
Training PDMs on models:The Case of Deformable SuperellipsesMaurizio Pilu Andrew W. FitzgibbonRobert B. FisherDepartment of Arti�cial IntelligenceThe University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QLSCOTLANDAbstractThis paper addresses the following problem: How can we make a com-plicated mathematical shape model simpler while keeping a comparablelevel of representational power? The proposed solution is to use theoriginal model itself { which represents a class of shapes { to train aPoint Distribution Model. In this paper the idea is applied to the caseof deformable superellipses.1 IntroductionSuperellipses and their 3-D extension superquadrics were introduced by the Danishdesigner Piet Hein (e.g. [5]); however, although he is referred as the inventor ofsuperellipses, we have found that curves of the form (x=a)n + (y=a)n = 1, whichinclude superellipses, were presented in 1818 by the French mathematician GabrielLam�e.These two representations have been brought into the computer graphics andvision community by Barr [1] and, in particular, Pentland [9], who used su-perquadrics to model parts of objects in a coarse but very compact way. Eithersimple or complicated deformations can be applied to extend their modelling ca-pabilities (see, e.g., [13]), obtaining what are normally referred to as deformablesuperellipses (henceforth DSE) and deformable superquadrics (DSQ);Although DSEs and DSQs can represent many closed 2-D and 3-D shapes in astraightforward and natural way by using few parameters, they are toys of a ratherawkward nature, de�ned by horribly non-linear equations which make them slowto generate and not very manageable for �tting purposes. To date, in fact, thereis no known closed-form error-of-�t (EoF) function and usually some shrewdnessis used to compute approximate (yet expensive) EoF functions, as in [6] or [13];practically, however, the �tting is often performed by minimising in parameterspace a least squares EoF function which needs a closest-point search on the DSEcontour or DSQ surface.
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The central problem is whether we are willing to trade the complexity of DSEsand DSQs for the bene�ts they o�er. In fact, in the choice of a model for �ttingpurposes, the foremost priority should be to �nd a good balance between ease of�tting and representational power. In this light, it is no wonder that the most usedrepresentations in vision are lines and ellipses, since they o�er the best trade-o�in this respect.This paper addresses the following problem: How can we render a complicatedmathematical shape model easier to �t while keeping a comparable level of repre-sentational power? The key idea is to use the mathematical model itself { whichrepresents a class of shapes { to train a Point Distribution Model (PDM) [3, 2].PDMs are linear, fast to generate and can be �tted both in parameter and imagespace.In this papers, the argument is illustrated for the case of DSEs; we call theDSE-trained PDM thus created a linear deformable superellipse. The method canbe trivially extended to DSQs and, in principle, applied to simplify or parametriseother complicated shape models, such as superellipses with more domain-speci�cdeformations or high-order polynomials.After a description of the DSE model given in the next section, the statisticalPDM is brie
y introduced. Then, we show how the PDM training set is builtfrom randomly generated deformable superellipses and give some examples of theparametric shapes thus obtained. Finally, we conclude with a brief discussion andillustrate an application of the linear superellipse model taken from [10].2 The deformable superellipse modelIn this section we describe the deformable superellipse model, which will be sub-sequently used to train the PDM.A superellipse can be described in parametric form by:� x = fx(�) = axcos(�)�y = fy(�) = aysin(�)� � � � � � �where ax and ay are the two semi-axis and 0 � � � 1 is the roundness parameter.By eliminating �, its implicit equation can be easily obtained:� xax�2=� +� yay�2=� = 1Either simple or complicated deformations can be applied to the basic superel-lipse shape. For the sake of the self-containedness of this paper, we give below themathematical description of the two simple deformations used in this work, lineartapering and circular bending, which have been derived from Solina and Bajcsy'swork [13].Let the superellipse shape S be expressed in terms of its vectors of coordinatesx and y and let X and Y be the corresponding coordinates after the deformations.
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Figure 1: Bending geometry setting (left) and some examples of DSE (right). Seetext for details.Linear Tapering: The tapering deformation along the y axis is de�ned asTaper(S;K) = � X = gx(y)xY = yIf gx(y) is linear, the tapering will also be linear. By setting gx(y) = Ka2 +1,with �1 � K � 1, we have linear tapering ranging from increasing (K > 0),constant (K = 0) to decreasing cross-section (K < 0).Circular Bending: Figure 1 (left) sketches the geometry of the circular bend-ing; only one parameter is needed to describe this deformation. As shownin the �gure, a positive bending is applied along the y axis in the positivex direction. p is the original point position and P is the position when thedeformation is applied. The deformation is given by:Bend(S; b) = � X = x+ sign(b) � (py2 + r2 � r)Y = sin(
) � rwhere: R = ay=jbjr = R� jxj
 = atan(y=r)and �1 � b � 1 is the bending control parameter. Di�erently from [13], herethe bending parameter is normalised to ay and bending on both directionhas been introduced.Figure 1 (right) shows four superellipses, without deformation (top-left) withlinear tapering (top-right), with bending (bottom-left) and with a combination ofthem (bottom-right). Note that in the examples, a linear sampling of � is used in
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Eqn. (2), causing a remarkably uneven contour sampling distribution. Solutionsto this problem has been proposed in Franklin [4] and also in [11].A combination of deformations should be carried out by �rst doing the defor-mations that are more shape preserving (see, e.g., [8] or [13]). In our case, withjust two deformations used, the right order is �rst tapering and then bending.3 The Point Distribution ModelPoint Distribution Model (PDM) is a term coined by Cootes et al. [3, 2] to indi-cate statistical �nite-element models built from a training set of labelled contourlandmarks of a large number of shape examples. The method has recently receivedconsiderable attention because of its 
exibility and generality.Let us indicate by �n2 the set of shapes de�ned by a labelled set of n two-dimensional points Pi = (xi; yi), also called landmarks. We desire to model acertain class of similar shapes belonging to �n2 in order to identify and parametrisetheir signi�cant degrees of freedom.A well known tool for achieving this dimensionality reduction is the Karhunen-Loeve transform, or Principal Components Analysis (PCA) [7], by which a rel-atively large set of examples is used to infer global statistical properties of thewhole set.From a set of examples, n landmark points are chosen, labelled and put in cor-respondence across the whole training set. Let1 x1;x2; : : : ;xNs be the Ns alignedshape examples, each represented by 2n-long vectors of landmark coordinates:xi = [xi;1 yi;1 xi;2 yi;2 � � � xi;n yi;n]T :The mean shape is calculated by averaging each coordinate points, that isx = 1Ns NsXi=1 xiand the 2n� 2n (positive de�nite) covariance matrix of the points is given by� = 1Ns NsXi=1(xi � x)(xi � x)TLet (�1;p1); (�2;p2); : : : ; (�2n;p2n) be the eigenvalue-eigenvector pairs of �sorted such that �i � �i+1. As well known from statistics, the physical meaningof the eigenvector of a covariance matrix is a hyper-direction (2n�dimensional inour case) along which normal the variance of the point distribution equals thecorresponding eigenvalue. Therefore the eigenvectors corresponding to the largesteigenvalues most describe the statistics of the point distribution.This property of the eigenvalue decomposition is the key that has been cleverlyused by Cootes et al.[3] for approximating any shape x in the training set by a1In the following we shall use a similar notation as in Cootes et al. [3].



British Machine Vision Conference

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30 �i �iMode 1 5692.0 56.9 %Mode 2 1933.3 19.8 %Mode 3 1509.9 15.3 %Mode 4 615.2 6.2 %Mode 5 91.5 0.9 %Mode 6 50.1 0.5 %Mode 7 48.3 0.4 %Figure 2: Landmarks of the natural (undeformed) superellipse model (left) andcontribution of each mode to the overall point variance over the training set (right).weighted sum of displacements in the direction of the tmost signi�cant eigenvectorswith respect to the mean shape, that is:x = x+Pb; (1)where P = [p1jp2j � � � jpt] and the weights b = [b1 b2 : : : bt] are called modes ofvariations.Equation (1) allows not only to represent the training set but also to generatenew shapes, thus being de facto a parametric model of the class of training shapes,provided that the bi are kept within proper ranges.By the nature of the decomposition used, each �i is the variance of the cor-responding bi over the training set and therefore the ranges for the bi should fallwithin �2 or 3p�i [3].4 Using random DSEs as training setA properly built PDM can well represent the kind of variability needed to modelshapes like DSEs in terms of dimension, bending and tapering, squareness andalso shearing.For doing this, however, a method for e�ciently building a large set of sampleshas to be devised and, obviously, the most natural one is to use the DSE model totrain the PDM. To this end, a number (Ns = 2000) of random superellipses weregenerated, their contours sub-sampled at equal distance (by the method proposedin [11]) and from the set of landmark points of all the training examples the PDMwas built as in the previous section.Figure 2-left shows a natural (undeformed) superellipse in canonical positionwith the landmark points. We used n = 80 (i.e. 20 landmarks in each DSE quad-rant). By using the DSE construction as given in Sec. 2, the range of parametersused to generated the random training set was �5 � ax � 5, �10 � ay � 10,�0:7 � K � 0:7, �0:7 � b � 0:7 and, �nally, 0:1 � � � 0:9. Note that the abso-lute values of ax and ay is irrelevant, since the PDM will be rescaled during the
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Mean Shapeb1 b1=−144.3 b1=−72.1 b1=0.0 b1=72.1 b1=144.3b2 b2=−77.1 b2=−38.6 b2=0.0 b2=38.6 b2=77.1b3 b3=−41.8 b3=−20.9 b3=0.0 b3=20.9 b3=41.8b4 b4=−32.5 b4=−16.3 b4=0.0 b4=16.3 b4=32.5b5 b5=−12.3 b5=−6.2 b5=0.0 b5=6.2 b5=12.3b6 b6=−11.7 b6=−5.8 b6=0.0 b6=5.8 b6=11.7b7 b7=−9.0 b7=−4.5 b7=0.0 b7=4.5 b7=9.0Figure 5: Parametrisation of the PDM model. The modes of variation controlsthe actual PDM shape in a rather neat way: the �rst four modes straightly controlvertical height, bending, width and tapering, respectively, whereas the last threeproduce, in combination and unexpectedly, slight horizontal tapering, squaringand shearing.
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Figure 6: Example of use of the linear superellipse model �tted to some arbitraryobject parts. More examples appear in these proceedings in [12]This correlation between modes and shape parameters comes to the fore inFigure 5, in which the PDMs are shown for �ve di�erent values of the �rst sevenmodes, one per row. The �rst four modes neatly control single shape features ofheight, bending, width and tapering, whereas the last three produce, in combi-nation and unexpectedly, slight horizontal tapering, squaring and shearing, whichalso nicely enhances the model representational power.Interestingly, there is a suggestive comparison of these results with Leyton'scausal analysis of shape [8] (see also [13]), which proposes a natural order withwhich shapes are deformed. In fact, the contributions �i of each mode to theoverall point distribution variance indicate what are the most in
uential shapefactors, which might give a solid mathematical basis to Leyton's theory, althoughat the moment it can be seen as a mere speculation.5 DiscussionThe spirit of the method proposed in this paper is general; it suggests that, when-ever convenient, complicated mathematical shape models should be substitutedwith other with similar representational power to the foremost cause of �ttingperformance. For doing so, models such as PDMs can be used with a training setbuilt up with examples of the original model itself.In this paper the approach has been shown for the case of deformable superel-lipses. We have seen that the linear deformable superellipse model thus createdhas a similar representational power as DSEs and its shape features are controlledby parameters with a precise geometrical meaning.Our concern was not to create a precise shape model, since very few objects,if any, can be exactly represented by DSEs and DSQs. As a matter of fact, a highdegree of precision of representation is a lesser problem in generic shape analysis,which is the very domain DSEs and DSQs are normally used for.In [10], the linear deformable superellipse has been used as a generic model for
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performing part-based grouping and segmentation. There, the �tting is carriedout as in [2] but the PDM initialisations is performed by �tting ellipses to the setof pixels belonging to a small set of seed codons, as more extensively discussed in[12]. Figure 6 shows some �tting examples to a real image but some more examplescan be found in [12] (these proceedings).The extension to superquadrics is straightforward. In the near future, we alsoplan to apply the same model-trains-model strategy to other domains, for instancein the training on a shape class of high order polynomials (which can be �tted byclosed-form least-square methods) in order to parametrise their dominant shapefeatures.Acknowledgements: Maurizio Pilu was partially sponsored by SGS-THOMSONMicroelectronics.References[1] A. Barr. Superquadrics and angle-preserving transformations. IEEE ComputerGraphics and Applications, 1(1):11{23, Jan. 1981.[2] T. Cootes and C. Taylor. Active shape models - 'smart snakes'. In Proceedings ofthe British Machine Vision Conference, pages 266{275, 1992.[3] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Training models of shape fromsets of examples. In Proceedings of the British Machine Vision Conference, pages8{18, 1992.[4] W. Franklin and A. Barr. Faster calculation of superquadric shapes. IEEE ComputerGraphics and Applications, July 1981.[5] M. Gardiner. The superellipse: a curve that lies between the ellipse and the rectan-gle. Scienti�c American, Sept. 1965.[6] A. Gros and T. Boult. Error of �t measures for recovering parametric solids. InInternational Conference on Computer Vision, pages 690{694, Tampa, FL, Dec.1988.[7] I. T. Joli�e. Principal Components Analysis. Springer-Verlag, 1986.[8] M. Leyton. Simmetry, Casuality, Mind. MIT Press, 1992.[9] A. Pentland. Perceptual organization and the representation of natural form. Arti-�cial Intelligence, 28:293{331, 1986.[10] M. Pilu. Part-based Grouping and Recogntion: A Model-Guided Approach. PhDThesis, Department of Arti�cial Intelligence, University of Edinburgh, Scotland,1996. Forthcoming.[11] M. Pilu and R. Fisher. Equal-distance sampling of superellipse models. In Proceed-ings of the British Machine Vision Conference, volume 1, pages 257{266, Birming-ham, Sept. 1995.[12] M. Pilu and R. Fisher. Part segmentation from 2D edge images by the MDL criterion.In Proceedings of the British Machine Vision Conference, Edinburgh, Sept. 1996.These proceedings.[13] F. Solina and R. Bajcsy. Recovery of parametric models from range images: The caseof superquadrics with global deformations. IEEE Transaction on Pattern Analysisand Machine Intelligence, 12(2):131{147, Feb. 1990.


