
Proof Plans for the Correction of FalseConjectures{ Submitted to LPAR'94 { ?Raul Monroy, Alan Bundy, & Andrew IrelandDepartment of Arti�cial IntelligenceThe University of Edinburgh80 South Bridge, EH1 1HNScotland, U.Kraulm, bundy, & air@aisb.ed.ac.ukAbstract. Theorem proving is the systematic derivation of a mathem-atical proof from a set of axioms by the use of rules of inference. We areinterested in a related but far less explored problem: the analysis andcorrection of false conjectures, especially where that correction involves�nding a collection of antecedents that, together with a set of axioms,transform non-theorems into theorems. Most failed search trees are huge,and special care is to be taken in order to tackle the combinatorial ex-plosion phenomenon. Fortunately, the planning search space generatedby proof plans, see [1], are moderately small. We have explored the pos-sibility of using this technique in the implementation of an abductionmechanism to correct non-theorems.1 IntroductionThe problem of building an arti�cial mathematician to �nd a mathematicalproof has been a topic of much interest in Arti�cial Intelligence. We are inter-ested in a related but far less explored problem: the analysis and correction offalse conjectures, especially where that correction involves �nding a collectionof antecedents that, together with a set of axioms, transform non-theorems intotheorems. More formally:Given a set of axioms A and a false conjecture G, i.e. A ! G does nothold, our aim is to identify C such that2:1. A^C ! G is a theorem, i.e. the addition of C turns the non-theoreminto a theorem.2. A^C is satis�able, i.e. C is consistent with the set of axioms.? We are grateful to Jane Hesketh for her comments on an earlier draft of this paper.The research reported here was supported by SERC grant GR/H/23610 and ITESM& CONACyT studentship 64745 to the �rst author.2 The notions of consistency, triviality, minimality, and basicness have been de�ned in[5].

3. C ! G does not hold, i.e. C is nontrivial.4. C is minimal in that it does not contain any redundant literals.5. there does not exist nontrivial explanations of C: basicness.As a way of motivation, consider the following non-theorem8N : Nat: double(half(N)) = N (1)together with the Peano axioms for the natural numbers. Clearly, a conditionlike N < 0 does not meet our requirements because it is inconsistent with theset of axioms. Also, the formula8N : Nat: (double(half(N)) = N)! (double(half(N)) = N)it is not a valid solution since the condition is trivial. The abduction mechanismwe present in this paper is capable of �nding the condition even(N), which isclearly fundamental, i.e. consistent, nontrivial, minimal, and basic. Note thateven(N)^N = 0 would not be minimal. Note also that A! even(N) does nothold, thus ensuring that this condition is basic.2 Proof PlansReasoning and searching are necessary for the solution to the problem of cor-recting a false conjecture. Abduction seems to be a candidate mechanism for theformer. Abduction, as proposed by C.S. Peirce[9], is a fundamental form of lo-gical inference that allows us to �nd hypotheses that account for some observedfacts. Its simplest form is:From A ! B, and BInfer A as a possible justi�cation of BHowever, most failed proof search spaces are huge and logic based abductionmechanisms are severely a�ected by the combinatorial explosion phenomenon,see [10]. Fortunately, the planning search spaces generated by proof plans aremoderately small, see [1]. Furthermore, the meta-level reasoning used to guidethe proof plan formation provides us with a basis for analysing the failure andthe partial success derived from a proof attempt. The proof plans techniqueguides the search for a proof in the context of tactical style reasoning, see [6].It has been implemented in a proof plan formation system called CLAM [3], andsuccessfully applied to the domain of inductive proofs [2].2.1 RipplingThe key idea behind inductive proofs is the use of the induction hypothesis in itsproof. Rippling, see [4], is a heuristic which does this work. It works by applyinga special syntactic class of rewrite rules called wave-rules. The most simple formof such wave-rules is: F (S(U) ")) T (F (U)) " (2)

where F , S, and T are terms with one distinguished argument. T may be emptybut S and F must not be. F and S(U) " are called wave-function and wave term,respectively. Wave-terms are composed of a wave-front and one or more wave-holes. Wave-holes are the underlined sub-terms of wave terms. Sub-expressions ofthe induction conclusion that also appear in the hypothesis are either underlinedor not enclosed by boxes. For our current wave-rule example, F and U wouldmatch such sub-expressions. Note how the application of (2) has the e�ect ofput them closer together. Also, note how the arrow indicates the direction inwhich wave-fronts are moved within the term structure. i.e. they are rippled-outall the way up to the very top of the formula.By marking these wave-terms and tracking their movements, we can ensurethat our rewriting makes progress towards the desired e�ect: the removal ofthe obstructive wave fronts so that fertilization can be applied. Fertilization,according to Boyer and Moore, is the use of the induction hypothesis in itsproof.2.2 Proof CriticsExperience has shown that a failed proof plan attempt may hold the key fordiscovering a complete proof. In [7], the author propose the use of planning criticsas a mechanism to provide the means of exploiting failure and partial successin the search for a proof. Proof critics can be used either to modify the planstructure, the given conjecture, or the theory. Indeed, the abduction mechanismto correct faulty conjectures that we introduce in this paper constitutes anotherapplication of this mechanism.3 Correcting Faulty ConjecturesOur abduction mechanism to correct faulty theorems is built upon CLAM. Wehave exploited the information derived from a failed proof attempt by lookingfor unprovable goals. We have also made use of the meta-level control inform-ation of rippling to focus the process of locating, and correcting a fault. Falseconjectures that exhibited faults in boundary values were successfully correctedusing the information provided by the base case of inductive proofs. We workedby re�nement when a suggested condition from a previous patching attemptturned out to be necessary but not su�cient. We also corrected false conjecturesin which the fault exhibited arguments in wrong positions within the conjecturestructure; this sort of fault can be found in attempts at proving commutativityin operators that are not Abelian. Our abduction mechanism consists of a col-lection of proof critics that de�ne heuristics to detect, locate and correct thesesort of faults.3.1 Exploiting Contradictory Blocked GoalsConsider the non-theorem:8A;B : list(DataType): length(A <> B) > length(A) (3)

The recursive de�nitions of <>, >, and length give rise to the rewrite rules:3:X :: U " <> V) X :: U <> V " (4)nil <> U) Us(X) " > s(Y) ") X > Y (5)X > 0) X 6= 00 > X) falselength(X :: U ")) s(length(U)) " (6)length(nil)) 0From which we establish the following induction hypothesis:length(a <> bbc) > length(a) (7)Following the Prolog convention, we denote variables with symbols that startwith an upper-case letter. Note how universally quanti�ed variables are denotedby this piece of notation b: : :c.We attempt to prove (7) using a hd :: tl induction rule of inference, selectinga as the induction variable4. The proof fails in the base case, (a = nil).length(nil <> b) > length(nil)length(b) > length(nil)length(b) > 0length(b) 6= 0 (8)With (8), a nested induction is suggested, vn :: b. This time the base case, b = nil,gives rise to a contradictory blocked goal:length(nil) 6= 00 6= 0De�nition1 Contradictory Blocked Goals. A goal G is said to be contra-dictory blocked if it is in canonical form, i.e. it cannot be further rewritten, allits variables are instantiated, and it is false in the domain of the theory in whichwe are working.This contradiction suggests our �rst patch, namely, to introduce b 6= nil, i.e. thenegation of the base case for the most recent induction, as a condition to theoriginal conjecture. The process of correcting a fault is guided by failure in that3 The operators ::, <>, and s() represent the in�x list constructor function, the listsconcatenation function, and the successor constructor function, respectively.4 This will be abbreviated as IndScheme[IndV ar]; where IndV ar is the inductionvariable, and IndScheme is the suggested induction rule of inference.

it would not lead to the contradictory blocked goal experienced in the �rst proofattempt. This gives us a new goal of the form:8a; b : list(DataType): b 6= nil! length(a <> b) > length(a) (9)With the revised conjecture (9), a vn :: a induction schema is again suggested.This time the base case proof obligation goes through and so does the step case.The initial induction conclusion takes the form:bbc 6= nil! length(v0 :: a " <> bbc) > length(v0 :: a ") (10)Rippling-out (10) with (4) results in:bbc 6= nil! length(v0 :: a <> bbc ") > length(v0 :: a ")By wave-rule (6) this rewrites both, the right-hand side (RHS) and the left-handside of the above formula, to give us:bbc 6= nil! s(length(a <> bbc)) " > s(length(a)) "and �nally, wave-rule (5) gives us:bbc 6= nil! length(a <> bbc) > length(a)Note how this expression matches the induction hypothesis. We can appeal there-fore directly to the hypothesis to complete the proof. This process is called strongfertilization.De�nition2 Exploiting Contradictory Blocked Goals. The preconditionsand associated patch for exploiting contradictory blocked goals through the useof the information derived from failed cases are as follows:CRITIC induction (correction of faulty conjecture)Precondition:1: The goal G is blocked contradictory, e.g.: : : ` 0 6= 0Patch:Negate the condition for the most recent induction caseand add it as a condition to the original conjecture, e.g.8a; b : list(DataType): b 6= nil ! length(a <> b) > length(a)

3.2 On Fixing Non-Theorems by Re�nementAs the reader may now suspect, it is possible to have a false conjecture in whichthe patch suggested by the above heuristic is not su�cient to transform the non-theorem into a theorem. This situation is likely to occur whenever the conditionconsists of either a predicate other than equality or a combination of predicates.As a solution to this problem, we have de�ned a strategy which re�nes pre-vious patching attempts. As will become clear later, our strategy exploits bothsyntactic (rippling) and semantic information. Consider again (1), the exampleconjecture shown in Sect. 1. The recursive de�nitions of double and half give riseto the following rewrites: double(0)) 0double(s(X) ")) s(s(double(X))) " (11)half(0)) 0half(s(0))) 0half(s(s(X)) ")) s(half(X)) " (12)In addition, we assume that our theory of natural numbers includes the predic-ates even and odd5: even(0)) trueeven(s(0))) false (13)even(s(s(X)) ")) even(X) (14)odd(0)) falseodd(s(0))) true (15)odd(s(s(X)) ")) odd(X) (16)Furthermore, we assume the wave-rule for the cancellation of the successor func-tion: s(X) " = s(Y) ") X = Y (17)We attempt to prove (1) using s(s(x)) induction. The �rst base case (n = 0)is trivial. It is the second base case (n = s(0)) which is interesting since it givesrise to a contradiction, as shown below.double(half(s(0))) = s(0)double(0) = s(0)0 = s(0)5 The predicate odd is not needed, but is included to show that the technique doesnot fail in the presence of irrelevant information.

This suggests our �rst patch attempt of introducing the condition n 6= s(0) usingthe strategy de�ned in the previous section. This gives a new conjecture of theform: 8n : nat: n 6= s(0)! double(half(n)) = n (18)With the revised conjecture, (18), a s(s(n)) induction rule of inference is againsuggested. This time both base cases go through. In the step case, however,rippling gets blocked. The initial induction conclusion takes the form:s(s(n)) " 6= s(0)! double(half(s(s(n)) ")) = s(s(n)) "By wave-rule (12) we get:s(s(n)) " 6= s(0)! double(s(half(n)) ") = s(s(n)) "Rippling-out this formula with (11) results in:s(s(n)) " 6= s(0)! s(s(double(half(n)))) " = s(s(n)) "Finally, two applications of wave-rule (17) give us:s(s(n)) " 6= s(0)! double(half(n)) = nNote how this formulamatches the induction hypothesis modulo the antecedents.Although strong fertilization is not possible we are potentially in a position toperform what is de�ned as conditional fertilization. Conditional fertilization ex-tends strong fertilization with conditional equations.De�nition3 Conditional Fertilization. The preconditions to apply condi-tional fertilization are the following:METHOD fertilize (conditional)Preconditions:1: The conclusion and hypothesis match modulo the antecedents, e.g.(n 6= s(0))! double(half(n)) = n` (s(s(n)) " 6= s(0))! double(half(n)) = n2: The antecedent of the hypothesis is logically implied by theantecedent of the conclusion.

For our example the �rst precondition holds while the second is obviouslyfalse. The failure of the fertilize method suggests that our initial condition, n 6=s(0), was necessary but not su�cient in order to make (1) into a theorem.Our second attempt at patching (1) is syntactically driven and representsa re�nement of our �rst patch. We analyse the second failure with the aim of�nding a wave-function which will not lead to the blockage experienced in thesecond proof attempt, i.e. s(s(n)) " 6= s(0)| {z }blockage ! : : :We are looking for a wave-rule of the form:F (s(s(X)) ")) : : :Note how this wave-rule would allow further rippling. In addition, we knowthat F must be of type Nat! Bool. Taking these constraints into considerationthere are two6 candidate wave-rules within our theory: (14) and (16). So, for ourcurrent example, F may be �x:even(x) (19)or �x:odd(x)Now we exploit our semantic knowledge. From the �rst patch attempt we knowthat7 F (s(0)) must evaluate to false. Looking at rewrites (13) and (15) we seethat (19) is the correct instantiation for F . Note, however, that our strategyshould be extended to cope with cases in which the actual patch consists of acombination of predicates. The corrected conjecture becomes:8n : nat: even(n)! double(half(n)) = n (20)which is actually provable.De�nition4 Fixing Theorems by Re�nement. The preconditions and as-sociated patch for re�ning previous patching attempts are the following:6 Note that wave-rule (12) is ruled-out for type reasons.7 This ensures that the second attempt at patching (1) subsumes the �rst one.

CRITIC fertilize (correction of faulty conjecture)Preconditions:1: The conclusion and hypothesis match modulo the antecedents, e.g.: : : (n 6= s(0))! double(half(n)) : : :` (s(s(n)) " 6= s(0))! double(half(n))2: The antecedent of the hypothesis is not logically implied by theantecedent of the conclusion, e.g.s(s(n)) 6= s(0)! n 6= s(0) is not elementary.3: And there exists a wave rule and a rewrite of the form:F (C(X) ")) : : :F (val)) : : :respectively, where C is a constructor function determined by theselected induction schema, and val is the value associated with theproblematic case condition (antecedent), e.g.even(s(s(X)) ")) even(X)even(s(0))) falsePatch:Replace the condition attached to the conjecture by F (x), e.g8n : nat: even(n)! double(half(n)) = n3.3 Lochs and DikesConsider the following faulty conjecture:8A;B : list(T): rev(rev(A <> B)) = rev(rev(B)) <> rev(rev(A)) (21)From which we establish the following induction hypothesis:rev(rev(a <> bbc)) = rev(rev(bbc)) <> rev(rev(a)) (22)This formula is false in that the RHS has two arguments in wrong positions. Weattempt to prove (22) using a vn :: a induction. We assume the rewrite rulesderived from the de�nition of <> and the following rewrite rules:rev(X :: U ")) rev(U) <> X :: nil " (23)rev(nil)) nilrev(U <> X :: nil ")) X :: rev(U) " (24)X :: U " = X :: V ") U = V (25)The base case is trivial. The step case proceeds as follows. First of all, theinduction conclusion takes the form:rev(rev(v1 :: a " <> bbc)) = rev(rev(bbc)) <> rev(rev(v1 :: a "))

By the application of wave rule (4) we getrev(rev(v1 :: a <> bbc ")) = rev(rev(bbc)) <> rev(rev(v1 :: a "))Wave-rules (23) rewrites this twice to give us:rev(rev(a <> bbc) <> v1 :: nil ") =rev(rev(bbc)) <> rev(rev(a) <> v1 :: nil ")Two applications of (24) transform the above formula into:v1 :: rev(rev(a <> bbc)) " = rev(rev(bbc)) <> v1 :: rev(rev(a)) " (26)At this point, no further rewriting is possible but weak fertilization is applicable.The use of the induction hypothesis as a rewrite rule is called weak fertilization.Having fertilized (26), the resulting formula is considered as a sub-goal to beproved using (a nested) induction. However, any proof attempt will be fruitlessbecause the conjecture is false. The problem is that we cannot assume this inadvance. As a partial solution we have implemented a simple counter-example�nder that evaluates a few standard instantiations to check whether a givenformula is trivially unprovable. The counter-example �nder provides us with themeans of detecting a faulty occurrence.It is clear that the left-hand side (LHS) of (26) is fully rippled, whereas itsright-hand side (RHS) is blocked. According to the rippling paradigm, we saythat the wave fronts on the RHS cannot ripple-out all the way up to the verytop of that side. We may think that there is a dike in the middle of the loch suchthat it is not possible for the waves to raise up in the conjecture structure.Our failure location process is guided by the partial use of the inductionhypothesis. This process is called lemma calculation and it is described in [8].Lemma calculation is aimed at providing missing wave-rules which complete theproof for a given conjecture. It is invoked whenever rippling gets blocked andthere exists the opportunity to exploit the induction hypothesis.For our example, the lemma calculation technique would �rst apply the in-duction hypothesis to get:v1 :: (rev(rev(b)) <> rev(rev(a))) = rev(rev(b)) <> v1 :: rev(rev(a))which generalises to the following lemma:8X : T; 8U; V : list(T): X :: (U <> V) = U <> X :: V (27)If an induction proof is able to establish this conjectured formula, the followingwave-rule would be available:U <> X :: V ") X :: U <> V "

Note how this wave-rule would allow further rewriting and completing the proof.As the reader may now notice, (27) is not a valid lemma.But even if it is not validwe can still exploit the information that it provides. If we look carefully at it,we will notice that the wave-front term, i.e. X :: : : :, introduced by the step caseproof obligation has to move outwards past both <> and U . This observationenables to deduce that correcting (22) can be achieved by performing one of thefollowing actions:{ Emptying one of the lochs, i.e. to force a = nil or b = nil.{ Eliminating the dike, i.e. to force a = b.From the above actions, we prefer the latter. This strategy has been implementedby switching the positions of these variables in one side of the expression, lookingfor a pattern of the form:F1(A;F2(X;B)) = F2(X;F1(A;B))or any plausible combination, e.g. F2(X;F1(A;B)) = F1(A;F2(X;B)).De�nition5 Lochs and Dikes. The preconditions and associated patch forexploiting blocked goals derived from the permuting arguments error are thefollowing:CRITIC wave (lochs and dikes)Preconditions:1: The current sub-goal can be disproved without much e�ort;2: The principal connective in the goal is equality or implication;3: Rippling is blocked in one side of the formula but the other sideis fully rippled;4: The lemma calculation technique suggests a lemma of theform: F1(A;F2(X;B)) = F2(X;F1(A;B))or any plausible combination;5: A and B are of the same type;6: Exchange the positions of A and B in one side of the formula; andallow7: The resulting formula cannot be disproved without much e�ort.Patch:Initiate the plan formation for the modi�ed conjecture.

4 Implementation AspectsThe strategies presented in the above section have been built upon CLAM v3.1,[11]. They have been captured as a collection of critics. CLAM v3.1 was especiallydesigned to realise the proof critics technique described in [7].However, correcting faulty conjectures by adding conditions gives rise to theproblem of �nding a proof for conditional equations. Generally speaking, we nowhave goals of the form:C[N]! P [N] ` C[S(N)]! P [S(N)]where C, P , and S are terms with a distinguished argument,C is the antecedent,and S any constructor function.These sort of goals introduce technical problems in proofs by induction. Thisis because the antecedents get in the way in an actual proof. We have extendedthe capabilities of the proof planner to cope with these situations. We use twodi�erent strategies. In the �rst one, we allow fertilization once we have provedthat the condition of the induction hypothesis holds, we called this conditionalweak fertilization. In the second one, we split a proof into cases using the con-dition of the induction hypothesis and its negation. These strategies have alsobeen implemented as proof critics, thus preserving the core the system.5 Results and ConclusionsWe tested our mechanism by making it correct a set of 45 faulty conjecturesthat included the sort of faults that were mentioned in Sect. 3. It proved to becapable of correcting 80% of them. It corrected 72.3% of false conjectures withwrong de�nitions in boundary values; 72.3% of faulty conjectures with wrongde�nitions beyond boundary values; and 91.67% of non-theorems in which thefault consisted of wrong de�nitions in the properties of operators.OYSTER has been especially designed to be applied in the problem of computerprogram synthesis. We would like to apply the strategies outlined in this paperin the correction of faulty computer program speci�cations. This process mayinvolve the creation of guards to constrain the input domain of the synthesisedcode. Note the similarity between these guards and the conditions that transformnon-theorems into theorems. Table 1 shows some interesting non-theorems thatwere corrected using the strategies outlined in Sect. 3.References1. Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In 9th Conferenceon Automated Deduction. Lusk, R. and Overbeek, R.(Eds.). (1988) 111{120. Longerversion available from Edinburgh as DAI Research Paper No. 3492. Bundy, A. and van Harmelen, F. and Hesketh, J. and Smaill, A.: Experiments withProof Plans for Induction. Journal of Automated Reasoning 7 (1991) 303{324.

Table 1. Example non-theorems successfully correctedNon-Theorems Theoremslength(a <> b) > length(a) b 6= nil ! length(a <> b) > length(a)length(a) < length(a <> b) b 6= nil ! length(a) < length(a <> b)half(x) < double(x) x 6= 0! half(x) < double(x)half(x) < x x 6= 0! half(x) < xx < double(x) x 6= 0! x < double(x)x+ y > x y 6= 0! x+ y > xx+ y > s(x) y > s(0)! x+ y > s(x):even(x) odd(x)! :even(x):odd(x) even(x)! :odd(x)double(half(x)) = x even(x)! double(half(x)) = xdouble(half(x)) 6= x odd(x)! double(half(x)) 6= xeven(x)! even(x+ y) even(y)! (even(x)! even(x+ y)):even(length(a)) oddl(a)! :even(length(a))odd(length(a)) oddl(a)! odd(length(a))a <> (b <> c) = (a <> c) <> b a <> (c <> b) = (a <> c) <> brev(rev(a <> b)) = b <> a rev(rev(b <> a)) = b <> arev(a <> b) = rev(a) <> rev(b) rev(a <> b) = rev(b) <> rev(a)a <> rev(b) = qrev(b; a) rev(b) <> a = qrev(b; a)a <> b = b <> a b <> a = b <> arev(a <> x :: nil) = rev(a) <> x :: nil rev(a <> x :: nil) = x :: nil <> rev(a)The predicate oddl returns true whenever its input, a list of objects, isof length odd. qrev is the tail reverse function. All variables in this table areuniversally quanti�ed and range over either the Peano natural numbers or listsas it should be clear from the formulae.3. Bundy, A. and van Harmelen, F. and Horn, C. and Smaill, A.: The Oyster-Clam sys-tem. In Proceedings of the 10th International Conference on Automated Deduction.Springer-Verlag. Stickel, M.E. (Ed.). (1990) 647{648.4. Bundy, A. and Stevens, A. and van Harmelen, F. and Ireland, A. and Smaill, A.:Rippling: A Heuristic for Guiding Inductive Proofs. Arti�cial Intelligence 62 (1993)182{253.5. Cox, P.T. and Pietrzykowski, T.: Causes for Events: Their Computation and Ap-plications. Lecture Notes in Computer Science: Proceedings of the 8th InternationalConference on Automated Deduction. Siekmann, J. (Ed.) Springer-Verlag. (1986)608{621.6. Gordon, M.J. and Milner, A.J. and Wadsworth, C.P.: Edinburgh LCF - A mechan-ised logic of computation. Lecture Notes in Computer Science 78 (1979).7. Ireland, A.: The Use of Planning Critics in Mechanizing Inductive Proofs. Inter-national Conference on Logic Programming and Automated Reasoning { LPAR92, St. Petersburg. Lecture Notes in Arti�cial Intelligence 624. Voronkov A. (Ed.).Springer-Verlag. (1992) 178{1898. Ireland, A. and Bundy, A.: Using Failure to Guide Inductive Proof. Technical Re-port, Department of Arti�cial Intelligence (1992). Available from Edinburgh as DAI

Research Paper 613.9. Peirce, C.S.: Collected papers of Charles Sanders Peirce. Vol. 2, 193. Harston, C.and Weiss, P. (Eds.) Harvard University Press. (1959).10. Selman, B. and Levesque, H.L.: Abductive and Default Reasoning: A Computa-tional Core. In Proccedings of the 8th National Conference on Arti�cial Intelligence.(1989) 343{348.11. van Harmelen, F.: The CLAM Proof Planner, User Manual and ProgrammerManual. Technical Paper 4. Department of Arti�cial Intelligence, Edinburgh Uni-versity. 1989

This article was processed using the LaTEX macro package with LLNCS style

