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A major problem in automated theorem proving is search control. Fully expanded
proofs are generally built from a large number of relatively low-level inference steps,
with the result that searching the space of possible proofs at this level is very expensive.

Proof planning is a technique by which common proof techniques are encoded as
schemas, which we call methods. Proofs built using methods tend to be short, because the
methods encode relatively long sequences of inference steps, and to be understandable,
because the user can recognise the mathematical techniques being applied. Proof critics
exploit the high-level nature of proof plans to patch failed proof attempts.

A mapping from proof planning methods and proof construction tactics provides a
link between the proof planning meta-level and fully expansive (object-level) proofs.

Extensive experiments with proof planning reveal that a knowledge-based approach
to automating proof construction works, and has useful properties.

1. Introduction

A major problem in automated theorem proving is search control. When automatically
constructing a formal proof, there are typically many inference rules which can be applied
at any given point during the proof, and proofs are normally quite deep. The search
space of possible proof attempts is therefore very large. The techniques described in this
paper give us the tools to tackle the search problem effectively by building a proof in
an abstraction of the proof search space, providing powerful techniques such as rippling
(§4.5) and facilitating the encoding of heuristics.

Proof planning (Bundy, 1991) can reduce the size of the proof search space because the
steps (methods) from which a proof plan is constructed are larger than those from which
the object level proof is constructed, and because formulae are annotated to provide
guidance for the theorem proving process. The methods encode proof construction heur-
istics.

Common patterns in proofs are identified (by humans) and represented (by humans)
as proof schemas, called methods, consisting of an input pattern, an output pattern, and
applicability conditions. Applying a proof schema to a goal (initially, the conjecture to
be proved) results in a number of subgoals. Further proof schemas may then be applied
to these subgoals.

A proof plan for a conjecture consists of a sequence of proof schema applications which
reduces a conjecture to trivial subgoals. Once a proof plan has been found, it is used to
guide the construction of a complete formal proof for the conjecture.

Proof planning was first implemented in the Oyster/Clam system (Bundy et al., 1990)
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at Edinburgh. Newer implementations are the Qmega system (Benzmdiller et al., 1997)
at Saarbriicken, and AClam (Richardson et al., 1998) in Edinburgh.

Extensive experiments with proof planning reveal that a schema-based approach to
automating proof construction works, and has useful properties. As opposed to more
uniform proof construction techniques such as rewriting, or resolution, proof planning
can generate proofs at a level of abstraction which facilitates human understanding,
and can exploit failure productively. Standard patterns of proof failure and appropriate
patches to the failed proofs attempts are represented as critics, which can intervene to
rescue a failed proof attempt.

Of particular interest for our purposes is the proof strategy for induction, which is
considered to be a vital mathematical technique which is hard to automate. Induction
is very useful for reasoning about programs because induction in proofs corresponds
to recursion in programs. The rippling strategy is very effective for planning inductive
proofs, often eliminating search entirely.

The plan of the paper is as follows: we review (§2) the role of schemas in proof planning,
before (§3) defining what proof plans are and how they are constructed. The most well-
developed proof plan that we currently have is the proof plan for induction, which we
describe in detail in §4. We describe here the important techniques (use of which is
by no means restricted to inductive proofs) of rippling and middle-out reasoning. The
constraints imposed on proof search by proof planning can be exploited to overcome
failing proof attempts. Proof planning critics (§5.1) are able to automatically analyse
failed proofs to perform tasks such as lemma speculation. Proof planning also helps
users to understand and patch failing proofs, leading to the possibility of cooperative
theorem proving (§6). We briefly discuss proof planning semantics (§7), the relationship
of proof planning to schema-guided synthesis (§8), and existing implementations (§9),
before outlining current applications of proof planning (§10). Finally, we address some
questions commonly asked about proof planning (§11) before concluding in §12.

2. Encoding mathematical techniques as schemas

Any formal proof can eventually be reduced to a sequence of applications of the rules of
inference of the logic and the theory in which the proof is taking place. Traditional auto-
mated theorem proving techniques generally concentrate on representing the mathemat-
ical domain theory — as axioms, inference rules, definitions — and general strategies for
managing the proof search space, for example the resolution strategies LUSH (Hill, 1974),
SLD (Kowalski and Kuehner, 1971). They therefore address only the most basic kind of
mathematical knowledge. For human mathematicians, however, techniques for proving
theorems are very important. These techniques are sometimes general, for example proof
by mathematical induction, and sometimes domain-specific, for example computing a
Grobner basis.

The central principle of proof planning is that mathematical techniques can be effect-
ively encoded as schemas, which we call methods. Reasoning using these mathematical
techniques helps to limit the size of the proof search space, to make the resulting proofs
comprehensible to humans, and aids the productive use of failure.

A method is a schema in the traditional sense, augmented with certain interesting
features. The basis of the schema is a triple P == (). Schemas are applied to the
sequents H F G which occur during a proof attempt. A schema is applicable if the
pattern P matches the input sequent, H F G, with substitution 6, and the instantiated



Proof Planning Methods as Schemas 3

Plan formation i
Methods Proof plan = methods + methodicals

< | Describetactic method -> tactic and _
interface methodical -> tactical mappings
Meta-level
Tactics Composition of tactics = tactics + tacticals
/>\ Composition
Object-level e
Object-level logic /" Object-level proof
proof rules {
/N

Guarant/ “

of correctness

Figure 1. Reasoning at the meta-level (above the dashed line) is heuristic and need not be sound.
Reasoning at the object-level (below the dashed line) is formal and sound. Proof planning links the two
levels in order to achieve reasoning which is heuristic, high-level, and with controlled search, while
retaining the security of an object-level in which proof is totally rigorous.

conditions cf are satisfied. This results in a new substitution, ¢, which is applied to the
output pattern, giving a list of new subgoals Q¢. The original goal is now proved provided
that its subgoals Q¢ can be proved. These new subgoals are, therefore, submitted to the
proof process, which recurses.

Rather than constructing a complete formal proof immediately, proof schemas apply to
and result in formulae which are abstractions of formulae in the formal proof system, al-
lowing some unnecessary details of the formal proof to be suppressed. These abstracted
formulae may additionally be marked with annotations which help to guide the con-
struction of the proof plan. We call the formal proof system the object-level logic, and
the abstracted and annotated proof system the meta-level logic.

By encoding mathematical techniques as proof schemas, proof planning can provide
a high-level view of the proof, illustrated in figure 1. Nodes in the diagram represent
operators for constructing parts of proofs at either the heuristic meta-level or the rigorous
object-level. Arrows represent mappings on these operators.

In section 3 below, we present the mechanisms of proof planning in detail. It is, however,
appropriate to consider here some questions which we should ask of any kind of schema.
Namely:

1 What is the schema language, i.e. in what language are the patterns and conditions
expressed?

2 In what sense do the schemas encode knowledge?
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2.1. SCHEMA LANGUAGE

The pattern language is an abstraction of the object-level logic which may contain pat-
tern variables, which we call meta-variables. The order (first-order, second-order, third-
order, ...) of these variables depends on the proof planning implementation used. In the
Clam proof planner, meta-variables are first-order Prolog variables, and first-order uni-

fication is used to matchf patterns with input sequents. In this first-order case, therefore,
the pattern language is rather restricted, which tends to shift the burden of restricting
the applicability of a schema to the checking of the conditions c¢. Consequently, in many
Clam methods, the input pattern is a term H + G, which matches any input sequent.
By contrast, the AClam proof planner has a pattern language which is based on AProlog.
Patterns may therefore contain higher-order meta-variables. A higher-order unification
algorithm (Huet, 1975) is used to match patterns with input sequents. This allows consid-
erably more powerful patterns, and consequently methods in AClam are more declarative
than in Clam, and the conditions ¢ play a lesser role in determining the applicability of
methods.

In both Clam and AClam, the conditions ¢ are pieces of (Prolog and AProlog re-
spectively) code, which employ a predefined set of predicates, the meta-language, as well
as arbitrary user-defined predicates. Section 3.5 below shows an example of a AClam
method. The input pattern restricts the method to applying to equalities, and the con-
ditions specify that the two sides of the equality must each contain a common subterm,
which can be generalised.

2.2. HOW DO SCHEMAS ENCODE MATHEMATICAL TECHNIQUES?

Methods can encode relatively small chunks of mathematical knowledge. For example,
the generalisation method mentioned above encodes fairly minimal requirements for a
generalisation to exist. By contrast, the induction method (see below) is quite sophist-
icated, restricted to apply only when mathematical induction applies, and when rewrite
rules exist in the domain theory which can make some progress with the subsequent
proof. This filters out applications of induction which are unlikely to succeed.

More generally, mathematical techniques are encoded as ordered collections of methods,

which we call proof plans.]L For example, the proof plan for induction consists of a method
for applying (promising) inductions, a method for rewriting goals which occur in the
induction step case in such a way that the proof is guided towards completion, a method
for proving induction base cases using rewriting, and the generalisation method, which
is important in many inductive proofs.

There is very little restriction on the kind of mathematical techniques which can be
encoded as proof plans, since methods are not limited to syntactic patterns (they may
contain arbitrary applicability conditions), and the meta-level logic need not be the same
as the object-level logic.

T Since we also allow input sequents to contain meta-variables, it really is unification, not matching.
See §4.8 below for more details.

T The term “proof plan” is therefore used for both the collection of methods used when proof plan-
ning a conjecture, and the object which results from this proof planning process. This overloading of
terminology rarely causes confusion.
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3. Definitions

In this section, we define what we mean by proof planning, and how it is implemented.
We start by defining what we mean by an “object-level proof”. We then define the
meta-level, and the correspondence between the meta-level and object-level. We give
simple examples of a proof plan (§3.7) and of the methods from which proof plans are
constructed (§3.5).

3.1. OBJECT-LEVEL LOGIC

For the purposes of this paper, we only consider proofs which are:

1 sequent style, i.e. formed by applying proof rules Wrulename, and

2 goal-directed, i.e. starting with the conjecture to be proved and applying the infer-
ence rules from top to bottom to generate subgoals.

Proof rules generally contain schematic variables which must be instantiated when
applying the rules in a proof. A proof rule Wrulename is applied to a
sequent h F g by matching h + ¢ with H F @, i.e. finding a substitution o on the
schematic variables in H + G such that h F ¢ = (H F G)o, and instantiating the
schematic variables in the H; F G;. The result is a node in the proof tree with label
(h + g,rulename), and n children, the subgoals ((H; F G;)o,open). Note that o must

instantiate all the schematic variables in the H; - G;.

DEFINITION 3.1. A partial proof of a conjecture is a tree with the following properties:

1 Each node is labelled with a sequent and the rule of inference which
is applied to that sequent to produce the node’s children.

2 The conjecture is the sequent at the root of the tree.

3 If the application of a rule of inference generates no subgoals, then
the leaf at which it is applied is labelled as complete.

4 If no rule of inference is specified for a leaf, then the subgoal at that
node is open.

DEFINITION 3.2. A proof is a partial proof with no open subgoals.

Restricting our attention to goal-directed (backwards) sequent proofs is merely for con-
venience. Although both Clam and A Clam use this style of inference, Qmega (Benzmiiller
et al., 1997) can apply both forward and backwards inference, and generates natural de-
duction proofs.

3.2. TAcTICS

A tactic (Gordon et al., 1979) is a procedure which constructs a piece of object-level
proof. The tactic is defined as a composition of primitive rules of inference. For example,
a tactic may strip all universal quantifiers from the front of a goal and then apply a
lemma. When a tactic is applied to a goal in the proof, one branch is created for each
subgoal which has not been proved by the tactic, and the node is labeled with the tactic,
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not with the individual proof rules the tactic applied. We consider tactics to be derived
rules of inference, and therefore allow tactic as well as primitive rules of inference in
definitions 3.1, 3.2 above.

As in LCF, a tactic language is defined which provides tacticals, for composing tactics.

3.3. META-LEVEL LOGIC

DEFINITION 3.3. A meta-level sequent is an abstraction of an object level sequent
which may be annotated to help guide subsequent proof (e.g. the wave fronts in rippling
§4.5), contain meta-variables (i.e. existentially quantified variables of the programming
language in which the planner is written, §4.8), and may have some hypotheses added or

deleted.

In contrast to object-level sequents, meta-level sequents can contain schematic vari-
ables. We call schematic variables which occur in a proof meta-level variables. They have
an important role in middle-out reasoning (§4.8).

3.4. METHODS

Where tactics construct pieces of object-level proof, methods construct pieces of meta-
level proof, i.e. schematic proofs. Methods consist of several slots:

Input The input pattern to which the tactic applies.

Preconditions  Conditions which must hold for the method to apply.

Postconditions Conditions which must hold after the method has been

applied.
Outputs Subgoals generated. A list of output patterns.
Tactic The name and arguments (if any) of the tactic which con-

structs the piece of the object-level proof corresponding
to this method.

An essential part of the proof planning methodology is that there be a 1-1 mapping from
methods to tactics. There must also be operators, methodicals for composing methods in
the same way that tacticals compose tactics. In the Clam implementation, the mapping
from methods to tactics is provided by the presence of a tactic slot in each method
definition. There is also a 1-1 mapping from methodicals to tacticals.

When attempting to apply a method to a meta-level sequent, first the sequent is unified
with the input slot. If this succeeds, the preconditions are evaluated. If they succeed, the
postconditions are evaluated, leading to instantiation of the output slot. The method
fails unless each of these steps succeeds. In Clam, pre- and post-conditions are pieces
of Prolog code utilising a set of predicates, called the meta-language, for accessing and
manipulating meta-level sequents.
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A method’s preconditions determine the context in which the method will apply. The
same object-level tactic may be represented by several methods, each operating in dif-
ferent circumstances. This allows us to distinguish situations in which it is desirable to
apply a tactic from those in which it is possible. It also has explanational value, since
applying the tactic in different circumstances may have a different intuitive meaning,
for example the rewriting tactic is used during rippling, symbolic evaluation, and weak
fertilisation, methods which have clearly distinguished roles in the proof process.

The terminology for describing object level proofs can be abstracted to the meta-level.

DEFINITION 3.4. A partial proof plan of a specification is a tree with the following
properties:

1 Each node is labelled with a meta-level sequent and a method which
is applied to that sequent to produce the node’s children.

2 The specification is the sequent at the root of the tree.

3 If a method application generates no subgoals, then the leaf at which
it is applied is labelled as complete.

4 If no method is specified for a leaf, then the subgoal at that node is
open.

DEFINITION 3.5. A proof plan is a partial proof plan with no open subgoals.

DEFINITION 3.6. Proof planning is a technique for automatic proof construction which
has the following properties:

1 AI planning techniques (for example depth-first planning, iterative deepening, best-
first planning (Manning et al., 1993), island planning (Melis, 1996a)) are used to
form a plan for how to prove the conjecture.

2 The plan operators, called methods, have corresponding tactics which construct
pieces of object-level proof. Plans generally consist of methods combined using meth-
odicals.

3 The proof for a conjecture is produced by composing the tactics which correspond to
the methods in the proof plan for the conjecture, using the tacticals which correspond
to the methodicals in the proof plan. The resulting compound tactic is then executed
to obtain an object-level proof.

3.5. AN EXAMPLE METHOD

We see below an example method definition (from AClam AClam’s higher-order
meta-level logic allows quite declarative definitions of many methods). The definition
presented below is identical to the definition in AClam’s method library except for the
following modifications, which are made for presentations reasons:

1 Some syntax has been uniformly replaced by standard mathematical symbols, e.g.
Vu:Type.P instead of forall Type (x\ P).

2 The definition in AClam’s method library uses an auxiliary meta-level predicate
which has two clauses, each of which performs a different kind of generalisation.
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The definition we show below is the result of unfolding the method definition using
the first of these clauses.

It is not necessary to understand the method definition in detail, but only to note that
like any schema, its applicability is defined by both the syntactic constraints imposed
by its input and output patterns, and by the semantic preconditions and postconditions
(here empty).

method generalise % method name

(HFA=B) % input pattern
( A = (NewA T), %

B = (NewB T), %

not ( NewA = Az _AA), % Preconditions

not ( NewB = Az _BB), %

compound T, %

env_otype (env_otype_wr T) H Type ) %

() % Postconditions
(HFW :Type (NewA v) = (NewB v)) % Output pattern
(generalised T). % tactic

3.6. CONSTRUCTION OF THE PLAN

In this section we will demonstrate how methods work by describing how Clam con-
structs a proof plan. Details of proof plan construction may differ considerably between
different planners.

The planner, Clam (Bundy et al., 1991), constructs a proof plan by linking together
methods. A completed plan has a tree structure. See §3.7 for a simple proof plan.

Initially, the list of open subgoals is the singleton consisting of the proposition to
be proved. For each remaining open subgoal, Clam tries to apply the methods in the
order they appear in the method database. When a method succeeds, its output slot is
instantiated to a list of subgoals. A node is created in the proof plan which is labelled
with this method. If the output list is empty, this branch of the proof plan is complete,
and the node is a leaf of the proof plan. If the list is non-empty, it is merged with the
agenda of open subgoals. Children of this node are created for each of the new subgoals.
The planner is called recursively with the new agenda of open subgoals. Appropriate
management of the agenda of open subgoals yields depth-first, breadth-first, iterative
deepening, or best-first planning strategies, all of which are implemented in Clam.

A proof plan is successfully constructed when there are no remaining open subgoals.
If no methods are applicable to a sequent, then the method which generated it fails.
Clam then backtracks, first trying to satisfy the method in other ways (for example, the
induction method may apply alternative induction schemes upon backtracking), then
trying to apply other methods.

A procedure for constructing the object level proof is formed by replacing each method
in the tree with its associated tactic.

Applying a method at the meta-level is usually significantly faster than applying the
corresponding tactic at the object-level for several reasons. Some details of the proof



Proof Planning Methods as Schemas 9

can be suppressed. In particular, subgoals which we expect to be proved by a tactic
wherever they arise can be omitted from the proof plan. For example, in Clam/ Oyster,
well-typedness goals which must be proved at the object level are suppressed at the
meta-level since they can usually be proved automatically by the wfftacs tactic. It is
not necessary to build the proof tree until execution of the final proof plan, so appropri-
ate data structures can be used during proof planning. In Ogyster, building the proof tree
is quite expensive. For example, as reported in (Bundy et al., 1991), a proof plan of the
associativity of multiplication which was produced by Clam contained 17 method applic-
ations, while the corresponding Oyster proof expanded to 665 applications of inference
rules.

The modular structure of proof strategies = methods and their order in the method
database, available lemmas, and the proof planner used (depth-first, breadth-first, best-
first or iterative deepening) — facilitates experimentation with different heuristics for
guiding the proof process.

3.7. AN EXAMPLE PROOF PLAN

For example, consider the following simple conjecture (the associativity of addition):

Ve,y,z.o+(y+z2)=(x+y)+2

Below is the proof plan generated automatically by Clam:

induction([s(v0)], [x:nat]) then
[base_case([sym_eval(...),elementary(...)]),
step_case(ripple(...)then[fertilize(strong,v1)])
]

The proof plan expresses that the conjecture was proved using structural induction
on a:,T producing two subgoals. The first (the base case) was proved by the base_case
method, using symbolic evaluation (rewriting) and tautology checking. The second (the
step case) was proved by the step_case method, using rippling (§4.5) and strong fertil-
isation (§4.5). Sometimes the arguments of a method are replaced in the printed repres-
entation by ellipsis in order to avoid obscuring the important steps of the proof in too
much detail. The symbols v0 and v1 refer to new variables which are introduced when
the object-level proof is carried out.

Figure 2 depicts the proof tree for a simple synthesis proof. The dotted boxes indicate
the parts of the proof tree which correspond to individual method applications. They
contain primitive rules of inference of the object-level logic, and a few tactics, including
wfftacs, which is a tactic for proving well-formedness goals in Oyster.

4. Proof plans for induction

4.1. INTRODUCTION

Proof by induction is an important mathematical technique, and is particularly of
value when reasoning about programs, because of the correspondence between induction

T The first argument of the induction method specifies the chosen induction scheme, and the second
argument the name of the induction variable.
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Figure 2. The proof generated for a simple synthesis theorem. Dotted boxes indicate the parts of the
proof tree which correspond to individual method applications.

in proofs and recursion in programs. A number of heuristics have been implemented in
Clam to automate proof by induction.

We describe the proof plan for induction in detail here because it is a mature proof
plan and provides a good example of how:

1 enriching the meta-level logic with annotations can provide guidance to the proof
construction process (§4.5)

2 aformal definition of the meta-level logic can allow us to determine useful properties
of the proof construction process (Basin and Walsh, 1996), and

3 a proof plan consists of a collection of proof planning methods.

The proof strategy for induction is described in the following subsections. One of
its cornerstones is the rippling strategy (84.5), which greatly reduces search when term

rewriting. Rippling has also been successfully applied in equational reasoning (Hutter,
1997) and in other domains (§10).

4.2. THE FORM OF CONSTRUCTOR INDUCTION

Clam has been used extensively to mechanise proofs by induction. As an example,
consider structural induction over the natural numbers:
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Base case Step case (4.1)
P(0) P(n) - P(s(n))

Vn P(n)

When this rule of inference is applied, it generates two subgoals: a base case to prove
that the proposition is true for zero, and a step case to prove that the proposition is true
for s(n) if it is true for n.

Other induction principles are also available, e.g. hd :: tl structural induction on lists,
or s(s(z)) two-step induction on natural numbers. In all the cases we shall consider, the
difference between the induction conclusion and the induction hypothesis is the presence
of constructor functions in the former. This is constructor induction. The converse case,
destructor induction, has also been automated (Hutter, 1997).

The proof strategy for induction proceeds in the step case by trying to rewrite the
induction conclusion until it matches the induction hypothesis. The following sections
describe how this rewriting process is guided.

4.3. WAVE TERMS

The definitions in sections 4.4 and 4.5 are taken from (Basin and Walsh, 1996). They
provide us with the necessary language for annotating rewrite rules and terms to ensure
that rewriting a term preserves some parts of the term while it may change others. This
language is implemented in the meta-logic of Clam.

DEFINITION 4.1. A wave front is a term with at least one distinguished proper subterm.
It is represented by marking a term with annotations, where wave fronts are enclosed in

boxes and the distinguished subterms, called wave holes, are underlined.

DEFINITION 4.2. A wave term is an annotated term which contains wave fronts.

A g(@.z) )| s(s(z +p)) |

These are not wave terms: | f(z) | (no wave hole), f([[) (wave front empty), f(z) (no

These are wave terms: ‘ f(x)

wave front), f(z) | (wave hole not a proper subterm).

DEFINITION 4.3. The parts of a term which are not in a wave front are called the skel-
eton. Formally, the skeleton is a non-empty set of terms defined as follows:

1 skeleton(t) = {t} for t a constant or variable.

2 skeleton(f(t1,....tn)) = {f(s1,...; $n)|Vi.s; € skeleton(t;)}.
3 skeleton(M) = skeleton(t1) U ... U skeleton(t,) for the t;

in wave holes.

DEFINITION 4.4. The erasure of an annotated term is the term with its annotations
removed. Formally:
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1 erasure(t) =t fm“f a constant or variable.
2 erasure(f(t1,...,tn)) = flerasure(ty), ..., erasure(ty)).

3 erasure(| f(ti,....tn) |) = f(erasure(t,), ..., erasure(ty)).

For example, the erasure and skeleton ofp() are p(s(n)) and {p(n)} respectively.

4. WAVE RULES

Rewrite rules are stored in the external library as theorems with associated proofs.
They are annotated using the same notation as wave terms. Annotated rewrite rules are
called wave rules. A wave rule is written L = R, and may only be applied in the specified
direction.

In order to ensure that wave rule application terminates, a measure on annotated terms
is defined, p : annotated_term — N. Wave rules must decrease this measure. Termination
of rippling is proved in (Basin and Walsh, 1996).

DEFINITION 4.5. A wave rule is an annotated rewrite rule L = R such that:Jr

1 erasure(L) = erasure(R) is a proved theorem,
2 skeleton(L) D skeleton(R),

3 u(L) > u(R), i.e. the rewrite is measure-decreasing.

DEFINITION 4.6. (WAVE RULE APPLICATION) A wave rule L = R may be applied to an
annotated term T to yield an annotated term T' if:

1 S is a subterm of T,
2 there is a substitution o such that:

(a) erasure(S)o = erasure(L)o,
(b) skeleton(S)o = skeleton(L)o,
(¢) T' =T[R/S]o

4.5. RIPPLING AND THE PROOF STRATEGY FOR INDUCTION

When the induction method applies (e.g. using induction schema 4.1), the step case
is annotated to indicate the differences between the induction hypothesis (P(n) in 4.1)
and the induction conclusion (P(| s(n) |) in 4.1). These differences are usually nested deep
within the term structure of P.

Rippling  the successive application of wave rules  moves the differences closer and
closer to the root of the term structure. Wave rules are skeleton-preserving, so during an

t general, the theorem need not be an equality. We also allow implication erasure(R) —
erasure(L). Note the direction of implication is the opposite to the direction of rewriting because Clam
is a goal-directed (backward-chaining) system.
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inductive proof, the skeleton of the induction conclusion is always equal to the induction
hypothesis. Eventually, either rippling becomes stuck, or the induction hypothesis can

be used in a process called fertilisation, which is divided into two kinds:T

1 Strong fertilisation: the induction conclusion has been rippled until it is a copy
of the induction hypothesis (when all the wave fronts will have been rippled to
the root), which can then be used to prove the induction conclusion immediately,
completing this branch of the proof.

2 Weak fertilisation: The induction hypothesis is an equality L = RT, and the induc-
tion conclusion contains a subterm which is a copy of either L or R. The induction
hypothesis is then used as a rewrite rule, replacing L with R in the goal or vice
versa.

Either way, rippling terminates when there are no meta-variables in the meta-level
goals. In order to achieve termination we insist that wave rules not only preserve the
skeleton, but also move the wave fronts out.

The proof strategy for induction is outlined in figure 3. It consists of application of
induction/2, followed by application of base_case in the base cases and step_case in
the step cases. Rippling is implemented in Clam by the ripple/1 submethod,i which is
applied as part of step_case. The base_case/1 and step_case methods may leave some
subgoals which require further planning to prove. For example there may be applications
of base_case/1 or induction in the step case of the induction.

induction

base_case step_case

sym;eval elementary ripble unblock fértilise

Figure 3. The proof strategy for induction. Dotted lines indicate that the method at the top of the
dotted line may apply the submethods at the bottom of the dotted line.

A nontrivial example of the use of rippling is in the proof of the following conjecture:

! The Clam implementation of fertilisation is more sophisticated than this. We simplify for present-
ational reasons.

T More generally, weak fertilisation can be used as long as the main connective is transitive. If the
connective is not symmetric, then some care must be taken over the direction of rewriting.

f'm Clam, there is a hierarchy with two levels, methods and submethods. Submethods can only be
applied during a plan if they are explicitly called by a method (or submethod).
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Vi, z : list(int).rev(rev(l) <> z) = rev(z) <> 1

The domain theory given to Clam for this example consists of defining equations (4.2,
4.3) for <> and rev (4.4, 4.5).

nil<>L = L (4.2)
T <>L = |H:(T<>L) (4.3)
rev(nil) = nil (4.4)
rev(T) = |rev(T) <> (H ::nil) (4.5)

Applying induction on [ : list(int), we get the step case:

Ve : list(int).rev(rev(l) <> z) = rev(z) <>1 (induction hypothesis)
t 0
F Vz : list(int).rev(rev((h : 1| ) <> z) = rev(z) <> (induction conclusion)

This can be rippled using wave rule (4.5) to give (4.6):

Va : list(int).rev(rev(l) <> z) = rev(z) <> 1 (4.6)

1
F Va : list(int).rev(|rev(l) <> (h::nil) | <> z) =rev(z) <>

The proof is now stuck, since we cannot perform any further outwards ripples. In the
following sections, we will describe further rippling techniques which can complete the
proof.

4.6. RIPPLE ANALYSIS

In a given formula, it may be possible to apply induction in several different ways,
and one must choose between different induction schemes and induction variables. As an
example, consider the goal:

FVz,y:nat.z+(y+y)=(@+y)+y (4.7)

Possibilities include single or two-step induction on z, single or two-step induction on
y, simultaneous single step induction on z and y, three-step induction on z and many
others.

We rely heavily on rippling because it is such a strong technique for inductive proof.
Most of the possible inductions above do not lead to a proof because there are no wave
rules which can ripple out the wave fronts introduced. Using this insight, we choose
between possible inductions with a technique called ripple analysis. Ripple analysis ranks
possible induction schemas according to how well the resulting wave terms could be
rippled.

@] +y = [swry) (45)
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In (4.7), if the only available wave rule is (4.8), then both single step induction on
z, and single step induction on y are suggested. The second of these two suggestions
is flawed: it introduces a wave front in a position from which it cannot immediately be
rippled. The first suggestion is therefore ranked higher and is the one which is selected

by the induction method. The subsequent proof does in fact succeed.
4.7. DIRECTIONAL WAVE FRONTS

In the presentation above, wave fronts move differences out through the term structure.
There are occasions when we want to move differences in through the term structure.
Usually this is done to move wave fronts into a sink: a universally quantified variable
in the induction hypothesis which can be instantiated when the induction conclusion is
fertilised.

We modify the annotations on both the wave rules and wave terms to specify a direc-
tion, either outwards as in (4.8), or inwards:

sz +y) E s(z) "y

Often a left-to-right wave rule can be used as a right-to-left wave rule by reversing the
directions of the wave fronts.
Rippling into a sink directs an outward-bound wave front down into a sink (marked

Ly]):

@]+l = o+ W] |

To maintain termination of rippling, we allow outward bound wave fronts to become in-
ward bound, but not vice versa. This entails some modification of the associated measure
on annotated terms.

Using rippling in, we can complete our stuck proof (4.6) if we have the following

additional wave rules:
0 4
x <> = |z<>(hunil)| <>t (4.9)
T 12
g<> (hunil)| <>t = z<>[h:t] (4.10)

rev(t) <> (h :: nil) i = rev(h:t i) (4.11)

Annotating the universally quantified variable z in the induction conclusion with a
sink marker, our goal (4.6) becomes:

Vo' : list(int).rev(rev(l) <> ') = rev(z') <> 1

F Vy : list(int).rev( rev(l) <> (h :: nil) ' <> |z]) =rev(|z]) <> T

Using wave rule (4.9) to ripple the wave front on the right hand side of our goal towards
the right hand side sink gives:

V' list(int).rev(rev(l) <> z') = rev(z') <> 1

9
F V@ list(int).rev(rev(l) <> (h:nil)| <> x) =|rev(|z]) <> (huni)| <>1
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The induction conclusion can be further rippled in using (4.11) on the right hand side
of the equality, and (4.10) on the left hand side to give:

-V : list(int) rev(rev(l) <> {h, ::JJ) - {rev( h ::gi)J <> 1

This is now a copy of the induction hypothesis, except that we must pick an instance of
the universally quantified induction hypothesis with 2’ = h :: 2. This takes place during
the application of the strong fertilisation method, and completes the step case of the
proof. The base case is a little tricky to prove without some lemmas, but Clam can prove
it using a nested induction. Clam displays the final proof plan for the conjecture as:

induction(lemma (list_primitive)-[(l:int list)-v1::v0]) then
[base_case(...) then
induction(lemma (list_primitive)-[(t:int list)-v1l::v0]) then
[base_case(...),
step_case(...) then
generalise(...) then
induction(lemma(list_primitive)-[(v3:int 1list)-v5::v4]) then
[base_case(...),
step_case(...)
]
1,
step_case(...)

]

As already mentioned, subplans (the arguments of methods like base_case and step_case)
are replaced in the printed representation by ellipsis so that the user can easily pick out
the shape of the proof, and the most important details, in this case the induction schema
used.

4.8. MIDDLE-OUT REASONING AND META-VARIABLES

In middle-out reasoning, meta-variables are allowed to appear in meta-level sequents
to stand for unknown existential witnesses, which are instantiated by subsequent proof
planning steps. Meta-variables are represented by Prolog variables. As the proof proceeds,
more information becomes available which can be used to choose a concrete term for the
existential variable. Middle-out reasoning was used extensively in (Kraan, 1994) to syn-
thesise logic programs. Middle-out reasoning allows, for example, speculative rippling, in
which a meta-variable is partially instantiated to allow a wave rule application. Speculat-
ive rippling is useful in situations such as lemma speculation (§5.2), and during program

1
synthesis. For example, a speculative ripple with the wave rule m +y=>|s(z+y)

can be applied to (4.12) to give (4.13), partially instantiating z to s(2').

F3zizit e =5y + o) (4.12)

F--a F--a

F3z2 0 s(2' i 4+2)| =|s(y+=) (4.13)
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(Kraan, 1994) makes extensive use of middle-out reasoning to synthesise logic pro-
grams.

4.9. BENEFITS OF RIPPLING
The rippling technique has several benefits:

1 Tt restricts rewriting so that termination of the rewriting process is guaranteed and
search is reduced. Often search in the rewriting process is completely eliminated.
Bidirectional rewrite rules can be used in both directions without adversely affecting
termination.

2 Rippling proofs can be easier to understand than non-rippling proofs because the
purpose of rippling (to reach fertilisation) is clear, each rippling step makes pro-
gress towards this end, and rippling steps preserve the structure of the induction
hypothesis in the induction conclusion.

3 The applicability of other proof methods (e.g. induction) can be restricted by taking
into account the ability of subsequent rippling to make progress in the proof.

4 Rippling proofs are more likely to succeed than proofs using rewriting and a recurs-
ive path ordering (Bundy and Green, 1996).

4.10. THE PROOF STRATEGY FOR INDUCTION REPRISE

The proof strategy for induction provides a good example of the capabilities and mech-
anisms of proof planning. Proof plans are constructed in a search space which is tightly
controlled (by rippling), using a relatively small number of methods. The proof plans
which are produced have good explanational value; once a user has been taught what
rippling is, rippling proofs can be very easy to understand. The meta-level and object-

level logics differ.

5. Making productive use of failure

5.1. PROOF CRITICS

Proof planning has been successful in a number of domains. Still, it is open to criti-
cism that the ability of the system to find a proof plan is as sensitive as other automated
theorem proving techniques to the domain theory which the prover is given. Proof critics
(Ireland, 1992; Ireland and Bundy, 1996) have been developed to overcome this disad-
vantage. Proof critics are triggered by the failure of a proof planning attempt, and exploit
the high-level nature of the partial proof plan to suggest an appropriate patch.

Suppose a method has three preconditions, of which two succeed, but the third fails.
Critics are associated with some of these patterns of failure. For instance, one critic may
fire if the first two preconditions of a method succeed, but the last one fails. It will then
suggest an appropriate patch for this kind of failure, e.g. suggest the form of a missing
lemma, suggest generalising the conjecture. The patch is instituted and proof planning
continues.

The strongest heuristic we use is the rippling heuristic. Currently, our critics — in-
duction revision, lemma speculation, generalisation, and case analysis — are based on
analysis of failures in rippling. The constraints that rippling places on the proof search
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space, and its declarative nature, enable us to automatically patch failed proof attempts
through the construction of appropriate eureka steps. In (Ireland and Bundy, 1996), a
number of rippling-based critics are described. These have all been implemented in Clam.
In the following section we describe one, the lemma speculation critic. The presentation
is based on (Ireland and Bundy, 1996, pp.16-18).

5.2. THE LEMMA SPECULATION CRITIC

The lemma speculation critic (and its more constrained cousin, the lemma calculation
critic) exploits the annotations in a failed rippling proof to speculate a lemma which will
be able to unblock the goal, i.e. continue rippling. For example, consider the conjecture
of §4.5:

Vi, t: list(int).rev(rev(l) <> z) = rev(z) <>1

As before, Structural induction on [ followed by application of a definitional wave rule
for rev gives the following goal:

rev(rev(l) <> (h = nil)| <>z) =rev(z) <> T

In §4.7 above, we needed some additional wave rules to complete the proof.

If we do not have these wave rules available, then no further rippling is possible. The
lemma speculation critic is triggered by the failure of rippling, and tries to find a patch
for the proof attempt by speculating a missing wave rule. In this case, the right hand

side of the equation above is selected for unblocking.Jr The critic therefore knows that
the left hand side of the new wave rule is:

rev(z) <> T = ..

The right hand side of the wave rule must have the same skeleton. The critic constructs
a schematic right hand side, cementing terms from the skeleton together using higher-
order meta-variables, giving a schematic wave rule:

4
rev(z) <>|h:l ! = | Fi(rev(x), h,l,z)

The schematic wave rule is automatically generalised to give the following (there are
other possibilities which can lead to search during the subsequent proof process):

1
‘<>Y

W<s[Xay| = [RW,X.Y)

Applying this schematic wave rule in the proof plan leads to a schematic goal which con-
tains meta-variables. The meta-variables are instantiated during further rippling and fer-
tilisation. In this case, F} is automatically instantiated in several steps to AwAzAy.w <>
(x <> mil), which gives the wave rule (4.9) we needed in §4.7. Once the schematic wave
rule is fully instantiated, an attempt is made to prove it is a valid lemma, which for this
wave rule succeeds.

1 Equally, the left hand side could be selected.
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6. Cooperative theorem proving

For the foreseeable future theorem provers will require human interaction to guide
the search for non-trivial proofs. Fortunately, proof planning is also useful in interactive
theorem provers. Proof plans facilitate the hierarchical organisation of a partial proof,
assisting the user to navigate around it and understand its structure. They also provide a
language for chunking the proof and for describing the interrelation between the chunks.
Interaction with a semi-automated theorem prover can be based on this language. For
instance, the user can: ask why a proof method failed to apply; demand that a heuristic
precondition is overridden; use the analysis from proof critics to patch a proof; etc.

The XBarnacle (Lowe and Duncan, 1997) system is a semi-automated theorem prover
based on proof planning. Proof planning provides a good basis for a cooperative theorem
proving system. Not only can the user take advantage of the automation that proof
planning offers, but the understandability of proof planning aids communication between
system and user.

The user sees the partial proof plan as it is being constructed, using the standard
depth-first planning strategy. At any point, the user is free at any point to stop the proof
and intervene by: overriding the depth-first planning strategy and indicating a node in the
partial proof plan to be proved next, selecting a method for application at a node, or even
loading new lemmas. The user may also load and save partial proof plans from/to disk.
Evaluation of users’ interaction with the system provides evidence that user interaction
allowed detection and correction of failing proof attempts (Jackson, 1997).

7. Semantics

The logic of meta-level sequents, methods and methodicals is intended to be formal.
For example, in Clam, rippling is defined on an annotated meta-level calculus, which
can be formally defined. The formal definition of a calculus of annotated terms has been
used to prove important properties of rippling, in particular its termination (Basin and
Walsh, 1996). The semantics of methods is therefore as inference rules in the meta-level
logic.

In practice, the meta-level logic, and therefore the semantics of methods, is often a
mixture of a well-defined formal language which we could indeed call a meta-level logic,
and other, more impure features.

We can however provide a second kind of semantics of proof plans and methods in terms
of the object-level proofs that they ultimately generate. This semantics is provided by
the necessity of mapping proof plans to object-level proofs (via the method-tactic and
methodical-tactical mappings).

8. The relationship between proof planning and schema-guided synthesis

We briefly mention here some work which is in progress.

In (Richardson, 1999), we elaborate on the correspondence between proof planning
methods and program synthesis schemas. We proposed that proof planning offers a
paradigm which combines logical rigour with usability, and, in addition, allows the em-
ployment (or indeed development) of schemas to be integrated in a very natural way
with the automatic satisfaction of any proof obligations which arise. A particularly im-

portant correspondence is the induction method, which attempts to select the most
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appropriate available induction scheme to apply to a conjecture, and algorithm design
tactics, for example divide-and-conquer. In general, divide-and-conquer algorithm design
tactics correspond to non-structural induction schemes. The relationship is made clearer,
however, if we consider applying a divide-and-conquer strategy where the datatype over
which the function ranges is a binary tree. The divide-and-conquer strategy in this case
is also structural induction on binary trees.

9. Implementations

In this section we briefly compare the three existing proof planning systems.

Clam (Bundy et al., 1990) was the first proof planner. Its method database is divided
into a two-level hierarchy of methods and submethods. The meta-language is Prolog.
Rippling is implemented as a calculus of annotated rewriting. Clam has been linked to
a number of object-level theorem provers. The principal one is the Oyster implement-
ation of Martin-Lof’s Type Theory (Martin-Lof, 1979), which is modelled on NUPRL
(Constable et al., 1986). The constructive nature of the logic, combined with a rich type
system, make it well-suited to program synthesis and verification. Clam has also been
linked to an implementation of (classical) first-order predicate calculus used for logic
program synthesis (Kraan, 1994), and there is now an experimental link to the HoL
theorem prover (Boulton et al., 1998). Work on Clam methods has principally focused
on automation of induction, which it can now do with some success.

Qmega (Benzmiiller et al., 1997) is a Lisp-based proof planning system. The object-
level logic is a natural deduction style calculus. As opposed to the standard versions of
Clam and AClam, Qmega is based around a central proof plan data structure (PDS),
which can be updated independently of the current proof plan construction strategy,
allowing for example both forwards and backwards planning. dmega allows the definition
of control rules which explicitly manipulate the relative order in which methods are
applied, potentially providing more flexible method ordering, and making the control
strategy explicit. dmega also has the interesting ability to call external theorem provers,
and translate the resulting proofs back to natural deduction style and integrate them
into the PDS.

AClam has a more complex method hierarchy than Clam. The meta-logic is AProlog
(Miller, 1991), a strongly typed, higher-order logic programming language. This facilitates
planning proofs of higher-order theorems, and the higher-order unification required for,
e.g. middle-out reasoning or proof critics, can be implemented directly as higher-order
unification in the meta-logic. Reduction of «, 3, and 7 redices is carried out automatically
and transparently by the meta-logic. One of the important repercussions is that the
syntactic notions on which rippling relies in the first-order case are no longer valid.
Rippling is defined instead using a concept of embeddings (Smaill and Green, 1996),
which has the desired behaviour for both higher-order and first-order terms. AClam has
yet to be linked to an object-level theorem prover.

10. Applications

Proof planning has been applied in a number of domains. In this section we do not
attempt to give an exhaustive list, merely a flavour of the variety of applications and
associated references.
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10.1. REASONING ABOUT SYSTEMS
10.1.1. PROGRAM SYNTHESIS AND VERIFICATION

Clam and A Clam have been applied to many problems in program synthesis and veri-
fication. For example, (Armando et al., 1996) reports on automation of the synthesis
of decision procedures, and (Armando et al., 1997) on automating the synthesis of a
unification algorithm.

10.1.2. HARDWARE VERIFICATION

In (Cantu-Ortiz, 1997), Cantu describes an application of proof planning to the verific-
ation of clocked synchronous electronics. Cantu successfully automated the verification
of the Gordon computer, which had previously been verified manually in HOL (Joyce
et al., 1986). The proof plans were the largest ever created, and although some modifica-
tion was required to Clam in order to cope with the much larger proofs (for example by
employing memoisation), this effort provides evidence that proof planning can scale up.

10.1.3. VERIFICATION OF COMMUNICATING SYSTEMS

Proof plans have been used to automate the verification of systems specified in CCS
(Milner, 1989). Clam’s standard proof plan for induction was extended with special-
purpose methods for CCS proofs (Monroy et al., 1998).

10.2. AUTOMATION OF MATHEMATICAL PROOFS

Both Clam and the Qmega proof planners have been used to prove a number of limit
theorems (Melis, 1996b). Diagonalisation arguments have been formalised (Gow, 1997).
Clam has been used to automate the summation of series (Walsh et al., 1992). Coin-
duction has been automated (Dennis et al., 1996). Proof planning has also been used to
adapt a computer algebra system to obtain fully expansive proofs (Kerber et al., 1998).
Equational reasoning has been automated (Hutter, 1997).

10.3. PROOF PLANNING IN OTHER DOMAINS

Proof planning has been applied in a number of nonmathematical domains.

There has been some success applying proof planning to game playing (Bridge (Frank
and Basin, 1998) and Go (Willmott et al., 1998)) and to configuration problems (Lowe
et al., 1996; Pechoucek, 1996; Lowe, 1993). It is potentially applicable wherever there
are common patterns of reasoning. Proof planning can be used to match the problem to
the reasoning method in a process of meta-level reasoning. Proof planning gives a clean
separation between the factual and search control information, which facilitates their
independent modification.

11. Questions and answers

See (Bundy, 1998) for more questions and answers on proof planning.
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11.1. WHAT IS THE RELATION BETWEEN PROOF PLANNING AND RIPPLING?

Rippling is a key method in the proof plan for induction. It is also useful in non-
inductive domains. However, it is only one proof planning technique. It is not proof
planning itself, but it does provide a good example of how an appropriate meta-theory,
realised using methods, can provide tight and comprehensible guidance to the proof
construction process.

11.2. HOW CAN HUMANS DISCOVER PROOF PLANS?

This is an art similar to the skill used by a good mathematics teacher when analysing a
student’s proof or explaining a new method of proof to a class. The key is identifying the
appropriate meta-level concepts to generalise from particular examples. Armed with the
right concepts, standard inductive learning techniques can form the right generalisation.

There has been some work on learning proof plans from example proofs using forms
of explanation based generalisation (Desimone, 1986; Silver, 1985).

11.3. WHAT ABOUT KNOWLEDGE ENGINEERING?

Proof planning is a knowledge-based technique, and in common with any knowledge
based technique, knowledge engineering is a significant concern. In particular:

1 Does the approach scale?
2 How much effort is required to encode knowledge?
3 Once encoded, is the knowledge reusable and portable?

Evidence for the scalability of proof planning can be found in the work of (Cantu-
Ortiz, 1997) (§10.1.2). Some of the proof plans which Cantu produced were very large.
Nevertheless, some changes to the proof planner to improve efficiency, notably by em-
ploying memoisation, were sufficient to make the proof planning practicable.

The possibility of annotating meta-level sequents, and the hierarchical nature of proof
planning methods, both help to ensure that proof strategies are in some sense modular;
knowledge can be added to the system (in the form of methods) without disturbing what
knowledge is already there. Indeed, we found (Richardson, 1997), that the methods in
Clam’s proof strategy for induction are largely independent, and method ordering has
little effect on Clam’s ability to find a proof plan.

Cantu also reports (Cantu et al., 1996) on the development time for some of his proof
plans. Although there is a high initial cost in developing proof strategies for a new
domain, once in place, similar conjectures from the same domain can be proved with
little additional effort.

Reuse of existing proof planning methods takes place in two ways. First, some methods
can be used in ways which are quite different to the original intention. A very good
example is the rippling strategy, which was initially formulated for automating proof by
induction, but has since been very useful in automating equational reasoning (Hutter,
1991), summation of series (Walsh et al., 1992), and other domains.

Second, we would like to be able to exploit techniques from one proof planning system
in a new proof planner. There is currently no lingua franca for proof plans, so we cannot
directly exchange method code (Qmega methods are written in Lisp, Clamn methods are
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written in Prolog, and AClam methods are written in AProlog). We therefore rely on
authors writing their methods in a declarative way. So far, it seems that methods can be
ported between systems quite quickly. We have some experience with this — AClam’s
methods are mostly based on those in Clam.

12. Conclusions

Proof planning is a schema-based technique for automated theorem proving. Proof
plans are constructed in an abstraction of the proof search space using proof schemas
called methods, which encode proof heuristics. Methods are schemas in the traditional
sense, with the addition of a tactic slot which serves to link the meta-level of methods
with the object-level of tactics. When a complete proof plan for a conjecture has been
found, it is automatically mapped to a sequence of tactic applications which can be
executed to produce a complete formal proof of the conjecture. This reduces the amount
of search required to find a proof, and produces proofs which are at a sufficiently high
level to be understandable. Failed proof attempts can be patched by proof critics.

Several implementations of proof planning exist. They differ in significant ways, but
share the characteristics of using planning techniques to construct a proof plan, and a
mapping to tactics to generate a complete formal proof. The link between proof plans
and tactics provides a natural semantics for proof planning methods.

Proof planning has been applied to a number of domains, including mathematical
domains such as proof of limit theorems, and domains such as the synthesis and veri-
fication of computer software and hardware. The proof plan for induction, and rippling,
have proved both useful and versatile in these domains.

Features of proof planning, such as the separation between object-level and meta-level,
and rippling, may be of interest to other schema-based techniques.

The use of schemas allows proofs to be constructed at a level of abstraction which both
reduces the amount of search required to find a proof, and is comprehensible to users.
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