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Abstract

This paper presents a log-polar image representation composed of low-
level features extracted using a connectionist approach. The low level
features (edges, bars, blobs and ends) are based on Marr’s primal sketch
hypothesis for the human visual system [3] and are used as the entry
point of an iconic vision system [1]. This unusual image representation
has been created using a neural network that learns examples of the
features in a window of receptive fields of the image representation.

1 Introduction

Traditional image feature extraction operators have usually been designed by
hand, work independently of each other and act on Cartesian images (an artifact
of sensor architecture). However, the architecture of the primate vision system
seems to be quite different, and we can use this to produce interesting results
in artificial vision systems.

The outermost retinal region is formed by rings with a fixed number of re-
ceptive fields whose distance from the retina centre can be expressed in terms
of an exponential function [6]. The mapping from this region to the visual cor-
tex can be mathematically approximated by a log-polar representation, which
transforms both rotation and scaling in the Cartesian domain into translation
in the log-polar domain and cuts off most of the complexity involved when
recognising objects at different scales and orientations.

The iconic vision system described in [1] is a typical system which uses the
log-polar approach. The input to the system is a set of primal sketch planes
which, in a first version of the system, were extracted using heuristically defined
logical operators. Another example is given in [4], where a vision architecture
is defined in terms of a log-polar representation with a Difference of Gaussians
as the receptive field function and a template matching algorithm operating
directly on the log-polar space.

This paper presents a log-polar image representation composed of low-level
features extracted using a different approach. The low level features (edges,
bars, blobs and ends) are based on Marr’s primal sketch hypothesis for the
human visual system [3]. The primal sketch represents a more compact rep-
resentation for the image data and provides cues for an attention mechanism
under the experimental evidence that these kinds of low level features seems to
attract visual attention [7].

Instead of trying to build a model for completely describing the features,
which is a complex task because of the unusual geometry of the image data



and the receptive field integration, learning the features was a sensible option.
In our work, a neural network approach was chosen due to its adequacy when
learning data in which there is no obvious structure or logical organisation.

2 Image Representation

The input image is resampled through the use of a mask consisting of concent-
ric rings of overlapping circular receptive fields whose centres are geometrically
spaced from the centre of the mask. If we define an image which is accessed
by using the rings (logarithm of the distance of the rings to the retina centre)
and sectors of the previous mask, then we have a log-polar image represent-
ation. The innermost mask region, named the fovea, contains receptive fields
hexagonally distributed with a high density. We have simulated a hexagonal
packing outside the fovea by shifting each consecutive ring by half of the angle
defining a sector of receptive fields. The radius of the n!® outer retinal layer
is: R(n) = f"R(0), where R(0) is the radius of the first layer of receptive fields
exterior to the fovea and § defines the geometrical progression of distances of
receptive field layers from the retinal centre (we have used 8 = 1.1). Similarly,
the radius r(n) of a particular receptive field in layer n is r(n) = 8"r(0).

We have defined the fovea as having 11 layers of receptive fields. Each re-
ceptive field in the fovea has a radius of 0.5 of a pixel. Outside the fovea, there
are 33 more layers of receptive fields distributed accordingly to the previous
equation. Each receptive field overlaps with each of its neighbours by approx-
imately 53% of its diameter. These parameters produced a retinal mask with
a diameter of 256 pixels which covers a circular region of the Cartesian image.

2.1 Estimating the reflectance information

The output of a given receptive field is calculated according to the equation:
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where O is the neuron output, I(z,y) is the perceived intensity and F'(z,y) is
the receptive field function, both applied to points (z,y) in the receptive field
circular domain of radius r. One of the simplest function that can be used
to simulate the receptive field computation is the uniform averaging function
[1]. However, most of the biological processes are better expressed in terms of
non-linear functions. A non-linear alternative investigated in this work is the
normalised Gaussian function.

The human visual system computes an approximate lightness constancy,
and this implies that it is somehow able to extract information about the in-
variant surface reflectance of objects (almost) independently of changes in illu-
mination and scene composition [2]. We have used a model for estimating the
original reflectance information from the objects (see Eq. (2)), which is derived
from the receptive field computation. The log(E) term in Eq. (2) is nearly con-
stant over local image regions and then makes the receptive field computation



0" a good approximation for the weighted logarithm of the reflectance.

0 =log(E)+ Y log(R(z,y))F(z,y) (2)
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where F is the irradiance falling on the object, R is the local surface reflectance.

3 Feature Extraction

Features are trained and detected in a window of receptive fields. We have
chosen a window composed of a central receptive field plus its next 6 and 12
surrounding neighbours, totalling a sum of 19 receptive fields hexagonally dis-
tributed. For training and testing purposes, synthetic exemplars of the features
are drawn in a fixed position of the input image corresponding roughly to a
particular 19-window of receptive fields. Then, the output of all of these 19
receptive fields is computed and used as input for the neural network modules.
As the receptive fields have variable sizes throughout the retinal image, one
could think that different trainings would be needed for each scale of the re-
ceptive fields. However, the receptive field computation produces normalised
values once it applies a function whose integral is always 1 independently of
the area.

3.1 Training

Several different combinations of contrast, orientation, size, and noise level were
used. Table 1 summarises the parameters used in the generation of the training
sets.

| Feature || Orientation | Contrast | “Size” | Noise (o) |
Edges 0, 30, ..., 330° | 0.5, 0.75, 1.0 [ 0,5
+ Bars 0,30, ..., 150° | 0.5, 0.75, 1.0 | 0.8, 0.9, 1.0 0,5
T Blobs R 05,075, 1.0 | 08,09, 1.0 0,5
T Bnds || 030,..,330° | 0.5, 0.75, 1.0 | 30°, 45° 0,5

Table 1: Parameters used in designing the training sets. Q)=not applicable.

Network architecture and training parameters. We have chosen the
backpropagation algorithm minimising a least square error metric, because of
its simplicity and reasonable computational power. We have used an approach
which minimises the problem of having large training sets and uses a disposition
of output neurons which is favourable to coarse coding.

Three of the feature classes (bars, blobs and ends) were partitioned into 6
new feature classes according to their intensity. Whenever a particular feature
was drawn with a lighter intensity, compared to the background, it was named
positive, negative was the reverse. Then, seven different neural modules, each
one designed for a particular feature, was built. To provide counter examples
for each class, random features and features from the other classes were used.
Table 2 contains some examples of the training features.
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Table 2: Some examples of the training features.

All of the modules have an input layer composed of 19 neurons, followed by
a hidden layer. Finally, there is an output layer formed by neurons associated
to each of the 6 or 12 standard orientations and a last neuron associated to
an unknown class. The strength of response of an output neuron is a function
of the feature’s contrast as explained below. In the case of the positive and
negative blobs the network’s output layer has only 2 neurons, one coding the
blob itself and the other coding the non-blob class.

We have used a learning rate of 0.01, inertia or momentum of 0.95 and a
neural module was considered trained when all the training patterns passed
with 0.05 error bound. Table 2 summarises the class specific architectures and
training parameters.

Neural Architecture | # of Epochs
Module IxHxO e,®
Edge 19 x 16 x 13 | 12040
Bar 19x 13 x7 24030, 23610
Blob 19 x 8 x 2 12210, 21550
End 19 x 16 x 13 | 28380, 34330

Table 3: Training parameters. Legend: I x H x O=Input, Hidden and Output
units. ©,4 = Number of training epochs corresponding to the sets having
positive and negative features, respectively, not applicable for edges.

Coding the contrast information. The contrast within a retinal window is
calculated according to the Eq. (3). The desired output for a neuron represent-
ing a particular feature was represented in terms of a function of the contrast.
We have used the Weibull function, Eq. (4), which is an approximation for the
psychometric contrast detection function in humans [5].
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where L,,,,, and L,,;, are the minimum and maximum intensities found in an
image patch, respectively. In order to have the output of the Weibull function
in the range (0,1) we have chosen a = 0.5 and 8 = 3.

Wi(e) =



3.2 Initial results

The results of the application of the trained neural modules over a test image
are shown in Appendix A. The retinal mask was applied to the Cartesian image,
then all the possible 19-receptive field windows were extracted and fed into each
of the trained neural network modules. The “winner-takes-all” strategy was
used when reading the classification results from a module’s neuron outputs.
Finally, all the classified central receptive fields of which the winning neurons
produced an output smaller than a rejection threshold where discarded.

Intuitively, it is possible to say that the detection of edges presented the
best results. Bars can be ranked in a second place. And finally, ends and blobs
presented the worst results. A possible cause to these latter results can be
associated with the way the synthetic features were designed: a positive blob,
for instance, has been drawn in the Cartesian domain as a bright central region
surrounded by a darker uniform region, but real blobs might be surrounded
by a region of pixels of non-uniform intensities. It is possible to sort out the
above problem by adding features manually extracted from real images to the
training sets of synthetic features (currently under implementation).

4 Conclusions and future work

According to the results we can conclude that it is feasible to learn primal
sketch features in a retina-like image representation. However, it is not yet
clear how could we access the practical results of the trained networks over
real images. Features are detected at different scales, and so, a blob seen in
the peripheral region of the retina can be classified as a ring of edges if it
were instead seen nearby the foveal area, because of the varying size of the
receptive fields, but this is also true in humans. It is important to note that
these feature detectors operate in a different image structure and therefore they
will not detect the same features that conventional feature detectors would find
in Cartesian images. Our next target will be to assess the effectiveness of the
presented technique when compared to the previous approach described in [1].
This will also include the investigation of parameters that might play a role in
the recognition process, like those defining the retina structure, the receptive
field function and the feature’s window size.
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A Extracted features

Features of a given test image extracted using the neural network approach are
presented below. The black spots are the centres of receptive field windows
representing the features. The following rejection thresholds were used in this
example: edges: 0.05, bars: 0.1, blobs: 0.3 and ends: 0.3.
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