
British Machine Vision ConferenceA Comparison of Four Algorithms forEstimating 3-D Rigid Transformations1A. Lorusso D. W. Eggert and R. B. FisherRobotics and Automation Department Department of Arti�cial IntelligenceTecnopolis CSATA Novus Ortus University of Edinburgh70010 Valenzano - Bari - Italy Edinburgh, Scotland EH1 2QLadele@rob.csata.it eggertd or rbf@aifh.ed.ac.ukAbstractA common need in machine vision is to compute the 3-D rigid transfor-mation that exists between two sets of points for which correspondingpairs have been determined. In this paper a comparative analysis offour popular and e�cient algorithms is given. Each computes the trans-lational and rotational components of the transform in closed-form as thesolution to a least squares formulation of the problem. They di�er interms of the representation of the transform and the method of solution,using respectively: singular value decomposition of a matrix, orthonor-mal matrices, unit quaternions and dual quaternions. This comparisonpresents results of several experiments designed to determine the (1) ac-curacy in the presence of noise, (2) stability with respect to degeneratedata sets, and (3) relative computation time of each approach.1 IntroductionDetermining the relationship between two coordinate systems using sets of corre-sponded features is known as the absolute orientation problem. It has numerousapplications in the areas of photogrammetry, robotics (constructing world models),object motion analysis, computing the hand-eye transform for cameras, as well asobject pose estimation following recognition.A recent survey by Sabata and Aggarwal [1] lists a large number of algorithmsdeveloped to compute the 3-D rigid transformation between two sets of corre-sponded features (e.g., surfaces, lines and points). However, it does not provide aquantitative comparison of these techniques. In this paper a commonly used subsetof these approaches is analyzed; closed-form solutions using corresponded points.The four popular closed-form solutions compared here di�er with respect tothe transformation representation and alternative ways of minimizing a criterionfunction. The �rst was developed by Arun, Huang and Blostein [2], and is basedon computing the singular value decomposition (SVD) of a derived matrix. Asimilar approach based on orthonormal matrices, but computing the eigensystem ofa derived matrix was presented by Horn, Hilden and Negahdaripour [3]. The thirdalgorithm, also due to Horn [4], involves representing the rotational component1This work was funded by EC H.C.M. Project ERB40500PL921003 through the SMART net-work, and UK EPSRC Grant GR/H/86905.



British Machine Vision Conferenceusing a unit quaternion. The use of dual quaternions to represent both transformcomponents is the basis of the fourth technique of Walker, Shao and Volz [5].The comparison presented here consists of three parts. First, the accuracy ofeach algorithm is examined as the coordinates of corresponding points are cor-rupted with increasing amounts of noise. Second, the stability is determined asoriginal 3-D point sets degenerate into such forms as a plane, line and single point.Lastly, the relative e�ciency, in terms of actual execution time, is reported for theabove situations. Conclusions based on these results should make the choice of anappropriate algorithm for a given application simpler and more reliable.2 Description of AlgorithmsEach of the four algorithms computes the solution to a similar problem which canbe described as follows. Assume there exist two corresponded point sets fmig andfdig, i = 1 : : :N , such that they are related by di = R mi + T + Vi, where R is astandard 3�3 rotation matrix, T is a 3-D translation vector and Vi a noise vector.Solving for the optimal transformation [R̂ , T̂ ] that maps the set fmig onto fdigtypically requires minimizing the least squares error criterion:�2 = NXi=1 k di � R̂ mi � T̂ k2 (1)For the exact details of the four algorithms we must refer the reader to the origi-nal papers. However, in the following subsections the characteristics of each thatare relevant to the comparison are described; namely, transformation represen-tation, minimization method and special cases. All of the solutions are in closedform, which are typically more e�cient than iterative techniques (e.g., the extendedKalman �lter approach of Zhang [6]).2.1 A solution involving the SVD of a matrixThis �rst method was developed by Arun, Huang and Blostein [2]. The transfor-mation rotation is represented using a standard 3 � 3 orthonormal matrix, whiletranslation is a 3-D vector, as in the equations above.The solution method can be described as follows. By noticing that the pointsets should have the same centroid at the correct solution, the rotation componentis found �rst by analyzing point sets after their translation to the origin. A 3 � 3correlation matrix given by H = NXi=1 mc;i d Tc;i (2)is computed based on these new centered point sets. Its singular value decomposi-tion, H = U�V T , is determined. The optimal rotation matrix is then R̂ = V U T .(Note, this computation of R̂ is also known as the orthogonal Procrustes problem,the SVD-based solution of which has been known for some time [7].) The opti-mal translation is found as that which aligns the centroid of the set fdig with thecentroid of the optimally rotated set fmig, that is T̂ = �d� R̂ �m.



British Machine Vision ConferenceA special case occurs for planar data sets or in the presence of large amounts ofnoise. If the determinant of R̂ is �1, a re
ection rather than a rotation has beenfound. This is corrected by setting R̂ = V 0U T , where V 0 = [ v1; v2;�v3 ] andv3 is the third column of V corresponding to the zero singular value of H. Thisspecial case has also been handled in alternative derivations by Umeyama [8] andKanatani [9]. The algorithm is not designed for linear or singular point data sets.2.2 A solution involving orthonormal matricesThe second algorithm is similar in nature to the �rst, but was developed indepen-dently by Horn, Hilden and Negahdaripour [3]. The same representation for R andT is used. Again the point sets are translated to the origin, and the correlation ma-trix H in equation (2) calculated. However, rather than compute the SVD of thismatrix, a polar decomposition [9] is used, such thatH = RS, where S = (HH T )1=2.Here, R̂ = H T ( 1p�1 u1 u T1 + 1p�2 u2 u T2 + 1p�3 u3 u T3 ), where f�ig and fuig arethe eigenvalues and corresponding eigenvectors of the matrix HH T . The optimaltranslation T̂ is computed as in the �rst algorithm, after calculating R̂.Planar point sets again give rise to a special case, since the equation for R̂ doesnot hold as �3 gets small. Unfortunately, the proposed correction in [3] is not validin all cases. An alternate solution is: R̂ = H TS +� Xpj Trace(X) j , where the sign ischosen such that the determinant of R̂ is positive, S + = 1p�1 u1 u T1 + 1p�2 u2 u T2 ,X = [ (H T S +) (H T S +) T � I ] u3 u T3 and u3 is the eigenvector associatedwith the smallest eigenvalue of S. Neither derivation can be applied to linear orsingular point data sets.2.3 A solution involving unit quaternionsThe third method is also due to Horn [4], but in this case a di�erent representationof the transformation is used. Rather than have the standard 3 � 3 orthonormalmatrix represent rotation, a unit quaternion is employed. When a rotation isconsidered as a movement through an angle � about an axis a = [ ax; ay; az ]going through the origin, the equivalent unit quaternion is de�ned as a 4-D vectorq = [ cos(�=2); sin(�=2) ax; sin(�=2) ay; sin(�=2) az ]. Translation is stillrepresented using a 3-D vector.By rewriting the minimization problem in the quaternion framework (see [4]) anew 4� 4 matrix can be constructed from the correlation matrix H in (2) as:P = 264 H00 +H11 +H22 H12 �H21 H20 �H02 H01 �H10H12 �H21 H00 �H11 �H22 H01 +H10 H20 +H02H20 �H02 H01 +H10 H11 �H00 �H22 H12 +H21H01 �H10 H20 +H02 H12 +H21 H22 �H11 �H00 375The optimal rotation, represented in quaternion form, is the eigenvector corre-sponding to the largest positive eigenvalue of P . This rotation quaternion can thenbe converted into standard matrix form. Following this, the optimal translationcan be computed as in the other two methods. The above technique does not needto be modi�ed to handle planar point sets, but as with the others, will not workfor linear or singular point data sets.



British Machine Vision Conference2.4 A solution involving dual quaternionsThe fourth algorithm is due to Walker, Shao and Volz [5], and is the most signi�-cantly di�erent of the group, originally designed to minimize the equation:�2 = LXi=1 �i k n1i � R̂ n2i k 2 + NXi=1 �i k di � R̂ mi � T̂ k2 (3)where fn1ig and fn2ig are two sets of L corresponding unit normal vectors, andf�ig, f�ig are weighting factors re
ecting data reliability. This equation can besimpli�ed to that of equation (1) by setting �i = 0 and �i = 1.In this method the rotation and translation are represented together using adual quaternion, qd = [r; s]. Here, motion is modelled as a simultaneous rotationaround and translation along a particular line, with direction n = [ nx; ny; nz ],passing through a point p = [ px; py; pz ]. The amount of motion is given by anangle � and a distance t, de�ning the components of qd as:r = � sin(�=2) ncos(�=2) � s = � t2 cos(�=2) n+ sin(�=2) (p � n)� t2 sin(�=2) �Again the minimization equation can be rewritten in this new framework (see[5]), resulting in an equation involving r and s. The optimal component r̂ forthis new equation is found as the eigenvector corresponding to the largest positiveeigenvalue of a 4� 4 matrix, A = 14N C T1 C1 � C2, where C1 and C2 are matriceswhose elements are functions of the point coordinates. From r̂ the standard rotationmatrix can be computed as R̂ = (r̂ 23 � r̂ T0::2 r̂0::2) I + 2 r̂0::2 r̂ T0::2 + 2 r̂3 K(r̂),where r̂0::2 is the �rst three elements of r̂ and K is a matrix that is a functionof the components of r̂. The optimal value of ŝ can also be computed from r̂ asŝ = � 12N C1 r̂, from which the optimal translation follows as T̂ = W (r̂) T ŝ,where W is another matrix of quaternion components. As in the unit quaternionapproach planar sets are processed �ne, but linear and singular point sets are nothandled.3 Experimental ComparisonEach of the four algorithms was implemented in C++ with e�ciency in mind(compiled using gcc, version 2.6.3, using -O3 optimization). To provide a source ofcommonality, routines from the Eispack linear algebra package [10] (converted fromFortran to C) were used for all SVD (routine svd) and eigensystem (routines tred2and tql2) calculations. These are known for their stability and rapid convergence,and behaved properly during the series of experiments described below. Moredetailed versions of these experiments can be found in [11].3.1 The accuracy experimentIn this experiment, the absolute accuracy of each of the algorithms was testedunder varying levels of noise. Non-degenerately arranged 3-D point sets of sizeN = 4 to N = 10; 000 were used. The points fmig were chosen randomly from a
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σ=10-10Figure 1: Errors between computed translation and rotation from algorithms andknown transformation. Graphs (log-log scale) are translation error, kT̂alg � T̂truek,and rotation error, kq̂alg � q̂truek, vs. data set size, N.uniform distribution within a cube of size 2� 2� 2 centered about the origin. Thecorresponding set fdig was formed by �rst adding uncorrelated, isotropic Gaussiannoise with zero mean and variable standard deviation to each point, and thentransforming to a new location. The translation components of the transformwere randomly selected from a uniform distribution in the range [�10 :: 10]. Therotation matrix was calculated via a random selection from a uniform distributionof unit quaternions representing valid rotations.For each data set size and noise level one hundred trials were run and theaverage response recorded. A trial consisted of new point, transform and noisevalues. Two error statistics were computed for the calculated transforms. Theseare the norm of the di�erence between the true and estimated translation vectors,as well as the norm of the di�erence between true and estimated unit quaternionsrepresenting the rotation.Figure 1 shows the accuracy of the four algorithms for changes in noise levelwith respect to the error in computed translation and rotation. As expected, asthe number of points grows, the error in the computed transformation approachesa value dependent on the noise level. The exception is the zero noise case. Herethe dual quaternion (DQ) algorithm appears less accurate than the others, whichare all very similar except on small data sets. However, these di�erences are reallyminimal, the largest di�erence being 10�13.From these results, one can conclude that the di�erence in accuracy betweenthe algorithms is many orders of magnitude below normal noise levels, almost atthe level of machine precision (2 � 10�16). The unit quaternion (UQ) and SVDresults are most similar, deviating from that of the orthonormal matrix (OM) onlyfor small data sets, where these three perform better than the DQ method.



British Machine Vision Conference3.2 The stability experimentsIn this section the stability of the algorithms is tested, in terms of how well theycompute a correct transformation for degenerate data forms (plane, line and point).Here a sequence of data sets is needed to monitor the breakdown of the algorithms.Successive sets in the sequence are taken from a volume whose dimensions aresteadily reduced from that of an original 2 � 2 � 2 cube to approach those of aplane, a line, or a single point.Given this data sequence, two noise perturbations are applied to the points. The�rst is isotropic, as in the accuracy experiment. This models the case where datais gathered and no prior uncertainty model is known. The second is anisotropicnoise, which models higher data accuracy in some dimensions, but less in others.The more accurate dimension here is the direction of degeneracy (for instance,perpendicular to a plane). Noise added in this direction is reduced proportional tothe changing volume's dimensions.The error criterion for these experiments is the root mean square (RMS) error ofa control point set, which is necessary for measuring any error in the unconstraineddegrees of freedom of the degeneracy. The points of this set (again within a 2�2�2cube) undergo both the true and computed motions, and then the distances betweenthe resulting sets are measured. The error plots in Figure 2 are for the SVDalgorithm. Except where noted below these responses are typical of the others.3-D to 2-D degeneracy In this experiment the degeneracy ratio (ratio of orig-inal cube Z dimension to new reduced Z dimension) is increased until the dataset closely resembles the X � Y plane. RMS error responses were computed forseveral di�erent data set sizes, noise levels and types. Typical values are basicallyindependent of the degeneracy level, as shown in Figures 2.a and 2.b. Also, RMSvalues for data sets of increasing size converge to p3 � for isotropic noise and p2 �in the anisotropic case.The individual responses of the algorithms are virtually identical, except inthe zero noise case depicted in Figure 3.a. Here, the response from OM is lessnumerically stable than the others (perhaps suggesting the correction providedhere is not the best alternative), and that of DQ is slightly less accurate thaneither the SVD or UQ results.3-D to 1-D degeneracy In this experiment the data set degenerates into a line,namely the Z axis. The SVD error responses are shown in Figures 2.c and 2.d.Since the algorithms are not designed for linear data sets, the graphs indicate thedegeneracy level necessary for breakdown. Under isotropic noise the error steadilyrises as the diameter of the line decreases, completely breaking down in the bestcases when the line diameter reaches the level of the noise, and in most other casesearlier than that. Under anisotropic noise the error remains at the original noiselevel until numeric instability occurs, thereafter it breaks down steadily.The largest di�erence in breakdown position is observed in the zero noise case,as graphed in Figure 3.b. Results for the UQ algorithm are very similar to thoseof SVD, breaking down slightly earlier. The DQ algorithm breaks down �rst in allcases, while the OM algorithm's performance is highly dependent on the data set
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Figure 3: Graphs (log-log scale) of RMS errors of algorithms for N = 1000 and� = 0. Cases are for degeneracy to (a) plane, (b) line, and (c) singular point.size. It actually performs the best for large data sets as shown in Figure 3.b, butdoes worse than the SVD and UQ responses for small data sets.3-D to 0-D degeneracy In this experiment the data set degenerates into apoint (the origin). Figures 2.e and 2.f show typical response curves which arevery similar for all but the DQ algorithm. Breakdown trends similar to those inthe linear degeneracy case can be seen, with the point of breakdown generallyoccurring later. Once again, DQ always falls apart sooner (see Figure 3.c), evenearlier than in the previous experiment.3.3 E�ciency experimentsFrom a theoretical standpoint, each of the algorithms examined has a time com-plexity of O(N ). In this section the actual coe�cients of the linear time functionsare compared by measuring the execution times of the previous four experiments.All timings were performed on a 50 MHz Sun Sparc Station 10 with a 1MB cachememory. The graphs in Figure 4 represent the zero noise case for nondegenerate3-D data sets. The changes in timings due to di�erent levels of noise were minimal,but there was some increase in speed noticed for degenerate data sets.First consider the coe�cient of the linear term of the time equation. All butthe DQ algorithm initially spend time computing the same set of sums for thecorrelation matrix. Therefore the linear terms, which are dependent on the num-ber of data points, should be identical for these three. The di�erent set of sumscomputed by the DQ algorithm is larger in number but requires fewer referencesto the data values. In looking at the curves in Figure 4 the relative slopes aredi�erent for small and large data sets. The change occurs when the data's memoryrequirements exceed the machine's cache size. Prior to the transition point, thegreater number of computations of the DQ algorithm are evident, but as cachemisses become more frequent the roles are reversed.Next consider the constant terms of the time equations, which are unique foreach algorithm. SVD computes the singular value decomposition of a 3�3 matrix,followed by matrix multiplication and determinant operations. The OM algorithm
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Figure 4: Execution times (in seconds) of algorithms on nondegenerate data sets.determines the eigensystem of a 3 � 3 matrix, in addition to a greater number ofmatrix operations. The UQ algorithm computes the eigensystem of a 4�4 matrix,followed by a minimal amount of computation for representation conversion. Lastly,the DQ algorithm also computes the eigensystem of a 4� 4, and does more matrixcalculations. Similar work is done by all to compute the translation.The relative times of these calculations are best seen in Figure 4.a. Here, theSVD computations seem least e�cient, while the smaller eigensystem calculationof OM is quickest. But this is not true for all data set sizes, as shown in Figures 4.band 4.c. Because the SVD and eigensystem computations are actually iterative,their relative timings can change somewhat based on data complexity, which causesthe observed curve crossovers. With degenerate data sets (see [11]) the calculationtimes are reduced in general and similar crossovers still occur.So, when N < 100, the OM algorithm is quickest, by as much as 15%. Forlarge data sets the relative di�erence of the SVD, UQ and OM methods becomesnegligible, about 1%. Prior to data size exceeding the cache (N < 10; 000) the DQtechnique is slower, but then it becomes more e�cient as N increases.4 ConclusionsA comparison has been made between four algorithms that compute a rigid 3-Dtransformation between two sets of corresponding points in closed form: SVD, UQ,OM and DQ. As with most comparisons, no one algorithmwas found to be superiorin all cases, but some general conclusions can be made.The di�erence in accuracy on nondegenerate 3-D point sets, even for variousnoise levels, is almost insigni�cant. This is perhaps not unexpected since they weredesigned to solve the same problem. But, this conclusion is not in agreement withearlier �ndings of Walker, et al. which stated \the two algorithms produce thesame rotation errors ... for the translation errors, the DQ algorithm exhibits betterperformance than the SVD algorithm ... " [5, pg. 364]. This conclusion is certainlynot supported by the data here.There does appear to be a greater separation in algorithm stability. Here, inmost cases, the SVD and UQ methods were very similar and usually the moststable. The OM method was not as stable for planar data sets, but was superior
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