
To be presented (and included in the Proceedings) at the 13th InternationalWorkshop on Qualitative Reasoning (QR '99).Automatic Modelling using Bayesian Networksfor Explanation GenerationElias BirisSchool of Arti�cial Intelligence, The University of Edinburgh,80 South Bridge, Edinburgh EH1 1HN, UK.Email: eliasb@dai.ed.ac.ukThis work was jointly done with Q. Shen. It was partlysupported by an EU grant (BRMA-CT96-5002). Theauthor is grateful to Chris Mellish, James Kwaan andRoderick McKinnel for helpful discussions.AbstractThe task of generating informative explana-tions in industrial training involves automatedformulation of system models with respect tothe varying levels of the trainees' knowledge.Compositional Modeling provides a useful basisupon which to structure a suite of models thatmay reect di�erent complexities of the sys-tem being modelled. However, additional infer-ences are required in order to select appropri-ate model fragments to form a coherent systemmodel that is suitable for a given trainee's de-gree of expertise. This paper presents a novelapproach to perform such inferences by the useof Bayesian networks. The work is implemen-ted and typical experimental results are given.1 IntroductionThe need for informative explanations regarding the be-haviour of physical systems arises in many tasks in sci-ence and engineering. In industrial training, such ex-planations are especially signi�cant for the establishmentof coherent and consistent knowledge of the componentsand their associated processes of a given plant. Thetask of explanation generation involves, essentially, �nd-ing information that is relevant to a communicative goalset by the explainee, from available knowledge sources,and organising this knowledge into a cohesive and coher-ent multi-sentential text. An important requirement ofgenerating such explanations is the ability to vary theexplanation content according to the expertise of the ex-plainee, by adjusting the level of detail of the underlyingdomain knowledge.To achieve the required adjustments of domain know-ledge, a technique that allows for systematic variationof the knowledge representation is needed. Composi-tional Modelling (CM) [Falkenheiner and Forbus, 1991],[Gruber and Gautier, 1993], [Nayak, 1994], [Levy et al.,

1997] has been developed as a methodology for formu-lating knowledge models for the domain of interest bycomposing model fragments, i.e. (partial) models of thedomain's primitive elements that describe only some as-pects of the components' behaviour. As such, CM en-ables the variation of detail of the entire model by alter-ing the detail of the fragments used as building blocksand is used as basis for the present work.By reecting the user expertise to the detail level ofat least some of the model fragments, guidelines for theselection of the remaining fragments can be set in or-der to formulate a model that corresponds to the un-derstanding ability of the user. This is, however, a ex-ibility that has not been provided in the existing workfor automatic model formulation. An approach is hereinpresented towards enabling such model formulation forthe domain objects of interest. The selection of the ap-propriate model fragments is based on the utilisation ofreasoning with a Bayesian network. This is motivated bythe intention to employ an e�cient as well as formal the-ory to handle the uncertainty involved with the selectionof fragments, based on initial preference of some of theavailable model fragments according to the informationrequest of the user.The rest of this document is organised as follows. Sec-tion 2 provides an overview of the design of the en-tire computer program that performs explanation gen-eration, putting the model formulation module in con-text with the rest of the modules involved. In Section3, after a brief review of the CM paradigm and basicideas in reasoning with Bayesian networks, the proposalfor model formulation through Bayesian model fragmentselection is presented. A simple example of the reason-ing involved in this approach is illustrated in Section 4.Section 5 concludes the paper.2 The Explanation Generation SystemThe present work is developed within the general frame-work of explanation generation. Figure 1 shows the mainfunctional modules (Explanation Generator, Approxim-ate Reasoner and Model Formulator) and their compon-ent dependencies of an explanation system, designed andimplemented by the author.
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Figure 1: Explanation system: individual modules and their componentsThe Explanation Generator serves as a mediator withthe user. During a training session, the user can se-lect questions from prede�ned menus about the com-ponents of the domain system that is presented tothe user. Each selected question is internally trans-formed into a �rst-order predicate structure which formsthe current user explanation goal: question typef<list of related objects >g, where an object is adomain component or process of interest. This goal isutilised to update the user model and the history of thediscourse, following the methods given in [Cawsey, 1993].The user model contains a set of pro�les for the user,classi�ed according to the object(s) appearing in each ofthe queries. These pro�les essentially keep a record ofthe object's detail level as it was represented in the modelused for the most recent explanation involving this ob-ject. The initial detail level of an object is set by defaultto the simplest level possible for that object. The detaillevel is determined, currently, by the number of variablesinvolved in the set of equations constituting the modelfragment that represents the object. From these pro�lesit is possible to derive the detail level in the most recentrepresentation of an object Dobjecti , as well as the rateof change of the detail level, _Dobjecti , as the explana-tion process continues. Both these quantities and thefrequency of occurrence of an object within the pro�lesof the user model, Fobjecti , are used by the ApproximateReasoner to compute the desired detail level, D̂objecti ,of the fragments to be selected in the subsequent sys-

tem model formulation process. Approximate reasoning[Pedrycz and Gomide, 1998] provides a consistent meth-odology of accounting for the uncertainty about the re-lationship between the user's expertise and the desireddetail of the model fragments that is needed for domainmodel formulation.The Model Formulator exploits the ApproximateReasoner's decision to select appropriate model frag-ments. It is this module that the current work is fo-cused on. In CM, each of the model fragments typicallyrepresents a component or process under certain oper-ational conditions and is associated with several con-sequences that will result if the conditions are satis�ed.Given model fragments for various aspects of a physicalsystem, the system model is formulated commonly bydetermining its boundary and deciding the best repres-entation of parts within that boundary. For the presentapplication, the boundary of the system model is set byan initial domain-dependent description of the systemthat the trainee is to learn about. The model formula-tion process is facilitated by reasoning with a Bayesiannetwork. This process will be detailed in the followingsection. The outcome of this reasoning is a complete,adequate model containing fragments for all the com-ponents of interest, at a detail level appropriate for theuser. The model is then parsed in order to extract in-formation to be conveyed and the methods described in[Cawsey, 1993] are applied for structuring dialogue plansfor this information to be communicated to the user viathe presentation manager.



3 Model FormulationAfter a general overview of the system's functioning, thedetails regarding the Model Formulator come into focus.Before engaging in the discussion of the main issues ofthe proposed model formulation technique, it is bene�-cial to briey review the relevant theoretical aspects forthe two research areas involved in the model formulationprocess, i.e. CM and Bayesian networks.Compositional ModellingCM o�ers a paradigm of formulating models for a givenphysical domain, composing them out of partial descrip-tions of certain physical aspects. These descriptions aregenerally known as model fragments. Each of these frag-ments represents a component or process under certainconditions and with several consequences which can beful�lled provided that the conditions are satis�ed.Having represented a set of phenomena using modelfragments, the methodologies developed within CMstrive to complete two tasks: determining the modelboundary and deciding the best representation of partswithin that boundary. The former involves determiningthe boundary of the model with respect to both the phys-ical extent of the system being modelled and the detailof representation of the various components of the sys-tem. Typically, a hierarchical manner of representationis followed, with all the components assembled by sub-components. Traditionally, heuristics such as discoveringthe minimal covering system [Falkenheiner and Forbus,1991] are used to identify the physical model boundary.With the model boundary identi�ed, a decision ismade on how each part of the system should be represen-ted as well as how to assemble a model from the partialdescriptions for each of the parts. The main approachesare creating a parsimonious model directly, creating anover-complex model and then attempt to simplify it, orcreating a simple model and subsequently adding detailto it according to the task for which the model is re-quired.The �nal issue to be addressed concerns the veri�ca-tion of the adequacy of the formulated models with re-spect to the task they are built for. The typical approachis to check the internal consistency of a model against aset of adequacy constraints [Levy et al., 1997].Compositional Modelling approaches are sound, buto�er little provision for use in uncertain environments.In the context of explanation generation, however, select-ing suitable model fragments with respect to the user'sexpertise inherently involves uncertainty in modelling as-sumptions. This is because of� incompleteness in determining exactly what the userknows about the domain components of interest,� approximation in specifying which level of detail canbe deemed as su�cient when selecting fragments tosatisfy a query,� complexity in mapping all possible levels of expert-ise to all possible detail levels for the available modelfragments.

A useful model formulation mechanism must be ableto handle these issues. Bayesian network reasoningprovides a general and e�cient means of addressing un-certainty and is therefore used herein to assist the taskof the Model Formulator. In addition the network struc-turing methodologies that accompany Bayesian networkscan be an e�cient basis upon which to translate mod-elling expertise into intuitive causal relationships, whenselecting model fragments for di�erent domain compon-ents.Bayesian NetworksA Bayesian network is a directed acyclic graph in whichthe nodes represent the variables of interest and thelinks stand for the causal dependencies between vari-ables (or nodes) [Pearl, 1988]. The nodes are labelledwith conditional probabilities that provide estimates ofthe strength of the dependencies between the values ofthe variables. Therefore, a Bayesian network is a com-pact, localised representation of a probabilistic model,using a qualitative, graphical depiction of the causal re-lations between the entities involved, and a quantitativemeasure of the \strength" of these links. The key to itslocality is that, given a graphical structure which repres-ents the dependencies (and, implicitly, conditional inde-pendencies) among a set of variables, the joint probabil-ity distribution over the set can be completely describedby specifying the appropriate set of marginal and condi-tional distributions over the variables.E�cient reasoning mechanisms have been developedto handle inferences within a Bayesian network [Pearl,1988], [Shennoy and Shafer, 1988]. Typically, thesemechanisms involve propagation of received evidence forthe value of a speci�c node throughout the network, us-ing the Bayes rule [Pearl, 1988] for the estimation ofposterior probabilities of the nodes taking speci�c val-ues.Several major issues are important to be resolved whenapplying Bayesian networks:� structuring the network, based on qualitative in-formation of the causal inuences between thechosen representational primitives (i.e. the net-work's nodes);� eliciting probabilistic information to annotate thenetwork's links, i.e. deciding about the prior prob-abilities associated with the network's links; and� selecting a method to propagate evidence throughoutthe network, and collecting results to utilise lateron. These will be addressed below for the presentapplication problem.Other details relating to Bayesian networks are beyondthe scope of this paper, but are discussed in depth in[Pearl, 1988].The Proposed MethodThe inputs to the Model Formulator are:� A structural description of the domain system,specifying the components involved and the inter-



connections between them. This is prescribed be-fore the start of an explanatory session and remainsunchanged during the explanation process.� A library of model fragments, represented at di�er-ent detail levels. Each model fragment represents acertain aspect of the structural and behavioural in-formation of a given component of the domain sys-tem. The model fragments for the di�erent repres-entations of a particular component are organisedinto an assumption class for the component. Frag-ments within an assumption class have di�erent andoften mutually contradictory conditions, and thusonly one fragment from the assumption class of agiven component can be used to represent the com-ponent in a system model.� A desired level of detail for a subset of the modelfragments required to construct the system model,provided by the Approximate Reasoner.� A set of objects (components or processes) of in-terest, obtained from the queries of the user.The domain system description is used to structurea Bayesian network relating model fragments from oneassumption class to fragments of other classes. Eachnetwork node stands for the selection or rejection of aspeci�c model fragment. As such, a node may take avalue from the set fyes; nog (with yes indicating theselection of the fragment and no the rejection). Thelinks of the Bayesian network represent the relationshipsbetween model fragments as determined by the globalsystem description: if component A has its output con-nected to the input of component B, then links are es-tablished from the model fragments of A towards thoseof B. Although care needs to be taken over the \con-nections" between fragments of di�erent precisions, themodel fragments used are of qualitative symbolic natureand such connections can be reasoned on the grounds ofqualitative values of the variables involved in the frag-ments. The present work assumes the worst case, allow-ing all model fragments of component A to be connec-ted to all fragments of component B, if A is physicallyconnected to B. Of course, any given constraints fromtheoretical or empirical knowledge sources that prohibitsuch a connection can be taken into account in settingup the network structure by assigning a prior probabilityof zero to the forbidden network links.Given the structure of a Bayesian network, each net-work node is annotated with estimates for the condi-tional probabilities of the node acquiring a yes or novalue when its \parent" nodes are assigned their val-ues. In general, deriving such prior probabilities is atask of great di�culty [Pearl, 1988]. There are applica-tions where historical data is available, thereby enablingthe required estimation, sometimes by simply calculat-ing the frequencies of value appearance. In less fortunatecases, like the present application, some sort of rules orheuristics have to be derived from the problem descrip-tion in order to decide the prior probabilities.

In this work the heuristics employed depend onwhether or not a node is a root node, i.e. one that hasno parent nodes. The �rst heuristic indicates whether amodel fragment is to be selected, by weighing the follow-ing two important factors: the strength of causal inu-ence that the fragment receives from its selected parentsand the compliance of the fragment with respect to thedetail level of these parent nodes. This heuristic can bestated as follows.De�nition 1 For each non-root node MFji ; j =1; : : : ; L, representing the selection or rejection of modelfragment j of component Ci; i = 1; : : : ;M , with parentnodes Ujk; k = 1; : : : ; N , the prior probability of select-ing the corresponding fragment when some of the parentnodes are taking a value yes (with the remaining parentnodes taking a no value) is determined by:P (MFji = yesj\p Ujp = yes) =P (MFji = yesj\q Ujq = yes; DUjq = DMFji )� P (MFji = yesj\r Ujr = yes; DUjr 6= DMFji )withP (MFji = yesj\q Ujq = yes; DUjq = DMFji )= Yq VMFji UjqP (MFji = yesj\r Ujr = yes; DUjr 6= DMFji )= Qr VMFji UjrQr(DMFji �DUjr )2In this de�nition, p ranges among the parents that havetaken a yes value, and VMFji Ujl ; l 2 fq; rg denotes anestimate of the amount of causal inuence that fragmentMFji receives from parent Ujl when Ujl takes a valueyes. Let Ninfluence be the number of those variableswhich are de�ned in the consequences of Ujl and whichare inuencing variables ofMFji , and Ntotal be the totalnumber of variables de�ned in Ujl, then VMFji Ujl iscalculated as the ratio Ninuence=Ntotal.As an example of the heuristic, consider the simplenetwork of �gure 2 which connects four model frag-ments of di�erent detail levels (for three componentsA;B and C). Model fragment A1 has one variable outof a total two variables that can inuence variables inits child node, fragment B1, that is VB1 A1 = 0:5.The \error" in detail between fragments B1 and A1 isDB1 � DA1 = 4 � 2 = 2. Similarly, VB1 A2 = 0:33,VC1 B1 = 0:50, DB1 � DA2 = 1 and DC1 � DB1 = 0.The application of the above heuristic gives, thus, thefollowing non-normalised results:P (B1 = yesjA1 = yes; A2 = yes) = 0:0413P (B1 = yesjA1 = yes) = 0:125P (B1 = yesjA2 = yes) = 0:33P (C1 = yesjB1 = yes) = 0:50
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Figure 2: A simple Bayesian network and the corres-ponding model fragmentsA much simpler heuristic is used to assign prior prob-abilities to root nodes, assuming all fragments of a com-ponent are initially equally likely to be selected.De�nition 2 For all root nodes RMFri ; r = 1; : : : ; Rof a component Ci; i = 1; : : : ; S, the prior probability ofthem being selected is P (RMFri = yes) = 1R .Following this, for the root nodes A1 and A2 of �gure 2,their probability of being selected is:P (A1 = yes) = P (A2 = yes) = 1=2Given a subset of the prior probability values for thenetwork's root nodes and for each non-root node withrespect to its selected parents, the probabilities for theremaining node values combinations can be calculated.This is accomplished using the principle of maximumentropy, subject to the constraint that the sum of allprobability values to a node must be equal to 1 and as-suming a uniform distribution of those prior probabilit-ies for which we have no previous estimation (see [Pearl,1988] for details of this principle).Given the structure and prior probabilities, reasoningis performed based on the evidence of which fragments ofwhat components are of current interest to the user andon which model fragments are indicated by the Approx-imate Reasoner. The reasoning process helps with thedecision of which fragments to select (see �gure 1). Theevidence is translated to selection of the indicated frag-ments with probability 1. This is propagated through-out the network to determine the posterior probabilitiesof the nodes for which there exists no evidence, usinga standard Bayesian network inference method as de-tailed in [Shennoy and Shafer, 1988]. When the reas-oning process terminates, the posterior probabilities ofevery model fragment being selected or rejected are re-turned.

Model acceptance under adequacy constraintsThe Bayesian reasoning process determines the mostprobable representation of each individual componentwith respect to the user's expertise. Although thereasoning is mathematically sound, ensuring that onlyone fragment is chosen for each component, the sys-tem model constructed by simply combining the selectedmodel fragments through their terminal connections isnot entirely guaranteed to be most adequate in support-ing the user's information needs. Additional constraintsmay be needed to modify the decisions made by Bayesianinference to eliminate inclusion of fragments that wouldhave led to an inadequate model. The criteria listed intable 1 are used to serve as the adequacy constraints,the intuitive knowledge of human modelers.These constraints are applied whenever a model frag-ment is considered for selection (or rejection) accordingto the reasoning of the network. The partially formu-lated model is checked for its adequacy, and if not all con-straints are satis�ed, the model fragment is discarded. Inthis case, the next most probable model fragment (of thesame component) is considered as a candidate for selec-tion. A fragment cannot be retracted once it has passedthe test of the adequacy constraints. This is to allow forconsistent application of the adequacy constraints avoid-ing potential loops.4 Example of formulating adequatemodelsTo demonstrate that the proposed model formulationtechnique works, the approach has been implementedand applied to the domain system depicted in �gure 3.The example system is a simpli�ed version of the second-ary liquid sodium cooling system within a fast breedernuclear power plant. It contains seven components: IHX(intermediate heat-exchanger), P/M (pump-motor sys-tem), EV (evaporator), SE (source of liquid sodium),and R1, R2 and R3 (hydraulic resistances of the con-necting pipes). For simplicity, only hydraulic phenomenaare considered for each of these components. The modelfragments library contains three model fragments withdetail levels of 4, 6 and 10 variables for each component,except the liquid sodium source which is modeled withone model fragment with a detail level of 4 variables.The fragments for each component are grouped usingthe component's assumption class. Suppose that eachcomponent within the system is inuenced only throughits two input terminal variables, the input liquid ow andthe input pressure. Consequently, each fragment can in-uence other fragments through its output terminal vari-ables: the output pressure and the output ow. This isthe worst scenario with respect to the possible relationsbetween variables de�ned in system: knowing practic-ally nothing about the causal relationships between thevariables.Given the domain system description, the Bayesiannetwork can be structured as also shown in �gure 3. Us-ing the heuristics de�ned in section 3, the prior prob-



No. Primitives involved Description Rationale1 Model variablesSystem components An adequate model should includeevery component of interest. The behaviour of a component cannot be explained ifthe component is not represented in the model.2 Exogenous variables In an adequate model none of its exo-genous variables should be inuencedby any other model variable. Exogenous variables are inuenced only by the sur-rounding environment of the modelled system and areindependent of other variables in the model.3 Inuences on depen-dent variables mustbe complete An adequate model should contain acomplete set of model fragments thatinuence each of the model's depend-ent variables, according to the overalldomain system description. This ensures that a model is complete: for each com-ponent the model should include model fragments forall components that may a�ect it, at the detail level ofinterest, according to the domain system description.4 Inuences on depen-dent variables mustnot be redundant An adequate model should contain nofragments that relate to each otherthrough class inheritance (e.g. a con-denser and a heat exchanger fragmentfor one component). This is imposed to ensure that when composing modelfragments together coherence is maintained by avoid-ing to mix di�erent description levels of an entity.5 Inuences on depen-dent variables mustbe valid An adequate model should includemodel fragments with valid con-ditions. This ensures that all selected model fragments havevalid conditions (structural and behavioral) with re-spect to the entities appearing in the model at the re-spective detail level.Table 1: Adequacy constraints: description and rationale
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Figure 4: The posterior probability distribution for the network in �gure3. A: without considering evidence; B: withIHX3 selected by evidence; C: with PM3 and EV3 selected by evidence; D: with the selection of R13 and R23 biasedthrough application of adequacy constraints.abilities for each of the nodes with respect to the linksfrom its parents, as well as the prior probabilities for theroot node (SE) are determined. Part of the setting ofthe normalised prior probabilities is presented in �gure3. The prior probability value tables attached to theremaining nodes are the same as those listed in tablesT21-T23 in �gure 3 and hence are omitted. Once thenetwork is structured and the prior probabilities are as-signed and normalised, the inference procedure reportedin [Sa�otti and Umkehrer, 1991] is ready to be appliedto calculate the posterior probabilities for possible valuesof the network nodes.Without considering evidence from the user or the Ap-proximate Reasoner, the posterior probability distribu-tion of the Bayesian network is computed as that givenin sample A of �gure 4. The shaded mini tables in this�gure correspond to the elements that are indicated forselection, as a direct result of Bayesian reasoning. Givenno evidence, the simplest model fragments are selected,meeting the training purposes well.Suppose now that the user has indicated interest forthe intermediate heat exchanger component. This istranslated to a piece of evidence suggesting that a modelfragment of this component should be selected. As-suming that the Approximate Reasoner has calculateda detail level of 10 variables for this component, themost complex model fragment is selected. This evidenceis propagated throughout the network, resulting in the

probability con�guration for other system componentsas shown in sample B of �gure 4, with the evidence de-noted by X. As indicated the simplest fragments are stillfavoured over the complex ones, although the probabilit-ies of selecting complex model fragments have increasedcompared to those in sample A.If the indications for the preferable model fragmentscontinue to favour the most complex ones, as withsample C of �gure 4 where the fragments for PM andEV are also selected by given evidence, this can leadto a change of the fragment selection. However, as il-lustrated by this example, although the most complexfragments are in favour compared to the simpler ones,some of them obtain a posterior selection probabilitythat is less than 0:5. That is, the corresponding frag-ments should not be selected in a strict mathematicalsense. Therefore, the inference over the Bayesian net-work can indeed help identify which model fragments toselect, but it cannot guarantee that all components inthe system under consideration will be represented. Theprior network probabilities are responsible for this: theyare biased towards simpler model fragments, causing theprobability of the complex fragments to be less than 0:5,as simple fragments are not supported by the incomingevidence. This gives rise to the need of imposing theadequacy constraints.In fact, the adequacy of the model under formulationis checked every time a model fragment is about to be



selected or rejected for a component. For this partic-ular example, when the network attempts to overruleall existing fragments for a component, adequacy con-straint no. 3 is violated. This triggers a mechanism thatoverrides the network's decision, by asserting as evidencethe selection of the most probable fragment among theotherwise overruled ones. The reasoning process of thenetwork restarts thereafter. The amended result for thecases of components R1 and R2 is shown in sample D of�gure 4, with the selections imposed by the use of ad-equacy constraints denoted as AC. The resulting systemmodel is well-suited for generating explanations that �tthe expertise level of the present trainee.5 ConclusionsThis paper has proposed a technique for model formula-tion to support the task of explanation generation. Thetechnique exploits the reasoning of a Bayesian network,which is structured based on the structural descriptionof the domain system, to facilitate the selection of ap-propriate model fragments. Initially, fragments for somecomponents are selected, based on the user's interestsand expertise level. Bayesian reasoning provides sugges-tions for model fragments to use for the remaining partof the system. The model under formulation is thenchecked for its adequacy, using a set of adequacy con-straints. The �nal result is an adequate model of thedomain system under consideration, which can be sub-sequently analysed to extract contents for the explana-tions to be communicated to the user.The proposed approach has been implemented andexperimental results obtained so far have been verypromising. The methodology described employs thesimplest regimes for addressing the issues of structur-ing the Bayesian network and those of de�ning the priorprobabilities for the task of model fragment selection.Although it functions satisfactorily for simple cases, itneeds to be re-engineered in order to become more gen-eral and less ad-hoc with respect to the use of the ad-equacy constraints. Work is also ongoing in an attemptto automatically construct models using the present ap-proach for more complex systems.References[Cawsey, 1993] A. Cawsey. Explanation and Interaction.MIT Press, 1993.[Falkenheiner and Forbus, 1991] B. Falkenheiner andK. Forbus. Compositional Modeling: �nding the rightmodel for the job. Arti�cial Intelligence, 51:95{143,1991.[Gruber and Gautier, 1993] T. R. Gruber and P. Gau-tier. Machine-generated explanations of engineeringmodels: A compositional modelling approach. In Pro-ceedings of the 13th International Joint Conference onArti�cial Intelligence, pages 1502{1508, 1993.[Levy et al., 1997] A. Y. Levy, Y. Iwasaki, and R. Fikes.Automated model selection for simulation based on
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