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AbstractWhen reverse engineering a CAD model, it is necessary to integrate information from severalviews of an object into a common reference frame. Given a rough initial alignment of local3-D shape data in several images, further re�nement is achieved using an improved versionof the recently popular Iterative Closest Point algorithm. Improved data correspondence isdetermined by considering the merging data sets as a whole. A potentially incorrect distancethreshold for removing outlier correspondences is not needed as in previous e�orts. Incre-mental pose adjustments are computed simultaneously for all data sets, resulting in a moreglobally optimal set of transformations. Individual motion updates are computed using force-based optimization, by considering the data sets as implicitly connected by groups of springs.Experiments on both 2-D and 3-D data sets show that convergence is possible even for veryrough initial positionings, and that the �nal registration accuracy typically approaches lessthan one quarter of the interpoint sampling resolution of the images.
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1 IntroductionWith the increased abilities of Computer Aided Manufacturing (CAM) systems over the pastdecade, it is becoming more and more desirable for companies to develop computer databasesof their inventory. Computer models of components can now be directly used in the creationprocess by numerically-controlled milling machines. While most new parts are now createdusing a Computer Aided Design (CAD) system, the need for models of old parts is a problem.Generating these by hand is a time-consuming and tedious measurement task, even with theaid of computer-controlled coordinate measurement machines.The solution is an automated process to reverse engineer a part. This procedure is gener-ally composed of three basic steps; data acquisition, data registration and model estimation.Currently, local shape data of an object is usually acquired in the form of 3-D range images,either from a stereo camera setup, a variety of laser-based range �nder systems, or from tac-tile probes. In order to build a complete model, multiple images of the object must be takento achieve total coverage of the surface. The data in these views must then be aligned in acommon coordinate system. The �nal step generates an approximation of the object's surfaceusing the aligned 3-D points. Typical surface forms include a triangulated mesh, extractedquadric surfaces, and various spline representations.The level of quality of the �nal model is directly related to the inaccuracies of each step:the sampling resolution between data points and the inherent noise of the sensor, the error inthe computed alignment transformations, or the residual error of a surface �t to the registereddata. It can be argued that the second of these three steps is perhaps most crucial to the �nalquality. The sampling accuracy of the range sensor establishes an error baseline, which can beexpected to be lowered over time with advances in technology. The �nal surface approximationis generally controlled by adjusting the desired number of triangular patches in the case ofa mesh, or increasing the order of the surface being �t to the data. Regardless of how onereduces these errors, if the shape information from the various views is not properly aligned,the result is merely a �ner approximation to an incorrect set of data.4



The view registration process itself consists of two basic steps; generating initial estimatesof the alignment transformations, and then re�ning these estimates. The �rst step is oftenaccomplished by aligning a small set of features computed from the data (e.g., edges, surfacepatches, and high curvature points). This was often the only alignment performed in earlysystems. But this quality depends on �nding a very accurate set of features. Also, by its verynature, vast amounts of helpful information in the data set are ignored. Thus, additional tech-niques which use the underlying point data have recently been developed to further improveupon the initial estimates.In this paper a point-based data registration re�nement process is examined. In the nextsection many of the previous techniques are reviewed and their limitations discussed. Thenan improved algorithm, designed to overcome many of these limitations, is presented. Thistechnique simultaneously solves for the interview transformations using more global corre-spondence constraints, as incorporated in a force-based optimization. Results of processingboth 2-D and 3-D data sets with this algorithm are given.2 A History of Registration Using the ICP AlgorithmA recently popular method of re�ning a given registration is the iterative closest point (ICP)algorithm, �rst introduced by Besl and McKay [2]. The algorithm is relatively straightforward.First, given a motion transformation that initially aligns two data sets to some degree, a setof correspondences is developed between features (usually points) in each set. This is doneusing the simple metric: for each point in the �rst data set, pick the point in the secondwhich is closest to it under the current transformation. From this set of correspondencesan incremental motion can be computed which further aligns these points to one another.This �nd correspondence/compute motion process is iterated until some convergence criterionindicating proper alignment is satis�ed.Given the algorithm's simplicity, it still performs quite well and has been shown to mono-tonically converge under the stated assumptions [2, 3]. But there are two major drawbacks.5



First, proper convergence only occurs if one of the data sets is a subset of the other. Thepresence of points in each set that are not in the other leads to incorrect correspondences,which subsequently generates non-optimal transformations. Secondly, it is not obvious howthe two set approach can be extended to handle multiple data sets. Attempts at solving thesetwo problems have led to several variants of the original algorithm.2.1 Improving correspondenceThe �rst improvement to the basic algorithm changes the simple point-to-point correspondenceused in many of the methods [2, 4, 5, 6, 7, 8, 9, 10, 11], to that between a point and a locationon the \surface" represented by the other data set. This potentially increases the integrationaccuracy beyond that of the sampling resolution.The �rst such e�ort was due to Chen and Medioni [12]. They begin by �nding the datapoint in the second set that is closest to a line through the point in the �rst set in thedirection of its estimated surface normal. Then, the tangent plane at this \intersection"point is used as the surface approximation. The �rst set's data point is projected onto thisplane to give the corresponding location. This technique has subsequently been used inother approaches [13, 14, 15, 16]. A further minor improvement by Dorai et al. [17] involvesincorporating estimates of sensor inaccuracies into the tangent plane calculations. Lastly, moreaccurate but time-consuming estimates of the surface have also been used; such as octrees [18],triangular meshes [3, 19, 20], and parametric surfaces [3, 21].Most researchers have used the simple Euclidean distance in determining the closestpoint [2, 3, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21]. Fewer have used higher dimensionalfeature vectors, such as including the estimated surface normal [13], principal curvatures ofthe surface [4, 7], and other surface properties [9]. By properly weighting the di�erent compo-nents of the feature vector, as done by Feldmar et al. [7, 9], fewer incorrect correspondencescan be obtained during early iterations when points are farthest apart.6



2.1.1 Thresholding outliersMost of the early algorithms were limited by the original assumption that one data set wasa subset of the other [2, 3, 4, 8, 11, 12, 14, 17, 20, 21]. Proposals to bypass this limitationhave involved imposing a heuristic threshold on either the distance allowed between points ina valid pairing [5, 6, 7, 9, 10, 13, 18, 19], the deviation of the surface normals of correspondingpoints [13, 15], and rigidity constraints between pairs of correspondences [16]. Any point pairswhich exceed these thresholds or constraints are assumed to be incorrect. These thresholds areusually prede�ned constants related to the estimated accuracy of the initial transformations,and can be di�cult to choose robustly [5, 7, 13, 16, 18, 19]. Dynamically adjustable thresholdshave been based on both the distribution of the distance errors at each iteration [6, 9], and afuzzy set classi�cation of inlier and outlier correspondences [10].2.1.2 Computational requirementsIn all of the techniques, computing potential correspondences is generally the most timeconsuming step. In a brute-force approach [2, 3, 10, 13, 21], an O(N2) number of comparisonsis performed to �nd N pairings. One way to reduce the actual time, with a potential loss ofaccuracy [3], is to subsample the original data sets. Criteria for subsampling include taking asimple fraction of the original number [4, 5], using multiple scales of increasing resolution [19,20], producing subsets based on potential visibility under the current transform [15], or takingpoints in areas away from surface discontinuities [12, 16, 17], in areas of �ne detail [14],and in small random sets for robust transform estimation [8]. A more accurate and sloweralternative is to use the full original data sets, but organize the closest point search usinge�cient data structures such as the octree [18] and k-d tree [6, 7, 9, 20]. The k-d tree [22] iseven e�cient, O(N logN), when higher order features of the points are incorporated in thedistance metric [7, 9]. 7



2.2 Computing intermediate motionsOnce a set of correspondences has been determined, a motion transform must be computedthat best aligns the points. The most common approach is to use one of several least squarestechniques [23, 24] to minimize the distances between corresponding points [2, 3, 6, 8, 9, 10,12, 13, 14, 15, 16, 17, 19]. In certain cases [2, 6, 7, 11, 19], individual point contributionsare weighted based on the suspected noise of di�erent portions of the data sets. More robustestimation using the least median squares technique (clustering many transforms computedfrom smaller sets of points) has been tried by Masuda et al. [8, 20]. Alternatively, a Kalman�lter has been used to track the intermediate motion at each iteration as new correspondencesare computed [6, 7].More involved techniques compute the motion transform via some form of search in thespace of possible transforms, trying to minimize a cost function such as the sum of distanceerrors across all corresponding points. Movements in transform parameter space are computedbased on the changing nature of the function. Such standard search strategies as Levenberg-Marquardt [18, 21] and simulated annealing [5] have been used, in addition to others moreheuristic in nature [4, 11, 14]. Correspondences must be periodically updated during thesearch to keep the error function current. Updating too frequently can drastically increasethe amount of computation, while too few updates can lead to an incorrect minimization.2.2.1 Initialization and convergence of searchesAs mentioned earlier, an ICP-based re�nement occurs after some initial set of transformationshas been determined. Some researchers assume that this estimate is determined by a previousprocess [3, 6, 8, 9, 10, 11, 12, 13, 20, 21], possibly calculated using feature sets. Other priorestimates can be given by a rotary table [4, 15, 18], a robot arm [5], or even the user [16, 19].Most such estimates are assumed to be quite accurate so that using one of the various distancethresholds during matching will prune outliers correctly.8



Other researchers do their own feature-based alignment prior to re�nement using such char-acteristics as principal moments [2] or axes [16, 17], normals of distinctive points [4], positionsof points with distinguishing principal curvatures [7] or similar triangles on a mesh represen-tation of the data [14]. If these distinguishing features are absent, a uniform distribution ofstarting points can always be processed [2].All of the ICP algorithms must use some set of criteria to detect convergence of the�nal transformation. For those techniques that compute intermediate motions using leastsquares methods, convergence is achieved when the transform implies a su�ciently smallamount of motion [6, 14, 15], or the distance between corresponding points becomes suitablyclose [2, 3, 8, 9, 10, 12, 13, 16, 17, 19, 20]. The Kalman �lter approach stops when theuncertainty in the computed transform reaches a desired level [7]. The iterative searches ofparameter space [4, 5, 11, 18, 21] typically converge based on small changes in the parametersor error value, or if the shape of the cost function at the current value indicates a functionminimum. Any method can be terminated if convergence is not detected after some maximalnumber of iterations.2.3 View pairs vs. multiple viewsThe majority of the discussed techniques [2, 3, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 21] weredesigned with only two data sets in mind. If one desires to merge multiple images, the naiveapproach of simply examining the sequence in consecutive pairs could be performed [4, 16].However, any errors in these computations will accumulate, leaving the �rst and last framesin the sequence rather poorly aligned. Certain methods, which search for a more globallyoptimal set of transforms, have since been developed.The �rst of these, by Turk and Levoy [19], assumes that an additional continuous cylindricaldata scan is available. Individual linear scans are registered to this image, which shouldhave commonalities with each of them. Unfortunately, not all scanners can produce such abase image. Chen and Medioni [12] and Masuda et al. [20] incrementally register data from9



successive views into a growing combined set. While matters are improved, early calculationerrors are still not corrected.Three other techniques have attempted to compute the motion transforms simultaneously.In the �rst, Blais and Levine [5] de�ne a consecutive set of transforms between pairs ofimages in the sequence, including a transform between the �rst and the last images, takenas the composition of the intermediate transforms. They then minimize a total cost functioninvolving all the image pairings by searching in the large, combined transformation space.This high dimensional minimization is often di�cult. In the second technique, Bergevin etal. [15] consider each view as being transformed into a common coordinate frame. Then eachview's data can be matched to each other set through composed transforms. The combined setof correspondences from all possible pairings is used to compute each data set's motion usinga least squares computation at each iteration. While these two methods do compute the setof transforms simultaneously, they still su�er from the thresholding di�culties in determiningpairwise correspondences.The �nal method, developed independently by Stoddart and Hilton [11], is most similar tothat presented in the next section. They also perform a force-based optimization by simulatingthe interconnection of the data sets with springs between corresponding points. The exactmethod of solving this physical system's equations is di�erent from that here. Their keyassumption is that all proper correspondences are known ahead of time, a rather strongassumption.In summary, global optimization techniques have been developed, but they still rely onpairwise correspondence computations (or assume that they are already known). These com-putations su�er from the need to choose appropriate thresholds that reject incorrect pairings.In the following section a new global registration technique is presented which addresses themajor problems of simultaneous optimization and distance thresholds, through a combiningof some of the best features of previous techniques with new ideas.10



3 The Registration AlgorithmGiven a group of N data sets, the goal of the registration is to compute a set of rigid trans-formations fT j Ti = [Ri; ti]; i = 1 : : : Ng, where Ri is a standard orthonormal rotationmatrix and ti is a translation vector. These transformations should align the data sets withminimal disparity in a common coordinate frame. A high-level overview of the algorithm isshown in Figure 1. All view transforms are incrementally updated in a simultaneous mannerso that the best global solution can be found. At each iteration correspondence is determinedusing both point position and surface normal information. Closest point searches are per-formed using a combined data set in which every point should have a corresponding point (abasic assumption), eliminating the need for a distance threshold (extremely noisy data pointsshould get removed in a preprocessing step). K-d trees are used to speed up point searching,and data point projections onto tangent planes of corresponding points will increase the �nalaccuracy.Incremental motion computations are made using a force-based approach. Imaginarysprings connect corresponding locations to generate interpoint forces. A time step simula-tion is run to compute the motion of each data set based on the net forces and torques appliedby the springs. Correspondences are periodically updated over time. Finally, hierarchical sizedsets of data are processed to decrease overall computation time without sacri�cing eventualaccuracy. Final convergence is detected when the amount of motion is su�ciently small. Inthe following sections each of the stages of this algorithm is discussed in detail.3.1 InitializationSeveral operations are performed before the actual iterative process begins. First a median-type �lter is used to remove noisy pixels in each range image based on the characteristics ofa neighborhood (7 � 7) of depth values in the scanning grid. Following this, points on theoccluding side of step discontinuities are detected, where a discontinuity is said to occur forpoints separated by a distance which is more than a multiple of the average image sampling11



Initialization

     Median filter data in each view ( 7 x 7 window).
     Determine sampling resolution and depth discontinuity boundaries for each view using threshold (     )
     Gaussian smooth data (7 x 7 window,     ) and compute surface normals (      ) in each view
     Determine number of subsampling passes based on data size.
     Initialize view transforms (    ), dynamic spring system (       ,      ,    ,   ,   ,   ,    ) and simulation time step (      )

Subsampling Passes

     For increasing sample sizes

          Select random subset of interior and boundary points in views
          Generate k-d trees of points in each view
          Initialize point feature (location,normal) weight ratio (     ,       )

          Data set convergence

               While standard deviation of point distance error distribution still decreasing

                    Data correspondence

                         Compute correspondence of non-boundary points using normal k-d trees
                         Compute correspondence of boundary points using specialized k-d trees with threshold (    )
                         Determine number of changed correspondences from previous iteration
                         Update feature weight ratio (       ) based on number of changed correspondences

                    Motion estimation

                         While incremental motion still significant compared to threshold (        )

                              Update correspondence locations with projections onto tangent planes (    ,     )
                              Compute spring forces (     ), torques (      )and moments of inertia (    ) from current data positions (    ,    )

                              For each view’s data set

                                   Update angular position (   ), velocity (    ) and acceleration (    ) of points using torques (     ), moments of inertia (   ) and current time step (      )
                                   Update linear position (   ), velocity (    ) and acceleration (    ) of points using forces (    ) and current time step (      )
                                   Adjust velocity damping factors (        ,       ) based on new accelerations (    ,    )
                                   Compute incremental transformation (          ,       ) based on updated position (   ,    ), compose with current transformation (        ,       )

                             Adjust time step (      ) based on new distance error (    )
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resolution (here, the depth discontinuity threshold is dd = 10 � sampling resolution). Theseoccluding points will be important in constraining proper alignment of surface boundaries ina manner not used in previous algorithms.Next, the remaining valid data is smoothed with a Gaussian kernel (� = 2:5) before surfaceproperties are computed. All three position components (x; y; z) are independently calculatedbased on positions of neighboring points in a 7 � 7 window of the range scan. At each pointa tangent plane is �tted to the window of smoothed data around the point to estimate thesurface normal. (The smoothed data is only used in this normal calculation. The original datais used in all other computations.) Principal curvatures were not used in this implementation.Initial tests indicated that the inherently noisy nature of these second-order features, plus theadditional computation burden, outweighed their potential discriminatory power. In contrast,the potential usefulness of the surface normals justi�ed their computations.Lastly, we must initialize the state of the dynamic spring system, which is representedby the vector f T , v, !, a, �, �v, �!, �, �t, Np, SS g. It is assumed that the startingview transformations, T , are obtained from an external process, such as the rotary table orrobot arm mentioned previously. Later experiments will show that these transforms can bequite approximate without preventing proper convergence. In the beginning it is also assumedthat each data set is at rest. And so the linear and angular velocities are zero (v = 0 and! = 0), as are the corresponding accelerations (a = 0 and � = 0). The remaining stateconsists of inertial properties of the data sets (the velocity damping factors, �v and �!), thespring strength (�), simulation step size (�t), number of subsampling passes (Np), and theactual sampling schedule (SS). Initially, there is no velocity damping, the spring strength isconstant at � = 1000, and the simulation time step starts with �t = 0:005. The number ofsubsampling passes for the simulation is computed as a function of the total number of pointsin each view. And from this the actual sampling schedule is determined as discussed in a latersection. 13



3.2 Determining point correspondencesIn order to determine the point that is \closest" to another, a distance metric is needed tode�ne closest. In a manner similar to Feldmar and Ayache [7], the metric used combines bothpoint location and normal information. The actual metric is:E = k p� q k2 + wn � s2n � k np �nq k2 (1)Here, p and q are the coordinates of two points and (np;nq), their associated unit normalvectors. Since the di�erence in magnitude of errors in position and normal can be large, it isimportant to scale the dimensions of these components of the feature vector to similar ranges.The value sn is chosen as the ratio of the size of a box in 3-D surrounding the combined datasets to the maximal normal di�erence (a value of 2 for unit normals). The value of wn isused to control the contribution of normal information over time (this is chosen to be steadilydecreasing, the exact schedule is discussed later).Eq. (1) is not the only distance metric used. It will be shown in later experiments thatusing only simple point correspondences as with Eq. (1) can lead to premature convergence.An additional metric is used for those points, p, labeled as occluders in the range image as:E = bvp � k p� q k2 (2)Here, bvp has a value of one if the surface normal of a point q is back-facing with respect tothe viewpoint associated with point p. Otherwise bvp has a value of in�nity. This modelsthe relation that the proper correspondent of a point on an occluding boundary is merely thenearest point on the hidden portions of the other surfaces with respect to the current dataset's viewpoint.3.2.1 The correspondence searchA basic assumption of the global approach presented here is that each portion of the objecthas been observed in at least two data sets. (Limitations of this assumption are discussed14



later). Given this assumption, a proper corresponding location on a surface does exist inthe whole of the data sets; it just needs to be found. Therefore, we avoid the need forany distance thresholds, as in the pairwise view processing of previous methods. This is asigni�cant advantage of the current approach.This should not be interpreted to mean that the closest points identi�ed by the metricsin Eqs. (1) and (2) are necessarily the true corresponding points. Depending on the amountof error in the motion transforms, many of the determined correspondences are incorrect.However, if a majority of these points are (1) correctly corresponded or (2) correspond to apoint in the direction of the correct point, then the computed interpoint forces described in thenext subsection should pull the point sets into closer convergence. As long as the registrationis approximately correct, then any errors caused by mis-correspondences should cancel out tosome degree. Only when the transforms are so much in error that the majority of determinedcorrespondences associate points to others in the wrong direction is convergence unlikely tooccur.The use of k-d trees can improve the e�ciency of searching for correspondences. Ideallyone would like to represent all of the data points across all views in a single k-d tree for bestperformance. But, since the interpoint distance relationships are constantly changing betweendata sets, this would require continual reconstruction of the tree. On the other hand, sincethe points within a single data set are rigid, a tree representing each view can be constructedin the beginning and never modi�ed.A k-d tree partitions data points into regions of space that are bounded by dividing planesthat are perpendicular to a particular axis of the k dimensions. At each level in the treethe dimension which provides maximal distinction (here k = 6 for three position and threenormal components in Eq. (1)) is used to divide the points at a node into two sets. Becausethe dividing planes are perpendicular to the axes, the scaling of a dimension value (such asscaling the normal components by wn in Eq. (1)), does not change the relative positioning15



of the points in the partition. Thus a single k-d tree for each view can still be used in manydi�erent searches, even as the value of !n changes.Determining the overall closest point is simply a matter of searching the k-d trees of eachdata set other than the current one to �nd their corresponding closest points. The globallyclosest point is found with a simple linear comparison of these closest points. The searchfor the closest point in a given tree is done using a depth-�rst traversal with pruning. Bydescending in the tree one moves into smaller and smaller regions of space which contain thesearch point. At a leaf, which is a region containing only one point, an upper bound on thedistance to the closest point can be updated using the distance to the data point in the leaf'scell (actually, the distance norms of Eq. (1) are left squared to reduce computation). In theremainder of the tree traversal, a sub-tree can be ignored if the distance to the boundary ofthe corresponding region of space is greater than the current upper bound.A good initial estimate of the maximal distance to the closest point can lead to pruning oflarge sub-trees during the traversal. An e�ective value comes from the correspondence of theprevious iteration. The distance to the old corresponding point under the current transformis a good upper bound. Near �nal convergence the number of changing correspondences issmall, and each search of a k-d tree requires only a single traversal to the bottom to verifythat the old point is still the best.A second tree with k = 3 (for the three position coordinates) is used to search each data setfor occlusion points according to Eq. (2). A single modi�cation to the above search involvesthe method of updating the maximal distance estimate. Rather than always updating thevalue when a leaf is reached, the distance is changed only if the back-facing normal test labelsthe point as \invisible". In practice, a tolerance angle of � = 10� is used to model the inabilityof real range sensors to detect steeply angled surfaces with respect to the viewer.3.2.2 Interpoint forcesIn order to obtain a registration with potentially greater accuracy than the sampling res-olution, it is necessary to �nd the closest location on an estimate of the surface near the16



Point from data set 1

Point from data set 2

Corresponding projection point

Correspondence

Plane projectionFigure 2: Mapping of corresponding points. The points from data set 2 correspond to theindicated points in set 1 via the solid lines. The points project onto the associated tangentsof corresponding points via dashed lines. The rightmost point of set 2 is labeled occluder andtherefore maps to the nearest hidden point around the corner.corresponding point of a given pairing. A variant of the tangent plane projection method ofChen and Medioni [12] is used. This is seen as a compromise between the improved accuracyof a higher-order surface �t and the associated increased computation time.One drawback of Chen and Medioni's tangent-plane method is that it is doubly sensitiveto any variation in the surface normals. The calculation of a corresponding point by \inter-secting" a normal with a surface can be signi�cantly in error during early iterations prior torotational alignment, and to a lesser degree later due to noise. The correspondence searchdetailed here avoids much of this error. Once the closest point has been found as above, theassociated surface location is found by projecting the search point onto the accompanyingtangent plane as in previous methods.To see the potential e�ects of this process, consider the simple 2-D example in Figure 2.Assume that the black points are a subset of the white as seen from a di�erent angle o� to theleft, and that the rightmost black point was labeled as an occluding point. The point-to-pointcorrespondences are indicated by the solid lines. Note the rightmost occluding point links to apoint around the corner (it does not map to the corner point because the back-facing normaltest labels it as \visible"). The projection of points onto the tangents are indicated by dashedlines. The non-occluder pairings will tend to pull the two lines into being parallel, while theoccluding point helps align the ends of the lines. If the rightmost point was instead handled17



as a non-occluder, it would only map to the corner point, causing the two lines to neveroverlap properly. Even using direct point-to-point mappings everywhere as in the originalICP process can lead to problems in this example. For instance, as the region of overlapincreases over several iterations, the desire of points to stay still when incorrectly mappedto very close neighbors will eventually outweigh the desire of the others to move, causingpremature convergence. Further examples of these problems will be seen in the experiments.One way to align the corresponded data sets is to provide attractive forces that pull themtogether. Connected between each point and its corresponding projection location will be animaginary spring of natural length zero. This spring generates a force with magnitude, F =� d, where d is the distance between the points, and � is the spring tensile strength (� = 1000for regular points and 1000 � (sampling pass)2 for occluders. Increasing an occluder's springconstant helps quicken convergence). Each spring force is directed along the line connectingthe endpoints and is reexively applied at both ends. The cumulative e�ect of the forces fromall points will govern the movement of the data sets toward one another.3.3 Computing motion transformsRather than use some of the more popular least squares techniques to compute intermediatemotions, a simulation of the dynamic spring system is used. Force-based optimization indi�erent forms [11, 25] has recently been used e�ectively in registration processes. The reasonis that the e�ects of any signi�cantly incorrect correspondences are compounded when thebest alignment is computed in a least squares manner, in addition to contributing to thepremature convergence problems just mentioned. With a dynamic spring system it is possibleto move in the direction of an intermediate solution without being totally committed to it.Also, inertia from previous motions can help constrain any excessive, and possibly incorrect,motion tendencies along the way. In the example of Figure 2, this makes it seem as if thecorresponding end of each spring is not attached to a speci�c point, but rather to a line. Thisdegree of freedom allows the data to move in the direction of the tangent lines under the18



inuence of the single force from the occluding point. This point to line mapping techniquehas also been used previously to help solve other alignment problems [26].One method of simulating this dynamic system would be an exact �nite element analy-sis [27], in which each data set truly moves simultaneously. Spring lengths and end positionsare constantly changing, resulting in continuously varying forces on each data set. However,the computational complexities of this process are rather involved due to the changing corre-spondences. In a less exact scenario, forces could be assumed constant over a properly smallamount of time, thus allowing the movement of each set to be computed independently foreach time step. This movement can be decomposed into a translational movement of the cen-ter of mass of a view's points due to a resultant force, along with a rotation of the points aboutthat center due to a resultant torque. We now give the details of an approximate solution tothis force-based optimization.3.3.1 Computations during a single time stepTranslational movement is a consequence of the cumulative e�ect of the forces generated bythe springs attached from each data point of a set to the other views' data surfaces, and fromthe other views' points to locations on the current set's surface. Relating each force to motionis done according to the law, Fi = mv ai, where Fi is the force directed by a particular spring,ai is the corresponding acceleration that it generates, and mv is the mass of the view's points.The overall equation for a data set's acceleration is then given by:av = Pnvi=1 � di +Pnoj=1 � djmv = �nv ( nvXi=1 di + noXj=1 dj) (3)Here, nv and no are the number of points contributing forces in the view's data set andthe other data sets combined, respectively. The associated distance between a point and itsprojection onto a corresponding tangent plane is given by di or dj . Then, if each point isassumed to have unit mass, mv = nv. 19



By assuming that the forces, and therefore acceleration, remain constant for an appropriateamount of time, �t, the change in location and velocity can be calculated using the equations:lt = lt�1 + vt�1 �t+ 0:5 at�1 �t2 (4)vt = vt�1 �v + at�1 �t (5)Position is updated according to the velocity and acceleration over the given time step. Thenew velocity is a function of the old velocity and acceleration. An additional factor, �v, isincluded here as a matrix with elements that are zero o� the diagonal and damping valuesfor each velocity component along the diagonal. As time passes, the undamped momentumof a data set can get quite large, causing oscillations as correspondences change. While thereversal of acceleration from these changes can slow these oscillations, additional damping ofthe previous velocity in this case is also helpful (simulating a viscous uid through which thepoints are moving). The damping can be relaxed carefully as velocity and acceleration againbecome synchronized.Rotational movement is governed by a similar set of equations. Each force, when appliedat the associated point, generates a torque (or moment) with respect to the center of mass ofthe points. The cumulative e�ect of these moments causes rotation about the center. In twodimensions the rotation of a body in the plane caused by a single force, Fi, applied at point, pi,with respect to the center of mass, cm, is governed by the simple relation, Mi = Ii �i, where�i is the angular acceleration, Ii = mv k ri k2 is the moment of inertia, and Mi = k ri�Fi kis the moment for the radius, ri = pi � cm.In 3-D, the relationship of moments to angular motion is more complex and governed bythe set of scalar equations (referred to as the Euler equations of motion [28]):Mx = Ixx �x + !y !z (Izz � Iyy)My = Iyy �y + !x !z (Ixx � Izz)Mz = Izz �z + !x !y (Iyy � Ixx) (6)20



Here, !j , �j, Mj, and Ijj are the jth components of the angular velocity, angular acceleration,moment and moment of inertia, respectively. If the angular velocity is known and assumedconstant, Eq. (6) can be rewritten to calculate the angular acceleration due to a set of forcesas:�x = Pnvi=1 [(ri � Fi)x � !y !z nv (r2iz � r2iy)] +Pnoj=1 [(rj � Fj)x � !y !z nv (r2jz � r2jy)]nv (Pnvi=1 r2ix +Pnoj=1 r2jx)�y = Pnvi=1 [(ri � Fi)y � !x !z nv (r2ix � r2iz)] +Pnoj=1 [(rj � Fj)y � !x !z nv (r2jx � r2jz)]nv (Pnvi=1 r2iy +Pnoj=1 r2jy)�z = Pnvi=1 [(ri � Fi)z � !x !y nv (r2iy � r2ix)] +Pnoj=1 [(rj �Fj)z � !x !y nv (r2jy � r2jx)]nv (Pnvi=1 r2iz +Pnoj=1 r2jz) (7)where rab is the bth component of the radius vector for the ath point.Then, making the approximation that angular acceleration also remains constant for small�t, the change in angular position and velocity can be found using equations similar to (4)and (5): �t = �t�1 + !t�1 �t+ 0:5 �t�1 �t2 (8)!t = !t�1 �! +�t�1 �t (9)Here, each component of the angular velocity is damped using the appropriate element ofa diagonal matrix, �!. If the above approximations are valid, these calculations are muchsimpler and more reasonable, than attempting to directly solve what is actually a set ofdi�erential equations in (7).Using the values of �l = lt � lt�1 and �� = �t � �t�1 from Eqs. (4) and (8), one cancompute the elements of an incremental transform relative to the center of mass, R�� andt�l. These can then be converted to incremental transforms in the common coordinate frameas: R� = R�� t� = (I �R��)[Rv cm + tv] + t�l (10)where, I is the identity matrix, Rv and tv are the current transform for the view, and cmis the original center of mass. This incremental transform can then be composed with the21



current one to yield the latest transform for the view into the common frame. The commonframe is initially established by setting all view transforms to the identity.3.4 Iteration controlThe overall iterative process is a set of nested cycles as seen in Figure 1. The outermostcycle controls the hierarchical subsampling scheme for the data. For a given sampling, pointcorrespondences are found and motion computed until convergence occurs. Since determiningcorrespondence between data points is an expensive operation, it is done as few times aspossible. Several motion steps in the above simulation can be made before new pairings areneeded. Thus the motion computation for a given set of correspondences is also iterative,continuing until movement due to the set of forces is minimal (minimal motion, �m, is de�nedas 1% of the total motion so far for the pairings).3.4.1 Subsampling the dataLarger data sets mean more computation. Therefore, if approximate alignment can be ob-tained using reduced-size data sets, e�ciency is enhanced. However, it has been shown thatlarge data sizes are needed to achieve high accuracy [3], so a hierarchical sampling scheme,SS, is used. In this algorithm, a starting sample size of 100 points is chosen. The total num-ber of sampling passes, Np, is determined by increasing this data set size by a factor of tenon each subsequent pass, until on the �nal pass all of the original data is used. Points fora subsample are selected randomly, with the constraint that a number of occluding points,which are important for boundary alignment, are specially selected so that the quantity isproportional to the number of regular points picked. The respective regular and occlusionbased k-d trees are then constructed for each new subsample. Because the mass of a view isbased on its number of points, reasonable motion continuity between samplings is maintainedas the increased number of forces is balanced by the increased mass.22



3.4.2 Adjusting the controlling parametersSeveral of the controlling parameters in the previous equations are adjusted either at the startof a subsampling step, or during each motion computation. The parameter, wn, decides theproportional weighting of surface normal to point position information during correspondence(see Eq. (1)). This value is changed based on the sample size and number of motion stepstaken. Processing of the �rst subsample involves large changes in rotational alignment, wherenormal information is most useful. Therefore, wn is set to one for the entire pass. During thesecond pass focus shifts towards translational alignment, where normals are less important.After each new set of pairings is computed during this pass, the number of changed corre-spondences is recorded. Then wn is set as the ratio of this quantity to the total sample size.Thus it should gradually go from one towards zero as the pass progresses. For all subsequentpasses wn is set to zero, since the data should be very nearly aligned, requiring only smalltranslation updates, and the inherently noisier normal values only tend to interfere with thisprocess.The next two parameters adjusted are the damping matrices, �v and �!. Beginning withdiagonal values of one (representing no damping), a diagonal component is reduced by 10%each time its associated acceleration and velocity directions are opposed, and increased by100% when agreement again occurs, until the value of one is reached. In this way, oscillationsare damped rather smoothly, while the system is released quickly after things are corrected.The �nal parameter is the time step, �t. This should be maintained at a value that is notso large as to violate the constant force assumption, yet large enough to continue reasonableamounts of movement per iteration. After each motion step, the velocity damping factorsare examined. If a majority of the data sets are not being damped, things are in order, andthe time step is increased by 0.1%. If not, it means oscillations are occurring as the result ofassumptions being violated, and therefore the time step is reduced by the same amount. Theinitial value of the time step is set at 0.005. 23



3.4.3 Measuring convergence of sampled dataConvergence of a sampling pass is detected based on the distances between points and theircorresponding tangent planes. The distribution of the signed distances of points to planesis computed after each complete motion computation for a set of pairings. If the standarddeviation of this distribution continues to decrease then the surfaces are still integrating. Ifnot, the next larger sample is processed until �nally convergence is achieved with the originaldata.4 Experimental Veri�cationIn this section the properties of the registration process are examined. These properties includethe radius of convergence with regard to di�erent starting con�gurations, the accuracy andrepeatability of the force-based optimization, as well as its rate of convergence. The algorithmwas implemented in C2, and uses values for the various controlling parameters as summarizedin Table 1. Both 2-D and 3-D data sets will be used to emphasize key features of the algorithm.4.1 The necessity of using data normals and occlusion pointsBefore presenting the complete experimental results, it is instructive to examine how the var-ious characteristics of the current algorithm provide more registration potential than previousmethods. For this we use a simple 2-D data set consisting of four corner views of a rectangleas seen in two di�erent initial alignments in Figures 3.a and 3.g. This data is simulated, butcontains depth quantization noise. Five di�erent versions of the algorithm are compared inFigure 3, all of which use the force-based motion computations, but point correspondencesare determined in di�erent ways. The �rst is the traditional direct mapping of closest points2The implementation is available to interested researchers via anonymous ftp using the URLftp://ftp.dai.ed.ac.uk/pub/vision/3dicp.tar.gz. The implementation includes source code, documentation anda demonstration. Use of the code is freely allowed provided this paper is cited in any resulting publications.24



Table 1: Initial values and update methods for algorithm parameters.Parameter Initial value/Update methodImage median �lter and smoothing window size - 7� 7Processing Gaussian smoothing kernel (� = 2:5)dd 10 � sampling resolutionsn data diameter / 2� 10�Pass 1 - wn = 1wn Pass 2 - wn = # changing correspondences / # points, only if decreasingPass � 3 - wn = 0� 1000 for regular points, 1000 � (sample pass)2 for occluders�m 1% of total movement for current point pairings�v, �! Initially all diagonal components of matrix are 1.0,decrease an element by 10% to dampen, increase by 100% to undampen�t Initially 0.005, decrease 0.1% each step when system is damped,increase by 0.1% if system undampedbased strictly on position. The second computes projections of points onto their correspond-ing tangents. The third additionally maps occluding points to the nearest hidden point. Thefourth again uses only direct mapping between points, but the surface normal at the point isincluded in the feature vector as in Eq. (1). The �fth algorithm is what has been presentedhere and combines all of these elements.The �rst example, Figures 3.a - 3.f, shows the results of running the algorithm on datasets which have been pushed out from their desired position. The �rst two algorithms donot fully contract the data to the correct shape, due to the missing occlusion constraintswhich the third version provides. The use of normal features also helps to contract the shapetowards its proper size. For this case, all of the latter three algorithms produce comparablycorrect results. The second example, Figures 3.g - 3.l, began by contracting the data setsin from their desired position. Here, the use of normal features is a necessity in establishingcorrespondences that do not bind the edge tips together incorrectly. However, when usingonly the normal features, these ends still do not come into full alignment. Only the algorithmpresented here, which combines normal features and occlusion point mapping, converges upon25



(a) Initial alignment #1 (b) direct mapping

(f) current algorithm(e) normal features(d) combined mapping

(c) tangent plane mapping

(g) Initial alignment #2 (h) direct mapping (i) tangent plane mapping

(l) current algorithm(k) normal features(j) combined mappingFigure 3: Example of various registration processes using 4 corner views of a rectangle. Eachview contains 128 simulated points generated with quantization error. Given the starting po-sitions in (a) and (g), algorithms with 5 di�erent characteristics converged to the registrationsshown. 26



(a) Eight views of example 2d outline

(b) Initial position of views, 
      rotation =    25 degrees, 
      translation =    25% of size

(c) Registered set of views
+-

+-Figure 4: Example of alignment of 8 views of a cross-section of a real object of size 50�125mm.Each view in (a) contains between 336 and 501 real data points measured by a triangulation-based range sensor. An initial position with rotation error of � 25� and translation error of� 25% of the size of the polygon is shown in (b), with the associated �nal registration in (c).the correct shape in this instance.4.2 Convergence properties of the force-based optimizationIn this section another 2-D data set is used to examine the convergence properties of thealgorithm. This data set, shown in Figure 4.a, consists of eight views of a cross-section of areal 3-D object as seen by a triangulation-based range sensor.4.2.1 Convergence using the entire data setThe goal of this experiment is to determine the size of the radius of convergence. Three setsof tests were run, the results of which are summarized in Table 2. Before starting these, thealgorithm was �rst run on the data set from a fairly accurate starting position provided bythe acquisition process. The resulting answer was said to be the \true" registered position.27



Table 2: Results of convergence tests for data sets in Figure 4. For each error setting 25tests were performed. Average angle and translation errors from \true" converged values weremeasured, along with the total distance error and standard deviation of the error distribution.A registration was deemed correct if the total distance error was less than 400 mm. Alldistance entries are in mm.�� # converged avg avg avg total avg angle avg trans avg angle avg transcorrectly iterations std dev distance (correct) (correct) (incorrect) (incorrect)�0� 25 16.8 0.1615 343.0 0:060� 1.04 - -�5� 25 18.3 0.1609 343.4 0:060� 1.02 - -�10� 25 20.8 0.1611 343.6 0:063� 1.08 - -�15� 25 19.2 0.1606 342.4 0:064� 1.10 - -�20� 24 19.5 0.1856 382.1 0:075� 1.29 4:35� 70�25� 18 17.7 0.5094 881.0 0:075� 1.28 12:52� 226�30� 14 19.3 0.7953 1359.6 0:080� 1.37 14:57� 297(a) Convergence results for rotation only changes�x; y # converged avg avg avg total avg angle avg trans avg angle avg transcorrectly iterations std dev distance (correct) (correct) (incorrect) (incorrect)�0% 25 17.2 0.1612 343.8 0:062� 1.05 - -�5% 25 17.0 0.1611 343.2 0:064� 1.10 - -�15% 25 20.5 0.1610 343.8 0:078� 1.34 - -�25% 25 19.7 0.1611 344.3 0:060� 1.02 - -�35% 24 18.3 0.1818 385.4 0:061� 1.05 1:48� 32�40% 20 20.3 0.4036 772.7 0:062� 1.06 6:19� 118�45% 14 18.8 0.5150 910.3 0:086� 1.46 4:33� 68(b) Convergence results for translation only changes�� # converged avg avg avg total avg angle avg trans avg angle avg trans�x; y correctly iterations std dev distance (correct) (correct) (incorrect) (incorrect)�0�; 0% 25 14.2 0.1601 343.3 0:077� 1.32 - -�5�; 5% 25 19.1 0.1611 344.1 0:070� 1.19 - -�10�; 10% 25 18.3 0.1613 344.3 0:063� 1.08 - -�15�; 15% 25 19.2 0.1610 342.8 0:064� 1.11 - -�20�; 20% 24 21.4 0.2397 489.1 0:067� 1.15 11:51� 193�25�; 25% 21 20.0 0.3868 711.9 0:080� 1.39 10:01� 183�30�; 30% 7 19.4 1.7935 3149.9 0:060� 1.03 17:13� 366(c) Convergence results for combined rotation and translation changesThe data was then disturbed from this con�guration in varying amounts and the algorithmrun on each positioning.The perturbation of the data took three forms; only rotation in the plane about the centerof mass of the data, only translation of the center of mass in the plane, and combined rotation28



and translation. The change in rotation for each view was ��, where � was increased in �vedegree increments as shown in Table 2.a. Thus two views were either rotationally in alignment,or 2� out of phase. Translation amounts were handled similarly, with the amount of movementbeing equal to a fraction of the diameter of the data sets. For each level of disturbance 25data con�gurations were generated (out of the possible 28 = 256). Each direction of rotationand translation was determined randomly. The three sections of Table 2 show the number oftimes the \true" registration was achieved, how many iterations the process took, and howclose the \correct" converged positions were to one another.Looking at the results in these tables one can draw a few conclusions.1. The average rate of convergence (approximately 20 iterations) is basically independentof the level of perturbation from the starting point. The average number of iterationsdid not change by more than 20%. However, the absolute rate of convergence is expectedto be di�erent for other data sets.2. The system repeatably converges to the same set of \correct" transforms.The di�erencebetween answers for correct convergences was less than 0:1� in rotation and 1.5% ofthe object diameter in translation. Even this level of di�erence is bigger than it seems,since small changes in rotation can almost be compensated for with di�erent transla-tions to achieve very similar motion. The average total distance error, as well as thestandard deviation of the error distribution, indicate that a consistent minimum wasbeing converged upon. Rather surprisingly, similar error variance was observed in thezero perturbation cases (top lines of each table). This is because the �rst registrationpass, which uses a small random subsample, pulls the search from its starting point,requiring further re�nement.3. When incorrect registration occurs, it is rather easy to detect. For the example objectin Figure 4, the algorithm was more susceptible to rotational errors than translationalerrors. The amount of allowable angular error is related to the rotational symmetry29



of the object. For instance, rotating one of the views of the rectangle in Figure 3by more than 45� would expectedly lead to incorrect correspondence. For the object inFigure 4, reliable results were obtained for rotational errors up to �20� and translationaldi�erences up to one third of the object size. An example starting position near the edgeof the convergence radius is seen in Figure 4.b, with its corresponding registration in 4.c.The radius of convergence demonstrated by this example appears to be much greaterthan that of previous methods.4.2.2 Convergence using subsets of the dataA last set of experiments on 2-D data sets was performed to analyze how important it is toview all portions of the object's surface at least twice. This was done by looking at convergenceresults generated by using only subsets of the �rst six views of the 2-D outline in Figure 4.Table 3 shows the average point distance error, over all of the subsets ranging from six viewsto only two views. These tests were run with initial starting con�gurations in error by �15� inrotation and �15% of the object size in translation. As expected, the error grew as the numberof views used decreased. Visually reasonable convergence was achieved on the original set ofsix views, all combinations of �ve views, and several of the sets containing only four views.The remaining smaller subsets did not have su�cient surface coverage for the algorithm torespond properly. Figure 5 shows sample convergence images for various subsets. From thisdata, certain conclusions can be made:1. For an average object with minimal amounts of small detail, it does not take a largenumber of views to achieve full surface coverage with signi�cant overlap. The six viewconvergence in Figure 5.a has at least double surface coverage, and mostly three deepoverlap, while the group of four in 5.b is almost two deep everywhere.2. The algorithm is capable of producing reasonable convergence results in the presenceof small amounts of singly-viewed surface portions and even small gaps. Figures 5.b -5.d all possess single surface coverage of the two indentations in the shape, while the30



Table 3: Convergence results using subsets of the data views found in Figure 4.a. Initialpositions of views were in error by �15� in rotation and �15% of the object size. Averageerror is calculated for all combinations of views for the given subset sizes.Number of views Average point Maximum point Minimum pointin data set distance distance distance6 0.139 - -5 0.255 0.453 0.1614 1.261 3.024 0.3523 3.401 6.732 1.7412 5.578 13.712 1.636
(a) Proper convergence using all 6 views (b) Near convergence using views 1 - 3, 6 (c) Near convergence using views 2 - 6

(d) Near convergence using views 3 - 6 (e) Near convergence using views 1 - 5 (f) Partial convergence using views 2 - 4

(g) Partial convergence using views 5 - 6 (h) Wrong convergence using views 3, 4, 6 (i) Wrong convergence using views 1, 3, 5, 6Figure 5: Examples of �nal convergence alignments for subsets of the data views found inFigure 4.a with initial positions in error by �15� in rotation and �15% of the object size intranslation.rest of the outline contains double or triple coverage depending on the subset of views.All of these data sets still achieved satisfactory convergence. Performance does degradeslightly for the subset in Figure 5.e, in which there is a small portion of the outlinethat was never observed. But of course there are limits to the amount of singly viewed31



surface the algorithm can handle. Figures 5.h and 5.i show typical incorrect convergencealignments that result when an entire side of the outline is seen only once. In these casesthe large errors introduced by these singly-viewed points are too overwhelming.3. The algorithm can be used to some degree on partial surface shapes, as long as themajority of the partial surface has been viewed twice. Figure 5.f shows an exampleconvergence for approximately one half of the shape. Not all of this partial shape haddouble coverage, and so a noticeable misalignment resulted. Figure 5.g shows a moreextreme case in which about half of the observed partial shape was seen only once,causing an understandably poor alignment.4.2.3 Generalization of convergence resultsThe absolute quanti�cation of the convergence properties of the algorithm as presented forthe given object is, of course, not applicable to all objects. However, similar experiments runon other 2-D shapes have given results that are qualitatively similar to those shown here.The algorithm is most susceptible to initial rotational error, the tolerable amount generallybeing a function of both the rotational symmetry and uniqueness of the object surface. Theless symmetric and more unique the surface, the greater the chance of convergence in general.Initial convergence is usually rapid, whether toward a correct or incorrect transformation set,followed by a longer �ne-tuning stage.For an object of average complexity, a set of 6-8 views can typically produce enoughduplicate coverage of the object surface to allow convergence. If the set of singly-viewed surfaceareas is relatively evenly distributed around the object, this also enables the algorithm totolerate a greater amount of missing data, although with an expected loss in overall accuracy.4.3 Analysis of performance on 3-D dataIn order to demonstrate that the algorithm also works on 3-D data sets, multiple views ofseveral objects were processed by the system. The �rst, a rectangular block, is shown at the32



top of Figure 6. Eight images of this object were synthetically generated at a resolution of128 � 128, with quantization error introduced in the depth values. The image on the left in(a) shows the point sets of each view in their initial con�guration (actually perturbed fromthe positions of the simulated acquisition by approximately 10� in all rotation angles and 25%of the object size in each translation component). The image on the right in (b) shows theresult of a triangulated mesh process due to Hoppe et al. [29], as applied to the automaticallyregistered data. This triangulation has two distinguishing features. First, the edges of theblock are rounded. This is an artifact of many triangulation schemes, especially that of Hoppeet al. Second, there are certain small patches sticking out from the edges. These are a functionof the low sampling resolution. Since the simulated viewing rays do not always hit the objectexactly along each true edge of the block, straight sample lines may not result. Some of theextremely sampled edge points give rise to the small protruding triangles in the reconstruction.A second synthetically generated set of images, but this time at a resolution of 256� 256,was created for the second object in the middle of Figure 6. Here it can be seen that thetriangulation in (d), produced from the registered data in (c), has edges that are less rounded,and the small extra patches are no longer present because of the higher image resolution.Notice also that the presence of small features and a curved surface on this object did notstop the algorithm from determining the proper registration.The �rst example of processing data sets from a real sensor is shown in the bottom ofFigure 6 (the ability of the algorithm was again tested by additionally perturbing the datain (e) from the acquisition positions). This object also possesses a combination of planarand curved surfaces. Here it can be seen that the edges of the resulting triangulation in(f) are worse than those in the synthetic cases of (b) and (d). This is not the fault of theregistration algorithm, but rather a result of the quality of the data obtained by the sensor.Several contributing factors for this erroneous data were: this particular object is metallic,a troublesome material for most laser scanning devices due to reections; laser scanners arealso known to produce inferior data along depth discontinuities due to an averaging of the33



(a) initial registration of rectangular box

(c) initial registration of widget 1

(e) initial registration of widget 2

(b) triangulation of registered box

(d) triangulation of registered widget 1

(f) triangulation of registered widget 2Figure 6: Registration results for three objects. Two of the data sets were synthetic (topand middle), while the other data set (bottom) came from a real sensor. Initial positions ofthe point sets (additionally perturbed from the acquisition locations) are shown in the leftcolumn, while triangulated meshes generated from the registered data are depicted on theright. 34



response over two disparate surfaces; and lastly, steeply angled surfaces with respect to thesensor become foreshortened when the true edges are not sampled as closely as on surfacesmore perpendicular to the viewing direction. All these factors lead the algorithm to settleon a registration which aligns the commonly observed areas. The non-common portionssubsequently protrude along the edges, resulting in the observed extra small patches. Thiswas most pronounced along the border of the bottom of the object, which appeared larger inone view than in the others.The �nal example, shown in Figure 7, depicts the results of processing the well-knownRenault part (again initially perturbed in (a)). Here the con�gurations of the point setsafter registration of each intermediate subsample are given ((b) - (d)). As can be seen, themajority of the rotational alignment is achieved using the smallest subsampling. Use of thenext resolution completes a majority of the translational movement. The �nal two passesperform only minor adjustments. The average amount of motion on the �rst pass was 15� ineach rotation dimension and 125 units in the translation dimensions (the part is roughly 1000units long). The magnitude of motion during the second pass was approximately 10% of thisamount, while the amount of motion in the �nal two passes was only about 1% of that in thesecond pass.The quality of the �nal registration is demonstrated by comparing the rendered imageof the triangulation (Figure 7.f) to an actual photo of the object (Figure 7.e). For thisexperiment, the metallic object was painted before acquiring the range data to reduce thee�ects of specular reections where possible. This obviously improved the quality over that inthe previous example. But, there still exist a few outlying clusters of erroneous points whichthe median �lter did not remove. Even given the presence of these points, notice how themold lines of the part have been registered nicely, without the introduction of other surfacediscontinuities that typically indicate a misregistration.A full summary of the registration results for all four objects is given in Table 4. Of�rst interest are the columns indicating the sampling resolution of the images and the �nal35



(a) initial alignment of 10 views (b) registration of 100 points per view

(c) registration of 1000 points per view (d) registration of 10,000 points per view

(e) actual photo of imaged Renault part (f) rendered image of triangulation of data pointsFigure 7: Registration results for the Renault part. The position of the point sets after eachstage are shown, along with the �nal triangulation. For comparison, an actual image of thepart is also shown beside it.average distance of a point from the tangent plane of its corresponding point. Here, the pointto plane distances are 10 - 15 % of the sampling resolution of the synthetic data sets, and 20- 25% of the resolution of the real data sets. This is an encouraging result when compared36



Table 4: Results of registration algorithm on 3-D objects shown in Figures 6 and 7. Data setstatistics are provided. The average point error measurement is given for each object, alongwith the number of processing iterations and the total execution time.Object type # views view total sampling avg point # of timesize points resolution distance iterationsbox synthetic 8 128 x 128 31,464 0.0497 0.00738 18 8 minwidget # 1 synthetic 8 256 x 256 151,380 1.397 0.139 31 1 hrwidget # 2 real 8 � 250 x 250 273,730 0.610 0.121 33 3 hrRenault part real 10 � 225 x 400 471,760 0.663 0.174 24 1 dayto analogous processes that attempt to locate features to accuracies less than the samplingrate. (For instance, the accuracy of subpixel interpolation of edges rarely falls below 10% ofthe sampling rate.)A slightly more discouraging statistic is the total execution time. The table clearly showsthe non-linear time dependence on the data set size. The simple box with only 30,000 totaldata points needed only 8 minutes to process on a Sparc 5 workstation. But the Renault part,containing half a million total points, required a full day. However, these timings are somewhatdeceiving. If the time to process the Renault part is broken down, about ten minutes wasspent in the initialization phase, and a comparable amount of time was used in the �rst twosampling passes, in which 99% of the data movement occurred. Thus, a substantial decreasein the execution time could be achieved at the expense of a little accuracy.4.3.1 A comparison to previous e�ortsIt is di�cult to directly compare the results given here to those of the three previous e�ortsat simultaneous registration, because the few actual numbers reported are for di�erent errormeasures on unique data sets. The work of Stoddart and Hilton [11] is the most di�cult tocompare. Using simulated data sets (with additions of Gaussian noise to the point coordinates)and predetermined correspondences, �nal error residuals approaching the noise level wereachieved in a few iterations given starting transformation errors of 10� in rotation and 20%37



of the object size in translation. Only small data sets of less than 100 points were processed,requiring less than a second to complete.The other two research e�orts have reported some quantitative accuracy and timing resultson real data. Blais and Levine [5] stated that the processing of six views (of size 256 � 256)of an owl �gurine yielded an average distance between corresponding points of 1.55 mm forimages with a point measurement error (related to the sampling resolution) of 0.625 mm.This took 83 hours to compute on an SGI workstation. The initial registrations were o� byapproximately 4� in rotation and 8 mm in translation.Bergevin et al. [15] report results for the processing of sequences of 8 views of a teapotand a toy soldier. Each view contained approximately 10,000 data points with an unstatedsampling resolution (see Table 5 for actual values). The error measure given in these cases wasthe average signed point to tangent plane distance, which is di�erent from the average absolutepoint to plane distance used here. It is harder to judge the actual convergence accuracy usingtheir measure since the individual errors can cancel out. From initial registrations having anaverage distance error of a few tenths of a millimeter, they achieved �nal registrations witherrors of less than 10 micrometers, an order of magnitude improvement, indicating that theerror distribution had indeed become unimodal. Results for the teapot were slightly superiorto those of the toy soldier. Each process took approximately 30 minutes to compute on aSparc 10 workstation.In order to try and provide direct comparisons, an attempt was made to acquire thedata sets in [5] and [15]. As it turns out, these data sets were created at the same place.Unfortunately the owl dataset found in [5] no longer exists. However, the teapot and toysoldier data, along with two other objects depicted in Figure 8, were available 3. Unfortunately4 the form of these data sets violates certain of the fundamental assumptions of the algorithmpresented here. These range images were acquired by using a rotary table and imaging at3The authors would like to thank the Visual Information Technology Group of the National ResearchCouncil of Canada at Ottawa, Ontario for providing the data sets featured in Figure 8.4This fact was not understood until the data sets were obtained.38



Table 5: Results of registration algorithm on 3-D objects shown in Figure 8. Error mea-surements include the average point error at the nominal alignment provided with the data,as well as �nal alignment errors when using forces from boundary points (b) and when notusing them (nb). Initial alignment errors were 5� in rotation and 10% of the object size intranslation.Object # views view total sampling aligned �nal �nalsize points resolution avg point avg point avg pointdistance dist.(b) dist.(nb)toy soldier 8 256x256 84,813 0.939 mm 0.616 mm 0.449 mm 0.271 mmpencil sharpener 8 256x256 121,429 0.923 mm 0.427 mm 0.426 mm 0.247 mmteapot 12 256x256 106,604 1.823 mm 0.999 mm 1.395 mm 0.424 mmstacked blocks 8 256x256 81,614 0.843 mm 0.709 mm 1.453 mm 0.697 mmdi�erent angular intervals. While these scans did allow the majority of the observed surfaceto be seen twice, not all of the object was recorded. Most notably the bottom of each objectwas never seen. And any surfaces parallel to the bottom, or occluded with respect to thestationary camera as the object rotated were missing. In their current state these data setswould not be su�cient to produce an entire object model.It was seen in an earlier section what e�ects incomplete data can have on the algorithm.But, as a further demonstration of the algorithm's limits, these data sets were processedanyway. Beginning with modest amounts of error in the initial transforms (5� rotation error,10% object size translation error, as shown in the leftmost column of Figure 8), the �nalconverged point sets shown in the middle column of Figure 8 were obtained. The level ofconvergence is depicted here using point distributions rather than triangulations because thealgorithm used earlier [29] does not produce very desirable results in the areas of missing data.The number of processing iterations and the total execution time were similar to those usedon the widgets, namely, about 30 iterations requiring a few hours. The �nal error values arelisted in the next-to-last column of Table 5.Looking at the �nal point distributions it can be seen that the regions of missing data causepoor alignment for most of the objects. The actual �nal error is basically a direct reectionof the amount of surface missed during the scans. The toy soldier and pencil sharpener have39



(c) Initial registration of teapot (g) Registered teapot (using boundary points) (k) Registered teapot (no boundary points)

(b) Initial registration of pencil sharpener (f) Registered pencil sharpener (using boundary points) (j) Registered pencil sharpener (no boundary points)

(a) Initial registration of toy soldier (e) Registered toy soldier (using boundary points) (i) Registered toy soldier (no boundary points)

(d) Initial registration of stacked blocks (h) Registered stacked blocks (using boundary points) (l) Registered stacked blocks (no boundary points)Figure 8: Registration results of four additional objects. Point distributions in the leftmostcolumn indicate initial data alignments. Those in the middle column indicate convergenceresults when alignment forces from boundary points were used. The distributions in therightmost column show the results when these forces were ignored.40



su�ciently varying surfaces such that any missing patches are small, aside from the bottom.However, the teapot and stacked blocks have large surfaces parallel to the object bottom whichwere never imaged. The calculated forces due to the boundary points along these missing areaswere large because the proper corresponding points did not exist. This can cause incorrectconvergence, as indicated for the stacked blocks.Given that the boundary points seemed to be the major source of trouble on these images,another processing pass was made in which the forces from these boundary points were ignored.Starting from the same initial con�gurations, the �nal alignments shown in the rightmostcolumn of Figure 8 were achieved, the actual errors of which are listed in the �nal column inTable 5. The degree of improvement varies from object to object. For the toy soldier and pencilsharpener, which converged well previously, only a factor-of-two improvement occurred. Thiscan be seen in the tighter alignment of the surface boundaries in the �gure. For the teapot, agreat increase in the amount of convergence occurred. All three of these objects have surfaceswhich vary enough to counteract the missing boundary points. However, the stacked blocksstill did not align well. This is because almost all of the surfaces are parallel and aligned alonga common axis, which is one of the situations in which the boundary points are most needed.As a point of reference to determine the quality of these two sets of results, one can look ateither the sampling resolutions of the images or the average point distance error of the nominalalignment provided with the data (which was fairly accurate). The version of the algorithmwhich used forces generated by boundary points improved upon the nominal alignment onlyfor the toy soldier and pencil sharpener objects. The other two, having started at initialpositions farther away than the nominal alignment, did not converge as well. The versionof the algorithm which ignored boundary point forces improved upon the nominal alignmentin all cases (similar error values were obtained whether the process started at the nominalalignment or at the error alignment used here). Unfortunately the error value for the stackedblocks is deceptive. When planar surfaces are involved it is possible to have small point toplane distances, yet still have misalignment as indicated in Figure 8.41



When compared to the level of accuracy obtained on the �rst data sets in Table 4, the�nal error levels are again about 25% of the sampling resolution. Thus, what appears to bea proper convergence from looking at Figure 8, is veri�ed numerically. The exception is thestacked-blocks object. The combination of axially aligned planar surfaces and large areas ofmissing surface were too much for the algorithm to handle.And lastly, even after running the algorithms on common data sets, it is still hard tocompare the results given here with those of Bergevin et al. [15]. The range of convergence ofthe algorithm demonstrated here is greater (5� rotation, 10% translation error versus less than1� rotation and less than 1% translation error). Their stated error values are smaller thanthat of this algorithm. However, their measure is the average signed distance, whereas oursis the average absolute distance. One would always expect the signed distance value to beless than its absolute counterpart, and it should be considerably less due to error cancellationonce a unimodal error distribution has been achieved. Therefore, any lack in performance ofthe current algorithm is at most minimal. Lastly, the execution times reported here are on aslower machine (roughly half the speed), and rather approximate. Considering that most ofthe time is spent in the �nal stages of convergence, our timings could be adjusted to similarlengths with minimal loss of accuracy (much less than 1%). Finally, the display of convergedpoint distributions or triangulations, unless done with the exact same software, can be verydeceptive. Therefore, the results presented here are encouraging and indicate that eithercomparable or superior performance is being achieved by the current algorithm.5 Conclusions and Future WorkIn this paper an algorithm has been presented for performing a re�nement of an initial set oftransformations that register multiple range views of an object. This algorithm has severalobserved advantages over previous registration methods.1. The radius of convergence is larger, as shown in the experiments. On most objects,the algorithm can still compensate properly for initial errors in rotation of 20� and42



translations up to 25% of the object size. However, characteristics of the object shape,such as rotational symmetry, are the true deciding factors in determining a particularradius of convergence.2. The set of transformations is solved for simultaneously (as some others do), rather thanpairwise incrementally, leading to a provenly better global solution.3. Correspondence is not determined on a pairwise view basis. The use of a global dataset for searching eliminates the need for distance thresholds (assuming each part of theobject has been seen at least twice). This also implies that the views need not be part ofan actual sequence, in which typically the changes between camera positions are small.Thus additional clarifying images may be added later without di�culty.4. Using k-d trees, in combination with lists of previous correspondences, greatly increasesthe performance of the correspondence search process, especially near �nal convergence.5. Extended point features such as surface normals are used in early sampling passes to aidconvergence, but only point positions are used in the end due to the inherently noisiervalues of the normals.6. The concept of linking a data point to its corresponding surface tangent via a spring leadsto more accurate motion calculations that should eliminate premature convergence. Inaddition, special correspondences between occluding points and hidden surface regionsare necessary to ensure su�cient motion parallel to these tangent planes occurs.7. The use of implied spring forces between corresponding locations allows for the use ofa dynamic physical simulation as a search method for the properly optimized trans-formations. This has proven to be fairly robust with respect to initial transformationvariations.8. The accuracy of the �nal registration is on a par with most other sublocalization algo-rithms (like subpixel interpolation), approaching 10 - 25% of the sampling resolution.43



9. The use of hierarchically-sized data sets leads to quicker convergence. Faster times, atthe expense of slightly less accurate results, can be achieved if the full data set is notprocessed.Given this, there are still avenues open for future work. These could include:1. The actual use of uncertainty in sensor readings to determine point weightings as doneby others [2, 6, 7, 19] could lead to potentially more accurate results.2. A further analysis of the use of robust curvature estimates [30] as a point correspondencefeature [7] on early sampling passes, especially on curved objects, is needed to see ifpotential bene�ts can be made to outweigh drawbacks.3. Better convergence can always be achieved by improving the correspondence computa-tion. An investigation is planned into whether using recently developed signed distancefunctions [29, 31] to estimate the combined data set surface can lead to better corre-spondences without large computational overhead.4. For many reasons it is desirable to relax the assumption that each portion of the objectsurface be viewed at least twice. Currently the algorithm may still perform well (i.e.,when the singly-viewed surface area is rather uniform and there is other constrainingdata), but there are limits. Lack of data redundancy may result in misalignments or aless accurate model in the singly-viewed areas. It is hoped that the use of the signeddistance surface estimates mentioned above will allow the non-overlapped areas to mapto themselves and not obstruct the convergence process. Otherwise, it may be necessaryto �nally use some adjustable threshold mechanism.5. A further analysis of the tradeo� between execution time and �nal accuracy is needed.The rate of convergence curve needs to be examined over all sampling passes.44
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