
A Retina-like Image Representation ofPrimal Sketch Features Extracted usinga Neural Network ApproachHerman M Gomes, Robert B. Fisher and John HallamDepartment of Arti�cial Intelligence, The University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, ScotlandAbstractThis paper presents a log-polar image representation composed of low-level features extracted using a connectionist approach. The low levelfeatures (edges, bars, blobs and ends) are based on Marr's primal sketchhypothesis for the human visual system [3] and are used as the entrypoint of an iconic vision system [1]. This unusual image representationhas been created using a neural network that learns examples of thefeatures in a window of receptive �elds of the image representation.1 IntroductionTraditional image feature extraction operators have usually been designed byhand, work independently of each other and act on Cartesian images (an artifactof sensor architecture). However, the architecture of the primate vision systemseems to be quite di�erent, and we can use this to produce interesting resultsin arti�cial vision systems.The outermost retinal region is formed by rings with a �xed number of re-ceptive �elds whose distance from the retina centre can be expressed in termsof an exponential function [6]. The mapping from this region to the visual cor-tex can be mathematically approximated by a log-polar representation, whichtransforms both rotation and scaling in the Cartesian domain into translationin the log-polar domain and cuts o� most of the complexity involved whenrecognising objects at di�erent scales and orientations.The iconic vision system described in [1] is a typical system which uses thelog-polar approach. The input to the system is a set of primal sketch planeswhich, in a �rst version of the system, were extracted using heuristically de�nedlogical operators. Another example is given in [4], where a vision architectureis de�ned in terms of a log-polar representation with a Di�erence of Gaussiansas the receptive �eld function and a template matching algorithm operatingdirectly on the log-polar space.This paper presents a log-polar image representation composed of low-levelfeatures extracted using a di�erent approach. The low level features (edges,bars, blobs and ends) are based on Marr's primal sketch hypothesis for thehuman visual system [3]. The primal sketch represents a more compact rep-resentation for the image data and provides cues for an attention mechanismunder the experimental evidence that these kinds of low level features seems toattract visual attention [7].Instead of trying to build a model for completely describing the features,which is a complex task because of the unusual geometry of the image data



and the receptive �eld integration, learning the features was a sensible option.In our work, a neural network approach was chosen due to its adequacy whenlearning data in which there is no obvious structure or logical organisation.2 Image RepresentationThe input image is resampled through the use of a mask consisting of concent-ric rings of overlapping circular receptive �elds whose centres are geometricallyspaced from the centre of the mask. If we de�ne an image which is accessedby using the rings (logarithm of the distance of the rings to the retina centre)and sectors of the previous mask, then we have a log-polar image represent-ation. The innermost mask region, named the fovea, contains receptive �eldshexagonally distributed with a high density. We have simulated a hexagonalpacking outside the fovea by shifting each consecutive ring by half of the anglede�ning a sector of receptive �elds. The radius of the nth outer retinal layeris: R(n) = �nR(0), where R(0) is the radius of the �rst layer of receptive �eldsexterior to the fovea and � de�nes the geometrical progression of distances ofreceptive �eld layers from the retinal centre (we have used � t 1:1). Similarly,the radius r(n) of a particular receptive �eld in layer n is r(n) = �nr(0).We have de�ned the fovea as having 11 layers of receptive �elds. Each re-ceptive �eld in the fovea has a radius of 0:5 of a pixel. Outside the fovea, thereare 33 more layers of receptive �elds distributed accordingly to the previousequation. Each receptive �eld overlaps with each of its neighbours by approx-imately 53% of its diameter. These parameters produced a retinal mask witha diameter of 256 pixels which covers a circular region of the Cartesian image.2.1 Estimating the re
ectance informationThe output of a given receptive �eld is calculated according to the equation:O = Xx2+y2�r2 I(x; y)F (x; y) (1)where O is the neuron output, I(x; y) is the perceived intensity and F (x; y) isthe receptive �eld function, both applied to points (x; y) in the receptive �eldcircular domain of radius r. One of the simplest function that can be usedto simulate the receptive �eld computation is the uniform averaging function[1]. However, most of the biological processes are better expressed in terms ofnon-linear functions. A non-linear alternative investigated in this work is thenormalised Gaussian function.The human visual system computes an approximate lightness constancy,and this implies that it is somehow able to extract information about the in-variant surface re
ectance of objects (almost) independently of changes in illu-mination and scene composition [2]. We have used a model for estimating theoriginal re
ectance information from the objects (see Eq. (2)), which is derivedfrom the receptive �eld computation. The log(E) term in Eq. (2) is nearly con-stant over local image regions and then makes the receptive �eld computation



O0 a good approximation for the weighted logarithm of the re
ectance.O0 = log(E) + Xx2+y2�r2 log(R(x; y))F (x; y) (2)where E is the irradiance falling on the object, R is the local surface re
ectance.3 Feature ExtractionFeatures are trained and detected in a window of receptive �elds. We havechosen a window composed of a central receptive �eld plus its next 6 and 12surrounding neighbours, totalling a sum of 19 receptive �elds hexagonally dis-tributed. For training and testing purposes, synthetic exemplars of the featuresare drawn in a �xed position of the input image corresponding roughly to aparticular 19-window of receptive �elds. Then, the output of all of these 19receptive �elds is computed and used as input for the neural network modules.As the receptive �elds have variable sizes throughout the retinal image, onecould think that di�erent trainings would be needed for each scale of the re-ceptive �elds. However, the receptive �eld computation produces normalisedvalues once it applies a function whose integral is always 1 independently ofthe area.3.1 TrainingSeveral di�erent combinations of contrast, orientation, size, and noise level wereused. Table 1 summarises the parameters used in the generation of the trainingsets. Feature Orientation Contrast \Size" Noise (�)Edges 0, 30, . . . , 330o 0.5, 0.75, 1.0 N 0, 5� Bars 0,30, . . . , 150o 0.5, 0.75, 1.0 0.8, 0.9, 1.0 0, 5� Blobs N 0.5, 0.75, 1.0 0.8, 0.9, 1.0 0, 5� Ends 0,30,. . . , 330o 0.5, 0.75, 1.0 30o, 45o 0, 5Table 1: Parameters used in designing the training sets. N=not applicable.Network architecture and training parameters. We have chosen thebackpropagation algorithm minimising a least square error metric, because ofits simplicity and reasonable computational power. We have used an approachwhich minimises the problem of having large training sets and uses a dispositionof output neurons which is favourable to coarse coding.Three of the feature classes (bars, blobs and ends) were partitioned into 6new feature classes according to their intensity. Whenever a particular featurewas drawn with a lighter intensity, compared to the background, it was namedpositive, negative was the reverse. Then, seven di�erent neural modules, eachone designed for a particular feature, was built. To provide counter examplesfor each class, random features and features from the other classes were used.Table 2 contains some examples of the training features.



Edge + Bar - Blob + End CounterExampleCartesianInputs NotapplicableRetinalOutputsTable 2: Some examples of the training features.All of the modules have an input layer composed of 19 neurons, followed bya hidden layer. Finally, there is an output layer formed by neurons associatedto each of the 6 or 12 standard orientations and a last neuron associated toan unknown class. The strength of response of an output neuron is a functionof the feature's contrast as explained below. In the case of the positive andnegative blobs the network's output layer has only 2 neurons, one coding theblob itself and the other coding the non-blob class.We have used a learning rate of 0.01, inertia or momentum of 0.95 and aneural module was considered trained when all the training patterns passedwith 0.05 error bound. Table 2 summarises the class speci�c architectures andtraining parameters. NeuralModule ArchitectureI �H �O # of Epochs	;�Edge 19� 16� 13 12040Bar 19� 13� 7 24030, 23610Blob 19� 8� 2 12210, 21550End 19� 16� 13 28380, 34330Table 3: Training parameters. Legend: I �H �O=Input, Hidden and Outputunits. 	;� = Number of training epochs corresponding to the sets havingpositive and negative features, respectively, not applicable for edges.Coding the contrast information. The contrast within a retinal window iscalculated according to the Eq. (3). The desired output for a neuron represent-ing a particular feature was represented in terms of a function of the contrast.We have used the Weibull function, Eq. (4), which is an approximation for thepsychometric contrast detection function in humans [5].c = jLmax � LminjLmax + Lmin (3)W (c) = 1� exp ��� c���� (4)where Lmax and Lmin are the minimum and maximum intensities found in animage patch, respectively. In order to have the output of the Weibull functionin the range (0; 1) we have chosen � = 0:5 and � = 3.



3.2 Initial resultsThe results of the application of the trained neural modules over a test imageare shown in Appendix A. The retinal mask was applied to the Cartesian image,then all the possible 19-receptive �eld windows were extracted and fed into eachof the trained neural network modules. The \winner-takes-all" strategy wasused when reading the classi�cation results from a module's neuron outputs.Finally, all the classi�ed central receptive �elds of which the winning neuronsproduced an output smaller than a rejection threshold where discarded.Intuitively, it is possible to say that the detection of edges presented thebest results. Bars can be ranked in a second place. And �nally, ends and blobspresented the worst results. A possible cause to these latter results can beassociated with the way the synthetic features were designed: a positive blob,for instance, has been drawn in the Cartesian domain as a bright central regionsurrounded by a darker uniform region, but real blobs might be surroundedby a region of pixels of non-uniform intensities. It is possible to sort out theabove problem by adding features manually extracted from real images to thetraining sets of synthetic features (currently under implementation).4 Conclusions and future workAccording to the results we can conclude that it is feasible to learn primalsketch features in a retina-like image representation. However, it is not yetclear how could we access the practical results of the trained networks overreal images. Features are detected at di�erent scales, and so, a blob seen inthe peripheral region of the retina can be classi�ed as a ring of edges if itwere instead seen nearby the foveal area, because of the varying size of thereceptive �elds, but this is also true in humans. It is important to note thatthese feature detectors operate in a di�erent image structure and therefore theywill not detect the same features that conventional feature detectors would �ndin Cartesian images. Our next target will be to assess the e�ectiveness of thepresented technique when compared to the previous approach described in [1].This will also include the investigation of parameters that might play a role inthe recognition process, like those de�ning the retina structure, the receptive�eld function and the feature's window size.References[1] T. D. Grove and R. B. Fisher. Attention in iconic object matching. In R. B.Fisher and E. Trucco, editors, 7th British Machine Vision Conf., volume 1,pages 293{302, 1996.[2] A. C. Hurlbert. Neural network approaches to color vision. In H. Wechsler,editor, Neural Networks for Perception, volume 1(Human and Machine Per-ception), chapter II.5, pages 265{284. Academic Press, 1992.[3] D. Marr. Vision. W. H. Freeman and Co., 1982.



[4] J. P. Siebert and I. Eising. Scale-space recognition based on the retino-cortical transform. In Proc. IEE Conference on Image Processing and itsApplications, 1995. Edinburgh.[5] R. Watt. Understanding Vision. Academic Press, 1991.[6] S. W. Wilson. On the retino-cortical mapping. Int. J. Man-Machine Studies,18:361{389, 1983.[7] A. L. Yarbus. Eye Movements and Vision. Plenum Press, 1967.A Extracted featuresFeatures of a given test image extracted using the neural network approach arepresented below. The black spots are the centres of receptive �eld windowsrepresenting the features. The following rejection thresholds were used in thisexample: edges: 0.05, bars: 0.1, blobs: 0.3 and ends: 0.3.


