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Abstract

This paper examines a voxel (N-dimensional pixel) based representatisinape optimisation problems,
and shows that although a basic genetic algorithm performed poorlyomgified beam design problem,
the use of three domain specific operators improved performance gredatjtiohally, the use of a ‘dir-
ected smoothing’ operator that preferentially adds material to high streas amas examined and found to
assist evolutionary search. This paper demonstrates how domain kneveledgn understanding of how
genetic algorithms work can be used to inform the design of suitatdeatqrs.

1. Introduction

Shape optimisation within constraints is a hard problem from the iEMechanical Engineering. The ob-
jective is to design a shape that best satisfies some predetermined gsahitiie same time maintaining
some property of the shape within a constraint, or perhaps even acatgifaints.

Previous work has applied genetic algorithms (GAs) [1] to shape dgation problems with encouraging
results. Using engineering software packages to evaluate the sujtabdigiven design, successful shapes
have been evolved — examples include [2, 3, 4]. However, previouk amevolutionary shape optim-
isation has primarily been concentrated around parametric representatidnsctidiral design and shape
optimisation problems which presume a family of solution shapes.

This paper focuses upon the use of a voxel (N-dimensional pixel) basessegpation instead, within
which the shapes being optimised are represented as a series of binary 0's. aftfuislapproach has the
advantage that it can describe any topology, and makes no assumptionselfouttof the final solution
[5]. Furthermore, a voxel based representation, by virtue of its diesstof representation allows domain
knowledge to be easily added, and to the level felt appropriate by thgnéesihe following examples will
help illustrate this point.

First, areas of the voxel representation can be fixed to be permanently of) thi:allows the designer
to prohibit material from being placed in locations where it is not desifesecond example lies with the



ease in which existing designs can be utilised by the system — all theqigred is for the initial design
to be digitised and the bitmap used to initialise the populatioh@benetic algorithm.

Finally, taking beam design as an example, holes in the shape of the beamiralg passible and even
probable if some of the mass of the beam is occupying a low-stress areparametric representation
can only create holes where the user is expecting them to be required and has tedirappropriate
parameters.

However, [2] argues that using a binary voxel representation leads toltbeihg problems: a long length
of the chromosomes (often greater than 1000 bits); the formation alf fiwles in the shape; no guarantee
that the final shape produced will be smooth; and even if the parents eapeesalid shape, the children
will not necessarily be valid. On the other hand, these objections appleactffset somewhat by the work
in [3], which has used a voxel-based approach, claiming satisfactory reldoltgever, there appears to be
little attempt to include domain knowledge into the genetic algorjtmost probably leading to the very
long amount of time required to obtain these results; in this case, tinane23 hours.

This paper describes a case-study of how domain knowledge and an undexgtahtdow genetic al-
gorithms work can be used to inform the design of suitable operatoshfape optimisation, as well as a
test of the suitability of a voxel-based representation for shape tgatiion problems.

2. The Optimisation of the Cross Section of a Beam

One of the problems encountered in shape optimisation, no matter whaiaahps taken, is interfacing
the optimiser with a suitable evaluation package. For example, in witighsation, the wing shape has
to be smooth, else the CFD (Computational Fluid Dynamics) packagaastistrangely: either returning
negative drag, or resulting in the program crashing. Problems imglinite Element Analysis (FEA)

evaluation packages are somewhat better behaved, but interfacing istdfilviah, and the calculations do

take some time.

The shape optimisation of a beam cross-section is the problem considénésistudy. Evaluation of the
candidate cross-sections was made using bending theory for symmetrica, lmeasidering only normal
stresses [6]. This is a greatly oversimplified model, but sufficiergdbthe operators devised in this paper,
as well as making repeated experimentation feasible.

Each candidate solution can thus be represented as a 2-D grid of voxelshevibptimisation objective
being to minimise the mass of the beam whilst ensuring that at all points (ie. at all voxels) in the beam
the normal stress does not exceed a maximum stsess. §, which is a constant that is determined by the
material to be used. This maximum stress constraint is given by Equ@jion

—M
Omaz > Ty for all voxels (1)

where M is the bending momeny, the perpendicular distance of the voxel from the neutral axis,/and
is the second moment of area of the cross-section. The neutral axis ofaistdgdined as a line which
passes through the centroid of mass of the shape. As the voxels aréoofrusize and density, the centroid
can be found by taking the average of the positions of all the occupieglsioFor a symmetric beam the
neutral axis would be horizontal.

The bending moment/ is a constant determined by the loading on the beam. The madthe beam is
proportional to the area of the cross-section and hence the numberad$wasned on. The second moment
of area is given by Equation (2):

I= > ydA 0y

i€{all on voxels}

wherey; is the distance of thé&h voxel from the neutral axis andlA is the area of a voxel (as we are
dealing with a cross-section).



The optimum cross-section for a beam using this evaluation can be dedubeihg a flange at top and
bottom of the design domain. For the experiments described here,llbwifg values of the constants
were usedM = 2 x 105 Nm, 0,,,.. = 100 MPa, and a beam of dimensio3&) x 640mm was considered.

In practice, this would correspond to an I-beam, but that also requires awehmnect the two plates of the
beam together. In a full calculation with shear stresses, the web wouldarieeeounteract this additional
stress. However as shear stress is not represented in this simplifiddrpr@bconnectivity requirement in
the form of a repair step was added, whereby all voxels must be connected @pnadct rule) to a seed
voxel in the centre top edge of the beam. In addition, a straight web wagscedfbefore the connectivity
repair step. This was found, in formative experiments, to preverfiimeation of a crooked web (as the
“sheer-less” physics model used does not prevent this), and improvesinks obtained slightly.

3. A Basic Genetic Algorithm Implementation

This study builds upon the following basic implementation of agjieralgorithm. The encoding digitises
the shape as 32 x 64 grid and represents this as a 1-dimensional string of 2048 bits. &thhdo-point
crossover (applied with probability 0.3), and bit-flip mutation (iggbwith bitwise probability 0.001) were
used to operate on this encoding. After the application of each operatels fivat were not connected to
the seed voxel were set to zero. An unstructured, generational populatdei aisize 20 with rank-based
selection with selection pressure 1.7 was used.

Strings are initialised to random binary bit strings with a preselededsity’ percentage; the higher this
value, the more voxels are initially turned ‘on’; for this studyistivas set to 70%. All initial population
strings must pass the validity checks used by the evaluation fundtiennumber of active voxels must
be non-zero; the second moment of area must be greatei tkat)—'2 (goes to 0 if insufficient active
voxels); and the fithess must be greater than 0.0001. The rationalelltkisinvas to ensure that there were
few instances where the lack of connected voxels would lead to blank, or gpfilfedlinitial solutions
after the connectivity repair procedure was applied.

NOTE: as the aim of this work was to investigate whether a voxel-based représentats a feasible
approach, some possible problem simplifications were not consideredof®hese was that the symmetry
of the beam was not exploited. Of course, full advantage of such probleardsatould have been taken
in a more realistic and computationally expensive problem,

3.1. The Fitness Function

The fitness function was designed to minimise the area of the beam (noimbetive voxels) within the
maximum allowed stress, with a penalty value being applied to any soltich broke that constraint. A
small additional factor%, was included in the fitness calculation based upon the maximum stressmpoin
the beam. This had the effect of causing any valid solutions to continexotae towards better solutions
(in this case a beam which minimises area and minimises the maximum anf@irgss present). The
fitness,F’ which is to be maximised, is given by Equation (3) below:

1

F= V=1 4k xmaz{(S — omax), 0} <

whereV is the number of active voxels (ie. beam maskjhe highest stress (calculated using Equations
(1) and (2)) felt by any of the pixelss,,... the maximum allowed stress, akda constant which can be
adjusted to vary the weight of the penalty associated with the maxim@ssstonstraint (in this study it
was set tdk = 5.0 x 1079).



3.2. Results Obtained

The basic genetic algorithm was found to give disappointing reslten allowed to run to convergence
(over 2000 generations), the shapes produced, though recognisable@eschppy an I-beam shape, were
highly irregular and possessed small holes. Figure 1 illustratesthshowing the 4 best solutions from
ten genetic algorithm runs. From these results it appears, at least fopkegienetic algorithm implement-
ation, that the potential problems described in [2] do manifest themselves

Figure 1. Typical End-of-Run Results Obtained by the Basic GA

4. An Improved Genetic Algorithm Implementation

The performance of the basic genetic algorithm was disappointinggvewmany successful applications
of the genetic algorithm use domain-specific operators [7]. Knowiegiature of the problems that arise
with this approach, would it be possible to design operators to owe¢hem? With this end in mind, the
basic operators were replaced with domain-specific operators in order tovehe following perceived
problems:

e Crossover effectiveness;
¢ Removal of holes and isolated pixels;

¢ Removal of rough edges.

The operators are: a 2-dimensional crossover operator, a smoothiagionubperator, and a mutation
operator that mutates a 2x2 area of the voxel grid. All of these operasmradtress one weakness in the
basic genetic algorithm implementation: the encoding of a 2-dimeaknoblem as a one-dimensional
string. Each of these operators will now be described in turn, and sesiéxperiments to evaluate their
effectiveness will be summarised.

4.1. A Mutation Operator for Smoothing

If a human designer was to examine the results in Figure 1, it woulikbly that the designer would
modify the design to remove the small holes and rough edges, as thaelesigtuition would indicate
that this would improve the quality of the beam. So one solutiothéopoor performance of the basic
genetic algorithm would be to introduce an operation that embodiedhtiision.

A mutation operator for smoothing was therefore devised. An area of yairks ranging from X 2
pixels to}I of the dimensions of grid was randomly selected. The most common aitieef pixels in the
area selected was then found, and then written to all of the pixels in that ardastaated by Figure 2.



Figure 2. The Smoothing Mutation Operator

Examination of the results obtained, in a few formative runs, comfifrthat this operator can remove
isolated pixels with great success. With this as the only mutation opgitacshape was optimised to two
near perfect horizontal bars at the vertical extremities (an I-beam) after 10@0agiens.

4.2. Two-Dimensional Crossover

Another problem encountered in representing what is a 2-dimensionahisgtion problem as a one-
dimensional chromosome arises witkage In a 1-D encoding, voxels that correspond to spatially close
points on the actual shape can be far apart on the string. Therefore, usssiiver can more easily disrupt
building blocks such as one part of the shape being of high fitness, ledteusits that correspond to it are
spread throughout the string.

Such a situation has been encountered before in the use of a genetic aigosiblve the source apportion-
ment problem [8, 9]. That investigation found that representing thblpm as a 2-D matrix, and devising
a crossover operator (UNBLOX) that swapped a 2-dimensional section besokgions led to improved
performance (Figure 3). For the purposes of this study, the bliaekvgas allowed to vary between axl
1grid to% thex andy grid dimensions.

SJFS_»S

Figure 3. The UNBLOX Crossover Operator

When UNBLOX was implemented for this problem it was able to produce a résalgle I-beam after 500
generations — a large improvement in performance over the one-dimensi@apbint crossover operator
that shows that linkage is a significant factor in this problem.

4.3.2 x 2 Area Mutation Operator

The third operator was devised for three reasons: first, the belief thed ase tackling a 2D problem, the
operators should reflect this; second & 2 area was thought sufficient to eliminate many of the loose
pixel/wobbly-line problems found with the basic genetic algaritthird, applying the operator only where
at least one pixel is present would give a good chance of a worthwhildicaigbn being found, and would
be useful at the end of a genetic algorithm run where only small local chavrmeéd be required.



To this end, this operator acts or2ax 2 area of the chromosome array, and only modifies the contents
if at least one voxel in the chosen area is turned on and one other voxehedtoff. This is so that
this mutation operator would work well on the boundary of the esdlghapes. If so, standard bit-flip
mutation is applied to each voxel in the area. Use of this operator increasedt¢hat which excess
material was chopped away, whilst the ability of the genetic algorithootdinue to find improvements
after convergence was also improved. In addition, the final form of trealvbwas found to be cleaner.

4.4. Putting it all Together

After the formative evaluations of each of the new operators above, it e@sssary to see if these oper-
ators would work effectively in combination. Therefore, the genetic @garwas run with the following
settingsp(UNBLOX) = 0.3, p(2 x 2 mutation) = 0.125, andp(Smoothing mutation) = 0.125 (all
probabilities are per-string); where each operator is applied sequendial string with these probabilit-
ies, and the sizes and locations of the operations were selected with awpifaoability. The probability
of the 2 x 2 mutation operator was increased by 0.0005 per generation to a maximumas this was
found to improve the quality of the results obtained slightlyl &flthe other genetic algorithm settings
were left unchanged from the basic genetic algorithm.

e

Figure 4. Typical End-of-Run Results Obtained by the Improved GA

Figure 4 shows some typical end-of-run results, which are near-perfezmhs, with no holes — a no-
ticeable improvement over the basic genetic algorithm (Figure 1). Bidke fitnesses against generation
for the basic and improved genetic algorithms are given in Figureeséligures are an average over 10
runs). As can readily be seen, the new operators have dramatically imgha/edrformance of the genetic
algorithm, finding a better quality solution more quickly than tlasib genetic algorithm, thus vindicating
the approach used.

The only caveat that was found was that the size range permitted for th& OXIBnd smoothing operators
does interact with the amount of bending moment applied, and this can afeesilts of the optimisation
somewhat. This is thought to be because the size of the changes proguitedd operator should be
comparable to the size of the features of the final shape, which is determipad by the bending moment.
For example, if the final shape was to have thin plates at the top andrhdtien using a smoothing
operator with a large size range would be very likely to remove a goowseaftthin plate. Fortunately, in
our experience, finding a sensible range proved straightforward gaaoa little common-sense was used.

5. Guiding the Search: Directed Smoothing

At this point, the operators are still applied in a somewhat undirefetgltion. One manifestation of this
was the observation that the smoothing operator occasionally removedahfitan areas that were of

high stress, and added material to areas where it was not needed. Obvidsiglgethagainst an engineer's
intuition which would suggest the opposite. Therefore, a directecoimmgy operator was designed to



make use of some of the useful information available to the systemesssiti of the evaluation function’s
operation. This operator was based upon a ‘directed mutation’ operatdrabdteen successfully used in
timetabling [10].

The evaluation must, as a necessary step to calculating the results, obgdire or the stress present at
every voxel location. The simple physics model we are using here wil@lculate a close approximation
to the stress present in each of the empty voxel locations as if they wateBolis, we can obtain an array
of values representing the stress on each voxel and the average stressnhil@efwole array. In addition,
this approach should be extensible to real a FEA package if we use matihah Woung’s modulus
1 x 10~3 times that of the solid material; this approach has been used successfally.in [

This information can then be used to guide the smoothing operatonoraintelligent way. The smoothing
operator was modified so that after an area has been selected, all voxels in that larglaowé average
stress are switched on, and all voxels with below average stress are tffinBu®algorithm will therefore
smooth an area of voxels to match the underlying stress values accordieggegrage value for the whole

s

Figure 5. Typical End-of-Run Results Obtained by the GA with Dire@stbothing

The experiments in Section 4.4 were repeated with the directed smootienator replacing the smoothing

operator. Figure 5 shows some typical end-of-run results, which againear-perfect I-beams, therefore
any fears about this operator misleading the search appear unfounded. Athifithess against genera-

tion for the directed genetic algorithm, along with the plots forlasic and improved genetic algorithms
for easy comparison, are given in Figure 6 (these figures are an averagéouves).

Itis apparent that this algorithm has been found to operate extremelycaeding much faster convergence
to a near-optimal solution when used in combination with the othgurawed’ operators, whilst giving a
solution of equivalent quality. This will be of great use when experits using a full FEA package are
undertaken, as these packages are very computationally intensive.

6. Conclusions

Results presented here show that, for the optimisation of a simpbféedn cross-section, the use of a
‘standard’ genetic algorithm with two-point crossover and bit-fliptation led to disappointing results —
the final shape was highly irregular and possessed small holes. Thregndgecific operators were then
used: a 2-dimensional crossover operator, a smoothing mutation operatl a mutation operator that
mutated a Zx 2 area of the voxel grid. These were designed to overcome perceived probitnssirema
linkage, irregular shapes and small holes.

With these operators, the genetic algorithm was able to produce shaesedie known to be optimal
for this problem — thus providing some vindication of this approanld showing, contrary to previous
arguments in the literature, that this approach can be used for evoluytismegse optimisatiowhen used in



3000

2800 i

2600

2400

1/Fitness
N N
S N
S o
& o

1800

1600 Directed GA

Basic GA

1400

~— Improved GA

1200

1000 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generations

Figure 6. Fitness Plots for the Three Versions of the GA

conjunction with suitably designed operatoikhis is, of course, with the caveat that the problem studied
here is somewhat simplified; work applying this approach to real-wahkpe optimisation problems is
currently underway.

Finally, a ‘directed smoothing’ operator that adds material to high staesas was examined to ascertain
the degree that this form of domain knowledge can assist evolutiaeargh, and was shown to speed up
search significantly.

In summary, this paper describes a case-study of how domain knowledge amdlenrstanding of how
genetic algorithms work can be used to inform the design of suitaldeatqrs, as well as demonstrating
the suitability of a voxel-based representation for a simple shapmisption problem.
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