
Hierarchical Matching Beats TheNon-Wildcard and Interpretation TreeModel Matching AlgorithmsRobert B. FisherDept. of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United KingdomAbstractIn Fisher[1] we introduced a non-wildcard model matching algorithm thathas speed advantages over the standard Interpretation Tree model matchingalgorithm. This paper describes a hierarchical model-matching algorithmthat has improved performance over both the standard and non-wildcardalgorithms.1 IntroductionThe most well-known control algorithm for high-level model matching in computervision is the Interpretation Tree(IT) expansion algorithm, as used by Grimsonand Lozano-Perez[2, 3]. In Fisher[1] we introduced a variation on this algorithmthat did not use a wildcard which gave performance advantages of 4-10. Bothalgorithms search a tree of model-to-data correspondences, such that each node inthe tree represents one correspondence and the path of nodes from the current nodeback to the root of the tree is a set of simultaneous pairings. The non-wildcardalgorithm avoids the many matches requiring wildcards and only investigates thesingle model-to-data pairings once, while still exploring the same match searchspace. It works by extending a set of matches by only adding pairs of matching realmodel-to-data pairings, rather than also adding pairings that contain wildcards.These algorithms both have the potential for combinatorial search explosion, henceprompting further research into alternative algorithms.The main cause of the complexity is the re-exploration of the same searchsubspaces on back-tracking to consider new initial matches. This paper describes ahierarchical model-matching algorithm that results in improved performance overboth the standard and non-wildcard algorithms, over a wide range of problemconditions. In the discussion that follows, the term generated refers to matchesthat are hypothesized prior to consistency testing, and accepted refers to matchesthat pass the consistency tests. The following quantities are used:� There are M model features in the model.� On average, pvM of these are visible in the scene (e.g. less than M byocclusion). In 2D scenes, pv := 1 and, in 3D scenes, pv := 0:5 as about halfof the features are on the back side of the object and hence not visible.� Of the visible model features, only pr of these are recognizable (because ofsegmentation failures, etc.) forming C = prpvM correct matchable data

Figure 1: Generated and Accepted Nodes versus Number of Model Features (M)with S = 20 pr = 0:95 p1 = 0:1 p2 = 0:01 pv = 0:5 � = 0:5 (loglog plot)features. (If the model chosen for this scene is incorrect, pr = 0.) Which Cof the M model features are matchable is not known initially.� There are also S spurious data features (e.g. noise features and unrecogniz-able visible model features). Altogether there are D = C + S data features.� The probability that a randomly chosen model feature matches with an in-correct random data feature is p1 (correct pairings alway match).� The probability that a random pair of model features is consistent with anincorrect random pair of data features (given that the individual model-to-data pairings are consistent) is p2.� An acceptable set of model-to-data pairings must have at least T = �pvMnon-wildcard correspondences (� 2 [0::1]). Whenever this many are achieved,then the whole matching process terminates successfully immediately. Anyset of matches that can never get T matches (because insu�cient poten-tial matches remain) is terminated immediately and the matching processproceeds to considering other matches.2 The Hierarchical Matching AlgorithmSuppose that theM = KL model features can be decomposed into KL�1 submod-els each containing K features. Each of these submodels are grouped into KL�2larger submodels containing K2 features, and so on hierarchically until there isone top-level model containing all KL model features. The matching algorithmdescribed below generates hypotheses of these submodel types, and only thesesubmodels can be matched together to create hypotheses of the next larger modeltype.We describe here a binary submodel hierarchy matching algorithm (i.e.K = 2).As an example, consider the simple model hierarchy consisting of four model fea-tures A - D organized into two larger submodels AB and CD, which are combined

Figure 2: Generated and Accepted Nodes by Spurious Features (S) with M =40 pr = 0:95 p1 = 0:1 p2 = 0:01 pv = 0:5 � = 0:5 (loglog plot)into a larger model ABCD. We use a top-down matching strategy (e.g. look forinstances of ABCD, which recursively looks for instances of AB and CD, etc.).Then, at level � from the bottom of the model hierarchy, we need only comparethe hypotheses that were successfully generated at level �� 1.The algorithm records hypotheses accepted at any given point in the modelhierarchy. Thus, if the algorithm needs to backtrack from level ABCD to �nd anew hypothesis for AB, it is not necessary to later re-explore previously exploredportions of the matching space (e.g.) for CD. The algorithm recalls and retriespreviously veri�ed matches, and then, if there were no successes, generates addi-tional hypotheses starting from where the matching last stopped for this model.This provides a substantial savings over the standard IT algorithm.At the lowest levels of the hierarchy, many consistent hypotheses are com-posed mainly of wildcards. Hence, the hierarchical algorithm uses a \largest-subhypothesis-�rst" search algorithm (i.e. having the most matched non-wildcarddata features). The algorithm determines the largest possible hypothesis size,then attempts to generate hypotheses of that size before considering smaller hy-potheses. It matches together subhypotheses that may be of di�erent sizes, buttries the largest ones �rst. The algorithm for pairing hypotheses at this level usesa sensible ordering: (1) all hypotheses that have N matched data features are gen-erated before any hypothesis having N � 1 and (2) amongst all hypotheses withthe same size, the algorithm generates the hypotheses in the order that keeps thesubhypothesis sizes as similar as possible (e.g. it chooses the pair of sizes (3+2)over the pair of sizes (4+1))At higher levels, when a new subhypothesis is needed, the algorithm may: (1)return a previously generated subhypothesis of the desired size, (2) generate a newsubhypothesis that is the same size as that returned at the last call (if there wasa previous call), (3) generate the largest possible new subhypothesis of a smallersize or (4) fail when no more subhypotheses are possible.

Figure 3: Generated and Accepted Nodes by Binary Match Probability (p2) withM = 40 S = 20 pr = 0:95 p1 = 0:1 pv = 0:5 � = 0:5 (loglog plot)When the recursive request for hypotheses reaches the lowest level, (e.g. modelfeature A in the above example), the algorithm matches the original data featuresto the original primitive model submodels. New pairings are tested on demandfrom above, so not all given model-data feature pairings need always be testedbefore a successful match is found. Consistency is tested using the standard unaryfeature matching tests. After all possible matches with data features have beenattempted, then a match using the wildcard is generated. This promotes �lledhypotheses over the proliferation of empty hypotheses.When testing subhypothesis consistency at level 1 (i.e. pairings involving twomodel and data features), the standard algorithm's binary feature matching testsare used. At level 2 and higher, consistency is based on the same binary com-patibility tests, only tested using primitive model-data feature pairings that comefrom di�erent subhypotheses.This algorithm works because, by induction on the previous level, the subhypo-theses generated for the two submodels at the next lower level are also recursivelygenerated in a largest-�rst order, and are then combined in the order that pro-duces the largest hypotheses �rst. The order of features in the hierarchy is notimportant to the success of the algorithm, and the algorithm does not require themodel to have any natural binary decomposition. However, e�ciency is improvedif highly likely matches are in the leftmost nodes, thus preventing the algorithmfrom having to back-track through false starts. Appendix A gives pseudocode forthis algorithm and Appendix B gives an example of a matching.3 The ExperimentsTo demonstrate the e�ectiveness of the hierarchical search algorithm, as comparedto the non-wildcard and standard algorithms, we use the following simulated exper-imental problem, based on an example described in Grimson[4]. (A real problem

Figure 4: Generated and Accepted Nodes by Unary Match Probability (p1) withM = 40 S = 20 pr = 0:95 p2 = 0:01 pv = 0:5 � = 0:5 (loglog plot)follows.) Grimson showed that the model and simulation gave a reasonable char-acterization of real matching problems. The use of the simulated problems thenallows us to compare the algorithm performance on data sets of varying sizes.Based on the problem model given in Section 2, each model-match experimentof the three algorithms will consist of:1. Initially determining a random selection of C of the D data features to bethe solution.2. For each generated model-to-data pairing, a correspondence that is not partof the solution and does not use a wildcard is accepted if the new correspond-ence is individually satis�ed with probability p1 and the new correspondenceis pairwise satis�ed with each previously �lled non-wildcard feature withprobability p2. Correspondences that are part of the solution or use thewildcard are always accepted.For the experiments described in this paper, we used:PARAMETER NOMINAL RANGEM 40 5 to 100 by 5S 20 0 to 100 by 5p1 0.1 0.05 to 0.75 by 0.05p2 0.01 0.001, 0.002, 0.004, 0.008, 0.01,0.02 to 0.20 by 0.02, 0.25� 0.5 0.2 to 0.9 by 0.1pv 0.5 no variationpr 0.95 no variationIn each experiment described in this section, one parameter was varied over therange given above and all others were set to the nominal value. All experiments

Figure 5: Generated and Accepted Nodes by Acceptance Threshold (�) with M =40 S = 20 pr = 0:95 p1 = 0:1 p2 = 0:01 pv = 0:5 (loglog plot)were run 200 times and the value reported is the mean value. The graphs inFigures 1{5 given show how the number of nodes generated and accepted variedwith the parameters for the hierarchical, non-wildcard and standard IT algorithms.The results for the non-wildcard algorithm are an improvement on those given in[1], due to improvements in the algorithm. As we look over the results, whichexplore a substantial portion of the parameter spaces likely to be encounteredin visual matching problems, we can see that the hierarchical algorithm is betterthan the non-wildcard and standard algorithm with respect to the number of nodessearched except when � becomes large, but the non-wildcard algorithm is betterwith regards to the number of nodes accepted except for when p2 becomes large.When there is no instance of the object in the scene, it is unlikely that the earlysuccess conditions would occur, and thus almost all of the search space would haveto be explored. In this case, a much greater amount of work is required. In thecase of the hierarchical algorithm, about 17 times more work is required to rejecta match in a scene, but this is still 4 times better than the standard algorithm(but requires about twice the work of the non-wildcard algorithm).The algorithms were compared on edges extracted from real test scene similarto those used by Grimson. Because the algorithms are sensitive to data feature or-der, the algorithms were run 100 times with the model and data features permutedrandomly. The e�ective probabilities in this scene were p1 = :235 and p2 = 0:017and the number of features were M = 13 and D = 129. Seven of 13 model edgesmatch true data edges in the test scene using the given tolerances. The averagetime taken for the matching algorithms on a Sparcstation 1+ was 1.47 secondsfor the hierarchical algorithm and 5.88 sec. for the standard algorithm (and 0.96sec. for the non-wildcard algorithm). The mean number of nodes generated andaccepted was 55025 and 1721 for the hierarchical algorithm, 64412 and 845 forthe non-wildcard algorithm and 544171 and 39711 for the standard algorithm. Onanother test scene containing 10 instances of one of these parts, the average timesrequired for a match was hierarchical 21.4 sec., non-wildcard 20.4 sec. and stand-

ard 419 sec. The e�ective probabilities in this scene were p1 = :288 and p2 = 0:011and the number of features were M = 28 and D = 191. The extra memory costsof recording the successful submatches in the hierarchical algorithm was about 1Mbytes.4 Discussion and ConclusionsBased on the simulated matchings, the hierarchical algorithm searches about 10times fewer nodes than the standard algorithm and about one-half the nodes ofthe non-wildcard algorithm (as the number of features matched grows). However,it is also a much more complicated algorithm and thus the computational costs persearch step are higher and it also executes more (expensive) binary tests (53237 vs43682 for the non-wildcard algorithm in the �rst real-data test) before hypothesisrejection. In the two real examples cited in the previous section, the hierarch-ical algorithm achieved a performance gain of about 4 to 20 over the standardalgorithm, but was comparable in speed to the non-wildcard algorithm. However,based on the simulated results, it is clear that the performance of the algorithmsmay vary greatly on any one data set. It is also the case that the choice betweenthe hierarchical and non-wildcard algorithms depends on the problem parameters.In particular, when S, p1 or p2 are large or � is small, there are advantages to thehierarchical algorithm.On the other hand, there are also some general guidelines when the hierarchicalalgorithm is not as e�ective as the non-wildcard algorithm. One general principleis \avoid proliferating reasonable hypotheses at the lowest levels of the matching".If we are analyzing a scene with many instances of the same object, or a scenewhere there are many nearly possible matches, or symmetry, then the hierarchicalalgorithm will generate many valid matches at the lowest levels, and they will allbe explored until the �rst successful match is found. In a sense, the algorithm issimultaneously �nding all matches, of which only one is needed. In addition, thenon-wildcard algorithm generally accepts about one-half the number of nodes asthe hierarchical algorithm. So, if the costs of processing an accepted node are high,the non-wildcard algorithm is to be favored. However, our experience with the realimage data suggests that it is the generation costs, and in particular the costs of thebinary feature tests that determine the running speed of the algorithms. Hence,the hierarchical algorithm has clear advantages in this respect.AcknowledgementsThis research was funded by SERC (IED grant GR/F/38310). Other facilitiesprovided by University of Edinburgh. This paper bene�ted greatly from discus-sions with D. Borges, A. Fitzgibbon, J. Hallam, H. Hughes, M. Orr, K. Simsarian,M. Waite, M. Trucco and M. Uschold.

References[1] Fisher, R. B., Non-Wildcard Matching Beats The Interpretation Tree, Proc.1992 British Machine Vision Association Conf., pp 560-569, Leeds, 1992.[2] Grimson, W. E. L., Lozano-Perez, T., Model-Based Recognition and Localiz-ation from Sparse Range or Tactile Data, International Journal of RoboticsResearch, Vol. 3, pp 3-35, 1984.[3] Grimson, W. E. L., Object Recognition By Computer: The Role ofGeometric Constraints, MIT Press, 1990.[4] Grimson, W. E. L., The Combinatorics of Heuristic Search Termination forObject Recognition in Cluttered Environments, Lecture Notes in Computer Sci-ence, ECCV-90, Springer-Verlag, pp 552-556, 1990.A Hierarchical Search Algorithmgeneratenextbest(treetop){ if all done, return failif treetop is a base level subtree{ if another untried data feature (generate wildcard last){ increment generated countif not wildcard and unary test failsthen skip this subhypothesisrecord this consistent subhypothesisincrement accepted countreturn success}else return fail}// special case of only the left subtree of tree usedif only left subtree used{ recurse on left subtreeif early success or fail then return coderecord subhypothesis for future regenerationreturn success}// normal recursive casedo {top:if first attempt at finding this hypothesis{ recurse on left subtreeif early success or fail then return coderecord subhypothesis for future regenerationrecurse on right subtreeif early success or fail then return code

record subhypothesis for future regenerationreset regeneration pointersgo to testsection}// normal hypothesis generationis there a previously generated hyp for slot 1?yes, is it the required size?yes: go to testsectionno: smaller, go to getnewslot0no: recursively regenerate new slot 1early success: return early successnormal success: record subhypothesis and go to topfail: proceed to getnewslot0getnewslot0:is there a previously generated hyp for slot 0?yes, is it the required size?yes: reset slot 1 list for the current needed sizeand go to testsectionno: go to getnextvalidsizeno: recursively regenerate new slot 0early success: return early successnormal success:record subhypothesisreset slot 1 list for the current needed sizeif no slot 0 of needed size go to getnextvalidsizeelse go to testsectionfail: proceed to getnextvalidsizegetnextvalidsize: // get new candidate subhypothesis sizesdo {get next smallest hypothesis sizeif no more, then return failif size of both slots negative, then return failif either slot negative, then continueif slot 0 size does not exist, then continueif slot 1 size does not exist, then continuereset slots 0 and 1 for use with this size} until a valid new size is foundtestsection: // test this hypothesisincrement generated countif neither subhypotheses are completely wildcards{ do binary tests between all non-wildcard featuresof the first subhypothesis and all non-wildcardfeatures of the second subhypothesisif failure, continue}

// a consistent matchrecord subhypothesis for future regenerationincrement accepted countif enough features matched then return early successif cannot match enough features in remaining unfilled slotsthen reject subhypothesisreturn new match} forever }
B Example of Hierarchical Matching AlgorithmSuppose we have the example ABCD hierarchical model described in Section 2.Suppose also that the model features can make these individual matches againstdata features a, b, c and the wildcard *. We assume that the early terminationcriterion requires at least 3 features matched.Model Data TrueFeature Features MatchA a, * aB b, * bC c, * cD a, * *AB ab,a*,*b,** abCD ca,c*,*a,** c*ABCD abc* abc*Then, the matching algorithm goes through the following sequence of actions.Steps 1-16 do the initial exploration of the tree through to rejecting a full, butfalse, hypothesis. Steps 17-21 continue to explore the right subtree, looking foralternatives with the same size, until a wildcard match is found. This leads to ahypothesis with a size smaller than that currently requested. Since no more rightsubtree hypotheses have the desired size (because they are generated large-to-smalland the most recent generation is smaller than requested), the algorithm generatesa new left subtree match in steps 22-24. At step 25, the left subtree also has asmaller match than desired, so the algorithm then reduces the size of the desiredgoal. Steps 26-30 generate the new reduced size match. Here the algorithm startswith previously generated matches of the desired size. At step 31, the full matchoccurs, and although it is smaller than the requested size (2+2), it also satis�esthe termination threshold (3), so the match terminates successfully.

Model SizeStep Level Goal Pairings Action1 ABCD (2,2) - get left submodel2 AB (1,1) - get left submodel3 A 1 Aa accept pairing (true)4 AB (1,1) - get right submodel5 B 1 Ba reject bad pairing6 B 1 Bb accept pairing (true)7 AB (1,1) ABab accept pairing (true)8 ABCD (2,2) - get right submodel9 CD (1,1) - get left submodel10 C 1 Ca reject bad pairing11 C 1 Cb reject bad pairing12 C 1 Cc accept pairing (true)13 CD (1,1) - get right submodel14 D 1 Da accept pairing (bad)15 CD (1,1) CDca accept pairing (bad)16 ABCD (2,2) ABCDabca reject bad pairing17 ABCD (2,2) - get right submodel18 CD (1,1) - get right submodel19 D 1 Db reject bad pairing20 D 1 Dc reject bad pairing21 D 1 D* accept wildcard pairing22 CD (1,1) CDc* reduce pairing size attempt rejected23 CD (1,1) - get left submodel24 C 1 C* accept wildcard pairing25 CD (1,1) - reduce pairing size accepted- (1,0) or (0,1) possible26 CD (1,0) - restart and generate left27 C 1 Cc retrieve old match28 CD (1,0) - restart and generate right29 D 0 D* retrieve old match30 CD (1,0) CDc* accept pairing (true)31 ABCD (2,2) ABCDabc* early termination occurs

