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1Humpback whales also make a variety of  social sounds that are heard most often when the whales are in-
teracting in groups [Thompson et. al 1977]. These sounds appear to be subject to different rules from those in-
fluencing songs. Moreover, both genders make social sounds whereas almost all observed singing humpbacks  
have been male [Payne & Payne 1985]. The role that song plays in the lives of humpback whales is unclear. 
Traditionally it was believed be purely a cultural phenomena   playing a part in courtship analogous to bird 
song. However, the low-frequency, repetitive, patterned vocalizations of the humpback whale  may also/instead 
be used for environmental sensing [Frazer et. al 1996]. In this paper we refer to these vocalizations  as "song" 
for historical reasons.

_________________________
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A widespread problem in the study of humpback whale song vocaliza-
tions involves evaluating the similarity of song elements within a whale’s 
repertoire, between individuals of a social group, and between social 
groups separated by time and space. Whilst humpback whale songs dem-
onstrate a remarkable amount of regular high level structure,  they are 
composed of a variety of complex and transient elemental phonological 
units. Reliable classification of  song structure requires robust unit clas-
sification    a feature which has made this process difficult to automate. 
This work presents a fully automated technique for performing multiple-
resolution unit classification. In this scheme, units are simultaneous as-
signed membership to a series of increasingly general acoustic classes 
such that degrees of song structural similarities (and differences) emerge 
from analysis of units classified at different resolutions.

PACS numbers:43.80
  

INTRODUCTION

Humpback whales (megaptera novaean-
gliae) emit long, complex patterned vocaliza-
tions, or "songs"1. A number of discrete 
populations of humpback whales exist 
which, at any point in time, can be character-
ized by a unique song shared by all singing 
population members [Tyack 1981; Winn et. 
al 1981; Payne & Payne 1985]. The songs of 
the various populations which have been 
studied all have in common a complex hier-
archical structure. 

The generally accepted whalesong gram-
mar identifies 5 levels in this structural hier-
archy [Payne & McVay 1971; Payne & 
Payne 1985]. 
•  At the lowest level are primitive phono-

logical units   "the shortest (real-time) 
sounds continuous to human ears". 

•  Phrases are organized groups of units. 
Typically, a phrase will consist of two dis-
tinct units (e.g., a tone ’-’ and a click ’|’) 
each consecutively repeated in  variable 
number times.

•  Sequences of one of more similar phrases 
form a theme. Themes may be composed 
of one of several phrasal patterns   e.g., 
static phrases which contain virtually the 
same  material (e.g., - - | - - | - - |), or shift-
ing phrases whose content gradually drifts 
from one unit type to another (e.g., - - - / / / 
| | |), etc.

• Sequences of themes (typically 4-10)   
arranged in a fairly inflexible order   
make up a song.

• Singing whales repeat the song that is cur-
rently typical of their population in long 



2 This threshold was set at the mean plus half of the standard deviation of the maximum amplitude in any 
frequency channel of transformed song signal segments .

_________________________
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(up to many hours) cycles, or song ses-
sions.   

The duration of songs   particularly the 
number of phrases per theme and themes per 
song   varies, even between songs in the 
same song session sung by the same indi-
vidual. However, the structure and sequence 
of this theme grammar is so universally ad-
hered to that the few observed deviations 
have been labelled as aberrant. Over a series 
of years, the characteristic song of each 
humpback population changes extensively 
and irreversibly (within the confines of the 
grammar). Just as the songs themselves are 
highly structured, song evolution appears to 
be a methodological process. 

Techniques for investigating animal pho-
nology have predominantly relied upon a 
trained observer’s subjective impressions of 
aural cues or visual inspection of sound spec-
trograms. Manual classification can be a reli-
able means of categorization [Thorpe 1966; 
Payne & McVay 1971], but the features 
upon which such a comparison is based are 
often illspecified and intuitive. 

Automatic classification techniques   
such as multivariate statistical and neural 
network analysis [Clark 1982; Chabot 1988; 
Potter et. al 1994]  introduce higher levels of 
objectivity at the unit comparison stage. 
However, many existing automated tech-
niques rely on manual pre-processing (unit 
detection) and post-processing (grouping of 
similar units into classes). In the context of 
whalesong analysis, because we can group 
units into both unit-classes and strings of 
units into phrase-, theme- and song-classes, 
automatic techniques which support a hierar-
chy of classification analyses are needed. 

In an effort to fill this niche, we present a 
fully automatic technique for extracting, 
comparing and grouping units. This tech-
nique provides a novel similarity measure 
and a multi-resolution clustering space. The 
multiple scales of classification resolution 
engender this technique with the robustness 
and flexibility necessary to support 

automatic comparisons of high-level song 
structure. 

I. CLASSIFICATION METHODOLOGY

A. Unit Extraction and Representation

Computer based methods of  sound clas-
sification operate on a numerical representa-
tion of a sound’s time-frequency spectrum. 
Narrow-band frequency modulated signals 
are often represented via one or more con-
tour descriptions extracted from a sonogram 
[Clark 1982; Dawson & Thorpe 1990; Buck 
& Tyack 1993; McCowan 1995]. This fea-
ture representation provides an  efficient and 
powerful encoding for narrow-band signa-
ture sounds such as whistles. However, to 
represent the variety and complexity of 
broadband humpback whale sound units, a 
time-frequency distribution is more appropri-
ate   i.e., it retains more information about 
each sound and requires less subjective as-
sessment of character relevance. 

We represent humpback whale song units 
using a spectrogram obtained through ap-
plication of the short-time Fourier Transform 
(512-pt., Hamming filter, 20% overlap) to 
samples of  recorded whalesong (digitized at 
20 kHz). Because human observers perceive 
whalesong units to vary in duration from ap-
proximately 0.1 -10 seconds [Payne & Payne 
1985], we define a unit precisely as a con-
tinuous sequence of  recorded song signal 
whose energy exceeds a preset threshold2 for 
more than 0.1 seconds. Units can vary in 
length   their boundaries being defined  by 
0.1 seconds of subthreshold sound. 

Extracted unit spectrogram matrices con-
sist of 120 time columns   spaced at  0.02 
second intervals across 2.47 seconds   with 
their sound energy centered along the time 
axis. Matrices containing sound units which 
are shorter than this maximum  duration are 
zero padded on both ends.

In order to make the representation more 
computationally efficient, the original 256 
frequency linearly spaced channels in the 
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unit spectrogram matrices are  compressed 
into 16 logarithmically spaced frequency 
rows   the lower 14 of which are used for 
matching. 

As a final step, all matrices are normal-
ized such that the sum of the square of all 
spectrogram cells equals one, thereby elimi-
nating effects of differing recording or play-
back levels. The unit bandwidth and duration 
encoded does not cover the full possible 
range of whalesong units, but represents the 
available data accurately. Figure 3   top 
rows in blocks 1-3   shows some examples 
of extracted, encoded units.

Our encoding is an improvement on the 
binary spectrogram matrix used by Chabot 
[1988]  in an acoustic taxonomic study of 
humpback communication sounds. Chabot’s 
units are manually extracted from spectro-
gram traces and digitized into 16 by 21  ma-
trices. His logarithmically spaced frequency 
bins span the same range as that we used, but 
maximum unit duration (2 seconds) and time 
resolution (0.1 second intervals) were lower. 
Because cell energy was binarized,  Chabot 
additionally coarsely encodes features such 
as relative intensity, frequency and amplitude 
modulations as additional binary variables. 
On the other hand, our representation makes 
these explicit.

 
B. Similarity Measure

Techniques for measuring the similarity 
of sounds encoded in the cells of spectro-
gram matrices often rely on cross correlation 
[Clark et. al 1987; Nowicki & Nelson 1990] 
and related approaches [Chabot 1988]. Here, 
we  define the similarity Sim(s,w) of two 
(normalized) sound signals, s and w, using an 
inner product. This similarity measure is  ro-
bust under high ambient noise   since it en-
hances common components of the two 
sounds being compared, but does not encour-
age negative matches (i.e., matches between 
cells with little sound energy in both signals).

In computing the similarity of any pair of 
sounds, we allow units to slide some distance 
along the time axis to ensure that the similar-
ity measure reflects the best fit match. Whilst 
centering units along the time axis prevents 

matching based on sound start characteris-
tics, time shifting further discourages 
matches between units whose only common 
feature is sound duration. Moreover, time 
shifting is essential for the alignment of 
pulse trains   which if offset by a single 
time column can alter the match irrevocably 
[Chabot 1988]. 

Frequency shifting is not used. Due to the 
low frequency resolution of our spectrogram 
matrices, pitch differences remaining after 
encoding may contain useful information.

Similarity measures used to compare 
narrow-band frequency modulated sounds, 
like dolphin whistles, often employ unit ex-
pansions and compressions in time and/or 
frequency [Buck & Tyack 1993; McCowan 
1995]. It is not clear in the case of humpback 
whale song units what improvements might 
be gained by this. In the case of our limited 
dataset, we found global warping (via blur-
ring cell contents across adjacent frequency 
rows and time columns) to be of little value. 

We did implement, however, a local 
warping function to facilitate consistent cod-
ing of similar units which tend to be sung at 
subtly different rates (e.g., pulse train repeti-
tion rates). Chabot [1988] found it so dif-
ficult to keep  pulse train coding consist 
within his binary spectrogram matrix that 
sampling cells containing silences (i.e., ’0’s) 
within obvious pulse trains were re-coded as 
sound (i.e., represented by a ’1’). We do not 
edit our unit spectrogram encoding, but al-
low each individual cell in the matrix to 
stretch a limited amount along the time and 
frequency axes in order to find the best 
match during correlation. A penalty function 
keeps the amount of stretch within reason-
able bounds by "charging" the similarity 
measure for increased amounts of local 
warping. Each local warp depreciates a cell 
correlation by:

α
α + warp

where α = 0.5 and warp is the amount of lo-
cal stretch (measured as a number of cells).

C. Grouping



5
Submitted to the J. Acoustic Society of America A. Walker et. al (1996). Singing maps

Comparing pairs of units via this similar-
ity metric allows us to identify groups or 
classes of acoustically similar sounds. Due to 
the apparent degree and rapidity of linguistic 
drift in humpback whalesong phonology, 
however, the long-term significance of these 
classes is not easy to assess.

 Though humpback whales are not par-
ticularly faithful to their units, they do appear 
to be loyal to a grammar. The fact that  more 
regular, high level song features rely on tran-
sient and irregular low level units seems to 
present a contradiction. However, we argue 
that this situation presents an opportunity for 
a new performance criteria to be applied to 
humpback whalesong unit classifications. 
Specifically, we propose that the perfor-
mance of a unit clustering procedure should 
be based upon how well the underlying clas-
sification space supports comparative analy-
sis of humpback song, theme and phrase, as 
well as units. 

A classification space which could pro-
vide a robust and convenient organization of 
units should include the following features:
• Topological ordering. Clustering involves 

mapping N groups of neighboring data 
points in the high dimensional unit space to 
N classes in a lower dimensionality clas-
sification space. If the spatial relationships 
amongst the classes in the lower dimen-
sional space preserves the inter-group to-
pology of the higher space, then units can 
naturally have  membership in both an 
acoustic class and an acoustic region of 
classification space. This ordering facili-
tates the multi-resolution unit classification 
necessary for robust higher level matching. 

• Nonlinear decision borders between 
classes. In order to cluster overlapping unit 
classes into categories possessing maxi-
mum internal cohesion and external isola-
tion, nonlinear discrimination borders are 
necessary. We can expect this sort of adap-
tive discriminatory behavior from  intel-
ligent animals capable of, for example, de-
coupling the co-occurance of signal and 
noise.

• Existence of an explicit cost function. The 
existence of a cost function enables rank-
ing of  the different possible clusters so as 
to optimize a particular clustering statistic.

• Generation of a sound class prototype. 
Class prototypes, or averages, facilitate ob-
servation of common features of class 
members.

A clustering process which simulta-
neously meets all these criteria is Kohonen’s 
Self Organizing Map (SOM) [Kohonen 
1988]. The SOM algorithm maps from an 
input space to a 2-dimensional classification 
space, or "phonetic map" (in its original ap-
plication). The phonetic map is not a formant 
map, nor  a kind of principle component 
graph for phonemes. Instead, "it displays the 
images of the complete spectra [spectro-
gram] as points on a plane, the distances of 
which approximately correspond to the vec-
toral differences between the original spec-
tra; so this map should be regarded as a simi-
larity graph, the coordinates of which have 
no explicit interpretation" [Kohonen 1988].

In our implementation, a phonetic, or 
classification, map is created as a 2-
dimensional lattice of artificial neurons or 
"nodes" each containing a 14x120 prototype 
spectrogram matrix. Node matrices are   ini-
tialized  by randomly pertubating an average 
of  all the input spectrogram units. Node con-
tents come to represent the characteristic 
time-frequency distributions of classes in the 
input space through an iterative training pro-
cedure. Specifically, at each epoch in the 
training cycle, an input sk  is randomly se-
lected and its (unwarped) similarity Sim(sk 
,wi,j) to each node wi,j in the network is com-
puted. The best match is reinforced by ad-
justing the winning node’s prototype distri-
bution (and the distribution of other nodes 
within its neighborhood) to better encode the 
current input distribution:

∆wi,j = ηO(f(sk)-wi,j)

where O (neighborhood profile) and η (the 
learning rate) are functions which decrease 



3Satisfactory values for the learning rate (η = 0.7 down to 0.0) and neighborhood size (N = 6 down to 0), 
neighborhood profile (i.e., "Mexican hat function") and decay rates (linearly with time) were discovered through 
experimentation. In determining these parameters, trials which resulted in "successful" maps showed the great-
est degrees of node/class internal  cohesion and external isolation. At least one hundred presentations of our data 
(504 automatically extracted units from a single song file) was required in order for the network to learn the 
clusters. Training takes approximately 5 hours on a Sun Workstation (110MHz), Sparc 5 architecture. Software 
written in C.

_________________________
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with time3. The function f performs time 
shifting and local warping to maximally 
align units with their prototypes before per-
forming an update.

This is a k-means type clustering algo-
rithm with iterative updates. Unlike tradi-
tional k-means, this iterative algorithm is not 
guaranteed to reach a stable local minima  
(i.e., stable, locally optimal clusters), but de-
creasing the learning rate and neighborhood 
size encourages convergence. This algorithm 
lets us specify a cost function (based on the 
squared error) which ranks the local minima. 
Stochastic noise introduced by the input pre-
sentation order is thought move the cluster-
ing from  higher minima toward progres-
sively lower ones (though, again, not neces-
sarily the global one).

II. RESULTS

In this section, we demonstrate the auto-
matic classification technique. These results, 
obtained for a  limited data set, are not in-
tended to yield answers to behavioral ques-
tions, but to serve as a proof of the validity 
and utility of the proposed technique.

A. Unit Extraction and Representation

The harmonic structure of whalesong 
units is complex   varying from tonal to 
noise bursts, across a wide range of intensi-
ties. Nevertheless, employing only a knowl-
edge of unit durations, inter-unit silence du-
rations and a fairly arbitrary signal-to-noise 
detection threshold, the simple extraction al-
gorithm detected units with an 88% success 
rate when compared to manual extractions. 

The value of the thresholding parameter 
caused the automatic extraction process to 
miss quiet units which human observers 
could discriminate from noise. On the other 
hand, the duration parameters were effective: 

pulse train units present in our data had a 
repetition rate in excess of 0.1 seconds and 
therefore were extracted as integral units   
as they would be via manual extraction.

B. Similarity Metric

We investigated the similarity function 
using several examples of four types of units  
extracted from our data. ("Types" were 
manually classified for the purposes of this 
investigation.) 

In Table I, the similarity Sim(s,s) values 
  with time shift (plus local warping)   for 
all possible combinations of internal and ex-
ternal class comparisons are listed. As we 
only apply local warping during the node up-
date phase of clustering, local warping val-
ues are only shown for internal class com-
parisons. 

All similarity scores increase with local 
warping. As expected, local warping im-
proves matches between units with highly 
variable rates   e.g., pulse trains   most 
significantly. 

low 
tone

high 
tone

pulse 
train

FM 
sweep

low 
tone

0.668
(0.738)

0.290 0.248 0.360

high 
tone

 0.840
(0.885)

0.251 0.241

pulse 
train

0.579
(0.673)

0.224

FM 
sweep

0.706
(0.760)

TABLE I. Average similarity values for in-
ternal and external unit class comparisons. 
(Parenthesized values are computed with lo-
cal warping.)

C. Grouping
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Figure 1 shows the results of mapping a 
complete song onto a classification network. 
Each of the 49 basic acoustic classes is rep-
resented via a class prototype spectrogram 
matrix. (Lighter regions denote louder 
sound.) It is immediately apparent that the 
algorithm learned to distinguish the familiar 
time-frequency structures which govern 
manual clustering. There are tones: long du-
ration, high frequency (top right), short dura-
tion medium frequency (bottom left) and 
very low frequency, very short tones with 
higher harmonics (bottom right). Frequency 
sweeps start at the top left of the map and 
change their profile gradually as one moves 
obliquely (down and to the right). 

Because of the topology preserving nature 
of the SOM, acoustically similar spectro-
gram prototypes are grouped into classifica-
tion neighborhoods, or regions. Within these 
regions, the network distinguishes between 
similar time-frequency profiles based upon 
unit duration and amplitude modulation char-
acteristics. 

Notice also that enhanced spectral repre-
sentation of the units (i.e., encoding relative 
power distribution as well as the single fun-
damental frequencies) allows greater dis-
crimination between units. For example, unit 
(4,1) has power concentrated over a shorter, 
but broader spectral peak than (7,1), whose 
power is spread over a longer time. It is un-
clear if there is any behavioural significance 
to these distinctions.

The size of the network determines how 
well we can detect these subtle differences 
between units. As our objective is not to per-
form a taxonomic study of  the humpback 
whale song repertoire, we employ a qualita-
tive criterion to chose the network size. 

For example, if we defined a  small clas-
sification network, the algorithm produces   
general acoustic classes   each representing 
a broad range of acoustic features. Songs 
represented by this coarse-scale encoding 
would contain a few heavily repeated units 
and sequences of units (i.e., phrases and 
themes). In this scenario, the prototype class 
spectrograms could not represent any indi-
vidual unit well, and the inferred song struc-
ture is unrealistically simple.

A very large network would have the op-
posite effect. Individual units would be well 
represented by their prototype (in fact, each 
could be a prototype in the case where the 
network size matched the data size), but few 
regular patterns would exist in the sequences 
of classified units: the song structure would 
appear overly complex. This occurs because 
the "repeating units" which make up what we 
know as phrases and themes are not numeri-
cally identical sounds but  vary subtly in du-
ration, frequency range, sweep rate, etc.

For this reason, the network size is chosen 
so as to compress the data into a manageable 
number of classes (e.g., a 10:1 reduction in 
number of units:classes), while allowing 
enough acoustic diversity that prototypes 
correlate well (e.g., Sim(s,w) > 0.5) with the 
original sound units they represent. 

The 7 x 7 network shown in Figure 1 
achieves a nice compromise. With one ex-
ception, each of the nodes in the network 
best represents one or more units in the input 
data. Twelve percent of the node classes are 
used repeatedly (i.e., they each encode >3% 
of the data) and 25% specialize in less than 
1% (each) of the data. (Node use scores are 
shown above each class prototype spectro-
gram in Figure 1.) By assigning units to a 
single node class we can perceive subtle dif-
ferences between units.

However, because of the topological or-
dering of the classification space, units are 
also well represented by the several class 
prototypes which surround their primary 
class assignment. Figure 2 shows the similar-
ity profile of a typical unit   where the 
similarity values of a unit and all 49 network 
nodes are sorted and displayed in order. 
Similarity values are high between a unit and 
its 1-3 nearest neighboring nodes, and  fall 
off steeply outwith this region. 
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FIG 1. Phonetic map.
49 acoustic class prototype spectrogram matrices. (Coordinates) Usage.
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FIG. 2. Similarity profile for a typical unit. 
(Axes are node vs. similarity score.)

By assigning units to a class region, we 
can ignore subtle differences between units 
which may play the same role in the song 
structure.

III. Discussion

A. Unit Extraction and Representation

The automatic unit extraction mechanism 
presented here is a simple, but powerful tool 
for rapidly parsing large amounts of data. If 
the algorithm employed more information 
about the physiological boundaries of a 
whale’s song production mechanism (e.g., 
frequency range), we would expect better 
agreement between automatic and manual 
extractions. Moreover, for a particular re-
cording environment, filters could be created 
to detect interference with characteristic 
sound patterns, e.g., propeller noise.

Assessment of the quality of the represen-
tation used to encode extracted units is be-
yond the scope of this investigation. Until 
more is known about humpback whale audi-
tion, conclusions about representational is-
sues will be limited to comparisons between 
published schemes. However, it is generally 
recognized that a constant Q spectrographic 
technique like a wavelet transform may be 
necessary to obtain biologically realistic 
resolution in both the time and frequency do-
mains simultaneously [Cohen 1989; 
Groutage et. al 1992; Potter et. al 1994]. The 
traditional spectrogram is used in our studies 
because of the ease with which results can be 
compared with other work in the field.

By contrast to most other approaches of 
which we have knowledge, our spectrogram 
matrix representation uses all parts of the re-
corded sound   aside from absolute intensi-
ties, which are lost in normalization. Filter-
ing lower intensity sounds,  harmonics or 
sidebands introduces subjectivity (e.g., the 
fundamental frequency is often difficult to 
isolate) and is difficult to justify given the 
small amount that is known about the hump-
back auditory system [Campbell 1963]. 
Masking techniques omit many of the small 
acoustic details which may be an artifact of 
natural variation, but may likewise be of be-
havioral significance.

We are uncertain as to whether the  reso-
lution used in this representation is suf-
ficiently precise to match the sensitivity of 
the humpback auditory system. In particular, 
it would be interesting to know whether our 
representation has enough resolution along 
the time axis to encode the pulse train repeti-
tion rates (and rates of change) perceivable 
to the humpback whale. To our knowledge, 
the ability of humpback whales to discrimi-
nate this variable  has not been studied. Od-
ontocetes, however, are extremely sensitive 
to time intervals between their echolocation 
clicks [Thomas & Kuechle 1982].

B. Similarity Measure

The similarity measure proposed here 
uses more domain knowledge than any other 
technique we have seen for comparing 
whalesong units. Due to time shifting, it is 
relatively insensitive to the absolute temporal 
alignment of sounds and their duration. The 
latter feature is used only in fine-detail dis-
criminations between units with similar time-
frequency profiles.

 Frequency shifting might be employed in 
future work should it become known that 
pitch differences carried no information   
e.g., were an artifact of a singer’s age. 

No mechanism for performing global ex-
pansion or compression of units is used here. 
Extracted feature representations (e.g., fre-
quency  sweep contours)  are more naturally 
globally warped  than are spectrograms. 
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However, it is possible, through sub and 
super-sampling methods, for this type of 
warping to be applied to spectrograms. There 
are some behavioural studies for which glo-
bal warping might be useful. Payne & Payne 
[1985] report that song themes sung in  adja-
cent years are sung at different rates (with 
the later year’s song being rendered more 
slowly). This comes about through expan-
sions of unit (and inter-unit silence) dura-
tions, and through a process of splitting units 
which were once contiguous into two distinct 
sounds. 

A mechanism for performing local warp-
ing is proposed here and it is shown to en-
courage better matching amongst units which 
have an intrinsic rate (pulse trains). The pen-
alty function which limits the amount of lo-
cal warping could be optimized in a later 
study. 

C. Grouping

Unit classification for the purpose of auto-
matic analysis of high level song structure is 
not simply a unit labelling process. Multiple 
resolution techniques for clustering allow us 
to explore classification generalizations to 
arrive at the best scale for differentiating 
song units. 

The utility of SOM multi-resolution rep-
resentation can be seen in the example pre-
sented in Figure 3. There,  a series of con-
secutive units which form what we consider 
to be a phrase are shown along the top row 
of each phrase block. (Three consecutive 
repetitions   blocks 1-3   of this phrase 
are shown.) This phrase consists of two  
types of units (where a "type" is a categoriza-
tion determined by our observation): a vari-
able number of low tones with higher har-
monics, followed by a few higher frequency, 
purer tones. 

The similarity scores of the best three 
matches for each unit are shown in the 

middle row of each block of Figure 3. The 
first sound unit is most similar (Sim=0.6722) 
to node (6,5). We could call that node its 
"class", however, doing so would put it in a 
different class from the next sound unit 
(which maps to node (7,7), Sim=0.7095). 
The first unit has more energy in the higher 
harmonic, however, these two units come 
from adjacent positions in the song sound 
file and their acoustic differences may not be 
behaviorally significant. 

For the purposes of bringing out the struc-
ture in a phrase, we  classify units by class 
region. For example, we could define a re-
gion via a center node (e.g., (6,5)) and a ra-
dius (e.g., +/-2 nodes). Classifying units via 
this region-based scheme would allow us to 
automatically identify the phrasal structure 
  i.e., the (5-7) low tones with higher har-
monics, followed by a (1-3) higher, longer 
tones   apparent to human observers. 

The final row of each phrase block in Fig-
ure 3 shows the pattern of similarity values 
that each unit induces across the network. 
(Larger similarity values are encoded with 
brighter colors.) Tracking patterns of similar-
ity across the network (in response to a string 
of consecutive song units) provides another 
convenient window through which to  "see" 
high level patterns in the song emerge. 

In the case of the phrase shown in Figure 
3, the regions of high similarity values 
clearly distinguish the units at the beginning 
of the phrase from those at the end. More-
over, these presentations make explicit some 
behavioural points of interest. The phrase 
seems to conclude with 2 different types of 
tones. The significance of this is unclear. 
Also, note that upon each successive repeti-
tion of the phrase, the highly repeated units 
become more regular (i.e., they map increas-
ingly to node (6,7) and vary over a smaller 
radius (+/-1)).  We observed this phenomena 
in other phrases from this song file.
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FIG. 3 Song phrase.
Top row, BLOCKS 1-3: Unit spectrogram matrices.

Middle row: Best three class assignments. (Node position - see FIG 1.) Similarity.
Bottom row: Similarity scores across the network. White denotes high correlation, black low.
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IV. CONCLUSIONS

Over the past decade, humpback whale-
song research has begun to address numer-
ous issues regarding song structure:

• rate of song development within popula-
tions,

•  song learning mechanisms,
• cross population comparisons of songs, and 
• characteristics of aberrant songs. 

Automated techniques for classifying high 
level song features facilitate direct compari-
son of answers to these (and other) problems. 
Automated classification tools allow us to 
parse more data (more uniformly) and, most 
importantly, make classification criteria ex-
plicit. 

Successful automated classification 
mechanisms will rely on the robust and flex-
ible unit classification at which human ob-
servers excel. The technique presented here 
outlines a strategy for performing this sort of 
classification. In particular we have demon-
strated a simple and reliable method for auto-
matically extracting units, an improved mea-
sure for comparing them and the first clas-
sification space of which we know  that cre-
ates multiple hierarchical levels of unit clas-
sification. 
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