problem for a mobile robot fusing data from a range image into
a world model consisting of planar surface patches. Uncertainty is han-
dled by stochastic techniques where errors are represented by normal joint
probability distributions. We show that for problems of a typical size the
search time is too long unless the world model can be structured into parts
only one of which can be occupied by the robot at any given moment.

1 Introduction

This paper is concerned with the correspondence problem within the context
of data fusion for a mobile robot. We restrict our attention to the case of a
single range imaging sensor delivering planar surface patch features which are
to be fused into a world model which also consists of planar patches. A separate
problem, which we do not cover here, is how to update the world model once
the correspondences have been established, a problem which is not easy because
of partial occlusion.

A similar correspondence problem arises in the computer recognition of ob-
jects where the concern is to match image features with features from object
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models. One of the popular techniques used, originating with Grimson and
Lozano-Perez [8], involves searching the correspondence space by traversing an
interpretation tree. In practice an exhaustive search is intractable so researchers
have devised various constraint based methods to prune the tree [7]. The search
can be terminated after a small number of feature correspondences have been
accumulated, enough to constrain the transform between the model and image
frames, and a test performed to see which transformed model features have
correspondences in the image. Such an algorithm belongs to the hypothesise-
and-test paradigm [6, 4] and is adopted in this paper. In the last few years,
stochastic methods, which we also employ, have become standard for handling
sensor uncertainty in vision and robotics [1, 5, 10].

The aim of the paper is to investigate whether the hypothesis-and-test
method using interpretation trees and stochastic techniques is fast enough for
fusing range images. Our own sensor can acquire and process range images in
about two seconds so we want to fuse them in this time or less. Typically, an
image will contain about ten surface patches while the world model will contain
thousands. We do not assume any prior knowledge of the position of the sensor
relative to the world model coordinate frame, rather this is something we want
to find out.

Each surface patch in the image or model is described by the infinite plane in
which it is embedded, an outer boundary, the boundaries of any holes, a total
surface area and a central point. The outer boundary consists of a sequence
of labeled straight line segments, the labels indicating boundary type (concave
join, convex join and occluding or occluded edge) and any adjacency relations
with other surfaces. The true 4-dimensional parameter vector of the infinite
embedding plane, p, is a concatenation of the surface’s outward normal vector
and %1 times its perpendicular distance from the coordinate origin such that

[x" 1]p = 0 (1)

for any point x in the plane. In practice what is specified is an estimate, p, of p
and a 4-by-4 covariance matrix, P, expressing the uncertainty associated with
the estimate. Similarly, the other numerical parameters (area, central point,
and so on) are specified by estimates and uncertainties.

The next section describes interpretation trees. Stochastic techniques are
used to provide constraint inequalities and transform estimates. The i1dea of
switching from an exponential to a quadratic search when sufficient correspon-
dences have been accumulated [3] is also explored. Section 3 then analyses the
computation costs and predicts average running times for solving interpretation
tree problems of a given size. A final section presents our conclusions and ideas
for further work.



2 Interpretation Trees

The interpretation tree [8, 7] is a mechanism for exploring different combinations
of image features from a set {d;}, 1 < i < D, with model features from a set
{m;}, 1 <j < M. Usually, we cannot assume that each d; has a correspondence
in the set {m;} and an extra model feature, the often called wild card, must be
added, increasing the number of models to M + 1. In this case the number of

nodes in the tree is
D

SM+1) & (M+1)".
i=0
It is immediately obvious that searching the entire tree will take too long which

1s why constraints are used to find inconsistent combinations and cause the
search to backtrack.

2.1 Constraints

If some node in the tree is found to contain an inconsistency, all nodes below
it must contain the same inconsistency and so it is pointless to search for a
solution amongst them. We examine below unary and binary constraints which
must be satisfied by consistent pairings.

2.1.1 Unary Constraints

Unary constraints are used to test whether a single pairing is plausible on the
basis of directly comparable attributes of the data and model features. In our
case, since the features are surface patches, the most obvious attribute to use is
area. If (a;, A;) and (I;j, B;) are the data and model surface area estimates and
variances then .

(a; —bj)*

A + B]'

is the Mahalanobis distance separating them which has a y? distribution. The
greater this distance, the less likely it is that the two measurements refer to the
same feature. In fact it is possible to choose a threshold on the value of d (from
a x? table) such that if it is exceeded then the probability that random noise
alone has made a; and I;j different is less than a certain amount. For example,
if d > 3.84 then there is only a 5% chance that the difference is due to noise
and if we decide, on that basis, that the two measurements are not of the same
surface then we have a 5% chance of being wrong.

The problem with using area estimates is that they are often inaccurate due
to partial occlusion. The accuracy with which the area of a partially occluded
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Figure 1: The probability of two unrelated surfaces passing the unary constraint
on area as a function of the fractional error in area.

surface can be estimated depends on how much area is visible, so we associate
a fraction & of the estimated visible area @ with its standard deviation. Figure
1 shows the empirically estimated probability, p;, of two unrelated surfaces
passing the unary constraint as a function of x, the fractional error in area
(here, and throughout the paper, we use a 5% threshold for y? tests).

2.1.2 Binary Constraints

Before adding a new pairing, (d;4+1,m;,,,), to an existing partial interpretation
at level 1,

I = {(dl’ mjl)’ (d2’ mjz)’ "'(di’ mjz)}’

the new pairing can be checked against each old pairing to ensure that together
they satisfy any available constraints on pairs of pairings. These binary con-
straints often involve notions of invariance: something i1s the same in both the
image and the model. They can be expressed as equations for the case in which
the feature’s parameters are known precisely or as inequalities when, as always
in practice, there is uncertainty. It is relatively straightforward to generate con-
straint inequalities from constraint equations using stochastic techniques [1].
Suppose
g(vi,va,up,uz) = 0



is the constraint equation relating the true image parameter vectors vi and vo
to the true model parameter vectors u; and uy. When we only know estimates
v; and 1; and if g is a linear function or the noise is small then?

Jg ag\" | O ag \"

—V; | == —U; | — 2
0v; (3%’) + Ju; ou; @
is the covariance of g. V; and U; are the covariance matrices associated with
the estimates v; and u;. The Mahalanobis distance 1s

2

o=y

i=1

d =g'G™'g (3)

(g and its derivatives being evaluated at the estimates) and has, to first order,
a x2 distribution. Thus the constraint is satified if

d < ¢ (4)

where ¢ is taken from a standard tabulation of x? thresholds for various numbers
of degrees of freedom (the dimension of g) and various confidence limits.

For dealing with surface patches we use the constraints that the angle be-
tween surface normals and the distance between central points is invariant. In
the first case we can identify v; and u; with surface normals in the image and
model respectively while the constraint function and its variance (which are
both scalars) evaluated at the estimates are

g =v
G = vIVive +vIVov, +ulUyay + af Usa,. (5)

In the second case, namely the invariance of the (squared) distance between
central points, the parameters v; and u; are the central points and the constraint
function and its variance (again, both scalars) are

g = (‘71 - {’2)T({’1 - {’2) - (ﬁ1 - ﬁz)T(ﬁ1 - ﬁz)
G = 4[(vi — vo)" (Vi + Va)(v1 = Vo) + (g — )" (U1 + Uz)(i1 — w2)]. (6)

The effectiveness of such constraints as these depends on the probability of
unrelated features being able to conspire randomly to satisfy the constraint. If
this probability is too high, then the constraint will not be very effective at
pruning the tree. Figure 2 shows the experimentally determined probability
of two and three pairs of randomly generated planes conspiring to satisfy the
invariant angles constraint as a function of error. The error is the standard
deviation on each component of the planes’ normal vectors. It is apparent that
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Figure 2: The probability that two and three pairs of random planes pass the
invariant angles binary constraint as a function of the error associated with each
component of the surface normal vectors.

as the error increases the probability of random combinations of planes being
able to satisfy the constraints also increases.

The same trend appears in Figure 3 which shows the probability of two
and three pairs of central points conspiring to satisfy the invariant distance
constraint as a function of the fractional error in area. There are two main
differences from the invariant angles case discussed previously. First, there is a
dependency on the volume of space in which the image and model points are
distributed since, for a given error, there is a greater chance of the constraint be-
ing satisfied if the points are sampled from a smaller volume. We have assumed
that the image points come from a cubic volume of 100m® and the model points
are distributed inside a volume of 10000m?, roughly simulating the situation
where the robot is viewing a room while maintaining a model of a building.

The second difference is in the size and shape of the error envelopes around
each central point. Surfaces are often partially occluded, either by the image
edge or by foreground objects, so the uncertainty in their central points can be
mainly due to their full extent not being visible rather than to the limited range
resolution of the sensor. However, this uncertainty occurs only in the plane of
the surface. Perpendicular to the plane it 1s possible to locate the points with

?Defining the Jacobian 9y/9%x = [Vxy7]T
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Figure 3: The probability that two and three pairs of random planes will pass
the invariant distance binary constraint as a function of the fractional error in
surface area.

the full accuracy of the sensor (about 0.02m in our case). To generate Figure 3
we modeled the uncertainty accordingly by ensuring that the covariance matrix
of each surface’s central point had an eigenvector parallel to the surface normal
with a relatively small eigenvalue. The error perpendicular to the surface normal
we related to the fractional error in area, s (see Section 2.1.1), since once again
the uncertainty of the estimate depends on how much area is visible.

Our own laser ranger typically gives errors of about 0.05 in the components
of unit direction vectors and range errors of about 2cm. The uncertainty asso-
ciated with surface central points will vary from case to case as different parts
and amounts of surfaces are occluded but an average value of 0.5 for k seems
reasonable. With these parameter values, we estimate the probabilities for two
and three pairs satisfying the combined binary constraints as

po a2 x 1072,

p3 AT x 1075,



2.1.3 Efficient Computation of Binary Constraints

In both invariant angle and invariant distance cases the expression for (G, the
covariance of g, involves terms of the form x” Ax, where x is a column vector
and A is a covariance matrix. Since covariance matrices are real and symmetric,
we can use the Rayleigh-Ritz theorem [9] to set bounds on the terms x* Ax, then
on G and, ultimately, on the Mahalanobis distance d (Equation 3). The point
of doing this is that calculating bounds on G is quicker than calculating its
value and the bounds may be sufficient for determining the result of the test in
Equation 4. When the bounds include the threshold e the exact value G must
still be computed but, on average, the computation time for performing the test
will be reduced.

The Rayleigh-Ritz theorem states that for a real symmetric matrix A which
has minimum and maximum eigenvalues Apin (A4) and Apax(A)

xT Ax
T

Amin (A) S

IN

Amax(4) Vx # 0

xT'x

When a matrix is diagonal, its minimum and maximum eigenvalues are the
minimum and maximum diagonal entries and so are easy to calculate. In the
general case there are no simple bounds on the largest and smallest eigenvalues.
However, the eigenvalues of a covariance matrix, which is positive definite, are
all positive so

Amax(4) < trace(A)

because the trace of a matrix is the sum of its eigenvalues. So for covariance
matrices we at least have an easy upper bound on (G and a corresponding lower
bound on the Mahalanobis distance d (Equation 3). This is useful because most
of the time the constraint will be testing false hypotheses, d will be large and
its lower bound will be greater than the threshold e.

For the invariant angles constraint, noting that for unit directions ulw; =
vI'v; = 1, G (Equation 5) is bounded above by

G < trace(Vy + Uy) + trace(Va + Us)

For the invariant distance constraint G (Equation 6) is bounded above by

4 [trace(Vl + VZ)({’l - {’Q)T({’l - {’2) + trace(U1 + Uz)(ﬁl - ﬁz)T(ﬁl - ﬁz)] .

Most of the calculations involved in performing this quick test can be reused
if, when the lower bound on d is lower than ¢, the exact value of G still has to
be calculated. We found that the average computation time was reduced by a
factor of about five by the incorporation of this quick test.



2.2 Estimating a Transformation

Once a partial interpretation acquires three or more pairings which do not in-
volve the wild card (we will call them proper pairings) it is possible to estimate
the transformation from the image to model reference frames. We use a similar
formulation to Ayache and Faugeras [1] involving an iterated extended Kalman
filter [2]. The Kalman filter is a tool for estimating a state vector and its co-
variance from a number of observation vectors and their covariances and linear
measurement equations relating each observation to the state. The iterated
extended form of the filter i1s an adaptation for non-linear measurement equa-
tions. In our case, each pairing of an image plane to a model plane contributes
one 8-dimensional observation vector, [qf pl]¥, together with an 8-by-8 co-
variance matrix, towards the estimation of a 6-dimensional state vector. The
state vector, [r7 t7]7, contains the six parameters of the transformation from
image to model frames: three for rotation, r, and three for translation, t. The
measurement equation 1s

pi = [tfR (1)](1]' (7)

where R is a rotation matrix parameterised by r. We used the parameterisation
where r is the product of the rotation angle and the rotation axis [1, 5, 11].
Successively better estimates, [r7 t7]7, i = 1,2, 3, and smaller state covariance
matrices are generated by the filter as each observation is processed. Some
care is needed in the choice of [r? tZ]7 to initialise the sequence and ensure a
good linearisation of the measurement equation [11]. We found that an effective
method was to use the three sets of estimates, [q] p?]7, to generate an analytic
solution as if they were uncorrupted by noise and to use this as the initial
estimate.

Satisfaction of the binary constraints by three pairs of corresponding plane
patches does not ensure that a transformation can be found which maps the
data planes onto the model planes, because the constraints discussed in Section
2.1.2 do not exclude the possibility that the relationship between the two sets
of planes involves a reflection. Consequently we must impose consistency tests
on the observations used to estimate the transform and reject the three pairings
if any of the tests fail. FEach test consists of evaluating the function

R 0
g(ratapaq) = p_|:tTR 1:|q

and its covariance matrix, (G, at the estimates r;_; and tio1 (derived from
the previous ¢ — 1 observations) and p; and q; from the current one. If the
Mahalanobis distance, g7 G~1g, is larger than the appropriate y? limit then the
test fails. With random data there is exactly one chance in two that there will be



a reflective component in the relationship between the data and model surfaces
passing the binary tests, so the probability, pr, of obtaining a consistent and
accurate transform estimate is 0.5.

2.3 Switching to a Quadratic Search

Once in possession of a good estimate of position it is possible to transform the
set of image plane parameters with their covariances, {(q;, @)}, into the world
model reference frame obtaining {(8;,.S;)}. These can be compared with the
model plane parameters and their covariances, {(p;, F;)}, using a Mahalanobis
distance of

dij = (8i = ;)" (S + P (3 — py)
based on the measurement equation s; — p; = 0.

A similar technique to that used in Section 2.1.3 can be used here to speed
up the average computation time for calculating and testing the value of d;;. A
lower bound on d;; is

v

Amin ((S: + P ™Y (5 — pj)T (8 — b))
(3 —p;j)" (i — p))

/\max(Si + P])
(3 —p;j)" (i — p))

trace(S; + P;)

We found that checking if this lower bound was greater than the chosen x?2
threshold before resorting to inverting the matrix (S; + P; ) resulted in a decrease
in average computation time of about one order of magnitude.

The first step of transforming all the image planes can be accomplished with
a Kalman filter. Equation 7 above (with p; replaced by s;) is again used as the
measurement equation but this time with the observation vector [q} % t7]7 and
state vector s;. Any further pairings of image and model planes passing the test
are added to the original three and the complete set of pairings, together with
its estimated transform (which can be further refined using the new pairings),
are stored as a candidate solution.

2.4 Interpreting the Candidate Solutions

When the tree has been completely searched the list of candidate solutions
is examined. If there are no candidate solutions then we can conclude that
all the surfaces in the image are being observed for the first time and must
simply be inserted into the world model with covariances reflecting the fact that

10



little is known about where they are (unless there is some information from the
robot’s odometry). If there is only one solution we can transform all the image
surfaces into the world frame, update those surfaces in the world model which
participated in the solution and insert the others as new additions observed
for the first time. The latter will be relatively accurately placed because the
correspondence solution has enabled a good estimate of the image to model
transform.

If there is more than one candidate solution then there are two cases to
consider. In the first case, all the solutions are mutually exclusive (no two
contain the same pairing). One of these will probably correspond to the set of
static surfaces in the scene which haven’t moved between building up the world
model and acquiring the image. The other solutions will correspond to groups
of three or more surfaces which have changed position together (i.e. belong
to moving objects). These surfaces cannot be updated in the world model
because their parameters have changed. The old surfaces must be deleted and
replaced by their counterparts in new positions. Odometry, if there is any, can
be employed to help choose which solution corresponds to the static part of the
scene. The alternative is to examine the kinds of surfaces participating in each
solution. The static scene is likely to include more large surfaces (walls, floors
and so on) than the moving objects.

In the second case not all candidate solutions are mutually exclusive and so
there are competing solutions either in terms of different model surfaces for the
same image surface or different transforms for the same pairings. Again, the
robot’s own position estimate might help in making the right choice, but in the
last resort it may be necessary to discard a particular image as presenting an
unresolvable conflict and instruct the robot to move somewhere else for the next
view of the world.

3 Complexity Analysis

We now derive an expression for the average time required to search the tree
as a function of the critical parameters listed in Table 1. We examine the
case where both the model and image surfaces are randomly and independently
generated so that there is no correspondence between them. The analysis would
be somewhat different if a correspondence existed but the case we examine is
relatively simple to analyse while still being a useful guide to the complexity.
It will at least provide a lower bound to the time required to search a tree of
a given size. As well as search time, we want to predict how many spurious
solutions are likely to be produced by random conspiracies of surfaces in the
image and world model passing the consistency tests.

Table 1 lists those parameters which are critical to the search time together

11



description name | estimate
probability of random pass of unary constraint 21 0.8
probability of random conspiracy of two pairs D2 2 x 1072
probability of random conspiracy of three pairs D3 7x107°
probability of finding a consistent transform pr 0.5
time to evaluate one unary constraint ty 2 x107°
time to evaluate one binary constraint tp 2 x 107*
time to estimate a transform tg 2% 1071
time to transform a data plane tr 2 x 1072
time to compare two planes in the same frame to 1x 107

Table 1: Parameters used in the complexity analysis. Times are in seconds.

with estimates for them. The probability p; corresponds to the use of the
unary constraint on area for a fractional error of £ = 0.5 (see Figure 1). The
probabilities ps and ps, estimated in Section 2.1.2, determine how efficient the
binary constraints are in pruning the tree. The probability pr (see Section 2.2) is
the probability of finding a consistent transform for three pairs of planes which
pass the binary constraint tests. The bulk of the search time will be spent
performing either unary or binary tests, estimations of a transform from three
pairings, transforms of data surfaces into the model frame and comparisons of
planes in the model frame. Table 1 gives estimates of the average time, (in
seconds), required to perform each of these tasks on a SUN Sparcstation. The
binary test time, tg, and the plane comparison time, to, correspond to the
efficient versions discussed in Sections 2.1.3 and 2.3, respectively.

The number of unary tests that have to be carried out is only M D and
the time to compute one unary test is small compared to the other operations.
Consequently, the contribution of unary tests to the overall running time is
negligibly small. The total number of binary constraint tests performed on
average 18

2M2D2
D) ~ U (34 pipa M D)

D
pr2< 5 )+pz(1+pz)p§’M3< 3 5

(for M, D > 1 and ps < 1). The first term arises from tests of the consistency
of nodes which have exactly two proper pairings. The second term arises from
testing the consistency of a third proper pairing being added to those nodes
which survived the previous test. The subterm (1 + ps) is explained by the
fact that it is unnecessary to perform the second binary test if the first fails
when combining a third pairing with two existing ones. The total number of
transform estimates made at nodes which have three proper pairings and have

12



survived the binary constraint tests is

D pp3M3D3
P3P?M3< ; ) ~ 31T

Only pr of these will give rise to a consistent transform estimate, the rest
will involve reflection. For each solution which survives after the transform
estimate, D — 3 image surfaces have to be transformed into the world model
and so there are

D 3M3D4
prsp?M?’(D_:;)( s ) ~ %

such transformations. Each transformed data surface has to be compared to all
M model surfaces (since we allow the same model surface to match different
image surfaces) and there are in total

D 3M4D4
prsp?M‘*(D_:;)( s ) ~ %

of these comparisons. Thus the total time to search the tree is approximately

pAM2D?

5 (3 + pap1 M D)tg + pspr1 MD(tg + prD(tr + Mtc))].

Note that as M and D get very large the search time is dominated by the term
involving M*D*, namely the time for the surface comparisons in the quadratic
search.

The number of solutions with at least three proper pairings, all spurious
since both the model and data surfaces are random, is

D prpspi M2 D?
e ((B) » P

Figure 4 shows the variation of search time (in seconds) with number of
model surfaces (M) for three representative values for the number of image sur-
faces (D). The estimates in Table 1 have been used for the critical parameters.
Clearly, as M and D get large the search becomes intractable.

These results show that even for moderate sized problems the search time
is too large. One way to reduce the search time in a dramatic fashion is to
structure the world model. Instead of treating it as a single collection of a large
number of surfaces, treat it as multiple collections of small numbers of surfaces.
The intuition here is that the sensor cannot be in two places at the same time
and the correspondence problem becomes the problem of recognising which part
of the world model is being viewed. This makes our way of handling data fusion

13
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Figure 4: The variation of search time with M for three values of D.

even more like object recognition because the image features are compared to a
number of different models each with a relatively small number of features.

To illustrate, suppose we have an image containing ten surface features and a
world model containing 50 groups of 20 surfaces each, for a total of 1000 features.
From Figure 4 we see that such a problem, with A = 1000 and D = 10, would
require a search time of about thirty days. If, instead of searching one large
tree, we search 50 small trees with M = 20 and D = 10 then the search time
reduces to 50 x 14 seconds &~ 12 minutes.

We do not yet know a good set of general principles for partitioning the
world model into separate parts. However, for indoor scenes, with which we
are primarily interested, an obvious choice is to make each room one part,
discovering rooms by the six or more large inward facing surfaces which enclose
them. As the robot could conceivably view two rooms at once, it may be
necessary to base each part of the world model on the interfaces (doors) between
rooms, thus allowing parts to contain the same features. For example, if room
A is connected to room B and B is connected to room C' then the parts of
the world model based on the doors connecting A to B and B to C' will both
contain the features of room B. The governing principle here is that whatever
the robot views it should all be contained in one part of the world model.

14



4 Conclusions

Grimson [7] has shown that for recognising objects in cluttered environments
the basic interpretation tree approach leads to a search which is exponential
in the worst case, despite the use of unary and binary constraints. We have
shown that if a switch is made to a quadratic search when enough pairings have
accumulated to make a motion estimate (three, in our case) then the average
time complexity is a polynomial of low degree in the number of image and
model features (D and M respectively). While this is better than exponential,
the relatively expensive stochastic computations and the size of a typical world
model mean that large search times are inevitable. The single most effective
solution to this problem is, we believe, to divide the world model into parts.
This makes a considerable difference in the search time and also reduces the
number of spurious solutions. We are currently investigating this method in
more detail.

However, even with a good partitioning of the world model our work has some
way to go before we can reach the goal of fusing a range image in two seconds and
we are exploring a number of other avenues for further improvement. Increased
accuracy results in a decrease in the values of p» and p3 and a strengthening
of the pruning power of the constraints, so more accurate sensing would help.
Exploiting other sorts of information such as colour, texture or shape would
strengthen the power of the unary constraint (decrease the value of p;). Another
way 1s to order the tree in terms of most likely pairings first, least likely last.
This requires single attribute comparisons of the sort used for unary constraints
(to do the ordering) along with some notion of what a “good” solution is (to stop
the search). Whenever a good solution is found, the model and image surfaces
participating in it can be removed from consideration before continuing to search
for any remaining correspondences. One final possibility is to be selective about
which surfaces from the image and world model are allowed to participate in the
search for a correspondence, in order to keep the values of M and D as low as
possible. It would make sense to focus on large unoccluded surfaces with small
uncertainties. It should be borne in mind that we are not assuming any prior
knowledge about where the sensor is. In practice, although the robot may take
a relatively long time to discover where it is starting from scratch, thereafter the
knowledge gained about its whereabouts can be exploited to reduce the amount
of search required for subsequent data, since it is not likely to move very far
between successive observations.
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