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Abstract

This paper addresses the following problem: How can we make a com-
plicated mathematical shape model simpler while keeping a comparable
level of representational power? The proposed solution is to use the
original model itself — which represents a class of shapes — to train a
Point Distribution Model. In this paper the idea is applied to the case
of deformable superellipses.

1 Introduction

Superellipses and their 3-D extension superquadrics were introduced by the Danish
designer Piet Hein (e.g. [5]); however, although he is referred as the inventor of
superellipses, we have found that curves of the form (z/a)” + (y/a)" = 1, which
include superellipses, were presented in 1818 by the French mathematician Gabriel
Lamé.

These two representations have been brought into the computer graphics and
vision community by Barr [1] and, in particular, Pentland [9], who used su-
perquadrics to model parts of objects in a coarse but very compact way. Either
simple or complicated deformations can be applied to extend their modelling ca-
pabilities (see, e.g., [13]), obtaining what are normally referred to as deformable
superellipses (henceforth DSE) and deformable superquadrics (DSQ);

Although DSEs and DSQs can represent many closed 2-D and 3-D shapes in a
straightforward and natural way by using few parameters, they are toys of a rather
awkward nature, defined by horribly non-linear equations which make them slow
to generate and not very manageable for fitting purposes. To date, in fact, there
is no known closed-form error-of-fit (EoF) function and usually some shrewdness
is used to compute approzimate (yet expensive) EoF functions, as in [6] or [13];
practically, however, the fitting is often performed by minimising in parameter
space a least squares EoF function which needs a closest-point search on the DSE
contour or DSQ surface.
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The central problem is whether we are willing to trade the complexity of DSEs
and DSQs for the benefits they offer. In fact, in the choice of a model for fitting
purposes, the foremost priority should be to find a good balance between ease of
fitting and representational power. In this light, it is no wonder that the most used
representations in vision are lines and ellipses, since they offer the best trade-off
in this respect.

This paper addresses the following problem: How can we render a complicated
mathematical shape model easier to fit while keeping a comparable level of repre-
sentational power? The key idea is to use the mathematical model itself — which
represents a class of shapes — to train a Point Distribution Model (PDM) [3, 2].
PDMs are linear, fast to generate and can be fitted both in parameter and image
space.

In this papers, the argument is illustrated for the case of DSEs; we call the
DSE-trained PDM thus created a linear deformable superellipse. The method can
be trivially extended to DSQs and, in principle, applied to simplify or parametrise
other complicated shape models, such as superellipses with more domain-specific
deformations or high-order polynomials.

After a description of the DSE model given in the next section, the statistical
PDM is briefly introduced. Then, we show how the PDM training set is built
from randomly generated deformable superellipses and give some examples of the
parametric shapes thus obtained. Finally, we conclude with a brief discussion and
illustrate an application of the linear superellipse model taken from [10].

2 The deformable superellipse model

In this section we describe the deformable superellipse model, which will be sub-
sequently used to train the PDM.
A superellipse can be described in parametric form by:

z = fo(6) = azcos()
{ y = fy(6) = aysin(6)° —r<f<7

where a, and a, are the two semi-axis and 0 < € < 1 is the roundness parameter.
By eliminating 6, its implicit equation can be easily obtained:
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Either simple or complicated deformations can be applied to the basic superel-
lipse shape. For the sake of the self-containedness of this paper, we give below the
mathematical description of the two simple deformations used in this work, linear
tapering and circular bending, which have been derived from Solina and Bajcsy’s
work [13].

Let the superellipse shape S be expressed in terms of its vectors of coordinates
x and y and let X and Y be the corresponding coordinates after the deformations.
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Figure 1: Bending geometry setting (left) and some examples of DSE (right). See
text for details.

Linear Tapering: The tapering deformation along the y axis is defined as

Taper(s, K) = { § i gx(y)x

If g.(y) is linear, the tapering will also be linear. By setting g..(y) = 5—2 +
with —1 < K < 1, we have linear tapering ranging from increasing (K > 0
constant (K = 0) to decreasing cross-section (K < 0).

1,
),

Circular Bending: Figure 1 (left) sketches the geometry of the circular bend-
ing; only one parameter is needed to describe this deformation. As shown
in the figure, a positive bending is applied along the y axis in the positive
z direction. p is the original point position and P is the position when the
deformation is applied. The deformation is given by:

Bend(S, b) = { X =i (7 )

where:
R = ay/[b]
r=R— x|
v = atan(y/r)

and —1 < b < 1is the bending control parameter. Differently from [13], here
the bending parameter is normalised to a, and bending on both direction
has been introduced.

Figure 1 (right) shows four superellipses, without deformation (top-left) with
linear tapering (top-right), with bending (bottom-left) and with a combination of
them (bottom-right). Note that in the examples, a linear sampling of € is used in
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Eqn. (2), causing a remarkably uneven contour sampling distribution. Solutions
to this problem has been proposed in Franklin [4] and also in [11].

A combination of deformations should be carried out by first doing the defor-
mations that are more shape preserving (see, e.g., [8] or [13]). In our case, with
just two deformations used, the right order is first tapering and then bending.

3 The Point Distribution Model

Point Distribution Model (PDM) is a term coined by Cootes et al. [3, 2] to indi-
cate statistical finite-element models built from a training set of labelled contour
landmarks of a large number of shape examples. The method has recently received
considerable attention because of its flexibility and generality.

Let us indicate by X7 the set of shapes defined by a labelled set of n two-
dimensional points P; = (z;,y;), also called landmarks. We desire to model a
certain class of similar shapes belonging to X7 in order to identify and parametrise
their significant degrees of freedom.

A well known tool for achieving this dimensionality reduction is the Karhunen-
Loeve transform, or Principal Components Analysis (PCA) [7], by which a rel-
atively large set of examples is used to infer global statistical properties of the
whole set.

From a set of examples, n landmark points are chosen, labelled and put in cor-
respondence across the whole training set. Let! x;1,%a,...,xy, be the Ny aligned
shape examples, each represented by 2n-long vectors of landmark coordinates:

X = [Ii,l Yixi Ti2 Yi2 1 Tin yi,n]T

The mean shape is calculated by averaging each coordinate points, that is

and the 2n x 2n (positive definite) covariance matrix of the points is given by

A= N, < 1(Xi—f)(xi—f)T

(3

Let (M,p1),(A2,P2),---, (Aan, P2n) be the eigenvalue-eigenvector pairs of A
sorted such that A; > Aj41. As well known from statistics, the physical meaning
of the eigenvector of a covariance matrix is a hyper-direction (2n—dimensional in
our case) along which normal the variance of the point distribution equals the
corresponding eigenvalue. Therefore the eigenvectors corresponding to the largest
eigenvalues most describe the statistics of the point distribution.

This property of the eigenvalue decomposition is the key that has been cleverly
used by Cootes et al.[3] for approzimating any shape x in the training set by a

'n the following we shall use a similar notation as in Cootes et al. [3].
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Figure 2: Landmarks of the natural (undeformed) superellipse model (left) and
contribution of each mode to the overall point variance over the training set (right).

weighted sum of displacements in the direction of the ¢t most significant eigenvectors
with respect to the mean shape, that is:

x =X+ Pb, (1)

where P = [p1|p2|- - |p:] and the weights b = [by b2 ... b;] are called modes of
variations.

Equation (1) allows not only to represent the training set but also to generate
new shapes, thus being de facto a parametric model of the class of training shapes,
provided that the b; are kept within proper ranges.

By the nature of the decomposition used, each )\; is the variance of the cor-
responding b; over the training set and therefore the ranges for the b; should fall
within £2 or 3v/\; [3].

4 Using random DSEs as training set

A properly built PDM can well represent the kind of variability needed to model
shapes like DSEs in terms of dimension, bending and tapering, squareness and
also shearing.

For doing this, however, a method for efficiently building a large set of samples
has to be devised and, obviously, the most natural one is to use the DSE model to
train the PDM. To this end, a number (N = 2000) of random superellipses were
generated, their contours sub-sampled at equal distance (by the method proposed
n [11]) and from the set of landmark points of all the training examples the PDM
was built as in the previous section.

Figure 2-left shows a natural (undeformed) superellipse in canonical position
with the landmark points. We used n = 80 (i.e. 20 landmarks in each DSE quad-
rant). By using the DSE construction as given in Sec. 2, the range of parameters
used to generated the random training set was —5 < a, < 5, —10 < a, < 10,
—0.7< K <0.7, =0.7 < b < 0.7 and, finally, 0.1 < € < 0.9. Note that the abso-
lute values of a, and a, is irrelevant, since the PDM will be rescaled during the
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Figure 3: Four examples of scattergrams of the modes of variation. Low-order
modes are relatively uncorrelated to each other whereas more and more correlation
crops up for higher order modes.

fitting stage [2]; their ratio, however, expresses the the eccentricity of the shape,
which is usually assumed elongated along the y axis.

The table in Fig. 2-right shows the contribution in percentage of the first ten
modes to the total variance of the training set [7] given by:

i
ni = 2n

Zj:l >\] .

It can be seen that most of the shape variation is covered by the first 4 modes
which, as we shall see in a moment, are strictly related to the actual height, width,
tapering and bending parameters of the DSE; however, the first seven modes will
be taken into account in the rest of the paper.

The principal component analysis method teaches us to use scattergrams to
check correlation between the modes over the training set: a scattergrams of two
modes should look like a cloud of random points if they are uncorrelated [7].

Figure 3 shows four scattergrams of various modes of variation computed over
the training set. In our case the first 3 modes (by vs. ba, by vs. bg and by vs. b
in Figure 3) look relatively uncorrelated but not for higher-order modes such as,
e.g., by vs. bs (right).

An interesting experiment that has been carried out, and reported here, was
to relate the original deformable superellipse parameters — used for creating the
training set — to the modes of variation in order to assess their reciprocal corre-
lations. Figure 4 shows the scattergrams of the first seven modes b1, ..., b7 (rows)
with respect to the five deformable superellipse parameters ay, as, €, K and b,
which are represented in the columns; a conspicuous line-like pattern of points in
the scattergram indicates strong correlation.

It can be seen that modes by, by, b3 and b4, chiefly correlates to as, b, a; and
K, respectively, whereas they are pretty much uncorrelated to other parameters.
This is a very welcomed behaviour, because it allows easy and natural classification
of the shapes by just using modes straight away. As expected, the strong non-
linearity of the roundness deformation — controlled by €, which actually does not
involve major structural change in the shape — is not clearly correlated with any
mode, although slightly with b7;. The roundness deformation is strongly non-linear
and therefore this behaviour was somewhat expected.
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Figure 4: Scattergrams that relates the modes of variation to the original de-
formable superellipse parameters over the training set. High concentration of
points around a line indicate high correlation. It can be seen that modes by, bo,
bz and by, chiefly correlates to as, b, a; and K, respectively, and pretty much
uncorrelated to other parameters.
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Figure 5: Parametrisation of the PDM model. The modes of variation controls
the actual PDM shape in a rather neat way: the first four modes straightly control
vertical height, bending, width and tapering, respectively, whereas the last three
produce, in combination and unexpectedly, slight horizontal tapering, squaring
and shearing.
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Figure 6: Example of use of the linear superellipse model fitted to some arbitrary
object parts. More examples appear in these proceedings in [12]

This correlation between modes and shape parameters comes to the fore in
Figure 5, in which the PDMs are shown for five different values of the first seven
modes, one per row. The first four modes neatly control single shape features of
height, bending, width and tapering, whereas the last three produce, in combi-
nation and unexpectedly, slight horizontal tapering, squaring and shearing, which
also nicely enhances the model representational power.

Interestingly, there is a suggestive comparison of these results with Leyton’s
causal analysis of shape [8] (see also [13]), which proposes a natural order with
which shapes are deformed. In fact, the contributions 7; of each mode to the
overall point distribution variance indicate what are the most influential shape
factors, which might give a solid mathematical basis to Leyton’s theory, although
at the moment it can be seen as a mere speculation.

5 Discussion

The spirit of the method proposed in this paper is general; it suggests that, when-
ever convenient, complicated mathematical shape models should be substituted
with other with similar representational power to the foremost cause of fitting
performance. For doing so, models such as PDMs can be used with a training set
built up with examples of the original model itself.

In this paper the approach has been shown for the case of deformable superel-
lipses. We have seen that the linear deformable superellipse model thus created
has a similar representational power as DSEs and its shape features are controlled
by parameters with a precise geometrical meaning,.

Our concern was not to create a precise shape model, since very few objects,
if any, can be exactly represented by DSEs and DSQs. As a matter of fact, a high
degree of precision of representation is a lesser problem in generic shape analysis,
which is the very domain DSEs and DSQs are normally used for.

In [10], the linear deformable superellipse has been used as a generic model for
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performing part-based grouping and segmentation. There, the fitting is carried
out as in [2] but the PDM initialisations is performed by fitting ellipses to the set
of pixels belonging to a small set of seed codons, as more extensively discussed in
[12]. Figure 6 shows some fitting examples to a real image but some more examples
can be found in [12] (these proceedings).

The extension to superquadrics is straightforward. In the near future, we also
plan to apply the same model-trains-model strategy to other domains, for instance
in the training on a shape class of high order polynomials (which can be fitted by
closed-form least-square methods) in order to parametrise their dominant shape
features.
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