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Abstract

While the problem of model fitting for 3-dimensional range data
has been addressed with some success, the problem of increasing the
accuracy of the whole fit still remains. This paper describes a tech-
nique of global shape improvement based upon feature position and
shape constraints. These constraints may be globally applied or in-
ferred from general engineering principles. This paper describe a gen-
eral, incremental, framework whereby constraints can be added and
integrated in the model reconstruction process, resulting on optimal
trade-off between minimization of the shape fitting error and the con-
straint’s tolerances.

1 Introduction

There has been a recent flurry of effort on reconstructing 3D geometric models of
objects from single [2, 5, 6] or multiple 3, 10, 9, 11] range images, in part motivated
by improved range sensors, and in part by demand for geometric models in the
CAD and Virtual Reality (VR) application areas. Mainly, these reconstructions
are of objects with smooth, free-form surfaces. Oddly enough, in this case, curved
surface objects are easier to work with, as: 1) the variety of surface geometry
provides many more features for multiple dataset registration, and 2) the tolerances
needed for most curved surface applications are not high. Or, conversely, one could
say that objects with developable surfaces are harder to reconstruct accurately,
because: 1) the developable surfaces (e.g. including standard engineering surfaces
produced by simple machining — planes, cylinders and cones) allow translations
of the surfaces from different observations relative to each other that still satisfy
distance constraints (i.e. two views of a planar surface that slide in the same
infinite plane relative to each other), and 2) developable surfaces tend to have
shape tolerances that are much higher than that achievable by standard range
sensors because these surfaces are commonly used to mate parts together, whereas
smooth freeform or spline surfaces tend to have shape tolerances comparable to
typical range sensor data.

Further, even if all of the data were from a single view, thus avoiding multiple
dataset registration errors, reconstruction must still cope with errors from mis-
calibration across the full sensor field of view.
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This paper describes a technique of global shape improvement based on feature
position and shape constraints. The constraints might be either interactively sup-
plied by a user, or inferred by a knowledge-based system reasoning from general
engineering principles.

The types of constraints exploited here are of these families:

1. a set of features have a fixed orientation relationship (e.g. a set of surfaces
or edges that meet at a specified angle or are parallel) and

2. a set of features have a fixed separation (e.g. the distance between a pair of
parallel lines or planes).

These are typical engineering relationships, and, in particular, are the sorts of
properties that fix relationships between part-mating features.

The key to the approach is to parameterize the features in a way that allows
constraints to be expressed as a function of the shape parameters, and to then
apply an optimization procedure that searches for parameter vectors that satisfy
the constraints while simultaneously optimizing the surface fit to the range data.

2 Background

The integration of geometric constraints into the shape fitting process has been
treated for wire frame model construction by Porrill [8]. Wire frame models were
constructed from stereo-data. The model features were given statistical distribu-
tions and geometric constraints between features produced dependencies in the
distributions. The model adjustment process maximized the a posteriori probab-
ility of the models. Since the models were based on wire frames, the constraints
were related to lines. Four types of constraints were considered: orthogonality,
intersection, equality and connection by a small rigid motion. The optimal feature
parameters were estimated using an extended Kalman filter. At each iteration,
constraints are linearized in the neighborhood of the current estimate, and then
used to correct the measurement. Porrill’s approach is nice since it takes advant-
age of the recursive linear estimation of Kalman filtering, however it assumes a
Gaussian distribution which may not always the case. Moreover, the method,
guarantees the satisfaction of the constraints only to linearized first order. Ad-
ditional iterations at each estimation step are needed if one would like to obtain
more accuracy. This last condition has been taken into account in the work of
De Geeter and al [4] by defining a “Smoothly Constrained Kalman Filter”. The
key of their approach is to replace a nonlinear constraint by a set of linear con-
straints applied iteratively and updated by new measurements in order to reduce
the linearization error.

3 Problem Definition

Given sets of 3D measurement points representing surfaces belonging to a certain
object, we want to estimate the different surface parameters taking into account
the geometric constraints between these surfaces.



British Machine Vision Conference 3

3.1 Surface Parametrization

Consider Sy, .,.Sy the set of surfaces and pi, .,.pN the set of parameter vectors
related to them. Each vector p; has to minimize a given error criterion .J; associated
with the surface S;. A reasonable criterion is the least squared error one. So let’s
consider the following objective function composed of the sum of error criterions

J=Ji+Jo+....... JN (1)

By considering the implicit equation representation of surfaces, a surface S; is
represented by:

- T

h; pi=0 (2)

where h_,; is the measurement vector. Note that any polynomially describable
surface can be presented in this scheme, as each component in h; can be of the

form (z%y%27) for some (o, 3,7).
Given m; measurements, the least squares criterion related to this equation is

m;
-T
Ji= > (bl )? =" Hipi (3)
1=1
e . .
where H; = "™ (hlh! ) represents the sample covariance matrix of the surface

S;. (We assume that the assignment of measurements to surfaces is known.) The
objective function (1) can then be written as :

N
1= 5" Hi (4)
i=1
By concatenating all the vectors p;’ into one vector 37 = [pi" 0% 1. PN ]
equation (4) can be written as
Hi (0 (0)
., ~ 0 H 0
J = pTHopa Ho = Eog 2 Eog (5)
(0) (0) Hy

3.2 Constraint Representation

The constraints can be classified into two main categories, constraints on the sur-
face parameter vectors and constraints on both data and parameters. A constraint
belonging to the second category would be rather considered as an observation
equation since it involves measurement. By a reasoning similar to that in Section
(3.1) such kind of constraints can be put into the following form

C(p) =" Hep + hep + K. (6)

where H., i_ic and K, are respectively a matrix, a vector and constant, all depending
on the data.
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The constraints which involves only the vector parameters can be represented
by the set of implicit equations

Cv(®) =0, k=1.K (7)

An example of how these equations are instantiated is given in Section 4.2.

3.3 Optimization of shape satisfying the constraints

The parameter vector p has to minimize the objective function (5) subject to the

constraints (6) and (7) imposed by the model. So, the problem that we are dealing
with is a constrained optimization problem to which an optimal solution may be
provided by minimizing the following energy function:

K
B =" (Ho + Ho)F + FL 5+ Ko+ Y MCk(@), Mk >0 (8)
k=1

known in the literature as the Lagrangian function. the above function contains
two components, the least squares function:

F(p) = 5" (Ho + He)F + hl 5+ Ke (9)

and the constraint function:

K
CE) = MC () (10)
k=1

The method of solving this problem depends on the nature of the objective
function (convex or not), the type of the constraints (linear or not) and whether the
constraints could be merged together in order to reduce the number of parameters
and eventually combined with the least square objective function.

The objective function is convex since it is quadratic and the matrix H, is
positive definite (since each matrix H; is positive definite). The same propriety
can be satisfied by H,. as well.

So the problem can be said to be a convex optimization problem if the con-
straints C,(p) are also convex functions. On the other hand, the existence of an
optimal solution necessitates that both the least squares function and the con-
straint function are differentiable. A detailed analysis of the convexity and the
optimality conditions is available in [7].

In some particular cases it is possible to get a closed form solution of (8).
This depends of the characteristics of the constraint functions and whether it is
possible to combine them efficiently with the objective function. But generally, it
is not trivial to develop a closed form solution especially when the constraints are
nonlinear and their number is high. In such case, an algorithmic approach could
be of great help taking into account the increasing capabilities of computing. The
main idea was to develop a search optimization scheme for determining the best
set (7, A1,.,., A\r). Moreover, we have been seeing whether it is possible that one
can get the solution which satisfies a desired tolerance. So the objective is to
determine the vector § which satisfies the constraints to the desired accuracy and
which fits the data to a reasonable degree.
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Figure 1: (a): optim1 - batch constraint optimization algorithm. (b): optim2 -
sequential constraint introduction optimization algorithm.

To solve the optimization problem, we have simplified the full problem slightly.
As first step, we have given an equal weight to each constraint, so a single \ is
considered for all the constraints:

K
B =" (o + H)F+ RIF+ K+ XY Cr(B), A>0 (1)
k=1

The problem now is how to find §’ that minimizes (11). Because (11) may be
a non-convex problem (thus having local minima), we solve the problem in a style
similar to the GNC method [1]. That is we start with a parameter vector % that
satisfies the least squares constraints, and attempt to find a nearby vector pi*! that
minimizes (11) for small A (in which the constraints are weakly expressed). Then
iteratively, we increase X slightly and solve for a new optimal parameter pi"+!!
using the previous pi™l. While we cannot (so far) guarantee that we converge to
an optimal value, at least so far we have not seen cases of suboptimal solutions.

At each iteration n the algorithm increases A by a certain amount, and a new
pi" is found such that the optimization function is minimized by means of the
standard Levenberg-Marquardt algorithm. The parameter vector p” is then up-
dated to the new estimate ™'l which become the initial estimate at the next
value of A\. The algorithm stops when the constraints are satisfied to the desired
degree, or when the parameter vector remains stable for a certain number of iter-
ations. The above algorithm is illustrated in Figure 1a.

The initialization of the parameter vector is crucial to guarantee the conver-
gence of the algorithm to the desired solution. For this reason the initial vector
should be taken as the one which best fitted the set of data. This vector can be
obtained by estimating each surface’s parameter vector separately and then con-
catenating the vectors into a single one. Naturally the option of minimizing the
least squares function F(p) alone has to be avoided since it leads to the trivial null
vector solution. On another hand, the initial value X has to be large enough in
order to avoid first the above trivial solution and second to give the constraints a
certain weight. A convenient value for the initial A is

F(pl0]
No = % (12)
where pl% is the initial parameter estimation.

Another option of the algorithm consists of adding the constraints increment-
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ally. At each step a new constraint is added to the constraint function C(p) and
then the optimal value of 7 is found according to the scheme shown in Figure 1b.
For each new added constraint C(p), Ay is initialized at g, whereas p'is kept at
its current value.

4 Case of Polyhedral Objects

Polyhedral objects involves the two types of constraints mentioned in the intro-
duction. They are represented in this case by fixed angles between the planes’
normals and the fixed distances between parallel planes.

4.1 Planes with a fixed orientation relationship
A plane surface can be represented by this following equation:
Pt + pyy +poz+d =05 (13)

where [pg,py,p.]" is unit normal vector to the plane and d is the distance to

the origin. For each plane surface we consider a local frame centered on a point
belonging to the plane (in practice this point is taken as the center of gravity of
the measurement points), so the plane equation can be written as

Pat +pyy +p2z2 =10 (14)

Let’s consider N planes, where the angles between planes’ normals are known.
The orientation relationship between the different planes are defined by the fol-
lowing constraints:

(9" pj — cos(ay))? =0, i,j € [1.N], i>j, ke[l.K=(N—1)xN/2| (15)
Each plane normal has also to satisfy the unity constraint
Ci(P) = (IFill* = 1)* = 0, i € [L.N] (16)

The constraint functions are squared in order to have convex functions. The
constraints (15) and (16) can be written under a matrix formulation:

Ui(p) = (0" Uip = 1)> = 0, i €[1.N] (17)
Ar(P) = (BT ApP — 2cos(ay))? = 0, k€ [1.K = (N —1) x N/2| (18)
where g7 = [pT', ... pL], U; and Ay are N x N block matrices defined by:
{ (0 (0) - (0) (0) (0 . : '|
wo— | O (T3)i - (0) Ay = (0) . (I3)i;  (0)
’ [ (0 . (0) (o) J ’ [ (0) (Iz);e  (0)  (0) J
(0) (0) (0 S @ (0

and I3 is the 3 x 3 identity matrix.

4.2 Parallel planes with a given separation

Consider without loss of generality two parallel planes S, and S; containing re-
spectively IV, and NV, points and separated by the algebraic distance dp,. Since
the two planes have a common orientation a single normal can be associated with
them. Each pair of points (M7, M), M} € S,, M] € S, has to satisfy the
following equation:

(MPMO)T 5~ dpy = 0 (19)
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by considering all the planes’ points, the normal p has to minimize the above least
squares criterion:

NP’Nq
T > P T . 2T o .
CE) = Y (MPMOTF  dyg)? = 5" HyqBf — 2dpg by + Npqd2, (20)
i
where Mol e T kg i
Hyg = Y (MPMOMIMOT, hjy = > MIMY, Ny = NN,
i i

5 Experiments

A series of experiments on synthetic and real data have been carried out to check
the behavior and the convergence of the algorithm. Two representative samples
will be shown here, the first concerned a real tetrahedron, the second a synthetic
step model object. The algorithm optim1 was applied in the first case. For the
second object both algorithms optim1 and optim2 were applied in order to com-
pare their performances. The behavior of the algorithms are checked through the
unit constraint error, the angle constraint error, the normal orientation error (the
angle between the exact surface normal and the constrained one), the least square
function and the constraint function, all mapped as function of A.

5.1 The tetrahedron

Figure 2a (left) shows a tetrahedron with three faces visible, This object involves
three constraints represented by the three angles 90°, 90° and 120° between the
three surface normals, as well as the unit vector constraints, The energy function
is:

3 3
E@) =5 HF+ A0 A@) + Y Ui(p) (21)
k=1 =1
The data was acquired with a 3D triangulation range sensor. All constraints were
applied simultaneously according to algorithm optim1. The results are the average
of 100 trials, with the initial vector pi° corrupted by a uniform deviation of scale
5%.

The angle constraint errors (Fig. 2b) are decreasing linearly at a logarithmic
scale. Both constraints are highly satisfied for large value of A. One can observe
that increasing A by factor of 10 leads nearly to an accuracy improvement factor
of 10 in the constraint. It is seen also that the least squares function converges to
a stable value, whereas the constraint function decreases to zero at the end of the
estimation (Fig. 2c)

5.2 The stepmodel object

This object contains sets of parallel planes. The prototype objects is composed of
seven faces. We have studied the case when five faces are visible (Fig. 3a). For this
view we have assigned a single normal for each set of parallel planes. By this way
three normals pi, p3, ps are associated respectively to surfaces (S1,Si), (S2,S3),
and Ss. Besides the three angle constraints (orthogonality of each two vectors)
and the three unit constraints, this object involves as well two distance constraints
related to the fixed distances between (S1,S4) and (Ss,S3). The surfaces’ points



British Machine Vision Conference 8

unity constraint angle constraint

—as
z 4
2 45
E s
B ss
-
-5 5.5 6 6.5 7 7.5 8 85 3 5.5 6 6.5 7 7.5 8 8.5
log, ) log, ;)
2., 1
_2.05]
£ 2 5
k] g
2 1.95] = os
S 10 g
€105 a o
Z 18] &
8175 §-os
g7 2 1
165
1. 1
55 B 55 G 75 & s 55 & &5 G 75 B a5
log, ;) log, ;)
(c)

Figure 2: (a) Acquired and segmented real data. (b) decrease of the unit vector and the angle
constraint error functions with respect to A. (c) variation of the LS function and the constraint

function with respect to A.

have been corrupted with a Gaussian noise of 2mm variance. Using equations
(5),(6) and (20) the least squares function is:

F(p) =" Hp — 20" p+ K, (22)
Hy+ Hs+Hyig O

0
H= 0 Ho+ Hz + Hoz 0
0 0 Hs

HT = [d14HT47 d23ﬁ;37

T K = N14d$4 + N23d§3

0707 0]7

The first series of tests have been carried out with the algorithm optiml in
which all the constraints are applied simultaneously. Some results are shown in
Fig. 3(b,c).

angle constraint (p,,p,)

° 10 11 12 13
109,4(A)

(b) (c)

Figure 3: (a) the stepmodel object. (b) decrease of the constraint error function related to one

plane normal. (c) orientation error related to one surface normal in function of A.

In the second series of experiments, the algorithm optim?2 was applied. Accord-
ing to this algorithm, the constraint function changes each time a new constraint
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step2: addition of angle constraint (p1,p2)
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Figure 4: Variation of the angle constraint error related to (pi,p32) all along the four steps of
the algorithm optim?2.

is added. Normally the incremental process contains six steps, however since the
unit constraints are used mainly to avoid the null solution there is no need to
apply them incrementally, instead they are inferred at once simultaneously in a
single step. Thus the algorithm will comprises four steps, in the first the unit
constraints are considered, afterwards the three angle constraints are inferred one
by one. Some results are illustrated in Fig. 4 and Fig. 5.

Results similar to the tetrahedron case were obtained in both algorithms for the
unit constraint, the angle constraint, the least squares function and the constraint
function. Comparison of Fig. 3b and Fig. 4 shows that the angle constraint is
well satisfied in the two algorithms.

This synthetic example allows the comparison of the estimated surfaces’ nor-
mals to the actual ones. Fig. 3c and Fig. 5 shows that the estimated vectors
in each of the two algorithms are very close to the actual ones, however we ob-
serve that the normal orientation error is reduced by more than 100 in the second
algorithm. This fact shows that the estimated solution moves toward the actual
one, and it is almost completely reached. So we can say the optimization technique
satisfies the constraints while improving the localization to a high degree.

6 Discussion and conclusion

The experiments presented in the previous section show that the incremental rep-
resentation of constraints and parameter optimization search does produce shape
fitting that satisfies the constraints with low error. The experiments also show
that the least-square error grows as the constraints are applied; however, what is
important is reconstructing shapes that satisfy the given constraints, while also
binding the remaining unconstrainted shape parameters using the range inform-
ation. The magnitude of the actual least-square error, even relative to the least-
square error of the unconstrained fit, is unimportant relative to the constraint
satisfaction. The amount of change in position of the constrained surfaces relative
to the original position is similarly very irrelevant.

The option of adding the constraints incrementally has also been investigated.
We have chosen to start from the previous optimal position when a new constraint
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step2: addition of angle constraint (p1,p2)
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Figure 5: Variation of the orientation error related to (p3) along the four steps.

is added and to keep the weight of the previous constraints at the fixed maximum
value of A\. The experiments confirmed that a previous constraint is almost not
affected when a new constraint is added.

The optimization procedure used here produces solutions in a few minutes or
less, which is suitable for CAD work.

The work here assumed that the range measurements were already segmented
into groups associated with features. This is a reasonable assumption, but how to
achieve this in difficult cases is an open problem.

Finally, real parts usually have more than just the constrained developable
surfaces. The optimization procedure discussed above manipulates the constrained
surface positions and shapes, but not the other surfaces. Consequently, a complete
system would need to consider how to move and transform the other connected
surfaces as the constrained features move.
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