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Abstract. Grouping is often intended as a general-purpose early vision stage which gathers together image features
of perceptual salience, usually having a well-definable structure. This work addresses the problem of generic part-
based grouping and recognition from single two-dimensional edge images following a strategy that employs generic
part models at all stages: the key underlying idea is to perform a purposive grouping of simple parts and these parts
can be conveniently represented by generic part models. This paper outlines the proposed computational method,
which is extensively treated in [18].

1 Introduction

Since the early days of computer vision research, part segmentation and recognition has been acknowledged
an important role towards the realization of a generic object recognition system. A reliable segmentation
of generic objects into their constituent parts would, for instance, tremendously ease object grasping and
manipulation, fast indexing to large object databases and so forth. For these reasons, research in part
segmentation has been vigorous indeed.

However the large majority of approaches dealt with segmentation from silhouette images, which are
normally difficult to extract. In the past few years good works have appeared that use ordinary edge images
as input; notably, the method in [6] was region-based and therefore could cope only with clean images. Other
excellent approaches have been proposed that are based on Gestaltic perceptual grouping such as [15, 27];
these works are heavily based on the detection of symmetries between part sides and cannot properly cope
with very cluttered images.

In this paper, the new paradigm of part-based grouping of features is presented that bridges the classical
grouping and model-based approaches with the purpose of directly recovering parts from real images, and
part-like models are used that both yield low theoretical complexity and reliably recover part-plausible groups
of features.

Figure 1 depicts the structure of the proposed computational approach to part-based grouping and
recognition by models and at the same time shows how the different topics discussed in this paper relate to
each other. From the raw input edge image, codons are extracted and then used to form small seed groups
that allow generic part models (the generic part Point Distribution Model [23]) to be initialised (by ellipse
fitting [22]) and then fitted to additional codon evidence. The many hypotheses that are produced by this
grouping stage (discussed in Section 2) are subsequently reduced by the Minimum Description Length (MDL)
filtering stage (Section 3). Once part segmentation is available, qualitative 3D structure can be recovered by
the final parametrically deformable aspect fitting stage (Section 4).

The approach is extensively dealt in [18] and in other publications; this paper, for reason of space, will
just describe the underlying philosophy and outline the computational approach.
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Fig.1.: The proposed computational approach to part-based grouping and recognition by models. See text
for details.

2 Part hypotheses generation by model-driven grouping

Let us think of the noisy contour image of a tree; to the eyes of the human, the tree would be grossly described
by two parts: the trunk and the foliage. To achieve this abstract part-level description, a computer system
should not only employ some means for “smoothing” the shape but also have a notion of the essential “thing-
like” nature of parts. This is also valid for the three-dimensional case as, according to Huffman and Richard’s
theory of parts [8], solid parts can be inferred from their 2D projection by looking for non-accidental invariant
properties in edge images. The “thing-like” nature of parts, also called objectness, had often been neglected
as a guideline to the computational study of the part segmentation problem until the work of Pentland [17],
who argued that objectness can also be expressed by a set of generically applicable part models and this line
of thought is the hinge of the approach.

Objectness is represented here by the closed contour of the simple generic part Point Distribution Models
(PDM) [4] whose training set was built by random deformable superellipses [23]. However, as Pentland put
it, there is no known computational model to “begin immediately with recognition of part models” [17].

The infeasibility of a method that directly looks for parts in an image suggests that perhaps it is necessary
to step one level back from whole-part models in an hypothetical representational hierarchy of objects.

The computational approach that is proposed in this paper to perform model-driven part-based grouping
consists of four distinct stages. A synthetic description of the method in terms of pseudo-code, is given in
Figure 2.

In the first stage codons, contour portions of similar curvature [25], are extracted from the raw edge image.
They are considered as indivisible image features because they have the desirable property of belonging either
to single parts or joints. Codons are represented by second order polynomials, and are recovered from ordinary
edge images via a variation of the simple iterative end point fit and split algorithm [24]. An example of codons
is given in Figure 3-A.

Once codons are available, a method should be devised for “grouping” codons belonging to single parts.
Most works — notably symmetry-based — assume that each codon covers most of the part sides. Unfortunately,
this is not the case in real images: often codons are over-segmented, whole boundary segments missing, and



Partition image contour into codons

Find small part-plausible seed groups of codons

for each seed group do
Initialise the part model to the seed group
Pre-shape the part model to the seed group
Find supporting codons to the pre-shaped model
Fit the part model to the additional support

end for

A set of part hypothesis is now available

Fig. 2.: Pseudo-code of the model-driven part-based grouping method proposed in this paper. See text for
details.

marking, shadows and shading edges are always present. Codons can be considered as seeds of perception
[3] from which more and more complicated descriptions of the images are constructed. In the same frame
of mind and to overcome the above limitations, in the second stage small seed groups (currently pairs) of
codons are found that give enough structural information for part hypotheses to be created.

The third stage consists in initialising and pre-shaping the models to all the seed groups. First, coarse
positions and orientations of the part-like models are determined by fitting ellipses [22] to the pixel belonging
to each seed groups of codons. Successively, the PDMs are pre-shaped to the seed groups of codons; in this
phase, coarse bending and/or tapering estimates are recovered along with positions and dimensions. Note
that the concept of pre-shaping to few significant features is a relatively new concept for deformable models
that has helped to dramatically increase the robustness of the fitting stage; pre-shaping can also be seen as
a way of reducing complexity and facilitating convergence, as much as done in, e.g., hand pre-shaping for
robot grasping [28].

Finally, in the fourth stage, a full fitting of the generic part PDMs is performed to a large neighbourhood
of each pre-shaped models. Many hypotheses are thus created but the great majority of them will represent
the contour data poorly due to the lack of image evidence and can be discarded straight away. However, a
number of good or plausible hypotheses end up contending for describing the image evidence, such as those
shown in Figure 3-B; the filtering of these hypotheses to produce part segmentation is the subject of the
next section.

The outcome of this procedure is also to effectively produce a part-based grouping of edges. It is necessary
to stress that this model-driven grouping method is complementary to other grouping techniques, such as
symmetry recovery [27] and convex grouping [9], in the sense that it cannot alone solve the grouping problem.
These matters are discussed more extensively in [18].

3 Filtering hypotheses by Minimum Description Length

This section presents a novel method for filtering the redundant set of part hypotheses H produced by the
previous grouping stage that retains only those that are likely to correspond to actual parts. The method
is inspired by recent work [12, 5] in segmentation using the Minimum Description Length (MDL) criterion
[16, 11]. The method has previously been used for segmenting surfaces into patches but, for the first time,
here the philosophy is applied to a two-dimensional context. In the proposed approach, supporting evidence
for hypotheses is put into competition under the MDL framework to select part hypotheses that most
economically represent supporting edges in the “language” of generic parts. The filtering is performed by
the maximisation of a quadratic boolean cost function by a genetic algorithm.

The theoretical underpinning of the method is extensively discussed in another paper [19] and here we
briefly discuss the implementation.

The method is based on finding the models that most economically encode (in terms of bits) the edge
image by the contour of the part hypothesis.

Let us indicate by M; and B; the supported and unsupported contour portions of each part hypotheses
H; € H (see Figure 3-C), by x2(M;, R;) the sum of squared orthogonal distances between the hypothesis’
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Fig.3.: A: Segmentation of and edge image into codons. B: Initial redundant set of part hypotheses. C:
Tlustration of supporting codons and supported contour pixels of a generic part model.
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supported contour portions and its supporting codons R;, and by M, ; the set of pixels of the hypothesis
H; (or equivalently 7;) that are supported by the supporting codons R; N R;.

Let us now suppose we can determine four constant K;, Ky, K3 and K4 such that K is the average
number of bits necessary to represent each supported pixel of a model contour, K, is the average number
of bits necessary to represent each unsupported pixel of a model contour, K3 is a constant such that when
multiplied by x2(-,-) gives the average encoding length for representing the residuals and, finally, K is the
average number of bits needed to specify the parameters of a hypothesis (the shape parameters of the generic
part PDM).

If we also presume that in the final solution the only kind of model overlapping taken into account is
pairwise [17], the best interpretation of the edge image in terms of the hypotheses is obtained by:

m = argmnalx{mTQm} (1)

where Q is the hypothesis correlation matrix, which will be defined next, and m = [m; may -+ ma]7 is
the hypothesis presence vector in which each element m; is “1” or “0” if the model H; is present or absent,
respectively, in the final image description; any given m selects a subset X of the whole set of hypotheses .
Each diagonal element ¢; ; expresses the length of encoding the supporting region R; of a hypothesis H;
by H; itself:
gii = K1|M;| — Ko|Bi| — K3x*(M;, Ri) — Ku;

The off-diagonal elements ¢; ; deal with interaction between two competing (possibly partially overlap-
ping) hypotheses H; and #; and ensure that saving and residual overhead due to shared supports are
accounted for only once:

1
Qi =qij = 5 {—Kl . |Mi,j‘ + K;3 -)(2(./\/11"]‘,7-\’,2’ ﬁRj)}

Intuitively speaking, with this definition m”Qm is large when the smallest number of models best
describe the image and do not have too many unsupported contour portions.

Equation (1) is, technically speaking, a quadratic boolean optimisation problem, as the solution space can
be represented as the corner of an M-dimensional hypercube. In [12] and [17] this optimisation problem was
tackled by using different greedy strategies, which we have found unsuitable to our minimisation because
we do not have, in general, good hypotheses. Since our intention was to investigate the real properties
and limitations of the proposed segmentation method in the optimal case, a simple genetic algorithm was
implemented to perform the boolean optimisation (see [18]).

The MDL principle states that the choice of the constants K, K5, K3 and K, should be theoretically
driven by prior probability distributions of edges, gaps, residual and model parameters.

In [20] it is shown that if p,,; is the probability that a pixel on a model contour is supported (matching
a feature) and if py; is the probability of detecting an edge at a certain image pixel, and ¢? is the variance
of the model/codon displacements, reasonable values of K, K5, K3 are given by:



Ky ~logy(pm1) — logy (pe1)
Ks ~ —(logy(1—=pm1) +loga(1—py1) )

log, o+ % log, 2me
K3 ~ g2 ;2 g2

Q2

For instance, for the sensible values of p,,1 = 0.8 and py; = 0.05 we obtain K1 =4 and K> = 2.3, which
are amazingly close to what in the experiments indicated as an optimal combination. In the case of K3
the experiments show that the above equation slightly overestimates the value found to be optimal in the
experiments (with & = 1...3), probably because the residual distribution is not Gaussian.

The value of K4 represent the number of bits necessary to represent the model parameters. A good range
of K4 has been experimentally found to be from 40 to 80.

4 Recovery of qualitative 3D structure

In the previous sections, it has been shown that qualitative 3D primitives like geons can be segmented out
from real images by looking for their outline but the essence of their 3D structure (the geon class, according
to [1]) is lost in the process. For instance, in the part segmentation of the handset of Figure 5-A, both pieces
and handle hypotheses have a neat 3D structure which could not be recovered by the simple 2D models used
in the part-based grouping.

This section outlines the method we used for fitting qualitative 3D volumetric parts models to real
2D images that treats geons® as single entities to be extracted from images. This is done by matching
parametrically deformable contour models (PDCM) of geons to edge images in the framework of Model-
Based Optimisation (MBO), in which an objective function expressing the global likelihood (goodness) of
fit is maximised. The cost function accounts for both matched and unmatched contour portions and is
formulated in sound Bayesian terms [20]. A few examples of geon PDCMs and fitting results can be seen in
Figure 5-B. The potential advantages of such a global approach lie in imposing overall consistency on the
image which lead to robustness to cluttering and opens possibilities of direct figure-ground segmentation in
the spirit of [13] or the MDL method presented in the previous section. Similar approaches to generic part
recognition that used deformable superquadrics as generic shape models have been investigated for the 3D
case (range data input) in popular works such as [26, 29, 13, 2]; only in [14] the method was extended to
the 2D case as a front-end of the OPTICA system [6]. To date, however, one of the main problems faced by
global fitting approaches is their sensitivity to the initial state of the models, which often compromises the
quality of the solution. In and early work [20], we used a loosely-constrained optimisation approach which
worked well only when the initial model was topologically equivalent to the geon instance being fitted. Later
[18] this deficiency has been reduced by using an aspect-based hypothesis generation-and-testing strategy
inspired by [7]. The multidimensional parameter space defining the geon PDCM is partitioned into eight
topology-equivalent classes which have been called parametrically deformable aspects (PDA); the set of eight
PDA can be seen as a single deformable model endowed with global topology information. By doing so,
the optimisation can independently focus in regions of the parameter space that correspond to models
with the same topology, thereby reducing the chances of getting stuck in local minima caused by different
interpretations of image features. A simple experimental control strategy suggested by [7] is employed that,
by starting from coarse 2D part hypotheses produced as in the previous sections, does:

(1) initialises all eight PDA at a representative position for each PDA;

(2) performs the fitting independently for each PDA thus initialised;

(3) chooses the one that achieves the best score.

The marriage between parametric deformable contour models and the concept of topologically different
aspects efficiently represents geons and yields more robustness in the optimisation process we use, which is
Simulated Annealing [10].

More details about this section can be found in [18, 21].

® The parts are called geons here despite they are a subset of the ones defined in [1].



5 Experimental Results

This section presents some experiments that show the principled validity of the proposed approach. More
detailed experiments, which include robustness analysis can be found in [18].

Figure 4 shows four experiments in which the original edge image, the initial set of part hypotheses and
the final filtered set are given on the left, centre and right figures, respectively.

It can be seen that the initial set includes many poor hypotheses and multiple ambiguous interpretations
of the edge data. In all the examples, the part-based grouping managed to produce a redundant set of part
hypotheses that includes the actual ones and the MDL filtering method to finally produce the correct part
segmentation: the surviving part hypotheses are the minimal set of models that most economically represent
the edge image in the “language” of generic parts, right in the spirit of the MDL principle.

Notice that in the four experiments the same set of parameters Ky, Ko, K3 and K, were used. In [18]
many more experiments (not included here for reasons of space) are given that show that the method is fairly
stable to variations in K, K, K3 and K4 but some problems, mainly due to the well-known figure-ground
ambiguity, are reported.

Figure 5 shows an example of how the 3D structure of parts can be recovered by means of parametrically
deformable aspects fitting as outlined in Section 4. Figure 5-A shows the initialisations of the PDA in terms
of position, size and orientation; Figure 5-B shows the final fitting results and in Figure 5-C these results
are rendered by deformable superquadrics; notice that the superquadrics are produced by using the same
numerical values of the parameters as those that define the PDAs.

The results we achieved from 2D images are very much comparable with the one obtained by using 3D
range data (e.g. by [26]), although depth and orientation cannot be obviously recovered from 2D images.
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Fig. 4.: Four hypothesis filtering examples. Left: Original edge image; Centre: Redundant set of hypotheses;
Right: Hypotheses selected by the MDL filtering method.
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Fig.5.: Real-image experiment with the aspect-based control strategy. Here, the PDA have been initialised
automatically from some of the hypotheses produced by the part-based grouping and MDL filtering method.
The figure shows initialisation (A), contour fits (B) and their volumetric representation (C).
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