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Abstract

This paper presents a method for solving the Best Next View problem. This
problem ariseswhile gathering range datafor the purposeof building 3D mod-
elsof objects. The novelty of our solution is the introduction of a quality cri-
terionin addition to the visibility criterion used by previousresearchers. This
quality criterion aims at obtaining views that improve the overall range data
quality of the imaged surfaces. Results demonstrate that this method selects
views which generate reasonabl e volumetric modelsfor convex, concave and
curved objects.
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1 Introduction

When building a complete 3D model of an object, it is necessary to obtain views of the
object from several directions, so that datafor all surfaces of the object is acquired. Since
obtaining a range scanner view is a time-consuming process, a method of automating the
data acquisition process would be desirable. The Best Next View problem is that of se-
lecting the next view for the imaging system to take, given some aready acquired views
of the object. Solving the Best Next View problem is a step towards automating the range
data acquisition process.

VariousBest Next View algorithmshave been proposedin theliterature, [1, 5, 6, 7, 10].
According to Tarabanis [8], the approaches used can be divided in the generate and test
and synthesis paradigms. In the generate and test paradigm [1, 5, 6, 10] potentia (gen-
erated) Best Next Views are evaluated (tested) using some sort of optimality function to
decidewhichview isthebest. Inthe synthesisparadigm[1, 7] constraintson the viewpoint
location are used to define volumesof possibleview placements. Our approach [4] follows
the generate and test paradigm. Its view evaluation function is acombination of two view
evaluation criteria. The first criterion, called the visibility criterion, aims at maximising
the amount of unseen surface seen by the next view. Thisisthe main criterion used previ-
ously. Unfortunately, this can lead to surfacesthat are seen at very oblique angles, which
resultsin low quality range measurements. The new quality criterion aims at improving
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| Value | Comment |
Surface Normal | Estimated using Least Squares Fitting
Local Quality Estimate of the quality of the measurement
Region Quality | Estimate of the quality in the region

Table 1: Values associated with Seen voxels.

the quality of the data. Use of this criterion is new, and is the main contribution of this
research.

In this paper, we begin by describing our approach for selecting the Best Next Views,
then we give a brief account of our implementation. Results obtained using our imple-
mentation on a variety of objects are presented which suggest that the combination of the
visibility and quality criteria provides us with data that covers the objects and is of good
quality.

2 Best Next View selection approach

2.1 Volumetric representation

At each cycle of the best next view computation, we use the range data from all previous
views to set up avolumetric representation of the scanned object. This volumetric repre-
sentation is called avoxelmap. Thisisa3D structure made out of voxelswhich essentially
mark whether their area of space is part of the object or not. Each of these voxelsis an
identical cube and the collection of these cubes (the voxelmap) is a parall el epiped.

2.1.1 Possiblevoxel values

The voxel marking scheme is similar, but not identical, to the ones used in [1] and [7].
Each voxel has one of the following values:

Empty. Thevoxel'sarea of spaceisempty.

Seen. The voxel’s area of space contains a range measurement (i.e. it correspondsto a
seen surface). Each Seen voxel also records several values related to the quality of
the range measurement used to mark the voxel (see Table 1).

Unseen. Thevoxel’s area of space has not been seen yet.

OcclusionPlane. Thevoxel’sareaof spacelieson an occlusion plane (see Fig 1). Thisis
essentially an unseen voxel that neighbourswith one or more empty voxels.

2.1.2 Voxemap marking

This voxelmap is constructed following the procedure described by Wren [9]. Some ex-
tensions have been made to make this procedure capable of determining the accuracy of
each Seen measurement as well as finding the Unseen and OcclusionPlane voxels. Given
some aready acquired viewsthe algorithmiis:
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Figure 1: Thetwo different voxel marking ray directions and the occlusion planes.

1. Determine the size and resolution of the voxelmap. Thislooks at the range data, of
the already acquired views, to determineits extent and resolution. Thisinformation
is then used to find how many voxels are needed in each of the 3 dimensions.

2. Create and Initialise voxelmap. Allocates the 3-D voxelmap memory structure and
also marks all the voxels as Empty.

3. Mark Unseenvoxels. Shootsaray from each rangepoint (z,, y,, z,) inthedirection
pointing away from the viewpoint and marks all the voxels encountered on the way
asUnseen (Fig. 1). Thisstep is repeated for each already acquired range image.

4. Mark Empty voxels. Shootsaray from each range point (z,, y,, zp) in thedirection
pointing towards the viewpoint and marks all the voxels encountered on the way as
Empty (Fig. 1)* This step is repeated for each already acquired range image.

5. Mark Seen voxels. Marks all the voxels that contain range measurements as Seen.
Associated with each Seen voxel isavaluethat rel atesto how good the measurement
used to mark that voxel is. This value can be determined by looking at 7. - © where
n isthelocal surface normal of the range data point and ¢ is the viewing direction
(see next section). Thisstep is repeated for each already acquired range image.

6. Mark OcclusionPlane voxels. OcclusionPlane voxels are found by checking each
Unseen voxel to determineif any of its neighbours are Empty. If such an Unseen
voxel isfound it is marked OcclusionPlane (Fig. 1). OcclusionPlane voxelswould
end up being either Empty or Seen if aview that attempts to image them is taken.
Therefore, eliminating OcclusionPlanevoxel sby viewing them al sotendsto increase
the amount of object surfacesimaged.

2.1.3 Quality marking of Seen voxels
The quality of Seen voxels (Table 1) is estimated using the following algorithm.
1. Thenormalsof the current data set are cal culated using aleast square error fitting of

a3 x 3 local surface patch (or smaller at edges) in the neighbourhood of each range
measurement.

2. For each voxel s to be marked Seen:

INotethat in Fig. 1 the rays are parallel because the camera model of our range scanner is orthographic.
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Figure 2: Tessellated sphere, viewpoints and constrained viewpoints.

(@) Thedataset normal is averaged with any existing surface normal estimate.

(b) Thedot product of the normal estimate at voxel s andtheviewingdirectionv is
calculated. If thedot product isgreater than thepreviousl ocal quality estimate,
the dot product becomesthe new local quality estimate quality(s).

3. After the local quality estimates are calculated, the region quality estimate of each
voxel isfound by picking the maximum quality estimateina5 x 5 x 5 neighbour-
hood. If the voxel lies next to the edge of the voxelmap only the neighbours found
are used. Thisstep isnecessary because, dueto inaccuracies, it is possible for asur-
faceto be afew Seen voxelsthick. When thisisthe case thelocal quality estimates
do not reflect the real quality of the surface data.

These steps are repeated for each view taken by the system so far. At the end of this pro-
cess, the Region Quality measure should refl ect the quality of the range measurementscol-
lected for that part of the surface.

2.2 Constrained viewpoints and projection

After the voxelmap is constructed, it is projected to points on a constrained tessellated
sphere representing potential new viewpoints. The tessellated sphere can be generated us-
ing various methods. The method we preferred is that of taking an icosahedron and re-
cursively subdividing it until the required resolution is achieved (see left of Fig. 2). The
resolution can be controlled by selecting the number of recursive subdivision steps to be
applied. This tessallation has the advantage of generating an even distribution of view-
points.

After viewpointson thetessel lated sphere are generated those whi ch cannot be achieved
dueto positioning constraintsareremoved and are effectively not used in thel ater stages of
our process. For example, the centre of Fig. 2 depicts the viewpoint sphere for the icosa
hedron tessellation. On the right of the same figure the constrained viewpoint sphere for
a constraint on the maximum and minimum elevation angle can be found.

The next step is to project the voxelmap to each point on this constrained tessellated
sphere. For projection purposesthe sphereis placed at the centre of possiblerotation of the
object. Each voxel is modeled for projection purposes as a 3-D cube (6-Quads) of differ-
ent colour (seeright of Fig. 5). Black isused for the Occlusi onPlane voxels and different
shades of grey are used for the Seen voxels. The shadesof grey in Seen voxels correspond
to thevarying Region Quality Estimates. Sincethe Empty and Unseen voxelsare not used
in the view evaluation process they are not projected to increase performance. The pro-
jected voxelmaps are used in the viewpoint eval uation (see next section).
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2.3 Viewpoint evaluation

We propose to evaluate the desirability of viewpoints using the weighted sum of the visi-
bility and the quality criteria.

Thevisihility criterion maximisesthe amount of OcclusionPlanevoxelsthat arevisible
from the new viewpoint. This can be implemented by defining afunction fy;sisitity (0) Of
the viewing direction ¢ such that:

Tuisivitity (0) = sizeof(OP NV (0)) (1)

where O P isthe set of OcclusionPlane voxelsin the voxelmap and V () is the set of the
visible voxels? from viewing direction ©.

Thequality criterion maximisesthe amount of low quality voxelsthat arevisible from
the new viewpoint. Thiscriterion can be defined using afunction fquauiy (0) Of the view-
ing direction ¢ such that:

stz (SOV) quality(S[i)) ([ - normal(S[i])

- sizeof(SNV(0)) @

Fquatity (0) =
where S is the set of Seen voxelsin the voxelmap, V (v) is the set of the visible voxels
fromviewing direction o, quality(S[i]) isthe Region Quality Estimate and normal (S[i])
is the surface normal at S[i]. The value of fquaiiry(v) isbound in the region [0,1]. The
quality criterion prefers views that will image areas of low quality vertically (i.e. where
|0 - normal(S[i])| = 1).

Theweighted sum f;,:q: (%) of the two criteria can be then found by:

ftatal (’[)) = Wy fvisibility (’[)) + wq fquality (’[)) (3)

Both criteria should be applied to each viewing direction ¢ in the constrained tessel-
lated spherefor the partially acquired voxel representation. The directionfor which £,
is maximal should then be selected to be our Best Next View.

To apply these criteria © becomes a point on the tessellated sphere. To determine
sizeof(OP N V(0)) the volumetric representation is projected to each v of the tes-
sellated sphere and the number of unseen empty voxels visible is counted. The Seen
voxels in this projection are also observed to determine sizeof(S N V(v)) as well as

Z'?j:e"f(smv(ﬁ)) (1 — quality(S[i])).

=1

24 Summary of our approach

To sum up, our approach uses avolumetric representation for representing the object. The
voxelsin the volumetric representation are marked as Empty, Seen, Unseen or Occlusion-
Plane. A tessellated sphere isfitted over the volumetric representation. Then constraints
are applied on the tessellated sphere to account for scanner/object positioning limits. All
points on the constrained tessellated sphere correspond to possible viewing directions.

The volumetric representation is projected to every direction in the constrained tessel-
lated sphere and the selection criteria are applied for each view direction.

The criterion application works as follows:

2visible voxels = voxels that are visible after a projection in direction .
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Shifting Imaging Surface

Figure 3: Diagram of the laser range scanner setup with one rotational and one tranda-
tional degree of freedom, both aligned with the X-axis.

1. Thecriteriaof Equation (3) are applied to determinethe desirability of theeach view.
2. Thedirection that has the highest aggregate scoreis selected.

After the Best Next View is selected, it is used to take the new range image of the object.
The old and the new range images are used to rebuild the volumetric representation and
the modified volumetric representation is used to select the new Best Next View.

3 Implementation

Thisapproach wasimplemented in C/C++, using OpenGL to performthe projections. Our
implementation used the range scanner available at the Machine Vision Unit to collect the
views (Fig. 3). The laser scanner utilises two cameras to collect the images. Using op-
tical lenses, a laser produces a planar beam that intersects the object being modeled thus
creating a thin bright line on the surface of the object. The object is placed on a metal
base with onerotational degree of freedomwhichinturnis placed on theimaging surface.
This surfaces moves in discrete steps along a very accurate conveyor belt that is driven
by a stepper motor. Points along the line of intersection of the laser plane and the object
are used to collect range data by means of triangulation. Each camera collects a separate
rangeimage of the object. These two rangeimages are then fused [2] into amore accurate
rangeimage. The Best Next Views planned correspond to rotations of the object position-
ing base. So, for the base currently being used, the constrained viewpointslie on acircle
rather than on a sphere.

4 Resaults

Fourteen parts were used to evaluate our Best Next View planning procedure (Fig. 4).
The parts used varied in terms of material, shininess and curvature. The testing process
started from simple parts and progressed to more complicated ones. The size of the parts
that could be used was limited by the size of the rotating base and by the range sensor
measurement bounds. The largest part’s dimensionswere 5 x 10 x 7cm3.
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Figure 4: The 14 parts our procedure has been evaluated on.

Data was gathered with the part attached to the base. The base rotation angles were
measured anti-clockwise looking down the imaging surface motion direction vector (i.e.
down the x-axisin Fig. 3). Thefirst view was always taken with the base set at 90° (i.e.
with the base being horisontal).

Thisfirst view was used to build avoxelmap. The Best Next View determination pro-
cess then assessed the current voxelmap every 10° of possible base rotation to determine
the second view direction and then the base was set to the new angle. So effectively only
views on acircular arc were used in our experiments. Note however this was due to the
type of positioning base available and isnot alimitation of our algorithm. Theviewsfrom
the starting and new angle were then merged to build the new voxelmap and the same pro-
cedure was repeated until the Best Next View planning program requested the base to be
set to an angle that had already been tried. The process then stopped since no new infor-
mation could be derived from obtaining an already acquired view (except possibly some
noise reduction from image averaging).

For most parts 3-4 views were enough and some parts needed up to 5 views. The av-
erage number of views used over al the parts was approximately 3.79. Selecting the Best
Next View for our base takes 23.5 seconds on a SPARCstation Ultra 1. This means that
the total sensor planning cost for most partsis 3.79 x 23.5 ~ 89 seconds. Taking one
view with our range scanner requires approximately 120 seconds, and this figure accounts
the time used to set the base to the correct angle. Therefore, the total view taking cost is
3.79x 120 = 454 seconds. So, thethe sensor planning costisone ]g that of theview taking
cost, making our approach highly feasible in terms of speed.

Our results demonstrate that a correct voxelmap is constructed for avariety of objects
with various properties. More importantly, the combination of the quality and visibility
criteriasel ectsviewsthat span convex, concave and curved objects. Dueto sizelimitations
here, we will only discussin greater detail the results obtained for the double-wedge part,
which isthe most suitable for demonstrating the quality criterion.

The double-wedge part and its generated voxelmap can be found in Fig. 5. In this
voxelmap, the Seen voxelsare grey while the OcclusionPlane voxelsare black. Some Oc-
clusionPlane voxelsremain on the sides of the object. Note also thelighter gray areas(e.g.
the one pointed by one of the arrows) correspond to Seen voxel s of low Region Quality
estimates.

In order for the sensor to see the remaining OcclusionPlane voxels, on the sides of the
voxelmap, it is necessary to rotate the object around adifferent axis, which is not possible
with our base. However all other areas have been imaged. This shows that the visibility
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Figure 5: Double-wedge part and resulting voxelmap.

criterion worked. We can also see that there are very few voxels of low quality remaining.
Thisimpliesthat the quality criterion also performed its task.

In Fig. 6 we give plots of the visibility (a) and quality (b) criteria as well as their
weighted sum (c) for the double-wedgepart. Inthese plotsthevertical axismarksthevalue
of the criterion for different possible best next angles (0-180). The criteria values are ob-
tained after each selected view is acquired (axis pointing out). Since we always start from
an angle of 90° the first evaluation occurs after the 90° view.

The weights used in eguation 3 for the experiments were w, = 1 and w, =
mazimum( fisiviity) fOr wg. Thejudtification of this choiceis that we wanted to scale
thevery low ([0,1]) valuesfor the quality criterion and make them comparable with those
of the visibility criterion. So for the double-wedge part it was that w, = 10000.

The object isfirst viewed from an angle of 90°, and after this view the visibility crite-
rion valuefor the 90° view islow. Thisisbecausethere are no OcclusionPlane voxels|eft
to be seen from this view. However, high visibility criterion values are obtained for views
that recommend that the part be observed at 0° and 180°. After the object is viewed from
0° (the next view selected), the visihility criterion values become low at 0°, which means
that this side of the part has al so been seen. The next view selected is the onethat setsthe
base at 180° and after this view the visibility criterion values also become low for 180°.
There is now a much smaller peak at the weighted sum at 50°. This peak is caused by
the quality criterion. The quality criterion wants to improve the quality of the data on the
slope of the part whichisat 45° to the horisontal. Thelast view from 130° isalso selected
because of the quality criterion now wants to improve the quality of the 135° slope.

What can be seen from the sum graph is that the quality criterion is driving the Best
Next View selection procedureafter most OcclusionPlanevoxelsare seen and thevisibility
criterion values becomevery low. Thisessentially meansthat we havea 2 step acquisition
process that first tries to capture as much data as possible and then tries to improve the
already acquired data. Thiswas one of the improvements for Best Next View processes
suggested in [3].

5 Conclusions and Further Work

In this paper we used a volumetric representation to select Best Next Views for building
3D models of objects. The main novelty of the paper is to incorporate estimates of the
quality of the range measurementsinto the volumetric representation. Thisrepresentation
isevaluated from viewpointslying on aconstrained tessellated sphereusing avisibility and
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Figure 6: Criteriaplotsfor the double-wedgepart. a) Thevisihility criterion b) the quality
criterion and c) the combined criteria. The horizontal axis is the angular viewpoint, the
depth axisis the view number (back isfirst view, front is most recent view) and vertical
axisisthe criterion score.

aquality criterion. Our resultsdemonstratethat this approach generatesagood acquisition
plan for a variety of parts. Our voxelmap marking scheme can use the Region Quality
Estimate to find areas of low quality. Projected voxelmap images demonstrate that the
quality marking of the voxelmap building procedure also works well. In fact, our results
suggest it might be possible to remove some of the erroneous measurements caused by
specular reflection, by removing low quality voxels.

To sum up:

e The approach works for our combination of positioning mechanism and sensor.
The voxelmap constructed is correct and adequately accurate for the task at hand.
The combination of the quality and visibility criterion is effective.

The procedureis efficient in terms of time.

¢ |tistheonly Best Next View procedurethat uses a quality criterion.

Further tests can be done in evaluating views for a part positioning mechanism with
more degrees of freedom. Inthis caseit will be necessary to project viewsto afull sphere
rather than a circular strip. Furthermore, in this paper we have analysed the performance
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of the approach in terms of the quality of the generated voxel map. However, the voxelmap
is not intented to be the final 3D representation of the object and it is only constructed so
that the Best Next Views can be planned. More tests can be performed to check whether
the 3D CAD models generated using the views selected are correct. Finaly, the scheme
introduced here improves the quality of previously measured voxels. One could also in-
vestigate a scheme that attempts to avoid taking voxelswith low quality.

6
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