
Evolutionary methods for musical compositionGeraint Wiggins�, George Papadopoulosy, Somnuk Phon-Amnuaisukz, Andrew TusonxDepartment of Arti�cial IntelligenceUniversity of Edinburgh80 South Bridge, Edinburgh EH1 1HN, ScotlandAbstractWe discuss the use of genetic algorithms (GAs) for the generation of music. We explainthe structure of a typical GA, and outline existing work on the use of GAs in computermusic. We propose that the addition of domain-speci�c knowledge can enhance the qualityand speed of production of GA results, and describe two systems which exemplify this.However, we conclude that GAs are not ideal for the simulation of human musical thought(notwithstanding their ability to produce good results) because their operation in no waysimulates human behaviour.1 IntroductionIn recent years, the idea of Genetic Algorithms (GAs) has generated sign�cant interest in thearti�cial intelligence and computer science communities. This has been re
ected in a numberof publications in the computer music world, some of which we discuss below.However, as GA research proceeds, it is becoming clear that the operation of a GAneed not be enormously di�erent from that of a knowledge-based system. Indeed, Wolpertand Macready (1995) have suggested that for a GA-based method to be really e�ective,domain-speci�c knowledge is not just desirable, but strictly necessary.In this paper, we set out to explore two aspects of GA applications to music:1. the use of knowledge-rich structures and procedures within the algorithm itself, asopposed to the more traditional use of GA components which are not problem-speci�c;2. the strict use of objective methods, in the sense that any reasoning encoded in the GAshould be stated explicitly, rather than being implicit in the expressed opinion of ahuman user.These criteria are important to us because we are interested in simulating human be-haviour, and not just in achieving a musical result. So we wish to be able to examine theinternal behaviour our of methods, compare them with human behaviour, and attempt toexplain any discrepancies.First, we present an overview of the structure of a typical GA. We then proceed tooutline existing applications of GAs in computer music. We present two case studies ofknowledge-rich musical GAs, and then draw conclusions about the implications of the workfor musical GAs in general.�Email: geraint@ed.ac.ukyEmail: georgep@dai.ed.ac.ukzEmail: somnukpa@dai.ed.ac.ukxEmail: andrewt@dai.ed.ac.uk 1



2 What are Genetic Algorithms?Genetic algorithms (GAs) are a stochastic, heuristic optimisation technique �rst proposed byHolland (1975). The idea is loosely based upon the process of evolution by natural selectionproposed by Darwin (1859). GAs have been successful in previously di�cult or intract-able problems such as atmospheric pollution monitoring (Cartwright and Harris (1993)), andscheduling (Fang (1992)). Ross and Corne (1995) give a useful overview of GA applications.For our purposes here, we merely outline the constituents of a GA, and describe atypical implementation, only brie
y discussing each of the constituent parts. For more detail,see (e.g.) Michalewicz (1992).A GA consists of the following components:� A representation for chromosomes, the candidate solutions to the problem being solved.� An initial population of chromosomes.� A set of operators to generate new candidate solutions from members of the population,and information as to when they should be applied.� An evaluation function to assess the �tness (quality) of a given candidate solution.� A selection method which gives good solutions a better chance of survival.The GA is applied iteratively, each time generating new candidate solutions from thepopulation by the application of operators, evaluating them, and then allowing the �ttest ofthe available solutions to comprise a new population.We now describe the GA and its components in more detail.The Algorithm. The following sequence of steps describes the algorithm for a GA withsteady-state reproduction. Other methods exist; this is one of the simplest.1. Generate an initial population of chromosomes, usually at random.2. Apply the evaluation function to each chromosome.3. Select parent solutions according to their �tness (�tter solutions are more likely tobecome parents).4. Randomly pick and apply an operator to generate a new chromosome.5. Evaluate the new chromosome and, if it is �tter than the least �t member of the popu-lation, substitute it into the population.6. Go back to step 3 until a stopping criterion is reached. Examples of stopping criteria are:all members of the population are identical (convergence), a �xed number of evaluationshave been computed, or a solution of a given quality has been found.Representation. As with the vast majority of knowledge engineering problems, the �rstquestion to ask, once we have stated our problem, is: How do we represent the chromosomes ina form that the GA can manipulate? The GA designer must encode the required informationso that correlations existing in the search space are made explicit: only then can the GAexploit them.Practical GAs should use whichever encoding is appropriate to the problem (an encodingused by an existing method is often a good start). This might be a string of real numbers, alogical expression, a Lisp S-Expression { whatever is found to work for the problem at hand.2



Operators. In the basic GA, there are two main types of operator: crossover and mutation,drawn from the biological metaphors of sexual and asexual reproduction respectively.Each operator available to the GA has a probability of being applied (an operatorprobability). Operators may also have parameters, which can determine their behaviour.Crossover is an exchange of information between two (maybe more) chromosomes in thepopulation. This is best illustrated by a commonly-used crossover operator for binary strings.Two-point crossover picks two points, at random, along the strings and swaps thecontents of the string between those points, to produce children, thus:0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 Crossover�! 0 0 1 1 1 1 0 01 1 0 0 0 0 1 1Crossover is deemed useful because it can bring together portions of separate strings associatedwith high �tness to produce even �tter children, and, conversely, bring poor portions of stringstogether so they can be purged from the population.Mutation takes a chromosome and randomly changes part of it. In combination with selec-tion (see below) this performs a search analogous to hill-climbing (Russell and Norvig (1995)).For a binary string, mutation involves 
ipping each bit in the string with a (low) probabilitypm as follows:0 0 0 0 0 0 0 0 Mutation�! 0 0 0 0 0 1 0 0Early GA research viewed mutation as a background operator, used infrequently in orderto maintain diversity in the population. However, opinion has changed, partly due to thefact that mutation-only optimisation techniques, such as simulated annealing (Kirkpatricket al. (1983)), can obtain comparable results with GAs. Mutation is now viewed as a searchoperator in its own right.The Fitness Function provides a measure of the quality of a chromosome. Devising sucha function is non-trivial, especially in the case of multi-objective solutions, where multiple�tness measures have to be weighed against each other in assessing a chromosome. Sometimes,a human opinion is used instead of a �tness function, in which case the GA is said to beinteractive (IGA).Population and Selection is where the other components come together. As we explainedabove, the GA works upon a population of chromosomes and selects the most suitable. How-ever, there are choices to be made, such as:� Population size: large populations have a larger and more diverse number of candidatesolutions, but take longer to evaluate. The size is usually �xed within a given run.� Spatial arrangement of chromosomes: dividing the population into groups emulatesgeographical speciation and helps maintain diversity between solutions.� Replacement strategy: should an entirely new population be generated (a generationalGA), or should children be incrementally inserted into the current population (a steady-state GA)?� Selection scheme: which breeding partners and surviving children should we select?3



3 Existing Work on GAs in MusicGAs have been used in music generation elsewhere. Horner and Goldberg (1991) used GAsfor thematic bridging; Jacob (1995) devised a composing system using an interactive GA;Biles (1994) used an interactive GA to produce jazz solos over a given chord progression.In harmonisation, the most directly related work to that presented here is that ofMcIntyre (1994) and Horner and Ayers (1995). McIntyre used a GA to generate a four partharmonisation of an input melody, focussing on Baroque harmony. Horner and Ayers focussedon the harmonisation of chord progressions using GAs.One aim of our harmonisation project here is to investigate the potential of the GAand its performance in the musical domain. So our search is not arti�cially limited as inMcIntyre's system (which only used a C major scale); nor is there problem abstraction as inHorner and Ayres' system, (which uses the GA to generate parts, given a chord progression,which is a signi�cantly simpler task). Our work aims to harmonise input melodies and doesnot limit itself to a speci�c key or scale; and it works at the level of individual voices, withall the extra constraints this entails.In terms of instrumental solo generation, GenJam (Biles (1994)) is the most closelyrelated work to that presented here. It is a \genetic algorithm based model of a novice jazzmusician learning to improvise". There is no algorithmic �tness function to evaluate thepopulation of the distinct melodic ideas; instead, a human \mentor" gives real-time feedback,so GenJam is an IGA. Therefore, GenJam exhibits the drawback associated with all IGAs:in order to evaluate a population of potential solutions, the user must hear all of them { andthere are many. Moreover, it is likely that bias will arise towards musical structures whichare familiar from previous listenings. As such, GenJam can tell us little about the mentalprocesses involved in the improvisation process. GenJam also uses a simpli�ed mappingbetween the accompanying chord and the scale used for the generation of the solo, restrictedthe duration of the notes to be all equal. These restrictions can lead to the loss of potentiallyinteresting solutions, containing in
ections or passing notes, and rhythm interest, respectively.In summary, while Biles (1994) reports promising results from GenJam, it might besaid that the simplifying assumptions made in order to render the problem tractable haverendered the problem rather anodyne. In our solo generation project (also based on jazzharmony), we have attempted to be more general. Our use of knowledge-intensive operatorshas rendered this extra generality computationally tractable.For a more complete summary of GA work in music see Burton and Vladimirova (1997).4 Harmonising Chorale MelodiesIn this section, we present the results of a study on the use of GAs in generating four-parthomophonic tonal harmony for user-speci�ed melodies. We detail the parts of the GA whichare speci�c to this project { the reader is referred to Section 2 for other details.4.1 Domain-speci�c KnowledgeThe domain-speci�c (i.e., musical) knowledge in this system is implemented in three parts ofthe GA:Chromosome representations: Generally speaking, keys and chords are the main con-cepts in harmonisation of western tonal music. Harmonisation rules are expressed in terms4



of relationships between triads, and between degrees of scale within a key signature (e.g.,tonic-dominant, etc) but not the absolute pitch.Therefore, in this implementation, musical information (e.g., pitch, interval, time, dur-ation) is represented after normalisation with respect to key { that is, absolute pitch informa-tion is abstracted out. Then, pitch is expressed in terms of scale degree. To express all twelvesemitones, the standard �ve accidentals are used. Di�erent octaves are distinguished by anassociated integer. Finally, time intervals are represented as integers.A knowledge-rich, meaningful representation is used in our chromosome representation(compare with the binary strings more commonly used in GAs). The representation may bethought of as a matrix. It consists of four strings of equal, �xed length. The four stringscontain soprano, alto, tenor and bass part. The user inputs the soprano information (assumedto be the melody); the GA will then harmonise the input soprano, homophonically, with afurther three voices according to the musical domain knowledge encoded in its operators.Reproduction operators: both crossover and mutation operators of several kinds are usedin this implementation, as follows:Splice: One point crossover between two chromosomes { selects a point for crossover betweensuccessive notes of the melody, so the division is vertical, not horizontal.Perturb: Mutate by allowing alto, tenor and bass to move up or down by one semitone ortone. The process is random.Swap: Mutate by swapping two randomly picked voices between alto, tenor or bass. Thisgives the e�ect of changing the chord between di�erent open and closed positions, andof changing inversions.Rechord: Mutate to a di�erent chord type. This mutation generates a new chord from themelody data. A chord is built with the soprano note as root, 3rd or 5th. Doubling(necessary for a four note chord) can be in any position.PhraseStart: Mutate the beginning of each phrase to start with tonic root position on a downbeat.PhraseEnd: Mutate the end of each phrase to end with a chord in root position.Fitness function: Many GA applications in the music domain use humans as a means tojustify the �tness of chromosomes, in IGAs. This approach is subjective because it relies onindividual preferences. Also, human listeners tend to become more open to music on repeatedhearings, and are prone to other inconsistencies based on mood, attention span, and so on. Sothe IGA and does not allow us to study the �tness function itself, to determine how faithfulit is to our chosen task. In this project, music-theoretical knowledge is used to constructthe �tness functions in objective logical terms, which allows us to examine the behaviour ofthe system more scienti�cally. The �tness function judges the �tness of each chromosomeaccording to the following criteria. Within individual voices (as opposed to between voices),we prefer stepwise progression over large leaps, and we keep the voice within its proper range.We avoid progression to dissonant chords, and we avoid leaps of major and minor 7ths, ofaugmented and diminished intervals, and of intervals larger than one octave.Between voices, we apply the following criteria: we avoid parallel unison, parallel perfect5ths, and parallel octaves; we forbid progression from diminished 5th to perfect 5th (thoughthe converse is allowed); we avoid hidden unison; we forbid crossing voices; and, we forbidhidden 5th and octave in the outer voices, when soprano is not progressing stepwise.5



Solutions are penalised for note doubling and omission, in the primary major and minortriads: doubling of Root is preferred, while doubling of 3rd is avoided; doubling of 3rd isforbidden in a dominant chord; if it is necessary to omit a voice, omit the �fth only, exceptin 1st inversion; in inverted chords, doubling of the bass is preferred; and we avoid doublingof tones which give a strong harmonic tendency.In this preliminary implementation, the system does not have enough knowledge toplan for large scale harmonic progression. The �tness function determines only the plausibleharmonic movement between two adjacent chords. The �tness function prefers (in decreasingorder of preference): descending 5th movement; progression towards the tonic; retrogression;and repetition.4.2 Results and AnalysisFigure 1 shows a harmonisation by our system of the �rst eight notes of \Joy to the world".The output is not perfect, but it is surprisingly good given the limited rules built in to thesystem. All the output of the system was marked by Dr. John Kitchen, a lecturer in the De-partment of Music at Edinburgh, according to the criteria he uses for 1st year undergraduatestudents' harmony. This example scored 5 out of 10 { a clear pass. While other exampleswere less successful (most earning around the 30% mark), this was mostly due to the lackof coherent large-scale musical progression { the system was felt to be better than studentharmonisers at getting the basic rules right.
TBSA IG 4444 I��

��
iii IV�ìì�� ���
����� ÔÔ�

I� ���
� ���

IVc-� (� -
� (�

iii7��
��

V7��
��

I��
��

Figure 1: Harmonisation of �rst line of Joy to the WorldThe experiment was carried out with various GA parameter settings. It was observedthat, as expected, the weights of the various penalties applied in the �tness function have asigni�cant e�ect on the solution. Other parameters, such as crossover rate, mutation rate,and di�erent selection schemes appear to a�ect the time taken for the population to converge,and do little for the solution quality. This is due to the fact that it is the �tness functionwhich primarily de�nes the knowledge in the system, while the other parameters de�ne thesearch strategy.What is most signi�cant is that, with the current evaluation functions and reproductionoperators, the GA still cannot satisfy all the constraints within 300 generations.An attempt with an island model (Gordon et al. (1992)) with four population groupswas also carried out, in the hope that di�erent population groups might be able to preservetheir own salient cultures, and might be able to bring the GA to a more globally acceptablesolution.Figure 2 is a result from the island model. The experiment showed an improvement insearch e�ciency, but the GA still could not reduce all the penalties.The main explanation for this is the relatively shallow knowledge of the system, inparticular with respect to overall harmonic movement. A reduction of a �tness penalty in one6



TBSA IG 4444 Ib��
��

I� ���
� ���

Ic-� (�-
� (�

vi��
��

Ic��
��

iic� ���
� ���

II7-� (�
4-� (� Vb��
��

Ic��
��

vic��
��

IVb��
��

Ic��
��

I��
��

IG IV��
�� >> Ic��

��
I� ���
� ���

Ic-� (�
-� (�

vi��
��

IV��
��

V� ���
� ���

vi-� (�-
� (�

V��
��

I Vb����� ���
� �� ÈÈ�

Ib� ���
� ���

IVc-� (� -
� (�

ii��
��

Vc�� �
�

I� ���
� ���

Figure 2: Harmonisation of Auld Lang Syneposition may increase penalties in other positions, because the movement from one chord tothe next is not considered with respect to overall movement in the phrase. Because GAs workby random perturbation of their chromosomes, the high-level planning necessary to smoothout these penalty spikes is not readily encoded in them { to do so, we would have to build amuch more complicated model.We conclude, therefore, that a conventional rule-based system (perhaps in conjunctionwith one or more GAs) is a more appropriate method for the harmonisation task.5 Generating Instrumental SolosThis section describes a study on generating instrumental solos by GA. Note in particularthe distinction between the objective GA with a programmed �tness function, and the moresubjective (and so less scienti�cally enlightening) interactive GA used in some similar studies.Again, we detail here the points which make this GA system di�erent from others { see Section2 for other details.5.1 Domain-Speci�c KnowledgeChromosome Representation: The representation of the structures (solo, chord pro-gression) is very abstract, 
exible and does not allow the generation of non-scale notes (note,though, that this does not preclude the generation of passing notes, as more than one scalecan be used with most chords). The solo is generated as a list of (degree, duration) terms.The chord progression given as a list of (root, chord type, duration) terms.Operators. The speed of convergence to high �tnesses, and the quality of results, of thissystem is based largely on the genetic operators. They are directed, in the sense that theycontain domain-speci�c knowledge, and are not the general operators used in traditional GAs.Crossover Two crossover operators were implemented: one-point and two-point crossover.The �rst parent belongs to the selected population and the second parent is chosen randomlyeither from the selected or the previous population. The �tter of the two created children7



goes into the intermediate population. The crossover operators work in terms of absolutetime, not in terms of notes, so some care has to be take with splitting notes up to maintaina coherent 
ow. This process has a tendency to split notes to smaller durations. Note thatthese crossover operators apply no intelligence in selecting their cross-over point { this issueis discussed further below.Mutations In this system, mutations are the operators which try to �x a 
awed solo or todirect the music in ways which are pleasing and attractive to the ear.One-note: randomly pick one note and replace it with a newly generated one or transpose itup or down by a small number of degrees.Swap: randomly choose two fragments of the same length (number of notes) and swap them.Transpose: randomly choose a fragment and transpose it modally by up to a perfect �fth.Permute: randomly choose a fragment and permute its notes.Sort ascending: randomly choose a fragment and sort its notes into ascending order of degree.Rests in the fragment remain in position.Sort descending: as above, but sort by descending degree.Redistribute durations: randomly choose a fragment and permute its durations, maintainingthe order of the pitches.Same rhythm: vary a random fragment by randomly transposing up to half of its notes,maintaining their durations.Simple copy: copy one fragment and overwrite another with the copy.Copy & mutate: a family of mutations, which copy a fragment, as simple copy but mutateit as per mutations above before pasting it back into the chromosome. The mutationsused are Transpose, both kinds of Sort, Redistribute durations, and Same rhythm.Concatenate repeated notes: merge any contiguous notes (in the whole chromosome) of equalpitch into one note of equivalent length. This mutation prevents boring repetition ofthe same note, which can be caused by the sorting mutations and splitting of notes incopying and crossover.Fitness Function: In the current state of the art, we do not know how to implement acomplete algorithmic �tness function which will direct the search towards desirable, human-like jazz solos. Here, we merely approach the problem, by building operators which looselyimitate the improviser's \work tools" and mental process. The �nal output generated on thisbasis is at least closer to the desired kind of output than random doodling, and, importantly,its shortcomings will inform future work.The �tness function discussed here is based on material gleaned informally from manysources (music books, articles) which aim to explain and model the process of improvisation.It is also based on simple informal statistical analysis of jazz solos and �nally on some intuitiveideas. As such, it constitutes a �rst approximation to a �tness function for jazz solos, andprovides a point of departure for further development.Our �tness function is a multi-objective function { that is, various di�erent dimensionsare used to measure �tness, and a vector of those dimensions is produced for each chromosome.This is more informative than a single-objective function. Here, we produce a single value8



by taking the weighted sum of the vector; a more general approach would be to use ParetoRanking (Fonseca and Fleming (1994)).The function checks eight di�erent characteristics of the solo line, which it then uses tocalculate the corresponding overall �tness. Di�erent coe�cients may be used to apply moreor less signi�cance to the di�erent dimensions. The eight characteristics used are as follows.Illegal jumps: A solo will tend to lose coherence if it jumps around in pitch too much, becauseof lack of auditory streaming.Pattern matching: Looks for repeated pitch patterns within the chromosome, particularly onmusically signi�cant beats, and favours chromosomes which exhibit this property.Suspensions: Because of the way the chromosome is represented, it is possible to have sus-pensions { notes which lie across to two consecutive chords. This part of the �tnessfunction checks what happens to those N-1 chord changes. There are two cases: thereis a good suspension, i.e., the note is a member of both scales determined from the twoconsecutive chords; or there is a bad suspension, i.e., the note is a member of the �rstscale but not of the second. Note that the issue of whether a suspension is dissonant ornot is orthogonal to this test { the suspended chord may in principle be dissonant witheither or both of the underlying chords.First downbeat: The �rst beat of a bar is harmonically signi�cant. This part of the �tnessfunction requires that the note on the �rst beat be a member of the current chord,unless the scale is a symmetrical one, such as whole tone, in which case any note in thescale is allowed.Third downbeat: As for the �rst downbeat restriction, but less strongly so.Long notes: Relative length of notes in a solo contributes to its feeling of tonality. In par-ticular, long notes which are not in consonance (in whatever terms are appropriate!)with the current chord are not generally desirable. Equally, long rests leave unsatisfyinggaps in the solo. This aspect of the �tness function penalises chromosomes with thesefeatures.Pitch Contour: The system favours close matches between the pitch contour of the generatedsolo and that speci�ed by the user.Speed: The system favours close matches between the speed contour of the generated soloand that speci�ed by the user.Cleary, there are many other features which might be modelled in the �tness function{ for example, valid cadences. With a system such as ours, which is clearly modular, otherfeatures may be added in easily.5.2 Results and AnalysisThe solo generator GA converged very quickly to high �tness because of its domain-speci�cgenetic operators. Pattern matching in particular was bene�cial to the creation of a feelingof theme development in the solo. However, the choice of weight for pattern matching ascompared with the other �tness dimensions is crucial { it easily becomes unnoticeable oroutweighs all the other dimensions, resulting a boring, repetitive solo.The results are really quite encouraging, though they are clearly amenable to improve-ment { Figure 3 gives an example. As with the harmonisation program, it is surprising that9



G 44 Cmaj7@ � � �óó� � ññôô� @ ±±� � � � �³³́́� 2 F7@ ±±� � � � 2�³³́́� @ � � �áá� 2� ßßââ� 3 Cmaj7@ � � � � � � � � � � � � � @G4 Gm7@ ±±� � � � �³³́́� C7@ � òò� � � �óóôô� 5F7@ � � � � 2� � 2� 2� � � 2� � � @ 6 F]dim)� ? 4�²²� 2� ±±³³� @ � � � 4� �îîîî�G7 Cmaj7(� @ � ²²²²� @ �²²²²� @ � ²²²²� @ � ������ 8 F7������ @ � �¡¡¡¡� @ 2.� @ ññ� � 2� � �óóôô� 9 Dm7@ ��� � � � � � � � � � � ������ @G10 G7@ � � � � � � � ? )� ? � ÔÔÔÔ� 11 Cmaj7(� @ � ¬¬¬¬� @ � �óóóó� @ � ¬¬¬¬� ? �²²²²� 12 Cmaj7@ � � �óó� � ññôô� @ ±±� � � � �³³´́ �
Figure 3: A solo generated from the chord sequence shownquite acceptable results can be obtained with relatively simple rules. The example shows howthe system realised the notion of constant pitch contour. The solo is made up of repeateddescending and ascending patterns. The weight of the pattern matching was very small andthe probability of the generated notes or rests were 90% for a semi-quaver and 10% for aquaver. In this case, sorting mutations prevailed over the other types.6 ConclusionIt is quite clear from the experiments here and elsewhere that Genetic Algorithms can beapplied successfully in the musical domain { up to a point. It is also clear that the e�cacyof the GA approach depends heavily on the amount of knowledge the system possesses.Looking at the output of our systems from an aesthetic viewpoint, the results are still farfrom ideal. The harmonisation produced by the GA has neither clear plan nor intention, andthe solo generator, too, lacks intention, though this is less obvious in the solo context. This isnot a surprise: we cannot expect large scale structure to arise from the kind of programminginherent in a GA containing relatively little domain knowledge.In summary, we conclude that while GAs can be surprisingly good at small, constrainedtasks, their performance, at least in a context of simulating human behaviour, is limited bytwo issues. First, GAs are a stochastic, heuristic search method, so one cannot be sure thata solution will be reached, even if there is one. Second, they lack structure in their reasoning{ composers have developed complex and subtle methods over a period of centuries involvingdi�erent techniques for solving the problems addressed here. Noone would seriously suggestthat an author of hymn tunes works in the same way as the GA presented here, so whilewe may be able to produce (near) acceptable results, doing so sheds little or no light on theworking of the compositional mind. In the solo generator, there is a direct attempt to addressthis; even so, there is still a lack of intent in the structure which renders the output less thancompletely musically satisfying. 10



AcknowledgementsThanks to Dr. John Kitchen for his help in assessing the harmonisation system. AndrewTuson is supported by EPSRC studentship number 95306458.ReferencesBiles, J. A. (1994). GenJam: A genetic algorithm for generating jazz solos. In ICMC Pro-ceedings 1994. The Computer Music Association.Burton, A. R. and Vladimirova, T. (1997). Applications of genetic techniques to mu-sical composition. Available by WWW at http://www.ee.surrey.ac.uk/Personal/A.Burton/work.html.Cartwright, H. M. and Harris, S. P. (1993). Analysis of the distribution of airborne pollutionusing genetic algorithms. Atmospheric Environment, 27:1783{1791.Darwin, C. (1859). On the Origin of Species. John Murray, London.Fang, H.-L. (1992). Investigating genetic algorithms in scheduling. Master's thesis, Depart-ment of Arti�cial Intelligence, University of Edinburgh.Fonseca, C. M. and Fleming, P. J. (1994). Multiobjective Evolutionary Algorithms: AnOverview. In AISB Workshop on Evolutionary Computing, Leeds University.Gordon, V., Whitley, D., and B�ohn, A. (1992). Data
ow parallelism in genetic algorithms. InM�anner, R. and Manderick, B., editors, Parallel Problem Solving from Nature 2, pages553{42, Amsterdam. Elsevier Science.Holland, J. H. (1975). Adaptation in Natural and Arti�cial Systems. Ann Arbor: TheUniversity of Michigan Press.Horner, A. and Ayers, L. (1995). Harmonisation of musical progression with genetic al-gorithms. In ICMC Proceedings 1995, pages 483{484. The Computer Music Association.Horner, A. and Goldberg, D. E. (1991). Genetic algorithms and computer-assisted musiccomposition. Technical report, University of Illinois.Jacob, B. L. (1995). Composing with genetic algorithms. Technical report, University ofMichigan.Kirkpatrick, S., Gelatt, C., Jr., and Vecchi, M. (1983). Optimization by Simulated Annealing.Science, 220:671{680.McIntyre, R. A. (1994). Bach in a box: The evolution of four-part baroque harmony usinga genetic algorithm. In First IEEE Conference on Evolutionary Computation, pages852{857.Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution programs. Arti�cialIntelligence. Springer-Verlag, New York.Ross, P. M. and Corne, D. (1995). Applications of Genetic Algorithms. AISB Quarterly,89:23{30. 11



Russell, S. and Norvig, P. (1995). Arti�cial Intelligence { a modern approach. Prentice Hall,New Jersey.Wolpert, D. and Macready, W. (1995). No free lunch theorems for search. Technical report,SFI-TR-95-02-010, Santa Fe Institute.

12


