
J. Symbolic Computation (1999) 11, 1{000
Proof Planning Methods as SchemasJulian Richardson & Alan Bundy(Received 15 September 1998)A major problem in automated theorem proving is search control. Fully expandedproofs are generally built from a large number of relatively low-level inference steps,with the result that searching the space of possible proofs at this level is very expensive.Proof planning is a technique by which common proof techniques are encoded asschemas, which we callmethods. Proofs built using methods tend to be short, because themethods encode relatively long sequences of inference steps, and to be understandable,because the user can recognise the mathematical techniques being applied. Proof criticsexploit the high-level nature of proof plans to patch failed proof attempts.A mapping from proof planning methods and proof construction tactics provides alink between the proof planning meta-level and fully expansive (object-level) proofs.Extensive experiments with proof planning reveal that a knowledge-based approachto automating proof construction works, and has useful properties.

1. IntroductionA major problem in automated theorem proving is search control. When automaticallyconstructing a formal proof, there are typically many inference rules which can be appliedat any given point during the proof, and proofs are normally quite deep. The searchspace of possible proof attempts is therefore very large. The techniques described in thispaper give us the tools to tackle the search problem e�ectively by building a proof inan abstraction of the proof search space, providing powerful techniques such as rippling(x4.5) and facilitating the encoding of heuristics.Proof planning (Bundy, 1991) can reduce the size of the proof search space because thesteps (methods) from which a proof plan is constructed are larger than those from whichthe object level proof is constructed, and because formulae are annotated to provideguidance for the theorem proving process. The methods encode proof construction heur-istics.Common patterns in proofs are identi�ed (by humans) and represented (by humans)as proof schemas, called methods, consisting of an input pattern, an output pattern, andapplicability conditions. Applying a proof schema to a goal (initially, the conjecture tobe proved) results in a number of subgoals. Further proof schemas may then be appliedto these subgoals.A proof plan for a conjecture consists of a sequence of proof schema applications whichreduces a conjecture to trivial subgoals. Once a proof plan has been found, it is used toguide the construction of a complete formal proof for the conjecture.Proof planning was �rst implemented in the Oyster/Clam system (Bundy et al., 1990)0747{7171/90/000000 + 00 $03.00/0 c
 1999 Academic Press Limited

2 Julian Richardson & Alan Bundyat Edinburgh. Newer implementations are the
mega system (Benzm�uller et al., 1997)at Saarbr�ucken, and �Clam (Richardson et al., 1998) in Edinburgh.Extensive experiments with proof planning reveal that a schema-based approach toautomating proof construction works, and has useful properties. As opposed to moreuniform proof construction techniques such as rewriting, or resolution, proof planningcan generate proofs at a level of abstraction which facilitates human understanding,and can exploit failure productively. Standard patterns of proof failure and appropriatepatches to the failed proofs attempts are represented as critics, which can intervene torescue a failed proof attempt.Of particular interest for our purposes is the proof strategy for induction, which isconsidered to be a vital mathematical technique which is hard to automate. Inductionis very useful for reasoning about programs because induction in proofs correspondsto recursion in programs. The rippling strategy is very e�ective for planning inductiveproofs, often eliminating search entirely.The plan of the paper is as follows: we review (x2) the rôle of schemas in proof planning,before (x3) de�ning what proof plans are and how they are constructed. The most well-developed proof plan that we currently have is the proof plan for induction, which wedescribe in detail in x4. We describe here the important techniques (use of which isby no means restricted to inductive proofs) of rippling and middle-out reasoning. Theconstraints imposed on proof search by proof planning can be exploited to overcomefailing proof attempts. Proof planning critics (x5.1) are able to automatically analysefailed proofs to perform tasks such as lemma speculation. Proof planning also helpsusers to understand and patch failing proofs, leading to the possibility of cooperativetheorem proving (x6). We brie
y discuss proof planning semantics (x7), the relationshipof proof planning to schema-guided synthesis (x8), and existing implementations (x9),before outlining current applications of proof planning (x10). Finally, we address somequestions commonly asked about proof planning (x11) before concluding in x12.2. Encoding mathematical techniques as schemasAny formal proof can eventually be reduced to a sequence of applications of the rules ofinference of the logic and the theory in which the proof is taking place. Traditional auto-mated theorem proving techniques generally concentrate on representing the mathemat-ical domain theory | as axioms, inference rules, de�nitions | and general strategies formanaging the proof search space, for example the resolution strategies LUSH (Hill, 1974),SLD (Kowalski and Kuehner, 1971). They therefore address only the most basic kind ofmathematical knowledge. For human mathematicians, however, techniques for provingtheorems are very important. These techniques are sometimes general, for example proofby mathematical induction, and sometimes domain-speci�c, for example computing aGrobner basis.The central principle of proof planning is that mathematical techniques can be e�ect-ively encoded as schemas, which we call methods. Reasoning using these mathematicaltechniques helps to limit the size of the proof search space, to make the resulting proofscomprehensible to humans, and aids the productive use of failure.A method is a schema in the traditional sense, augmented with certain interestingfeatures. The basis of the schema is a triple P c=) Q. Schemas are applied to thesequents H ` G which occur during a proof attempt. A schema is applicable if thepattern P matches the input sequent, H ` G, with substitution �, and the instantiated

Proof Planning Methods as Schemas 3
Methods

Tactics

proof rules
Object-level proofObject-level logic

Object-level

Meta-level

Plan formation

Describe tactic
interface

Composition

Guarantee
of correctness

Proof plan = methods + methodicals

Composition of tactics = tactics + tacticals

method -> tactic and
methodical -> tactical mappings

Figure 1. Reasoning at the meta-level (above the dashed line) is heuristic and need not be sound.Reasoning at the object-level (below the dashed line) is formal and sound. Proof planning links the twolevels in order to achieve reasoning which is heuristic, high-level, and with controlled search, whileretaining the security of an object-level in which proof is totally rigorous.conditions c� are satis�ed. This results in a new substitution, �, which is applied to theoutput pattern, giving a list of new subgoalsQ�. The original goal is now proved providedthat its subgoals Q� can be proved. These new subgoals are, therefore, submitted to theproof process, which recurses.Rather than constructing a complete formal proof immediately, proof schemas apply toand result in formulae which are abstractions of formulae in the formal proof system, al-lowing some unnecessary details of the formal proof to be suppressed. These abstractedformulae may additionally be marked with annotations which help to guide the con-struction of the proof plan. We call the formal proof system the object-level logic, andthe abstracted and annotated proof system the meta-level logic.By encoding mathematical techniques as proof schemas, proof planning can providea high-level view of the proof, illustrated in �gure 1. Nodes in the diagram representoperators for constructing parts of proofs at either the heuristic meta-level or the rigorousobject-level. Arrows represent mappings on these operators.In section 3 below, we present the mechanisms of proof planning in detail. It is, however,appropriate to consider here some questions which we should ask of any kind of schema.Namely:1 What is the schema language, i.e. in what language are the patterns and conditionsexpressed?2 In what sense do the schemas encode knowledge?

4 Julian Richardson & Alan Bundy2.1. Schema languageThe pattern language is an abstraction of the object-level logic which may contain pat-tern variables, which we call meta-variables. The order (�rst-order, second-order, third-order, ...) of these variables depends on the proof planning implementation used. In theClam proof planner, meta-variables are �rst-order Prolog variables, and �rst-order uni-�cation is used to matchy patterns with input sequents. In this �rst-order case, therefore,the pattern language is rather restricted, which tends to shift the burden of restrictingthe applicability of a schema to the checking of the conditions c. Consequently, in manyClam methods, the input pattern is a term H ` G, which matches any input sequent.By contrast, the �Clam proof planner has a pattern language which is based on �Prolog.Patterns may therefore contain higher-order meta-variables. A higher-order uni�cationalgorithm (Huet, 1975) is used to match patterns with input sequents. This allows consid-erably more powerful patterns, and consequently methods in �Clam are more declarativethan in Clam, and the conditions c play a lesser role in determining the applicability ofmethods.In both Clam and �Clam , the conditions c are pieces of (Prolog and �Prolog re-spectively) code, which employ a prede�ned set of predicates, the meta-language, as wellas arbitrary user-de�ned predicates. Section 3.5 below shows an example of a �Clammethod. The input pattern restricts the method to applying to equalities, and the con-ditions specify that the two sides of the equality must each contain a common subterm,which can be generalised.2.2. How do schemas encode mathematical techniques?Methods can encode relatively small chunks of mathematical knowledge. For example,the generalisation method mentioned above encodes fairly minimal requirements for ageneralisation to exist. By contrast, the induction method (see below) is quite sophist-icated, restricted to apply only when mathematical induction applies, and when rewriterules exist in the domain theory which can make some progress with the subsequentproof. This �lters out applications of induction which are unlikely to succeed.More generally, mathematical techniques are encoded as ordered collections of methods,which we call proof plans.y For example, the proof plan for induction consists of a methodfor applying (promising) inductions, a method for rewriting goals which occur in theinduction step case in such a way that the proof is guided towards completion, a methodfor proving induction base cases using rewriting, and the generalisation method, whichis important in many inductive proofs.There is very little restriction on the kind of mathematical techniques which can beencoded as proof plans, since methods are not limited to syntactic patterns (they maycontain arbitrary applicability conditions), and the meta-level logic need not be the sameas the object-level logic.y Since we also allow input sequents to contain meta-variables, it really is uni�cation, not matching.See x4.8 below for more details.y The term \proof plan" is therefore used for both the collection of methods used when proof plan-ning a conjecture, and the object which results from this proof planning process. This overloading ofterminology rarely causes confusion.

Proof Planning Methods as Schemas 53. De�nitionsIn this section, we de�ne what we mean by proof planning, and how it is implemented.We start by de�ning what we mean by an \object-level proof". We then de�ne themeta-level, and the correspondence between the meta-level and object-level. We givesimple examples of a proof plan (x3.7) and of the methods from which proof plans areconstructed (x3.5). 3.1. Object-level logicFor the purposes of this paper, we only consider proofs which are:1 sequent style, i.e. formed by applying proof rules H1`G1; ::: Hn`GnH`G rulename, and2 goal-directed, i.e. starting with the conjecture to be proved and applying the infer-ence rules from top to bottom to generate subgoals.Proof rules generally contain schematic variables which must be instantiated whenapplying the rules in a proof. A proof rule H1`G1; ::: Hn`GnH`G rulename is applied to asequent h ` g by matching h ` g with H ` G, i.e. �nding a substitution � on theschematic variables in H ` G such that h ` g = (H ` G)�, and instantiating theschematic variables in the Hi ` Gi. The result is a node in the proof tree with labelhh ` g; rulenamei, and n children, the subgoals h(Hi ` Gi)�; openi. Note that � mustinstantiate all the schematic variables in the Hi ` Gi.Definition 3.1. A partial proof of a conjecture is a tree with the following properties:1 Each node is labelled with a sequent and the rule of inference whichis applied to that sequent to produce the node's children.2 The conjecture is the sequent at the root of the tree.3 If the application of a rule of inference generates no subgoals, thenthe leaf at which it is applied is labelled as complete.4 If no rule of inference is speci�ed for a leaf, then the subgoal at thatnode is open.Definition 3.2. A proof is a partial proof with no open subgoals.Restricting our attention to goal-directed (backwards) sequent proofs is merely for con-venience. Although both Clam and �Clam use this style of inference,
mega (Benzm�ulleret al., 1997) can apply both forward and backwards inference, and generates natural de-duction proofs. 3.2. TacticsA tactic (Gordon et al., 1979) is a procedure which constructs a piece of object-levelproof. The tactic is de�ned as a composition of primitive rules of inference. For example,a tactic may strip all universal quanti�ers from the front of a goal and then apply alemma. When a tactic is applied to a goal in the proof, one branch is created for eachsubgoal which has not been proved by the tactic, and the node is labeled with the tactic,

6 Julian Richardson & Alan Bundynot with the individual proof rules the tactic applied. We consider tactics to be derivedrules of inference, and therefore allow tactic as well as primitive rules of inference inde�nitions 3.1, 3.2 above.As in LCF, a tactic language is de�ned which provides tacticals, for composing tactics.3.3. Meta-level logicDefinition 3.3. A meta-level sequent is an abstraction of an object level sequentwhich may be annotated to help guide subsequent proof (e.g. the wave fronts in ripplingx4.5), contain meta-variables (i.e. existentially quanti�ed variables of the programminglanguage in which the planner is written, x4.8), and may have some hypotheses added ordeleted.In contrast to object-level sequents, meta-level sequents can contain schematic vari-ables. We call schematic variables which occur in a proof meta-level variables. They havean important rôle in middle-out reasoning (x4.8).3.4. MethodsWhere tactics construct pieces of object-level proof, methods construct pieces of meta-level proof, i.e. schematic proofs. Methods consist of several slots:Input The input pattern to which the tactic applies.Preconditions Conditions which must hold for the method to apply.Postconditions Conditions which must hold after the method has beenapplied.Outputs Subgoals generated. A list of output patterns.Tactic The name and arguments (if any) of the tactic which con-structs the piece of the object-level proof correspondingto this method.An essential part of the proof planning methodology is that there be a 1-1 mapping frommethods to tactics. There must also be operators, methodicals for composing methods inthe same way that tacticals compose tactics. In the Clam implementation, the mappingfrom methods to tactics is provided by the presence of a tactic slot in each methodde�nition. There is also a 1-1 mapping from methodicals to tacticals.When attempting to apply a method to a meta-level sequent, �rst the sequent is uni�edwith the input slot. If this succeeds, the preconditions are evaluated. If they succeed, thepostconditions are evaluated, leading to instantiation of the output slot. The methodfails unless each of these steps succeeds. In Clam, pre- and post-conditions are piecesof Prolog code utilising a set of predicates, called the meta-language, for accessing andmanipulating meta-level sequents.

Proof Planning Methods as Schemas 7A method's preconditions determine the context in which the method will apply. Thesame object-level tactic may be represented by several methods, each operating in dif-ferent circumstances. This allows us to distinguish situations in which it is desirable toapply a tactic from those in which it is possible. It also has explanational value, sinceapplying the tactic in di�erent circumstances may have a di�erent intuitive meaning,for example the rewriting tactic is used during rippling, symbolic evaluation, and weakfertilisation, methods which have clearly distinguished rôles in the proof process.The terminology for describing object level proofs can be abstracted to the meta-level.Definition 3.4. A partial proof plan of a speci�cation is a tree with the followingproperties: 1 Each node is labelled with a meta-level sequent and a method whichis applied to that sequent to produce the node's children.2 The speci�cation is the sequent at the root of the tree.3 If a method application generates no subgoals, then the leaf at whichit is applied is labelled as complete.4 If no method is speci�ed for a leaf, then the subgoal at that node isopen.Definition 3.5. A proof plan is a partial proof plan with no open subgoals.Definition 3.6. Proof planning is a technique for automatic proof construction whichhas the following properties:1 AI planning techniques (for example depth-�rst planning, iterative deepening, best-�rst planning (Manning et al., 1993), island planning (Melis, 1996a)) are used toform a plan for how to prove the conjecture.2 The plan operators, called methods, have corresponding tactics which constructpieces of object-level proof. Plans generally consist of methods combined using meth-odicals.3 The proof for a conjecture is produced by composing the tactics which correspond tothe methods in the proof plan for the conjecture, using the tacticals which correspondto the methodicals in the proof plan. The resulting compound tactic is then executedto obtain an object-level proof.3.5. An example methodWe see below an example method de�nition (from �Clam | �Clam 's higher-ordermeta-level logic allows quite declarative de�nitions of many methods). The de�nitionpresented below is identical to the de�nition in �Clam 's method library except for thefollowing modi�cations, which are made for presentations reasons:1 Some syntax has been uniformly replaced by standard mathematical symbols, e.g.8v :Type:P instead of forall Type (x\ P).2 The de�nition in �Clam 's method library uses an auxiliary meta-level predicatewhich has two clauses, each of which performs a di�erent kind of generalisation.

8 Julian Richardson & Alan BundyThe de�nition we show below is the result of unfolding the method de�nition usingthe �rst of these clauses.It is not necessary to understand the method de�nition in detail, but only to note thatlike any schema, its applicability is de�ned by both the syntactic constraints imposedby its input and output patterns, and by the semantic preconditions and postconditions(here empty).method generalise % method name(H ` A = B) % input pattern(A = (NewA T), %B = (NewB T), %not (NewA = �x AA), % Preconditionsnot (NewB = �x BB), %compound T, %env otype (env otype wr T) H Type) %() % Postconditions(H ` 8v :Type (NewA v) = (NewB v)) % Output pattern(generalised T). % tactic3.6. Construction of the planIn this section we will demonstrate how methods work by describing how Clam con-structs a proof plan. Details of proof plan construction may di�er considerably betweendi�erent planners.The planner, Clam (Bundy et al., 1991), constructs a proof plan by linking togethermethods. A completed plan has a tree structure. See x3.7 for a simple proof plan.Initially, the list of open subgoals is the singleton consisting of the proposition tobe proved. For each remaining open subgoal, Clam tries to apply the methods in theorder they appear in the method database. When a method succeeds, its output slot isinstantiated to a list of subgoals. A node is created in the proof plan which is labelledwith this method. If the output list is empty, this branch of the proof plan is complete,and the node is a leaf of the proof plan. If the list is non-empty, it is merged with theagenda of open subgoals. Children of this node are created for each of the new subgoals.The planner is called recursively with the new agenda of open subgoals. Appropriatemanagement of the agenda of open subgoals yields depth-�rst, breadth-�rst, iterativedeepening, or best-�rst planning strategies, all of which are implemented in Clam.A proof plan is successfully constructed when there are no remaining open subgoals.If no methods are applicable to a sequent, then the method which generated it fails.Clam then backtracks, �rst trying to satisfy the method in other ways (for example, theinduction method may apply alternative induction schemes upon backtracking), thentrying to apply other methods.A procedure for constructing the object level proof is formed by replacing each methodin the tree with its associated tactic.Applying a method at the meta-level is usually signi�cantly faster than applying thecorresponding tactic at the object-level for several reasons. Some details of the proof

Proof Planning Methods as Schemas 9can be suppressed. In particular, subgoals which we expect to be proved by a tacticwherever they arise can be omitted from the proof plan. For example, in Clam/Oyster ,well-typedness goals which must be proved at the object level are suppressed at themeta-level since they can usually be proved automatically by the wfftacs tactic. It isnot necessary to build the proof tree until execution of the �nal proof plan, so appropri-ate data structures can be used during proof planning. In Oyster , building the proof treeis quite expensive. For example, as reported in (Bundy et al., 1991), a proof plan of theassociativity of multiplication which was produced by Clam contained 17 method applic-ations, while the corresponding Oyster proof expanded to 665 applications of inferencerules.The modular structure of proof strategies | methods and their order in the methoddatabase, available lemmas, and the proof planner used (depth-�rst, breadth-�rst, best-�rst or iterative deepening) | facilitates experimentation with di�erent heuristics forguiding the proof process. 3.7. An example proof planFor example, consider the following simple conjecture (the associativity of addition):8x; y; z : x+ (y + z) = (x+ y) + zBelow is the proof plan generated automatically by Clam:induction([s(v0)],[x:nat]) then[base_case([sym_eval(...),elementary(...)]),step_case(ripple(...)then[fertilize(strong,v1)])]The proof plan expresses that the conjecture was proved using structural inductionon x,y producing two subgoals. The �rst (the base case) was proved by the base casemethod, using symbolic evaluation (rewriting) and tautology checking. The second (thestep case) was proved by the step case method, using rippling (x4.5) and strong fertil-isation (x4.5). Sometimes the arguments of a method are replaced in the printed repres-entation by ellipsis in order to avoid obscuring the important steps of the proof in toomuch detail. The symbols v0 and v1 refer to new variables which are introduced whenthe object-level proof is carried out.Figure 2 depicts the proof tree for a simple synthesis proof. The dotted boxes indicatethe parts of the proof tree which correspond to individual method applications. Theycontain primitive rules of inference of the object-level logic, and a few tactics, includingwfftacs, which is a tactic for proving well-formedness goals in Oyster .4. Proof plans for induction4.1. IntroductionProof by induction is an important mathematical technique, and is particularly ofvalue when reasoning about programs, because of the correspondence between inductiony The �rst argument of the induction method speci�es the chosen induction scheme, and the secondargument the name of the induction variable.

10 Julian Richardson & Alan Bundy

wfftacs

subst(btop(v1)=v3)

elim(v2)

thin(v5)

lemma(btop2)

elim(btop2,on(v1))

wfftacs

thin(v5)

wfftacs

subst(btop(v0::v1)=val(v0)+(btop(v1)+btop(v1)))

wfftacs

subst(btop(v1)=v3)

wfftacs

intro(val(v0)+(v3+v3))

wfftacs equality

induction

elim(v2)

thin(v5)

elim(x)

intro

wfftacsintro(btop(nil))

wfftacs wfftacs equality

wfftacs

elim_existential
elementary

existential_subterm

ripple

fertilize(weak)fertilize(weak)

elim_existential

existential_subterm

elementaryFigure 2. The proof generated for a simple synthesis theorem. Dotted boxes indicate the parts of theproof tree which correspond to individual method applications.in proofs and recursion in programs. A number of heuristics have been implemented inClam to automate proof by induction.We describe the proof plan for induction in detail here because it is a mature proofplan and provides a good example of how:1 enriching the meta-level logic with annotations can provide guidance to the proofconstruction process (x4.5),2 a formal de�nition of the meta-level logic can allow us to determine useful propertiesof the proof construction process (Basin and Walsh, 1996), and3 a proof plan consists of a collection of proof planning methods.The proof strategy for induction is described in the following subsections. One ofits cornerstones is the rippling strategy (x4.5), which greatly reduces search when termrewriting. Rippling has also been successfully applied in equational reasoning (Hutter,1997) and in other domains (x10).4.2. The form of constructor inductionClam has been used extensively to mechanise proofs by induction. As an example,consider structural induction over the natural numbers:

Proof Planning Methods as Schemas 11Base case Step caseP (0) P (n) ` P (s(n))8nP (n) (4.1)When this rule of inference is applied, it generates two subgoals: a base case to provethat the proposition is true for zero, and a step case to prove that the proposition is truefor s(n) if it is true for n.Other induction principles are also available, e.g. hd :: tl structural induction on lists,or s(s(x)) two-step induction on natural numbers. In all the cases we shall consider, thedi�erence between the induction conclusion and the induction hypothesis is the presenceof constructor functions in the former. This is constructor induction. The converse case,destructor induction, has also been automated (Hutter, 1997).The proof strategy for induction proceeds in the step case by trying to rewrite theinduction conclusion until it matches the induction hypothesis. The following sectionsdescribe how this rewriting process is guided.4.3. Wave termsThe de�nitions in sections 4.4 and 4.5 are taken from (Basin and Walsh, 1996). Theyprovide us with the necessary language for annotating rewrite rules and terms to ensurethat rewriting a term preserves some parts of the term while it may change others. Thislanguage is implemented in the meta-logic of Clam.Definition 4.1. A wave front is a term with at least one distinguished proper subterm.It is represented by marking a term with annotations, where wave fronts are enclosed inboxes and the distinguished subterms, called wave holes, are underlined.Definition 4.2. A wave term is an annotated term which contains wave fronts.These are wave terms: f(x) ; h(g(x; x)); s(s(x + y)) .These are not wave terms: f(x) (no wave hole), f() (wave front empty), f(x) (nowave front), f(x) (wave hole not a proper subterm).Definition 4.3. The parts of a term which are not in a wave front are called the skel-eton. Formally, the skeleton is a non-empty set of terms de�ned as follows:1 skeleton(t) = ftg for t a constant or variable.2 skeleton(f(t1; :::; tn)) = ff(s1; :::; sn)j8i : si 2 skeleton(ti)g.3 skeleton(f(t1; :::; tn)) = skeleton(t1) [::: [skeleton(tn) for the tiin wave holes.Definition 4.4. The erasure of an annotated term is the term with its annotationsremoved. Formally:

12 Julian Richardson & Alan Bundy1 erasure(t) = t for t a constant or variable.2 erasure(f(t1; :::; tn)) = f(erasure(t1); :::; erasure(tn)).3 erasure(f(t1; :::; tn)) = f(erasure(t1); :::; erasure(tn)).For example, the erasure and skeleton of p(s(n)) are p(s(n)) and fp(n)g respectively.4.4. Wave rulesRewrite rules are stored in the external library as theorems with associated proofs.They are annotated using the same notation as wave terms. Annotated rewrite rules arecalled wave rules. A wave rule is written L) R, and may only be applied in the speci�eddirection.In order to ensure that wave rule application terminates, a measure on annotated termsis de�ned, � : annotated term! N . Wave rules must decrease this measure. Terminationof rippling is proved in (Basin and Walsh, 1996).Definition 4.5. A wave rule is an annotated rewrite rule L) R such that:y1 erasure(L) = erasure(R) is a proved theorem,2 skeleton(L) � skeleton(R),3 �(L) > �(R), i.e. the rewrite is measure-decreasing.Definition 4.6. (Wave rule application) A wave rule L) R may be applied to anannotated term T to yield an annotated term T 0 if:1 S is a subterm of T ,2 there is a substitution � such that:(a) erasure(S)� = erasure(L)�,(b) skeleton(S)� = skeleton(L)�,(c) T 0 = T [R=S]�.4.5. Rippling and the proof strategy for inductionWhen the induction method applies (e.g. using induction schema 4.1), the step caseis annotated to indicate the di�erences between the induction hypothesis (P (n) in 4.1)and the induction conclusion (P (s(n)) in 4.1). These di�erences are usually nested deepwithin the term structure of P .Rippling | the successive application of wave rules | moves the di�erences closer andcloser to the root of the term structure. Wave rules are skeleton-preserving, so during any In general, the theorem need not be an equality. We also allow implication erasure(R) !erasure(L). Note the direction of implication is the opposite to the direction of rewriting because Clamis a goal-directed (backward-chaining) system.

Proof Planning Methods as Schemas 13inductive proof, the skeleton of the induction conclusion is always equal to the inductionhypothesis. Eventually, either rippling becomes stuck, or the induction hypothesis canbe used in a process called fertilisation, which is divided into two kinds:z1 Strong fertilisation: the induction conclusion has been rippled until it is a copyof the induction hypothesis (when all the wave fronts will have been rippled tothe root), which can then be used to prove the induction conclusion immediately,completing this branch of the proof.2 Weak fertilisation: The induction hypothesis is an equality L = Ry, and the induc-tion conclusion contains a subterm which is a copy of either L or R. The inductionhypothesis is then used as a rewrite rule, replacing L with R in the goal or viceversa.Either way, rippling terminates when there are no meta-variables in the meta-levelgoals. In order to achieve termination we insist that wave rules not only preserve theskeleton, but also move the wave fronts out.The proof strategy for induction is outlined in �gure 3. It consists of application ofinduction/2, followed by application of base case in the base cases and step case inthe step cases. Rippling is implemented in Clam by the ripple/1 submethod,z which isapplied as part of step case. The base case/1 and step case methods may leave somesubgoals which require further planning to prove. For example there may be applicationsof base case/1 or induction in the step case of the induction.
base_case

fertiliseunblockrippleelementarysym_eval

induction

step_case

Figure 3. The proof strategy for induction. Dotted lines indicate that the method at the top of thedotted line may apply the submethods at the bottom of the dotted line.A nontrivial example of the use of rippling is in the proof of the following conjecture:z The Clam implementation of fertilisation is more sophisticated than this. We simplify for present-ational reasons.y More generally, weak fertilisation can be used as long as the main connective is transitive. If theconnective is not symmetric, then some care must be taken over the direction of rewriting.z In Clam, there is a hierarchy with two levels, methods and submethods. Submethods can only beapplied during a plan if they are explicitly called by a method (or submethod).

14 Julian Richardson & Alan Bundy8l; x : list(int):rev(rev(l) <> x) = rev(x) <> lThe domain theory given to Clam for this example consists of de�ning equations (4.2,4.3) for <> and rev (4.4, 4.5).nil <> L) L (4.2)H :: T " <> L) H :: (T <> L) " (4.3)rev(nil)) nil (4.4)rev(H :: T ")) rev(T) <> (H :: nil) " (4.5)Applying induction on l : list(int), we get the step case:8x : list(int):rev(rev(l) <> x) = rev(x) <> l (induction hypothesis)` 8x : list(int):rev(rev(h :: l ") <> x) = rev(x) <> h :: l " (induction conclusion)This can be rippled using wave rule (4.5) to give (4.6):8x : list(int):rev(rev(l) <> x) = rev(x) <> l (4.6)` 8x : list(int):rev(rev(l) <> (h :: nil) " <> x) = rev(x) <> h :: l "The proof is now stuck, since we cannot perform any further outwards ripples. In thefollowing sections, we will describe further rippling techniques which can complete theproof. 4.6. Ripple analysisIn a given formula, it may be possible to apply induction in several di�erent ways,and one must choose between di�erent induction schemes and induction variables. As anexample, consider the goal:` 8x; y : nat : x+ (y + y) = (x + y) + y (4.7)Possibilities include single or two-step induction on x, single or two-step induction ony, simultaneous single step induction on x and y, three-step induction on x and manyothers.We rely heavily on rippling because it is such a strong technique for inductive proof.Most of the possible inductions above do not lead to a proof because there are no waverules which can ripple out the wave fronts introduced. Using this insight, we choosebetween possible inductions with a technique called ripple analysis. Ripple analysis rankspossible induction schemas according to how well the resulting wave terms could berippled. s(x) " + y) s(x+ y) " (4.8)

Proof Planning Methods as Schemas 15In (4.7), if the only available wave rule is (4.8), then both single step induction onx, and single step induction on y are suggested. The second of these two suggestionsis
awed: it introduces a wave front in a position from which it cannot immediately berippled. The �rst suggestion is therefore ranked higher and is the one which is selectedby the induction method. The subsequent proof does in fact succeed.4.7. Directional wave frontsIn the presentation above, wave fronts move di�erences out through the term structure.There are occasions when we want to move di�erences in through the term structure.Usually this is done to move wave fronts into a sink: a universally quanti�ed variablein the induction hypothesis which can be instantiated when the induction conclusion isfertilised.We modify the annotations on both the wave rules and wave terms to specify a direc-tion, either outwards as in (4.8), or inwards:s(x+ y) #) s(x) # + yOften a left-to-right wave rule can be used as a right-to-left wave rule by reversing thedirections of the wave fronts.Rippling into a sink directs an outward-bound wave front down into a sink (markedbyc): s(x) " + byc) x+ � s(y) #�To maintain termination of rippling, we allow outward bound wave fronts to become in-ward bound, but not vice versa. This entails some modi�cation of the associated measureon annotated terms.Using rippling in, we can complete our stuck proof (4.6) if we have the followingadditional wave rules: x <> h :: t ") x <> (h :: nil) # <> t (4.9)x <> (h :: nil) " <> t) x <> h :: t # (4.10)rev(t) <> (h :: nil) #) rev(h :: t #) (4.11)Annotating the universally quanti�ed variable x in the induction conclusion with asink marker, our goal (4.6) becomes:8x0 : list(int):rev(rev(l) <> x0) = rev(x0) <> l` 8y : list(int):rev(rev(l) <> (h :: nil) " <> bxc) = rev(bxc) <> h :: l "Using wave rule (4.9) to ripple the wave front on the right hand side of our goal towardsthe right hand side sink gives:8x0 : list(int):rev(rev(l) <> x0) = rev(x0) <> l` 8x : list(int):rev(rev(l) <> (h :: nil) " <> x) = rev(bxc) <> (h :: nil) # <> l

16 Julian Richardson & Alan BundyThe induction conclusion can be further rippled in using (4.11) on the right hand sideof the equality, and (4.10) on the left hand side to give:` 8x : list(int):rev(rev(l) <> � h :: x #�) = �rev(h :: x #)� <> lThis is now a copy of the induction hypothesis, except that we must pick an instance ofthe universally quanti�ed induction hypothesis with x0 = h :: x. This takes place duringthe application of the strong fertilisation method, and completes the step case of theproof. The base case is a little tricky to prove without some lemmas, but Clam can proveit using a nested induction. Clam displays the �nal proof plan for the conjecture as:induction(lemma(list_primitive)-[(l:int list)-v1::v0]) then[base_case(...) theninduction(lemma(list_primitive)-[(t:int list)-v1::v0]) then[base_case(...),step_case(...) thengeneralise(...) theninduction(lemma(list_primitive)-[(v3:int list)-v5::v4]) then[base_case(...),step_case(...)]],step_case(...)]As already mentioned, subplans (the arguments of methods like base case and step case)are replaced in the printed representation by ellipsis so that the user can easily pick outthe shape of the proof, and the most important details, in this case the induction schemaused. 4.8. Middle-out reasoning and meta-variablesIn middle-out reasoning, meta-variables are allowed to appear in meta-level sequentsto stand for unknown existential witnesses, which are instantiated by subsequent proofplanning steps. Meta-variables are represented by Prolog variables. As the proof proceeds,more information becomes available which can be used to choose a concrete term for theexistential variable. Middle-out reasoning was used extensively in (Kraan, 1994) to syn-thesise logic programs. Middle-out reasoning allows, for example, speculative rippling, inwhich a meta-variable is partially instantiated to allow a wave rule application. Speculat-ive rippling is useful in situations such as lemma speculation (x5.2), and during programsynthesis. For example, a speculative ripple with the wave rule s(x) "+ y) s(x+ y) "can be applied to (4.12) to give (4.13), partially instantiating z to s(z0).` 9 z : z + x = s(y + x) " (4.12)` 9 z0 : s(z0 + x) " = s(y + x) " (4.13)

Proof Planning Methods as Schemas 17(Kraan, 1994) makes extensive use of middle-out reasoning to synthesise logic pro-grams. 4.9. Benefits of ripplingThe rippling technique has several bene�ts:1 It restricts rewriting so that termination of the rewriting process is guaranteed andsearch is reduced. Often search in the rewriting process is completely eliminated.Bidirectional rewrite rules can be used in both directions without adversely a�ectingtermination.2 Rippling proofs can be easier to understand than non-rippling proofs because thepurpose of rippling (to reach fertilisation) is clear, each rippling step makes pro-gress towards this end, and rippling steps preserve the structure of the inductionhypothesis in the induction conclusion.3 The applicability of other proof methods (e.g. induction) can be restricted by takinginto account the ability of subsequent rippling to make progress in the proof.4 Rippling proofs are more likely to succeed than proofs using rewriting and a recurs-ive path ordering (Bundy and Green, 1996).4.10. The proof strategy for induction | repriseThe proof strategy for induction provides a good example of the capabilities and mech-anisms of proof planning. Proof plans are constructed in a search space which is tightlycontrolled (by rippling), using a relatively small number of methods. The proof planswhich are produced have good explanational value; once a user has been taught whatrippling is, rippling proofs can be very easy to understand. The meta-level and object-level logics di�er. 5. Making productive use of failure5.1. Proof criticsProof planning has been successful in a number of domains. Still, it is open to criti-cism that the ability of the system to �nd a proof plan is as sensitive as other automatedtheorem proving techniques to the domain theory which the prover is given. Proof critics(Ireland, 1992; Ireland and Bundy, 1996) have been developed to overcome this disad-vantage. Proof critics are triggered by the failure of a proof planning attempt, and exploitthe high-level nature of the partial proof plan to suggest an appropriate patch.Suppose a method has three preconditions, of which two succeed, but the third fails.Critics are associated with some of these patterns of failure. For instance, one critic may�re if the �rst two preconditions of a method succeed, but the last one fails. It will thensuggest an appropriate patch for this kind of failure, e.g. suggest the form of a missinglemma, suggest generalising the conjecture. The patch is instituted and proof planningcontinues.The strongest heuristic we use is the rippling heuristic. Currently, our critics | in-duction revision, lemma speculation, generalisation, and case analysis | are based onanalysis of failures in rippling. The constraints that rippling places on the proof search

18 Julian Richardson & Alan Bundyspace, and its declarative nature, enable us to automatically patch failed proof attemptsthrough the construction of appropriate eureka steps. In (Ireland and Bundy, 1996), anumber of rippling-based critics are described. These have all been implemented in Clam.In the following section we describe one, the lemma speculation critic. The presentationis based on (Ireland and Bundy, 1996, pp.16-18).5.2. The lemma speculation criticThe lemma speculation critic (and its more constrained cousin, the lemma calculationcritic) exploits the annotations in a failed rippling proof to speculate a lemma which willbe able to unblock the goal, i.e. continue rippling. For example, consider the conjectureof x4.5: 8l; t : list(int):rev(rev(l) <> x) = rev(x) <> lAs before, Structural induction on l followed by application of a de�nitional wave rulefor rev gives the following goal:rev(rev(l) <> (h :: nil) " <> x) = rev(x) <> h :: l "In x4.7 above, we needed some additional wave rules to complete the proof.If we do not have these wave rules available, then no further rippling is possible. Thelemma speculation critic is triggered by the failure of rippling, and tries to �nd a patchfor the proof attempt by speculating a missing wave rule. In this case, the right handside of the equation above is selected for unblocking.y The critic therefore knows thatthe left hand side of the new wave rule is:rev(x) <> h :: l ") :::The right hand side of the wave rule must have the same skeleton. The critic constructsa schematic right hand side, cementing terms from the skeleton together using higher-order meta-variables, giving a schematic wave rule:rev(x) <> h :: l ") F1(rev(x); h; l; x) #The schematic wave rule is automatically generalised to give the following (there areother possibilities which can lead to search during the subsequent proof process):W <> X :: Y ") F1(W;X; Y) # <> YApplying this schematic wave rule in the proof plan leads to a schematic goal which con-tains meta-variables. The meta-variables are instantiated during further rippling and fer-tilisation. In this case, F1 is automatically instantiated in several steps to �w�x�y:w <>(x <> nil), which gives the wave rule (4.9) we needed in x4.7. Once the schematic waverule is fully instantiated, an attempt is made to prove it is a valid lemma, which for thiswave rule succeeds.y Equally, the left hand side could be selected.

Proof Planning Methods as Schemas 196. Cooperative theorem provingFor the foreseeable future theorem provers will require human interaction to guidethe search for non-trivial proofs. Fortunately, proof planning is also useful in interactivetheorem provers. Proof plans facilitate the hierarchical organisation of a partial proof,assisting the user to navigate around it and understand its structure. They also provide alanguage for chunking the proof and for describing the interrelation between the chunks.Interaction with a semi-automated theorem prover can be based on this language. Forinstance, the user can: ask why a proof method failed to apply; demand that a heuristicprecondition is overridden; use the analysis from proof critics to patch a proof; etc.The XBarnacle (Lowe and Duncan, 1997) system is a semi-automated theorem proverbased on proof planning. Proof planning provides a good basis for a cooperative theoremproving system. Not only can the user take advantage of the automation that proofplanning o�ers, but the understandability of proof planning aids communication betweensystem and user.The user sees the partial proof plan as it is being constructed, using the standarddepth-�rst planning strategy. At any point, the user is free at any point to stop the proofand intervene by: overriding the depth-�rst planning strategy and indicating a node in thepartial proof plan to be proved next, selecting a method for application at a node, or evenloading new lemmas. The user may also load and save partial proof plans from/to disk.Evaluation of users' interaction with the system provides evidence that user interactionallowed detection and correction of failing proof attempts (Jackson, 1997).7. SemanticsThe logic of meta-level sequents, methods and methodicals is intended to be formal.For example, in Clam, rippling is de�ned on an annotated meta-level calculus, whichcan be formally de�ned. The formal de�nition of a calculus of annotated terms has beenused to prove important properties of rippling, in particular its termination (Basin andWalsh, 1996). The semantics of methods is therefore as inference rules in the meta-levellogic.In practice, the meta-level logic, and therefore the semantics of methods, is often amixture of a well-de�ned formal language which we could indeed call a meta-level logic,and other, more impure features.We can however provide a second kind of semantics of proof plans and methods in termsof the object-level proofs that they ultimately generate. This semantics is provided bythe necessity of mapping proof plans to object-level proofs (via the method-tactic andmethodical-tactical mappings).8. The relationship between proof planning and schema-guided synthesisWe brie
y mention here some work which is in progress.In (Richardson, 1999), we elaborate on the correspondence between proof planningmethods and program synthesis schemas. We proposed that proof planning o�ers aparadigm which combines logical rigour with usability, and, in addition, allows the em-ployment (or indeed development) of schemas to be integrated in a very natural waywith the automatic satisfaction of any proof obligations which arise. A particularly im-portant correspondence is the induction method, which attempts to select the most

20 Julian Richardson & Alan Bundyappropriate available induction scheme to apply to a conjecture, and algorithm designtactics, for example divide-and-conquer. In general, divide-and-conquer algorithm designtactics correspond to non-structural induction schemes. The relationship is made clearer,however, if we consider applying a divide-and-conquer strategy where the datatype overwhich the function ranges is a binary tree. The divide-and-conquer strategy in this caseis also structural induction on binary trees.9. ImplementationsIn this section we brie
y compare the three existing proof planning systems.Clam (Bundy et al., 1990) was the �rst proof planner. Its method database is dividedinto a two-level hierarchy of methods and submethods. The meta-language is Prolog.Rippling is implemented as a calculus of annotated rewriting. Clam has been linked toa number of object-level theorem provers. The principal one is the Oyster implement-ation of Martin-L�of's Type Theory (Martin-L�of, 1979), which is modelled on NuPRL(Constable et al., 1986). The constructive nature of the logic, combined with a rich typesystem, make it well-suited to program synthesis and veri�cation. Clam has also beenlinked to an implementation of (classical) �rst-order predicate calculus used for logicprogram synthesis (Kraan, 1994), and there is now an experimental link to the Holtheorem prover (Boulton et al., 1998). Work on Clam methods has principally focusedon automation of induction, which it can now do with some success.
mega (Benzm�uller et al., 1997) is a Lisp-based proof planning system. The object-level logic is a natural deduction style calculus. As opposed to the standard versions ofClam and �Clam ,
mega is based around a central proof plan data structure (PDS),which can be updated independently of the current proof plan construction strategy,allowing for example both forwards and backwards planning.
mega allows the de�nitionof control rules which explicitly manipulate the relative order in which methods areapplied, potentially providing more
exible method ordering, and making the controlstrategy explicit.
mega also has the interesting ability to call external theorem provers,and translate the resulting proofs back to natural deduction style and integrate theminto the PDS.�Clam has a more complex method hierarchy than Clam. The meta-logic is �Prolog(Miller, 1991), a strongly typed, higher-order logic programming language. This facilitatesplanning proofs of higher-order theorems, and the higher-order uni�cation required for,e.g. middle-out reasoning or proof critics, can be implemented directly as higher-orderuni�cation in the meta-logic. Reduction of �, �, and � redices is carried out automaticallyand transparently by the meta-logic. One of the important repercussions is that thesyntactic notions on which rippling relies in the �rst-order case are no longer valid.Rippling is de�ned instead using a concept of embeddings (Smaill and Green, 1996),which has the desired behaviour for both higher-order and �rst-order terms. �Clam hasyet to be linked to an object-level theorem prover.10. ApplicationsProof planning has been applied in a number of domains. In this section we do notattempt to give an exhaustive list, merely a
avour of the variety of applications andassociated references.

Proof Planning Methods as Schemas 2110.1. Reasoning about systems10.1.1. Program synthesis and verificationClam and �Clam have been applied to many problems in program synthesis and veri-�cation. For example, (Armando et al., 1996) reports on automation of the synthesisof decision procedures, and (Armando et al., 1997) on automating the synthesis of auni�cation algorithm.10.1.2. Hardware verificationIn (Cantu-Ortiz, 1997), Cantu describes an application of proof planning to the veri�c-ation of clocked synchronous electronics. Cantu successfully automated the veri�cationof the Gordon computer, which had previously been veri�ed manually in HOL (Joyceet al., 1986). The proof plans were the largest ever created, and although some modi�ca-tion was required to Clam in order to cope with the much larger proofs (for example byemploying memoisation), this e�ort provides evidence that proof planning can scale up.10.1.3. Verification of communicating systemsProof plans have been used to automate the veri�cation of systems speci�ed in CCS(Milner, 1989). Clam's standard proof plan for induction was extended with special-purpose methods for CCS proofs (Monroy et al., 1998).10.2. Automation of mathematical proofsBoth Clam and the
mega proof planners have been used to prove a number of limittheorems (Melis, 1996b). Diagonalisation arguments have been formalised (Gow, 1997).Clam has been used to automate the summation of series (Walsh et al., 1992). Coin-duction has been automated (Dennis et al., 1996). Proof planning has also been used toadapt a computer algebra system to obtain fully expansive proofs (Kerber et al., 1998).Equational reasoning has been automated (Hutter, 1997).10.3. Proof planning in other domainsProof planning has been applied in a number of nonmathematical domains.There has been some success applying proof planning to game playing (Bridge (Frankand Basin, 1998) and Go (Willmott et al., 1998)) and to con�guration problems (Loweet al., 1996; Pechoucek, 1996; Lowe, 1993). It is potentially applicable wherever thereare common patterns of reasoning. Proof planning can be used to match the problem tothe reasoning method in a process of meta-level reasoning. Proof planning gives a cleanseparation between the factual and search control information, which facilitates theirindependent modi�cation. 11. Questions and answersSee (Bundy, 1998) for more questions and answers on proof planning.

22 Julian Richardson & Alan Bundy11.1. What is the relation between proof planning and rippling?Rippling is a key method in the proof plan for induction. It is also useful in non-inductive domains. However, it is only one proof planning technique. It is not proofplanning itself, but it does provide a good example of how an appropriate meta-theory,realised using methods, can provide tight and comprehensible guidance to the proofconstruction process.11.2. How can humans discover proof plans?This is an art similar to the skill used by a good mathematics teacher when analysing astudent's proof or explaining a new method of proof to a class. The key is identifying theappropriate meta-level concepts to generalise from particular examples. Armed with theright concepts, standard inductive learning techniques can form the right generalisation.There has been some work on learning proof plans from example proofs using formsof explanation based generalisation (Desimone, 1986; Silver, 1985).11.3. What about knowledge engineering?Proof planning is a knowledge-based technique, and in common with any knowledgebased technique, knowledge engineering is a signi�cant concern. In particular:1 Does the approach scale?2 How much e�ort is required to encode knowledge?3 Once encoded, is the knowledge reusable and portable?Evidence for the scalability of proof planning can be found in the work of (Cantu-Ortiz, 1997) (x10.1.2). Some of the proof plans which Cantu produced were very large.Nevertheless, some changes to the proof planner to improve e�ciency, notably by em-ploying memoisation, were su�cient to make the proof planning practicable.The possibility of annotating meta-level sequents, and the hierarchical nature of proofplanning methods, both help to ensure that proof strategies are in some sense modular;knowledge can be added to the system (in the form of methods) without disturbing whatknowledge is already there. Indeed, we found (Richardson, 1997), that the methods inClam's proof strategy for induction are largely independent, and method ordering haslittle e�ect on Clam's ability to �nd a proof plan.Cantu also reports (Cantu et al., 1996) on the development time for some of his proofplans. Although there is a high initial cost in developing proof strategies for a newdomain, once in place, similar conjectures from the same domain can be proved withlittle additional e�ort.Reuse of existing proof planning methods takes place in two ways. First, some methodscan be used in ways which are quite di�erent to the original intention. A very goodexample is the rippling strategy, which was initially formulated for automating proof byinduction, but has since been very useful in automating equational reasoning (Hutter,1991), summation of series (Walsh et al., 1992), and other domains.Second, we would like to be able to exploit techniques from one proof planning systemin a new proof planner. There is currently no lingua franca for proof plans, so we cannotdirectly exchange method code (
mega methods are written in Lisp, Clam methods are

Proof Planning Methods as Schemas 23written in Prolog, and �Clam methods are written in �Prolog). We therefore rely onauthors writing their methods in a declarative way. So far, it seems that methods can beported between systems quite quickly. We have some experience with this | �Clam 'smethods are mostly based on those in Clam.12. ConclusionsProof planning is a schema-based technique for automated theorem proving. Proofplans are constructed in an abstraction of the proof search space using proof schemascalled methods, which encode proof heuristics. Methods are schemas in the traditionalsense, with the addition of a tactic slot which serves to link the meta-level of methodswith the object-level of tactics. When a complete proof plan for a conjecture has beenfound, it is automatically mapped to a sequence of tactic applications which can beexecuted to produce a complete formal proof of the conjecture. This reduces the amountof search required to �nd a proof, and produces proofs which are at a su�ciently highlevel to be understandable. Failed proof attempts can be patched by proof critics.Several implementations of proof planning exist. They di�er in signi�cant ways, butshare the characteristics of using planning techniques to construct a proof plan, and amapping to tactics to generate a complete formal proof. The link between proof plansand tactics provides a natural semantics for proof planning methods.Proof planning has been applied to a number of domains, including mathematicaldomains such as proof of limit theorems, and domains such as the synthesis and veri-�cation of computer software and hardware. The proof plan for induction, and rippling,have proved both useful and versatile in these domains.Features of proof planning, such as the separation between object-level and meta-level,and rippling, may be of interest to other schema-based techniques.The use of schemas allows proofs to be constructed at a level of abstraction which bothreduces the amount of search required to �nd a proof, and is comprehensible to users.ReferencesArmando, A., Gallagher, J., Smaill, A., Bundy, A. (1996). Automating the synthesis of decision pro-cedures in a constructive metatheory. In Proceedings of the Fourth International Symposium onArti�cial Intelligence and Mathematics, pages 5{8, Florida. To appear in the Annals of Mathematicsand Arti�cial Intelligence.Armando, A., Smaill, A., Green, I. Automatic synthesis of recursive programs: The proof-planningparadigm. Automated Software Engineering. To appear.Armando, A., Smaill, A., Green, I. (1997). Automatic synthesis of recursive programs: The proof-planningparadigm. In 12th IEEE International Automated Software Engineering Conference, pages 2{9,Lake Tahoe, Nevada, USA. Expanded version appears in (Armando et al.,)Basin, D., Walsh, T. (1996). A calculus for and termination of rippling. Journal of Automated Reasoning,16(1{2):147{180.Benzm�uller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, X., Kerber, M., Kohlhase, K., Meirer,A., Melis, E., Schaarschmidt, W., Siekmann, J., Sorge, V. (1997).
mega: Towards a mathematicalassistant. In McCune, W., editor, 14th International Conference on Automated Deduction, pages252{255. Springer-Verlag.Boulton, R., Slind, K., Bundy, A., Gordon, M. (1998). An interface between CLAM and HOL. In Grundy,J., Newey, M., editors, Proceedings of the 11th International Conference on Theorem Proving inHigher Order Logics (TPHOLs'98), volume 1479 of Lecture Notes in Computer Science, pages87{104, Canberra, Australia. Springer.Bundy, A. (1991). A science of reasoning. In Lassez, J.-L., Plotkin, G., editors, Computational Logic:Essays in Honor of Alan Robinson, pages 178{198. MIT Press. Also available from Edinburgh asDAI Research Paper 445.

24 Julian Richardson & Alan BundyBundy, A. (1998). Frequently asked questions about proof planning.http://www.dai.ed.ac.uk/daidb/sta�/personal pages/bundy/drafts/proof-plans-faq.html.Bundy, A., Green, I. (1996). An experimental comparison of rippling and exhaustive rewriting. Researchpaper 836, Dept. of Arti�cial Intelligence, University of Edinburgh. Submitted to CADE-14.Bundy, A., van Harmelen, F., Hesketh, J., Smaill, A. (1991). Experiments with proof plans for induction.Journal of Automated Reasoning, 7:303{324. Earlier version available from Edinburgh as DAIResearch Paper No 413.Bundy, A., van Harmelen, F., Horn, C., Smaill, A. (1990). The Oyster-Clam system. In Stickel, M. E.,editor, 10th International Conference on Automated Deduction, pages 647{648. Springer-Verlag.Lecture Notes in Arti�cial Intelligence No. 449. Also available from Edinburgh as DAI ResearchPaper 507.Cantu, F., Bundy, A., Smaill, A., Basin, D. (1996). Experiments in automating hardware veri�cationusing inductive proof planning. In Srivas, M., Camilleri, A., editors, Proceedings of the Formal Meth-ods for Computer-Aided Design Conference, number 1166 in Lecture Notes in Computer Science,pages 94{108. Springer-Verlag.Cantu-Ortiz, F. (1997). Proof Planning for Automating Hardware Veri�cation. PhD thesis, Dept ofArti�cial Intelligence.Constable, R. L., Allen, S. F., Bromley, H. M. et al.(1986). Implementing Mathematics with the NuprlProof Development System. Prentice Hall.Dennis, L., Bundy, A., Green, I. (1996). Using a generalisation critic to �nd bisimulations for coinductiveproofs. In McCune, W., editor, 14th International Conference on Automated Deduction, LectureNotes in Arti�cial Intelligence, Vol. 1249, pages 276{290, Townsville, Australia. Springer-Verlag.Desimone, R. V. (1986). Explanation-based learning of proof plans. In Kodrato�, Y., editor, Proceedingsof European Working Session on Learning, EWSL-86, Orsay, France. Longer version available fromEdinburgh asDiscussion Paper 6.Frank, I., Basin, D. (1998). Search in games with incomplete information: A case study using bridgecard play. Arti�cial Intelligence, 100(1{2):87{123.Gordon, M. J., Milner, A. J., Wadsworth, C. P. (1979). Edinburgh LCF - A mechanised logic of com-putation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag.Gow, J. (1997). The Diagonalization Method in Automatic Proof. Undergraduate project dissertation,Dept of Arti�cial Intellience, University of Edinburgh.Hill, R. (1974). Lush-resolution and its completeness. DCL Memo 78, Dept. of Arti�cial Intelligence,University of Edinburgh.Huet, G. (1975). A uni�cation algorithm for typed lambda calculus. Theoretical Computer Science,1:27{57.Hutter, D. (1991). Pattern-Direct Guidance of Equational Proofs. PhD thesis, University of Karlsruhe.Hutter, D. (1997). Colouring terms to control equational reasoning. Journal of Automated Reasoning,18:399{442.Ireland, A. (1992). The Use of Planning Critics in Mechanizing Inductive Proofs. In Voronkov, A.,editor, International Conference on Logic Programming and Automated Reasoning { LPAR 92, St.Petersburg, Lecture Notes in Arti�cial Intelligence No. 624, pages 178{189. Springer-Verlag. Alsoavailable from Edinburgh as DAI Research Paper 592.Ireland, A., Bundy, A. (1996). Productive use of failure in inductive proof. Journal of AutomatedReasoning, 16(1{2):79{111. Also available as DAI Research Paper No 716, Dept. of Arti�cialIntelligence, Edinburgh.Jackson, M. (1997). The evaluation of a semi-automatic theorem prover (part ii). In Proceedings of theThird Workshop on User Interfaces for Theorem Provers, pages 59{66.Joyce, J., Graham Birtwistle, G., Gordon, M. (1986). Proving a computer correct in higher order logic.Technical Report 100, University of Cambridge Computer Laboratory.Kerber, M., Kohlhase, M., Sorge, V. (1998). Integrating computer algebra into proof planning. Journalof Automated Reasoning, 21(3):327{355.Kowalski, R. A., Kuehner, D. (1971). Linear resolution with selection function. Arti�cial Intelligence,2:227{60.Kraan, I. (1994). Proof Planning for Logic Program Synthesis. PhD thesis, Department of Arti�cialIntelligence, University of Edinburgh.Lowe, H. (1993). The Application of Proof Plans to Computer Con�guration Problems. PhD thesis,University of Edinburgh.Lowe, H., Duncan, D. (1997). XBarnacle: Making theorem provers more accessible. In McCune, W.,editor, 14th International Conference on Automated Deduction, pages 404{408. Springer-Verlag.Lowe, H., Pechoucek, M., Bundy, A. (1996). Proof planning and con�guration. In Proceedings ofthe Ninth Exhibition and Symposium on Industrial Applications of Prolog. Also available fromEdinburgh as DAI Research Paper 859.

Proof Planning Methods as Schemas 25Manning, A., Ireland, A., Bundy, A. (1993). Increasing the versatility of heuristic based theorem provers.In Voronkov, A., editor, International Conference on Logic Programming and Automated Reasoning{ LPAR 93, St. Petersburg, number 698 in Lecture Notes in Arti�cial Intelligence, pages pp 194{204.Springer-Verlag.Martin-L�of, P. (1979). Constructive mathematics and computer programming. In 6th InternationalCongress for Logic, Methodology and Philosophy of Science, pages 153{175, Hanover. Published byNorth Holland, Amsterdam. 1982.Melis, E. (1996a). Island planning and re�nement. Technical Report SR-96-10, University of the Saarland.Melis, E. (1996b). Progress in proof planning: Planning limit theorems automatically. Technical ReportSR-97-08, University of the Saarland.Miller, D. (1991). A logic programming language with lambda-abstraction, function variables, and simpleuni�cation. Journal of Logic and Computation, 1(4):497 { 536.Milner, R. (1989). Communication and Concurrency. Prentice Hall, London.Monroy, R., Bundy, A., Green, I. (1998). Planning equational veri�cation in ccs. In Redmiles, D., B., N.,editors, 13th Conference on Automated Software Engineering, ASE'98, pages 0{0, Hawaii, USA.IEEE Computer Society Press. To appear.Pechoucek, M. (1996). The use of proof planning for con�guring a compressor. Master's thesis, Dept ofArti�cial Intelligence.Richardson, J. (1997). Personal communication. An empirical study of the a�ect of method ordering onthe performance of several planners in Clam.Richardson, J. (1999). Proof planning with program schemas. Research paper, Dept. of Arti�cialIntelligence, University of Edinburgh. Forthcoming. A shorter version was published in the pre-proceedings of LOPSTR'98.Richardson, J., Smaill, A., Green, I. (1998). System description: proof planning in higher-order logic withlambdaclam. In Kirchner, C., Kirchner, H., editors, 15th International Conference on AutomatedDeduction, volume 1421 of Lecture Notes in Arti�cial Intelligence, Lindau, Germany.Silver, B. (1985). Meta-level inference: Representing and Learning Control Information in Arti�cialIntelligence. North Holland. Revised version of the author's PhD thesis, Department of Arti�cialIntelligence, U. of Edinburgh, 1984.Smaill, A., Green, I. (1996). Higher-order annotated terms for proof search. In von Wright, J., Grundy,J., Harrison, J., editors, Theorem Proving in Higher Order Logics: 9th International Conference,TPHOLs'96, volume 1275 of Lecture Notes in Computer Science, pages 399{414, Turku, Finland.Springer-Verlag. Also available as DAI Research Paper 799.Walsh, T., Nunes, A., Bundy, A. (1992). The use of proof plans to sum series. In Kapur, D., editor,11th International Conference on Automated Deduction, pages 325{339. Springer Verlag. LectureNotes in Computer Science No. 607. Also available from Edinburgh as DAI Research Paper 563.Willmott, S., Richardson, J. D. C., Bundy, A., Levine, J. M. (1998). An adversarial planning approachto go. In Proceedings of the First International Conference on Computers and Games. ComputerShogi Association.

