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Abstract

This paper examines a voxel (N-dimensional pixel) based representation forshape optimisation problems,
and shows that although a basic genetic algorithm performed poorly on asimplified beam design problem,
the use of three domain specific operators improved performance greatly. Additionally, the use of a ‘dir-
ected smoothing’ operator that preferentially adds material to high stress areas was examined and found to
assist evolutionary search. This paper demonstrates how domain knowledge and an understanding of how
genetic algorithms work can be used to inform the design of suitable operators.

1. Introduction

Shape optimisation within constraints is a hard problem from the field of Mechanical Engineering. The ob-
jective is to design a shape that best satisfies some predetermined goal whilst at the same time maintaining
some property of the shape within a constraint, or perhaps even a set ofconstraints.

Previous work has applied genetic algorithms (GAs) [1] to shape optimisation problems with encouraging
results. Using engineering software packages to evaluate the suitability of a given design, successful shapes
have been evolved — examples include [2, 3, 4]. However, previous work on evolutionary shape optim-
isation has primarily been concentrated around parametric representations of structural design and shape
optimisation problems which presume a family of solution shapes.

This paper focuses upon the use of a voxel (N-dimensional pixel) based representation instead, within
which the shapes being optimised are represented as a series of binary 0’s and 1’s. This approach has the
advantage that it can describe any topology, and makes no assumptions about the form of the final solution
[5]. Furthermore, a voxel based representation, by virtue of its directness of representation allows domain
knowledge to be easily added, and to the level felt appropriate by the designer; the following examples will
help illustrate this point.

First, areas of the voxel representation can be fixed to be permanently on or off; this allows the designer
to prohibit material from being placed in locations where it is not desired. A second example lies with the
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ease in which existing designs can be utilised by the system — all that is required is for the initial design
to be digitised and the bitmap used to initialise the population of the genetic algorithm.

Finally, taking beam design as an example, holes in the shape of the beam are entirely possible and even
probable if some of the mass of the beam is occupying a low-stress area — aparametric representation
can only create holes where the user is expecting them to be required and has defined the appropriate
parameters.

However, [2] argues that using a binary voxel representation leads to the following problems: a long length
of the chromosomes (often greater than 1000 bits); the formation of small holes in the shape; no guarantee
that the final shape produced will be smooth; and even if the parents represent a valid shape, the children
will not necessarily be valid. On the other hand, these objections appear tobe offset somewhat by the work
in [3], which has used a voxel-based approach, claiming satisfactory results. However, there appears to be
little attempt to include domain knowledge into the genetic algorithm, most probably leading to the very
long amount of time required to obtain these results; in this case, morethan 23 hours.

This paper describes a case-study of how domain knowledge and an understanding of how genetic al-
gorithms work can be used to inform the design of suitable operators for shape optimisation, as well as a
test of the suitability of a voxel-based representation for shape optimisation problems.

2. The Optimisation of the Cross Section of a Beam

One of the problems encountered in shape optimisation, no matter what approach is taken, is interfacing
the optimiser with a suitable evaluation package. For example, in wing optimisation, the wing shape has
to be smooth, else the CFD (Computational Fluid Dynamics) package will act strangely: either returning
negative drag, or resulting in the program crashing. Problems involving Finite Element Analysis (FEA)
evaluation packages are somewhat better behaved, but interfacing is still not trivial, and the calculations do
take some time.

The shape optimisation of a beam cross-section is the problem consideredin this study. Evaluation of the
candidate cross-sections was made using bending theory for symmetrical beams, considering only normal
stresses [6]. This is a greatly oversimplified model, but sufficient to test the operators devised in this paper,
as well as making repeated experimentation feasible.

Each candidate solution can thus be represented as a 2-D grid of voxels, withthe optimisation objective
being to minimise the massm of the beam whilst ensuring that at all points (ie. at all voxels) in the beam
the normal stress does not exceed a maximum stress (�max), which is a constant that is determined by the
material to be used. This maximum stress constraint is given by Equation(1):�max � �MyI for all voxels (1)

whereM is the bending moment,y the perpendicular distance of the voxel from the neutral axis, andI
is the second moment of area of the cross-section. The neutral axis of a shape is defined as a line which
passes through the centroid of mass of the shape. As the voxels are of uniform size and density, the centroid
can be found by taking the average of the positions of all the occupied voxels. For a symmetric beam the
neutral axis would be horizontal.

The bending momentM is a constant determined by the loading on the beam. The massm of the beam is
proportional to the area of the cross-section and hence the number of voxels turned on. The second moment
of area is given by Equation (2): I = Xi2fall on voxelsg y2i dA (2)

whereyi is the distance of theith voxel from the neutral axis anddA is the area of a voxel (as we are
dealing with a cross-section).
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The optimum cross-section for a beam using this evaluation can be deduced to being a flange at top and
bottom of the design domain. For the experiments described here, the following values of the constants
were used:M = 2�106 Nm,�max = 100 MPa, and a beam of dimensions320�640mm was considered.

In practice, this would correspond to an I-beam, but that also requires a web to connect the two plates of the
beam together. In a full calculation with shear stresses, the web would ariseso to counteract this additional
stress. However as shear stress is not represented in this simplified problem, a connectivity requirement in
the form of a repair step was added, whereby all voxels must be connected (by a 4connect rule) to a seed
voxel in the centre top edge of the beam. In addition, a straight web was enforced before the connectivity
repair step. This was found, in formative experiments, to prevent theformation of a crooked web (as the
“sheer-less” physics model used does not prevent this), and improve theresults obtained slightly.

3. A Basic Genetic Algorithm Implementation

This study builds upon the following basic implementation of a genetic algorithm. The encoding digitises
the shape as a32� 64 grid and represents this as a 1-dimensional string of 2048 bits. Standard two-point
crossover (applied with probability 0.3), and bit-flip mutation (applied with bitwise probability 0.001) were
used to operate on this encoding. After the application of each operator, pixels that were not connected to
the seed voxel were set to zero. An unstructured, generational population model of size 20 with rank-based
selection with selection pressure 1.7 was used.

Strings are initialised to random binary bit strings with a preselected‘density’ percentage; the higher this
value, the more voxels are initially turned ‘on’; for this study, this was set to 70%. All initial population
strings must pass the validity checks used by the evaluation function:the number of active voxels must
be non-zero; the second moment of area must be greater than1 � 10�12 (goes to 0 if insufficient active
voxels); and the fitness must be greater than 0.0001. The rationale behind this was to ensure that there were
few instances where the lack of connected voxels would lead to blank, or sparsely filled initial solutions
after the connectivity repair procedure was applied.

NOTE: as the aim of this work was to investigate whether a voxel-based representation was a feasible
approach, some possible problem simplifications were not considered. One of these was that the symmetry
of the beam was not exploited. Of course, full advantage of such problem features would have been taken
in a more realistic and computationally expensive problem,

3.1. The Fitness Function

The fitness function was designed to minimise the area of the beam (numberof active voxels) within the
maximum allowed stress, with a penalty value being applied to any solution which broke that constraint. A
small additional factor,1S , was included in the fitness calculation based upon the maximum stress point in
the beam. This had the effect of causing any valid solutions to continue toevolve towards better solutions
(in this case a beam which minimises area and minimises the maximum amount of stress present). The
fitness,F which is to be maximised, is given by Equation (3) below:F = 1V � 1S + k �maxf(S � �max); 0g (3)

whereV is the number of active voxels (ie. beam mass),S the highest stress (calculated using Equations
(1) and (2)) felt by any of the pixels,�max the maximum allowed stress, andk a constant which can be
adjusted to vary the weight of the penalty associated with the maximum stress constraint (in this study it
was set tok = 5:0� 10�5).
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3.2. Results Obtained

The basic genetic algorithm was found to give disappointing results. When allowed to run to convergence
(over 2000 generations), the shapes produced, though recognisable as approaching an I-beam shape, were
highly irregular and possessed small holes. Figure 1 illustrates this by showing the 4 best solutions from
ten genetic algorithm runs. From these results it appears, at least for a simple genetic algorithm implement-
ation, that the potential problems described in [2] do manifest themselves.

Figure 1. Typical End-of-Run Results Obtained by the Basic GA

4. An Improved Genetic Algorithm Implementation

The performance of the basic genetic algorithm was disappointing, however, many successful applications
of the genetic algorithm use domain-specific operators [7]. Knowing the nature of the problems that arise
with this approach, would it be possible to design operators to overcome them? With this end in mind, the
basic operators were replaced with domain-specific operators in order to improve the following perceived
problems:� Crossover effectiveness;� Removal of holes and isolated pixels;� Removal of rough edges.

The operators are: a 2-dimensional crossover operator, a smoothing mutation operator, and a mutation
operator that mutates a 2x2 area of the voxel grid. All of these operators also address one weakness in the
basic genetic algorithm implementation: the encoding of a 2-dimensional problem as a one-dimensional
string. Each of these operators will now be described in turn, and results of experiments to evaluate their
effectiveness will be summarised.

4.1. A Mutation Operator for Smoothing

If a human designer was to examine the results in Figure 1, it would belikely that the designer would
modify the design to remove the small holes and rough edges, as the designer’s intuition would indicate
that this would improve the quality of the beam. So one solution tothe poor performance of the basic
genetic algorithm would be to introduce an operation that embodied thisintuition.

A mutation operator for smoothing was therefore devised. An area of x andy sizes ranging from 2� 2
pixels to 14 of the dimensions of grid was randomly selected. The most common value for the pixels in the
area selected was then found, and then written to all of the pixels in that area, as illustrated by Figure 2.
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Figure 2. The Smoothing Mutation Operator

Examination of the results obtained, in a few formative runs, confirmed that this operator can remove
isolated pixels with great success. With this as the only mutation operator, the shape was optimised to two
near perfect horizontal bars at the vertical extremities (an I-beam) after 1000 generations.

4.2. Two-Dimensional Crossover

Another problem encountered in representing what is a 2-dimensional optimisation problem as a one-
dimensional chromosome arises withlinkage. In a 1-D encoding, voxels that correspond to spatially close
points on the actual shape can be far apart on the string. Therefore, use of crossover can more easily disrupt
building blocks such as one part of the shape being of high fitness, because the bits that correspond to it are
spread throughout the string.

Such a situation has been encountered before in the use of a genetic algorithm to solve the source apportion-
ment problem [8, 9]. That investigation found that representing the problem as a 2-D matrix, and devising
a crossover operator (UNBLOX) that swapped a 2-dimensional section betweensolutions led to improved
performance (Figure 3). For the purposes of this study, the block size was allowed to vary between a 1�
1 grid to 12 thex andy grid dimensions.

Figure 3. The UNBLOX Crossover Operator

When UNBLOX was implemented for this problem it was able to produce a recognisable I-beam after 500
generations — a large improvement in performance over the one-dimensionaltwo-point crossover operator
that shows that linkage is a significant factor in this problem.

4.3.2� 2 Area Mutation Operator

The third operator was devised for three reasons: first, the belief that aswe are tackling a 2D problem, the
operators should reflect this; second, a2 � 2 area was thought sufficient to eliminate many of the loose
pixel/wobbly-line problems found with the basic genetic algorithm; third, applying the operator only where
at least one pixel is present would give a good chance of a worthwhile modification being found, and would
be useful at the end of a genetic algorithm run where only small local changeswould be required.
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To this end, this operator acts on a2 � 2 area of the chromosome array, and only modifies the contents
if at least one voxel in the chosen area is turned on and one other voxel is turned off. This is so that
this mutation operator would work well on the boundary of the evolved shapes. If so, standard bit-flip
mutation is applied to each voxel in the area. Use of this operator increased therate at which excess
material was chopped away, whilst the ability of the genetic algorithm tocontinue to find improvements
after convergence was also improved. In addition, the final form of the I-beam was found to be cleaner.

4.4. Putting it all Together

After the formative evaluations of each of the new operators above, it was necessary to see if these oper-
ators would work effectively in combination. Therefore, the genetic algorithm was run with the following
settings:p(UNBLOX) = 0:3; p(2� 2mutation) = 0:125, andp(Smoothing mutation) = 0:125 (all
probabilities are per-string); where each operator is applied sequentiallyto the string with these probabilit-
ies, and the sizes and locations of the operations were selected with a uniform probability. The probability
of the2 � 2 mutation operator was increased by 0.0005 per generation to a maximum of 0.4as this was
found to improve the quality of the results obtained slightly. All of the other genetic algorithm settings
were left unchanged from the basic genetic algorithm.

Figure 4. Typical End-of-Run Results Obtained by the Improved GA

Figure 4 shows some typical end-of-run results, which are near-perfect I-beams, with no holes — a no-
ticeable improvement over the basic genetic algorithm (Figure 1). Plotsof the fitnesses against generation
for the basic and improved genetic algorithms are given in Figure 6 (these figures are an average over 10
runs). As can readily be seen, the new operators have dramatically improvedthe performance of the genetic
algorithm, finding a better quality solution more quickly than the basic genetic algorithm, thus vindicating
the approach used.

The only caveat that was found was that the size range permitted for the UNBLOX and smoothing operators
does interact with the amount of bending moment applied, and this can affect the results of the optimisation
somewhat. This is thought to be because the size of the changes produced by these operator should be
comparable to the size of the features of the final shape, which is determined in part by the bending moment.
For example, if the final shape was to have thin plates at the top and bottom, then using a smoothing
operator with a large size range would be very likely to remove a good section of thin plate. Fortunately, in
our experience, finding a sensible range proved straightforward so long as a little common-sense was used.

5. Guiding the Search: Directed Smoothing

At this point, the operators are still applied in a somewhat undirectedfashion. One manifestation of this
was the observation that the smoothing operator occasionally removed material from areas that were of
high stress, and added material to areas where it was not needed. Obviously, this goes against an engineer’s
intuition which would suggest the opposite. Therefore, a directed smoothing operator was designed to
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make use of some of the useful information available to the system as aresult of the evaluation function’s
operation. This operator was based upon a ‘directed mutation’ operator thathas been successfully used in
timetabling [10].

The evaluation must, as a necessary step to calculating the results, obtain avalue for the stress present at
every voxel location. The simple physics model we are using here will also calculate a close approximation
to the stress present in each of the empty voxel locations as if they were solid. Thus, we can obtain an array
of values representing the stress on each voxel and the average stress value for the whole array. In addition,
this approach should be extensible to real a FEA package if we use material with a Young’s modulus1� 10�3 times that of the solid material; this approach has been used successfully in [11].

This information can then be used to guide the smoothing operator in amore intelligent way. The smoothing
operator was modified so that after an area has been selected, all voxels in that area with above average
stress are switched on, and all voxels with below average stress are turned off. This algorithm will therefore
smooth an area of voxels to match the underlying stress values according to the average value for the whole
shape.

Figure 5. Typical End-of-Run Results Obtained by the GA with DirectedSmoothing

The experiments in Section 4.4 were repeated with the directed smoothing operator replacing the smoothing
operator. Figure 5 shows some typical end-of-run results, which againare near-perfect I-beams, therefore
any fears about this operator misleading the search appear unfounded. A plot of the fitness against genera-
tion for the directed genetic algorithm, along with the plots for thebasic and improved genetic algorithms
for easy comparison, are given in Figure 6 (these figures are an average over 10 runs).

It is apparent that this algorithm has been found to operate extremely well,causing much faster convergence
to a near-optimal solution when used in combination with the other ‘improved’ operators, whilst giving a
solution of equivalent quality. This will be of great use when experiments using a full FEA package are
undertaken, as these packages are very computationally intensive.

6. Conclusions

Results presented here show that, for the optimisation of a simplifiedbeam cross-section, the use of a
‘standard’ genetic algorithm with two-point crossover and bit-flip mutation led to disappointing results —
the final shape was highly irregular and possessed small holes. Three domain specific operators were then
used: a 2-dimensional crossover operator, a smoothing mutation operator, and a mutation operator that
mutated a 2� 2 area of the voxel grid. These were designed to overcome perceived problems with schema
linkage, irregular shapes and small holes.

With these operators, the genetic algorithm was able to produce shapes that were known to be optimal
for this problem — thus providing some vindication of this approachand showing, contrary to previous
arguments in the literature, that this approach can be used for evolutionary shape optimisationwhen used in
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Figure 6. Fitness Plots for the Three Versions of the GA

conjunction with suitably designed operators. This is, of course, with the caveat that the problem studied
here is somewhat simplified; work applying this approach to real-worldshape optimisation problems is
currently underway.

Finally, a ‘directed smoothing’ operator that adds material to high stress areas was examined to ascertain
the degree that this form of domain knowledge can assist evolutionarysearch, and was shown to speed up
search significantly.

In summary, this paper describes a case-study of how domain knowledge and anunderstanding of how
genetic algorithms work can be used to inform the design of suitable operators, as well as demonstrating
the suitability of a voxel-based representation for a simple shape optimisation problem.
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