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Abstract

The task of generating informative explana-
tions in industrial training involves automated
formulation of system models with respect to
the varying levels of the trainees’ knowledge.
Compositional Modeling provides a useful basis
upon which to structure a suite of models that
may reflect different complexities of the sys-
tem being modelled. However, additional infer-
ences are required in order to select appropri-
ate model fragments to form a coherent system
model that is suitable for a given trainee’s de-
gree of expertise. This paper presents a novel
approach to perform such inferences by the use
of Bayesian networks. The work is implemen-
ted and typical experimental results are given.

1 Introduction

The need for informative explanations regarding the be-
haviour of physical systems arises in many tasks in sci-
ence and engineering. In industrial training, such ex-
planations are especially significant for the establishment
of coherent and consistent knowledge of the components
and their associated processes of a given plant. The
task of explanation generation involves, essentially, find-
ing information that is relevant to a communicative goal
set by the explainee, from available knowledge sources,
and organising this knowledge into a cohesive and coher-
ent multi-sentential text. An important requirement of
generating such explanations is the ability to vary the
explanation content according to the expertise of the ex-
plainee, by adjusting the level of detail of the underlying
domain knowledge.

To achieve the required adjustments of domain know-
ledge, a technique that allows for systematic variation
of the knowledge representation is needed. Composi-
tional Modelling (CM) [Falkenheiner and Forbus, 1991],
[Gruber and Gautier, 1993], [Nayak, 1994], [Levy et al.,

1997] has been developed as a methodology for formu-
lating knowledge models for the domain of interest by
composing model fragments, i.e. (partial) models of the
domain’s primitive elements that describe only some as-
pects of the components’ behaviour. As such, CM en-
ables the variation of detail of the entire model by alter-
ing the detail of the fragments used as building blocks
and is used as basis for the present work.

By reflecting the user expertise to the detail level of
at least some of the model fragments, guidelines for the
selection of the remaining fragments can be set in or-
der to formulate a model that corresponds to the un-
derstanding ability of the user. This is, however, a flex-
ibility that has not been provided in the existing work
for automatic model formulation. An approach is herein
presented towards enabling such model formulation for
the domain objects of interest. The selection of the ap-
propriate model fragments is based on the utilisation of
reasoning with a Bayesian network. This is motivated by
the intention to employ an efficient as well as formal the-
ory to handle the uncertainty involved with the selection
of fragments, based on initial preference of some of the
available model fragments according to the information
request of the user.

The rest of this document is organised as follows. Sec-
tion 2 provides an overview of the design of the en-
tire computer program that performs explanation gen-
eration, putting the model formulation module in con-
text with the rest of the modules involved. In Section
3, after a brief review of the CM paradigm and basic
ideas in reasoning with Bayesian networks, the proposal
for model formulation through Bayesian model fragment
selection is presented. A simple example of the reason-
ing involved in this approach is illustrated in Section 4.
Section 5 concludes the paper.

2 The Explanation Generation System

The present work is developed within the general frame-
work of explanation generation. Figure 1 shows the main
functional modules (Explanation Generator, Approxim-
ate Reasoner and Model Formulator) and their compon-
ent dependencies of an explanation system, designed and
implemented by the author.
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Figure 1: Faplanation system: individual modules and their components

The Explanation Generator serves as a mediator with
the user. During a training session, the user can se-
lect questions from predefined menus about the com-
ponents of the domain system that is presented to
the user. Each selected question is internally trans-
formed into a first-order predicate structure which forms
the current user ezplanation goal: question_type{<
list of related objects >}, where an object is a
domain component or process of interest. This goal is
utilised to update the user model and the history of the
discourse, following the methods given in [Cawsey, 1993].

The user model contains a set of profiles for the user,
classified according to the object(s) appearing in each of
the queries. These profiles essentially keep a record of
the object’s detail level as it was represented in the model
used for the most recent explanation involving this ob-
ject. The initial detail level of an object is set by default
to the simplest level possible for that object. The detail
level is determined, currently, by the number of variables
involved in the set of equations constituting the model
fragment that represents the object. From these profiles
it is possible to derive the detail level in the most recent

representation of an object Dobject.a as well as the rate

of change of the detail level, Dypject,
tion process continues. Both these quantities and the
frequency of occurrence of an object within the profiles
of the user model, Fobjectl, , are used by the Approximate

Reasoner to compute the desired detail level, Dobject.=
of the fragments to be selected in the subsequent sys-

as the explana-

tem model formulation process. Approximate reasoning
[Pedrycz and Gomide, 1998] provides a consistent meth-
odology of accounting for the uncertainty about the re-
lationship between the user’s expertise and the desired
detail of the model fragments that is needed for domain
model formulation.

The Model Formulator exploits the Approximate
Reasoner’s decision to select appropriate model frag-
ments. It is this module that the current work is fo-
cused on. In CM, each of the model fragments typically
represents a component or process under certain oper-
ational conditions and is associated with several con-
sequences that will result if the conditions are satisfied.
Given model fragments for various aspects of a physical
system, the system model is formulated commonly by
determining its boundary and deciding the best repres-
entation of parts within that boundary. For the present
application, the boundary of the system model is set by
an initial domain-dependent description of the system
that the trainee is to learn about. The model formula-
tion process is facilitated by reasoning with a Bayesian
network. This process will be detailed in the following
section. The outcome of this reasoning is a complete,
adequate model containing fragments for all the com-
ponents of interest, at a detail level appropriate for the
user. The model is then parsed in order to extract in-
formation to be conveyed and the methods described in
[Cawsey, 1993] are applied for structuring dialogue plans
for this information to be communicated to the user via
the presentation manager.



3 Model Formulation

After a general overview of the system’s functioning, the
details regarding the Model Formulator come into focus.
Before engaging in the discussion of the main issues of
the proposed model formulation technique, it is benefi-
cial to briefly review the relevant theoretical aspects for
the two research areas involved in the model formulation
process, i.e. CM and Bayesian networks.

Compositional Modelling

CM offers a paradigm of formulating models for a given
physical domain, composing them out of partial descrip-
tions of certain physical aspects. These descriptions are
generally known as model fragments. Each of these frag-
ments represents a component or process under certain
conditions and with several consequences which can be
fulfilled provided that the conditions are satisfied.

Having represented a set of phenomena using model
fragments, the methodologies developed within CM
strive to complete two tasks: determining the model
boundary and deciding the best representation of parts
within that boundary. The former involves determining
the boundary of the model with respect to both the phys-
ical extent of the system being modelled and the detail
of representation of the various components of the sys-
tem. Typically, a hierarchical manner of representation
is followed, with all the components assembled by sub-
components. Traditionally, heuristics such as discovering
the minimal covering system [Falkenheiner and Forbus,
1991] are used to identify the physical model boundary.

With the model boundary identified, a decision is
made on how each part of the system should be represen-
ted as well as how to assemble a model from the partial
descriptions for each of the parts. The main approaches
are creating a parsimonious model directly, creating an
over-complex model and then attempt to simplify it, or
creating a simple model and subsequently adding detail
to it according to the task for which the model is re-
quired.

The final issue to be addressed concerns the verifica-
tion of the adequacy of the formulated models with re-
spect to the task they are built for. The typical approach
is to check the internal consistency of a model against a
set of adequacy constraints [Levy et al., 1997].

Compositional Modelling approaches are sound, but
offer little provision for use in uncertain environments.
In the context of explanation generation, however, select-
ing suitable model fragments with respect to the user’s
expertise inherently involves uncertainty in modelling as-
sumptions. This is because of

e incompleteness in determining exactly what the user
knows about the domain components of interest,

e approximation in specifying which level of detail can
be deemed as sufficient when selecting fragments to
satisfy a query,

e complexity in mapping all possible levels of expert-
ise to all possible detail levels for the available model
fragments.

A useful model formulation mechanism must be able
to handle these issues. Bayesian network reasoning
provides a general and efficient means of addressing un-
certainty and is therefore used herein to assist the task
of the Model Formulator. In addition the network struc-
turing methodologies that accompany Bayesian networks
can be an efficient basis upon which to translate mod-
elling expertise into intuitive causal relationships, when
selecting model fragments for different domain compon-
ents.

Bayesian Networks

A Bayesian network is a directed acyclic graph in which
the nodes represent the variables of interest and the
links stand for the causal dependencies between vari-
ables (or nodes) [Pearl, 1988]. The nodes are labelled
with conditional probabilities that provide estimates of
the strength of the dependencies between the values of
the variables. Therefore, a Bayesian network is a com-
pact, localised representation of a probabilistic model,
using a qualitative, graphical depiction of the causal re-
lations between the entities involved, and a quantitative
measure of the “strength” of these links. The key to its
locality is that, given a graphical structure which repres-
ents the dependencies (and, implicitly, conditional inde-
pendencies) among a set of variables, the joint probabil-
ity distribution over the set can be completely described
by specifying the appropriate set of marginal and condi-
tional distributions over the variables.

Efficient reasoning mechanisms have been developed
to handle inferences within a Bayesian network [Pearl,
1988], [Shennoy and Shafer, 1988]. Typically, these
mechanisms involve propagation of received evidence for
the value of a specific node throughout the network, us-
ing the Bayes rule [Pearl, 1988] for the estimation of
posterior probabilities of the nodes taking specific val-
ues.

Several major issues are important to be resolved when
applying Bayesian networks:

e structuring the metwork, based on qualitative in-
formation of the causal influences between the
chosen representational primitives (i.e. the net-
work’s nodes);

e cliciting probabilistic information to annotate the
network’s links, i.e. deciding about the prior prob-
abilities associated with the network’s links; and

o selecting a method to propagate evidence throughout
the network, and collecting results to utilise later
on. These will be addressed below for the present
application problem.

Other details relating to Bayesian networks are beyond
the scope of this paper, but are discussed in depth in
[Pearl, 1988].

The Proposed Method
The inputs to the Model Formulator are:

e A structural description of the domain system,
specifying the components involved and the inter-



connections between them. This is prescribed be-
fore the start of an explanatory session and remains
unchanged during the explanation process.

e A library of model fragments, represented at differ-
ent detail levels. Each model fragment represents a
certain aspect of the structural and behavioural in-
formation of a given component of the domain sys-
tem. The model fragments for the different repres-
entations of a particular component are organised
into an assumption class for the component. Frag-
ments within an assumption class have different and
often mutually contradictory conditions, and thus
only one fragment from the assumption class of a
given component can be used to represent the com-
ponent in a system model.

e A desired level of detail for a subset of the model
fragments required to construct the system model,
provided by the Approximate Reasoner.

e A set of objects (components or processes) of in-
terest, obtained from the queries of the user.

The domain system description is used to structure
a Bayesian network relating model fragments from one
assumption class to fragments of other classes. Each
network node stands for the selection or rejection of a
specific model fragment. As such, a node may take a
value from the set {yes,no} (with yes indicating the
selection of the fragment and mo the rejection). The
links of the Bayesian network represent the relationships
between model fragments as determined by the global
system description: if component A has its output con-
nected to the input of component B, then links are es-
tablished from the model fragments of A towards those
of B. Although care needs to be taken over the “con-
nections” between fragments of different precisions, the
model fragments used are of qualitative symbolic nature
and such connections can be reasoned on the grounds of
qualitative values of the variables involved in the frag-
ments. The present work assumes the worst case, allow-
ing all model fragments of component A to be connec-
ted to all fragments of component B, if A is physically
connected to B. Of course, any given constraints from
theoretical or empirical knowledge sources that prohibit
such a connection can be taken into account in setting
up the network structure by assigning a prior probability
of zero to the forbidden network links.

Given the structure of a Bayesian network, each net-
work node is annotated with estimates for the condi-
tional probabilities of the node acquiring a yes or no
value when its “parent” nodes are assigned their val-
ues. In general, deriving such prior probabilities is a
task of great difficulty [Pearl, 1988]. There are applica-
tions where historical data is available, thereby enabling
the required estimation, sometimes by simply calculat-
ing the frequencies of value appearance. In less fortunate
cases, like the present application, some sort of rules or
heuristics have to be derived from the problem descrip-
tion in order to decide the prior probabilities.

In this work the heuristics employed depend on
whether or not a node is a root node, i.e. one that has
no parent nodes. The first heuristic indicates whether a
model fragment is to be selected, by weighing the follow-
ing two important factors: the strength of causal influ-
ence that the fragment receives from its selected parents
and the compliance of the fragment with respect to the
detail level of these parent nodes. This heuristic can be
stated as follows.

Definition 1 For each non-root node MF}j,, j =
1,..., L, representing the selection or rejection of model
fragment j of component C;, i = 1,..., M, with parent
nodes Ujp,k = 1,..., N, the prior probability of select-
ing the corresponding fragment when some of the parent
nodes are taking a value yes (with the remaining parent
nodes taking a no value) is determined by:

P(ME;, = yes () Uy = ves) =
P(MF;, = yes| mq Ujq = yes, Dy, = DMF,-,;)
- P(MF;, = yes| mr Ujr = yes, Dy, # Dury;;)
with
P(MF;, = yes| mq Ujq = yes, Dy;, = DuFy,;)

= Hq VME;,; <,
P(MFj; = yes| () Ujr = yes, Du,, # Dur,)
I, Vmr, «u,,
[I,(Dmr;; — Dy, )?

In this definition, p ranges among the parents that have
taken a yes value, and Vy g, vyl € {g,r} denotes an
estimate of the amount of causal influence that fragment
MFj},; receives from parent Uj; when Uj takes a value
yes. Let Niptiuence be the number of those variables
which are defined in the consequences of Uj; and which
are influencing variables of M Fj;, and N¢otq1 be the total
number of variables defined in Uy, then Vmry,;«u;, is
calculated as the ratio Ny, auence/Niotal-

As an example of the heuristic, consider the simple
network of figure 2 which connects four model frag-
ments of different detail levels (for three components
A, B and C). Model fragment Al has one variable out
of a total two variables that can influence variables in
its child node, fragment B1, that is Vg,.4, = 0.5.
The “error” in detail between fragments B; and A; is
Dp, — Dy, =4 —2 = 2. Similarly, V14, = 0.33,
VC1HB1 == 0.50, DB1 - DA2 =1 and D01 - D};1 = 0.
The application of the above heuristic gives, thus, the
following non-normalised results:

P(B1 = yes|Al = yes, A2 = yes) 0.0413
P(B1 = yes|Al =yes) = 0.125
P(B1 = yes|A2 = yes) = 0.33
P(C1 =yes|B1 =yes) = 0.50
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Figure 2: A simple Bayesian network and the corres-
ponding model fragments

A much simpler heuristic is used to assign prior prob-
abilities to root nodes, assuming all fragments of a com-
ponent are initially equally likely to be selected.

Definition 2 For all root nodes RMF,,, r =1,...,R
of a component C;, i =1,...,S, the prior probability of

them being selected is P(RMF,; = yes) = %.

Following this, for the root nodes A1 and A2 of figure 2,
their probability of being selected is:

P(Al =yes) = P(A2=yes) = 1/2

Given a subset of the prior probability values for the
network’s root nodes and for each non-root node with
respect to its selected parents, the probabilities for the
remaining node values combinations can be calculated.
This is accomplished using the principle of mazimum
entropy, subject to the constraint that the sum of all
probability values to a node must be equal to 1 and as-
suming a uniform distribution of those prior probabilit-
ies for which we have no previous estimation (see [Pearl,
1988] for details of this principle).

Given the structure and prior probabilities, reasoning
is performed based on the evidence of which fragments of
what components are of current interest to the user and
on which model fragments are indicated by the Approx-
imate Reasoner. The reasoning process helps with the
decision of which fragments to select (see figure 1). The
evidence is translated to selection of the indicated frag-
ments with probability 1. This is propagated through-
out the network to determine the posterior probabilities
of the nodes for which there exists no evidence, using
a standard Bayesian network inference method as de-
tailed in [Shennoy and Shafer, 1988]. When the reas-
oning process terminates, the posterior probabilities of
every model fragment being selected or rejected are re-
turned.

Model acceptance under adequacy constraints

The Bayesian reasoning process determines the most
probable representation of each individual component
with respect to the user’s expertise. Although the
reasoning is mathematically sound, ensuring that only
one fragment is chosen for each component, the sys-
tem model constructed by simply combining the selected
model fragments through their terminal connections is
not entirely guaranteed to be most adequate in support-
ing the user’s information needs. Additional constraints
may be needed to modify the decisions made by Bayesian
inference to eliminate inclusion of fragments that would
have led to an inadequate model. The criteria listed in
table 1 are used to serve as the adequacy constraints,
the intuitive knowledge of human modelers.

These constraints are applied whenever a model frag-
ment is considered for selection (or rejection) according
to the reasoning of the network. The partially formu-
lated model is checked for its adequacy, and if not all con-
straints are satisfied, the model fragment is discarded. In
this case, the next most probable model fragment (of the
same component) is considered as a candidate for selec-
tion. A fragment cannot be retracted once it has passed
the test of the adequacy constraints. This is to allow for
consistent application of the adequacy constraints avoid-
ing potential loops.

4 Example of formulating adequate
models

To demonstrate that the proposed model formulation
technique works, the approach has been implemented
and applied to the domain system depicted in figure 3.
The example system is a simplified version of the second-
ary liquid sodium cooling system within a fast breeder
nuclear power plant. It contains seven components: THX
(intermediate heat-exchanger), P/M (pump-motor sys-
tem), EV (evaporator), SE (source of liquid sodium),
and R1, R2 and R3 (hydraulic resistances of the con-
necting pipes). For simplicity, only hydraulic phenomena
are considered for each of these components. The model
fragments library contains three model fragments with
detail levels of 4, 6 and 10 variables for each component,
except the liquid sodium source which is modeled with
one model fragment with a detail level of 4 variables.
The fragments for each component are grouped using
the component’s assumption class. Suppose that each
component within the system is influenced only through
its two input terminal variables, the input liquid flow and
the input pressure. Consequently, each fragment can in-
fluence other fragments through its output terminal vari-
ables: the output pressure and the output flow. This is
the worst scenario with respect to the possible relations
between variables defined in system: knowing practic-
ally nothing about the causal relationships between the
variables.

Given the domain system description, the Bayesian
network can be structured as also shown in figure 3. Us-
ing the heuristics defined in section 3, the prior prob-



No. Primitives involved Description Rationale

1 Model variables An adequate model should include The behaviour of a component cannot be explained if
System components every component of interest. the component is not represented in the model.

2 Exogenous variables In an adequate model none of its exo- Exogenous variables are influenced only by the sur-
genous variables should be influenced rounding environment of the modelled system and are
by any other model variable. independent of other variables in the model.

3 Influences on depen- An adequate model should contain a  This ensures that a model is complete: for each com-
dent variables must complete set of model fragments that ponent the model should include model fragments for
be complete influence each of the model’s depend- all components that may affect it, at the detail level of

ent variables, according to the overall interest, according to the domain system description.
domain system description.

4 Influences on depen- An adequate model should contain no  This is imposed to ensure that when composing model
dent variables must fragments that relate to each other fragments together coherence is maintained by avoid-
not be redundant through class inheritance (e.g. a con- ing to mix different description levels of an entity.

denser and a heat exchanger fragment
for one component).
5 Influences on depen- An adequate model should include This ensures that all selected model fragments have

dent variables must

be valid

model with valid con-

ditions.

fragments

valid conditions (structural and behavioral) with re-
spect to the entities appearing in the model at the re-
spective detail level.

R2

Table 1: Adequacy constraints: description and rationale
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Figure 3: Liquid sodium cooling loop, its corresponding Bayesian network and some prior probabilities
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Figure 4: The posterior probability distribution for the network in figure3. A: without considering evidence; B: with
THX3 selected by evidence; C: with PM3 and EV3 selected by evidence; D: with the selection of R13 and R23 biased

through application of adequacy constraints.

abilities for each of the nodes with respect to the links
from its parents, as well as the prior probabilities for the
root node (SE) are determined. Part of the setting of
the normalised prior probabilities is presented in figure
3. The prior probability value tables attached to the
remaining nodes are the same as those listed in tables
T21-T23 in figure 3 and hence are omitted. Once the
network is structured and the prior probabilities are as-
signed and normalised, the inference procedure reported
in [Saffiotti and Umkehrer, 1991] is ready to be applied
to calculate the posterior probabilities for possible values
of the network nodes.

Without considering evidence from the user or the Ap-
proximate Reasoner, the posterior probability distribu-
tion of the Bayesian network is computed as that given
in sample A of figure 4. The shaded mini tables in this
figure correspond to the elements that are indicated for
selection, as a direct result of Bayesian reasoning. Given
no evidence, the simplest model fragments are selected,
meeting the training purposes well.

Suppose now that the user has indicated interest for
the intermediate heat exchanger component. This is
translated to a piece of evidence suggesting that a model
fragment of this component should be selected. As-
suming that the Approximate Reasoner has calculated
a detail level of 10 variables for this component, the
most complex model fragment is selected. This evidence
is propagated throughout the network, resulting in the

probability configuration for other system components
as shown in sample B of figure 4, with the evidence de-
noted by X. As indicated the simplest fragments are still
favoured over the complex ones, although the probabilit-
ies of selecting complex model fragments have increased
compared to those in sample A.

If the indications for the preferable model fragments
continue to favour the most complex ones, as with
sample C of figure 4 where the fragments for PM and
EV are also selected by given evidence, this can lead
to a change of the fragment selection. However, as il-
lustrated by this example, although the most complex
fragments are in favour compared to the simpler ones,
some of them obtain a posterior selection probability
that is less than 0.5. That is, the corresponding frag-
ments should not be selected in a strict mathematical
sense. Therefore, the inference over the Bayesian net-
work can indeed help identify which model fragments to
select, but it cannot guarantee that all components in
the system under consideration will be represented. The
prior network probabilities are responsible for this: they
are biased towards simpler model fragments, causing the
probability of the complex fragments to be less than 0.5,
as simple fragments are not supported by the incoming
evidence. This gives rise to the need of imposing the
adequacy constraints.

In fact, the adequacy of the model under formulation
is checked every time a model fragment is about to be



selected or rejected for a component. For this partic-
ular example, when the network attempts to overrule
all existing fragments for a component, adequacy con-
straint no. 3 is violated. This triggers a mechanism that
overrides the network’s decision, by asserting as evidence
the selection of the most probable fragment among the
otherwise overruled ones. The reasoning process of the
network restarts thereafter. The amended result for the
cases of components R1 and R2 is shown in sample D of
figure 4, with the selections imposed by the use of ad-
equacy constraints denoted as AC. The resulting system
model is well-suited for generating explanations that fit
the expertise level of the present trainee.

5 Conclusions

This paper has proposed a technique for model formula-
tion to support the task of explanation generation. The
technique exploits the reasoning of a Bayesian network,
which is structured based on the structural description
of the domain system, to facilitate the selection of ap-
propriate model fragments. Initially, fragments for some
components are selected, based on the user’s interests
and expertise level. Bayesian reasoning provides sugges-
tions for model fragments to use for the remaining part
of the system. The model under formulation is then
checked for its adequacy, using a set of adequacy con-
straints. The final result is an adequate model of the
domain system under consideration, which can be sub-
sequently analysed to extract contents for the explana-
tions to be communicated to the user.

The proposed approach has been implemented and
experimental results obtained so far have been very
promising. The methodology described employs the
simplest regimes for addressing the issues of structur-
ing the Bayesian network and those of defining the prior
probabilities for the task of model fragment selection.
Although it functions satisfactorily for simple cases, it
needs to be re-engineered in order to become more gen-
eral and less ad-hoc with respect to the use of the ad-
equacy constraints. Work is also ongoing in an attempt
to automatically construct models using the present ap-
proach for more complex systems.
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