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1 IntroductionPropositional satis�ability (SAT) is the problem of deciding if there is an assign-ment for the variables in a propositional formula that makes the formula true.SAT is of considerable practical interest as many AI tasks can be encoded quitenaturally in SAT. Unfortunately, unless P=NP, SAT is intractable in the worstcase as it is a NP-hard problem. There are, however, many theoretical and ex-perimental results which show good average-case performance for certain classesof SAT problems [10, 7]. In considering such average-case results, it is importantto know whether the problems considered are hard and representative of thosemet in practice. Cheeseman et al [1] observed that the hard instances of NP-hardproblems are often associated with a phase transition. With SAT, there is a phasetransition as the ratio of the number of clauses to variables in a problem is varied.Experiments have shown that an easy-hard-easy pattern for SAT occurs as thisratio is increased and that the hard instances occur in the phase transition [15].The phase transition for SAT is therefore of considerable practical and theoreticalimportance.In this paper, we present a detailed experimental investigation of the SATphase transition. We consider several di�erent classes of SAT problems, someof which (like real problems) contain clauses of mixed lengths. We observe aremarkable consistency of features in the di�erent phase transitions. For example,all the problem classes show an easy-hard-easy pattern, a region of highly variableproblem di�culty, and a sharp transition from satis�able to unsatis�able at a�xed ratio of clauses to variables. Random problems of mixed clause lengthsappear, however, to give much more variable behaviour. The median di�culty ofrandom problems of mixed clause is typically orders of magnitude less than thatof equivalently sized problems of �xed clause length, yet the hardest problems ofmixed clause lengths can be orders of magnitude harder than the hardest problemsof �xed clause length. With random problems of mixed clause lengths, certain keyproperties like the position of the phase transition also appear to be governedmerely by a simple parameter, the (limiting) distribution of clause lengths in theproblem class. The phase transition observed for random 3-SAT [15] thus appearsto be a special case of a more general type of SAT phase transition.2 Random k-SATWe consider SAT problems in conjunctive normal form (CNF); a formula, � is inCNF i� it is a conjunction of clauses, where a clause is a disjunction of literals,and a literal is a negated or un-negated variable. A problem in random k-SATconsists of L clauses, each of which has k literals chosen uniformly from the Npossible variables and the N possible negated variables. We use Rk(N;L) to denoteproblems drawn from this class and Prob(sat;X) to denote the probability that aproblem drawn at random from the class X is satis�able.2
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160 4 8 10 12(a) Prob(sat), N = 25, 50, 75 (b) mean (solid), median (dashed) branches , N = 75Figure 1: random 4-SAT problems, tested using ASATMost recent experimental work has used the random k-SAT model as it hasseveral features which makes it useful for benchmarks. First, there appears to be aphase transition between satis�ability and unsatis�ability as L=N is varied. Thatis, there seems to be a critical limiting value of L=N, which we call ck such that,limN!1Prob(sat;Rk(N; c:N)) = ( 0 for c > ck1 for c < ck:It is easy to show that c0 = c1 = 0. It has been shown theoretically that c2 = 1[2, 9] and 3:003 < c3 < 4:81. Experiments have suggested that c3 � 4:24 [4].Second, this phase transition appears to be of practical value as, for a givenN, problems with ck:N clauses seem to be the hardest problems generated fora wide variety of SAT algorithms [15]. This result needs to be treated with slightcaution since it has not been shown theoretically, and since problems away from thephase transition can also be hard to solve. For example, all resolution algorithmsneed exponential time with probability tending to 1 for random 3-SAT problemsgenerated with c > 5:6 [3].Figure (1) shows a typical random k-SAT phase transition. For N= 25, 50,75, we tested 1000 randomly generated 4-SAT problems at each point from L=N= 0 to 16 in steps of 0.4. The graph of observed probability of satis�ability issimilar with varying N, except that the transition from near 100% satis�able tonear 0% becomes sharper with increasing N. (The dotted graph represents N=75.) Interestingly, there appears to be a \crossover" point at which approximatelythe same percentage of problems is satis�able for all values of N. Such a pointhas been observed in 3-SAT at L=N � 4:2 , with about 66% satis�able [14]. Toexamine this in more detail for 4-SAT we tested 1000 problems from 9N to 12Nclauses, at intervals of N=25 clauses, for N= 25, 50, 75. The most consistent point3



appeared to be at 9:76N clauses at a probability of 65% satis�able.To determine satis�ability and problem di�culty, we use two variants of theDavis-Putnam procedure [5]. The major di�erence between these variants is theirchoice of variable upon which to branch.1 For small problems, we use a simplevariant used in previous studies [15] which branches on the �rst variable in the �rstclause. We shall refer to this variant as \DP". For larger problems, we use ASAT[6] which branches on the variable having the greatest number of occurrences in theshortest clauses. ASAT is one of the fastest implementations of the Davis-Putnamprocedure currently distributed.Figure (1) (b) shows a typical \easy-hard-easy" pattern in problem di�culty for4-SAT using the ASAT procedure. The y-axis gives the mean and median (to thesame scale) number of branches reported by ASAT. When L=N is large, problemsare usually over-constrained, and thus easily shown to be unsatis�able. WhenL=N is small, problems are usually under-constrained, and a satisfying assignmentcan be \guessed" quickly. The really hard instances tend to occur at the phasetransition where the problems are �nely balanced between being satis�able andunsatis�able. Note that mean and median behaviour are very similar.3 Random mixed SATWe now introduce a generalisation of the random k-SAT model, which we call\random mixed SAT". In this model, a set of clauses is generated with respect toa probability distribution � on the integers. Each clause is generated as in randomk-SAT. However, k, the length of the clause, is chosen randomly according to �.For example, if �(2) = �(3) = 12 , then clauses of length 2 and 3 appear withprobability 12 , whilst if �(2) = 13 and �(4) = 23, clauses of length 2 appear withprobability 13 and of length 4 with probability 23. In this paper, we will callthese problem classes \2-3-SAT" and \2-4-4-SAT" respectively. The frequency ofoccurrence of an integer in the name re
ects the frequency of occurrence of clausesof this length in the problem. Random k-SAT is a special case of random mixedSAT, where each clause is chosen of length k with probability 1.The random mixed SAT model may generate problems more similar to real-world problems than random k-SAT. For example, many structured problemclasses use clauses of mixed lengths (eg. scheduling problems have large numbersof binary clauses). It would therefore be interesting to compare such problemswith random mixed SAT problems with a similar proportion of clauses of mixedlengths.We write c� for the critical value of L=N for a given random mixed SAT (ifsuch a value exists). Note that if �(0) > 0 or �(1) > 0, then we know that c� = 0,as empty and unit clauses will occur, c0 = c1 = 0. Henceforth we assume that�(0) = �(1) = 0. Although we cannot prove the value of c� in other cases, it is1When a clause cannot be simpli�ed, the branch rule choses a variable to perform a case-splitupon. 4
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To investigate this further, we performed a more detailed investigation of the cros-sover region. For values of N from 50 to 150 in steps of 10, and from 150 to 350 insteps of 50, we tested 500 problems at values of L from 1:3N to 2N, in steps of atmost N=50. Analysis of the data suggests that the crossover appears close to 94%satis�able and L = 1:75N, where we take the crossover to be where we observe thesmallest di�erence in the probability of satis�ability. By contrast, the ratio L=Nwhere 50% of problems were satis�able declined from 2.32 for N= 50 to 2.08 forN= 200.For random 3-4-SAT, we get d� = 2932, giving c� < 7:05. Figure (2) (b) showsProb(sat,R3�4(N; c:N)). For N = 25, 50, 75, we varied c from 0.2 to 9 in steps of0.2, performing 1000 experiments at each point. The dotted line represents N =75. For random 2-4-4-SAT, we get d� = 78, the same as 3-SAT, giving c� < 5:20.Once again, a similar pattern is observed when graphs of probability are plotted.However, the crossover appears at quite a di�erent point compared to 3-SAT. Forvalues of N from 50 to 130 in steps of 10, we tested 500 problems at values ofL from 2:3N to 3:3N, in steps of at most N=25. The crossover point appears tobe about L = 2:74N where 96% of problems are satis�able. By contrast the 50%satis�able point ranged from 3.78N at N= 50 to 3.48N at N= 150. This suggestsan estimate for c� of 2.74.4 Problem HardnessThe identi�cation of phase transitions is of considerable importance in the study ofheuristics for NP-hard problems since the hardest instances of randomly generatedproblems tend to occur in the phase transition. As observed in [15] for random3-SAT, the hardest random k-SAT problems appear to occur in the transitionbetween satis�ability and unsatis�ability. This is seen very clearly for random4-SAT in Figure (1) (b).Random mixed 2-4-4-SAT gives very di�erent behaviour to 4-SAT. For ex-ample, Figure (3) (a) shows the median and mean problem di�culty for 2-4-4-SAT, using DP without branching heuristics. There is very little relation betweenmean and median problem di�culty. Median problem di�culty shows a slighteasy-hard-easy pattern, though the peak median di�culty was only 4 branches.Mean behaviour is exceptionally noisy, even though each data point represents themean of 10,000 experiments, and we have plotted the log of the mean, comparedto the straight mean for 4-SAT. This behaviour is clari�ed by Figure (3) (b)which shows contours of the di�culty of problems representing percentiles from90% to 99.9%. Again a log plot has been used. Hard problems are still associatedwith the transition but the hardest problems no longer occur around the 50%satis�able point. The most di�cult problems can be either satis�able or unsat-is�able, and occur at high percentage satis�ability. Similar behaviour has beenobserved by Hogg and Williams for randomly generated 3-colourability problems6
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(a) mean (solid) and median (dashed) branches, (b) varying percentile branchesFigure 3: random 244-SAT problems tested using DP, N= 75 (note log scale)[11]. The distribution of problem di�culties for 2-4-4-SAT is very di�erent tothat for 4-SAT as the following table illustrates.procedure peak median peak mean worst case4-SAT at N=75 ASAT 18,514 16,154 46,3422-4-4-SATat N=75 DP 4 854 8,370,495The di�erence between hardness of 4-SAT and 2-4-4-SAT does not seem to becaused merely by the use of two di�erent procedures. For example, though ASAT�nds all 2-4-4-SAT problems at N= 75 easy, at N= 300 it needed more than3,000,000 branches for one satis�able problem in a region of high percentage sat-is�ability while needing less than 100 branches for almost all other problems.Experiments with other random mixed SAT problems and other procedures alsoshow that the hardest problems with mixed clause lengths can be orders of mag-nitude harder than the hardest problems with a �xed clause length, and that thesehard problems tend to occur in regions of high percentage satis�ability.5 Constant Probability ModelAnother common problem class which gives clauses of mixed lengths is the con-stant probability model. This class has also been the subject of much theoreticalattention. In the constant probability model, clauses with N variables and Lclauses are generated according to a parameter p, 0 < p � 1. For each clause,each literal (that is, a variable or the negation of a variable) is included with prob-ability p, independently of the inclusion of other literals. In particular, the emptyclause is allowed. Our experiments use a variant of the constant probability model7



proposed in [12] in which if a clause is generated containing either no literals oronly one literal, it is discarded and another clause generated in its place. Thisis because the inclusion of empty or unit clauses typically makes problems easier.We shall call this the \CP" model.This model cannot strictly be seen as an example of a random mixed SAT, be-cause the probability of a given clause length being chosen varies with N. However,we observe very similar e�ects to those seen with random mixed SAT, providedthat we omit empty and unit clauses, and provided that we �x the value 2Npand so vary p as 1=N. This keeps the expected clause length nearly constant.Indeed, for any given value of 2Np, this gives a limiting distribution of clauselengths determined by the Poisson distribution with parameter 2Np (adjusted forthe omission of clauses of length 0 and 1.) For comparatively small values of 2Np,such as 2Np = 3, we get quite fast convergence, as we are approximating the truebinomial distribution of clause lengths by the Poisson. For example, for N= 25,the true probability of length 3 clauses is 28.5%, while the Poisson model wouldgive a probability of 28.0%.For the Poisson approximation to the constant probability model with para-meters N and p, we have by de�nition,�(k) = e�2Np(2Np)k=k!We can derive an expression for the density d�. If empty and unit clauses areallowed, straightforward manipulation gives 1� d� = e�Np. If we omit empty andunit clauses, this must be adjusted as follows:1� d� = e�Np � �(0)� 12�(1)1� �(0)� �(1)As an example, if we choose 2Np = 3, we get d� � 0:877, a value close to thedensity of 3-SAT, 0.875.The observations we have made earlier seem equally to apply to the CP model.In particular, if 2Np is kept constant, graphs of probability of satis�ability showthe same features, Figure (4) (a). It seems that c� � 2:80. Very interestingly, thedistribution of problem di�culty in Figure (4) (b) is similar to the very variabledistribution also seen in Figure (3) (b). Again, we use the log of di�erent percentilebranches, with each data point representing the result over 5000 problems. Aswith random mixed SAT, the hardest problems in the CP model can be ordersof magnitude harder than the hardest equivalently sized problems of �xed clauselength; these hard problems again tend to occur in regions of high percentagesatis�ability. By comparison, the median displays a simple easy-hard-easy pattern.In [8], we give further experimental analysis to show that this highly variableand hard behaviour cannot be eliminated by the use of better heuristics. Weconjecture that this hardness arises from hard unsatis�able problems in a region ofotherwise satis�able problems, or satis�able problems which give hard unsatis�ablesubproblems. 8
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The intuition behind this conjecture is that ck:N clauses of length k are \equi-valent" in terms of preventing a truth assignment being a model as c2:N binaryclauses. Thus, as c2 = 1, a clause of length k is ck times less e�ective at �lteringout models as a binary clause. At the crossover, there are c�:N clauses of which�(k):c�:N are of length k. These clauses contribute to defeating possible modelsthe same as �(k):c�:N=ck binary clauses. In total, we need an e�ective contribu-tion from all clauses which is the same as the combined e�ect of N binary clauses.Thus, �(2):c�:Nc2 + �(3):c�:Nc3 + �(4):c�:Nc4 + : : : = NThat is, 1c� = �(2) + �(3)c3 + �(4)c4 + : : :A physical analogy is that of electrical resistance. A set of clauses of length ko�er some \resistance" to whether a truth assignment is a model. The totalresistance of a mixed SAT problem is the \sum" of the resistances of the sets ofclauses of di�erent lengths. We take the parallel sum since a truth assignmentcan be defeated by any of the sets independently. Thus, we are governed (as withelectrical resistance) by the set of clauses which o�ers the least resistance.This conjecture obeys all the �rm bounds derived in this paper, very easilythe two bounds derived in this section. Some tedious manipulation shows that theparallel sum also obeys the bound given by (1). Furthermore, the values it predictsseem to be close to those derived earlier in this paper from our experimentalanalysis. Using the values, c2 = 1; c3 � 4:24, c4 � 9:76, we get the followingresults. Predicted c� Observed c�2-3-SAT 1.62 1.763-4-SAT 5.91 5.882-4-4-SAT 2.49 2.74CP 2.67 2.80For calculating c� for CP, we approximate ck for k � 5 using (1); given thesmall number of longer clause lengths and the increasing accuracy of the densitybound, this should give a good approximation. The slight error between observedand predicted c� might be explained by interactions between clauses of di�erentlengths.7 Conjectures about ScalingPhase transitions occur frequently in natural systems. One of the most unusualand theoretically interesting systems is that of spin glasses. Each of the N atomsin a spin glass has a magnetic spin which can have only one of two values, \up'10



or \down" (1 or -1). The system therefore has 2N possible con�gurations. Mac-roscopic properties of a con�guration (eg. the energy, entropy) depend only oninteractions between the spins of nearest neighbours. Due to the di�erences inseparation of the atoms, some of these interactions are ferromagnetic (promot-ing alignment of spins) whilst others are anti-ferromagnetic (promoting oppositespins). The net e�ect is a random force leading to a large number of equilibriumcon�gurations. An analogy can be pro�tably made between such spin glasses andrandom k-SAT. Each of the N variables in a truth assignment has one of twovalues, \True" or \False". The system therefore has 2N possible con�gurations.Macroscopic property like satis�ability depend only on the interaction betweenvariables neighbouring each other in a clause. Due to the random polarities ofthese variables, the net e�ect on a variable is a random \preference" towards Trueor False. Kirkpatrick, Cy�urgyi, Tishby and Troyansky have used this analogy tosuggest a fascinating scaling result for random k-SAT (personal communication).They propose that for random k-SAT, there is a fundamental function f , andvalues �c and v, such thatProb(sat;Rk(N;L)) = f((L=N � �c)N1=v) (4)If correct, f can be estimated experimentally and used to give accurate predictionsof the value Prob(sat;Rk(N;L)) for arbitrary N and L. For 3-SAT, Kirkpatricket al use �c = 4:15, v = 1:5. Interestingly, their value for �c is slightly lower thanexperimental values of ck. We now show that this result holds both for random4-SAT, and for problems containing variable clause lengths like random mixedSAT.An equivalent restatement of (4) is that all graphs of Prob(sat;RN(L; )) willbe identical if the x-ordinate used is (L=N��c)N1=v. Figure (5) (a) shows our ownexperimental data for 4-SAT from x2 for N= 25, 50, 75, scaled in this way with�c = 9:76, our experimentally observed value of c4, and v = 1:25. For convenience,we have multiplied the x-ordinate by 100�1=v and added �c so that the values onthe x-axis give the equivalent value of L at N= 100. The dashed line gives thepoint �c. Figure (5) (b) shows data for 2-3-SAT for N= 50, 100, 150, 200 using �c= 1.76 and v = 2:5. In each case we tested 500 problems at values of L from 1:3Nto 3N, in steps of N=50. The curves �t very well; those for 4-SAT are never morethan 0.08N apart, and those for 2-3-SAT are never more than 0.06N apart. The�rst graph therefore strongly supports Kirkpatrick et al's conjecture, whilst thesecond suggests that it can be extended from random k-SAT to random mixedSAT. For 2-4-4-SAT, for N= 50, 100, 150, and values of c varying by 0.04, wealso observed a good �t using � = 2:74, v = 3:5.8 Related WorkPhase transitions are attracting increasing attention in AI. Huberman and Hogg[13] predict that many large scale systems will undergo sudden phase transitions11
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L equivalent at N = 100(a) 4-SAT, �c = 9:76, v = 1:25 (b) 2-3-SAT, �c = 1:76, v = 2:5Figure 5: Scaling of probability graphsthat a�ect computational performance. They show, for example, that a simplemodel of heuristic search changes from linear to exponential behaviour at a phaseboundary. Cheeseman el al. observed that many NP-hard problems (eg. graphcolouring and Hamiltonian circuits) have an order parameter, that hard problemsoccur at a critical value of this parameter, and that this critical value separates aregion of underconstrained (and typically soluble) problems from a region of over-constrained (and typically insoluble) problems. Mitchell et al. [15] demonstratedthat for random 3-SAT the order parameter is L=N, the ratio of clauses to vari-ables, that the critical value is approximately 4.3 and that median performance ofDP has an easy-hard-easy pattern with the hardest median instance occurring atthe phase transition. They also showed that the CP model (called random P-SATin [15]) has an easy-hard-easy pattern for median performance of DP. However,they dismiss the CP model as being too easy compared with random k-SAT. Ourresults suggest this conclusion is premature. Although median performance forthe CP model is easy, worst case performance is not. Indeed, the hardest CPproblems can be orders of magnitude harder than the hardest comparably sizedrandom k-SAT problems. Finally, Crawford and Auton [4] have more accuratelyidenti�ed the position of the phase transition for random 3-SAT as L=N = 4:24.9 ConclusionsWe have performed a detailed experimental investigation of the phase transitionfor randomly generated SAT problems. The sharp change from satis�able tounsatis�able problems previously observed at a critical value in random k-SATproblems is also present in the more general class of random mixed SAT problems,as well as in random problems generated according to the constant probabilitymodel. We have used our experimental results to conjecture the critical value12
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