[23] Interval-Based Geometric Reasoning in a Parallel Network

Mark J L Orr and Robert B Fisher

Department of Artificial Intelligence
University of Edinburgh, Edinburgh EH1 2QL, UK

Reprinted, with permission of Butterworth Scientific Ltd, from parts of Image and Vision Computing, 1987, 5, 100-106 and
Image and Vision Computing,1988, 6, 233-238

1. Introduction

Reasoning about geometry is a key process in
visual perception. Not only is the discovery of geometric
facts often the goal of a perceptual act (where is the
chair?) but such facts can be used to aid the attainment
of other goals such as identification (this is a chair
because it has four legs and a seat in all the right
places). A geometric reasoner inside a vision system is a
kind of quantity knowledge base in the terms of (Davis
1987), receiving constraints from the vision system along
with requests to draw inferences from them (where in
space is ..?, where in the image is ...?, can this be a

The design of a geometric reasoner for computer
vision can be split into three stages (Orr and Fisher
1987). The first stage consists in identifying the tasks to
be delegated to the reasoner by the vision system. The
second is the design of abstract data types and their asso-
ciated operations which can carry out these tasks. The
third and final stage is the design and testing of an
implementation of the abstract types.

This paper reports our work using this method of
design. In section 2 we discuss mainly tasks and abstract
data types while also making reference to previous
attempts at implementing geometric reasoning. The next
section introduces a new parallel method of doing
SUP/INF arithmetic which is the basis of our current
implementation. Section 4 reveals how the reasoner was
tailored to deal with the particular set of constraint types
(which we catalogue) coming from our own vision sys-
tem, or any similar, which uses 3D models and 3D data.

2. Tasks and Data Types

We divide geometric reasoning into three aspects:
tasks, data types and implementation. The first aspect
deals with the various tasks which seem appropriate for a
vision system to delegate to a geometric reasoning pack-
age. The second involves the ideal data types and opera-
tions required in order to carry out these tasks and the
third concerns the machinery of implementation.

Before proceeding we should mention that we
make certain assumptions about the nature of the model
and image entities used by the parent vision system. We
assume that object models are built up from primitive
geometric features (such as points, curves, surfaces and
volumes) placed in a coordinate frame belonging to the
model. We further assume that models are structured
hierarchically, that is, complex models are built out of
simpler ones by specifying the placing of the subcom-
ponents in a frame pertaining to the aggregate. The key
point about images is that they should contain entities
which can correspond with the entities in the models at
all levels: features (to correspond with model features),
clusters of features (with simple models) and clusters of
clusters of features (with complex models). How image
segmentation into clusters is achieved or how model to
image entity matches are hypothesised does not concern
us here. We are also unconcerned whether the data is
2D or 3D: although the latter contains more information,
the principles of geometric reasoning are the same for
both.

Tasks

The nature of the geometric reasoning component
within a vision system is characterised by the tasks
which it is expected to carry out. Exactly which tasks
come under the heading of geometric reasoning is debat-
able, but some stand out as obvious candidates. Included
in these are establishing position estimates and image
prediction.

Every identified feature in an image can be used to
form position constraints, first because it is visible, and
second by its measurable properties (location, shape,
dimensions and so on). Take for example the
identification of a point in the image with a point belong-
ing to some object model. This hypothesis constrains the
translation of the object in relation to the line of sight to
the visible point, and some orientations of the object are
excluded as they would cause the point to be obscured
behind the object.

Having established a set of constraints on the posi-
tion of a model from its individual features, the next step
is to combine them into a single position estimate. The

detection of inconsistent constraints is an important task
here to eliminate false hypotheses (formed, for example,
due to erroneous feature identifications). If a consistent
estimate can be found it may contain degrees of freedom
(especially if there is any rotational symmetry), or there
may be more than one estimate (mirror symmetry).

In a similar way, position estimates for subcom-
ponents have to be aggregated into an estimate for the
parent object, but with one important difference. Since
the subcomponent estimates refer to the placement of the
subcomponents and not (as in the case of features) to the
placement of the parent, the subcomponent estimates
must first be transformed, using their known positions
relative to the parent, into estimates for the parent object.

Having established a position estimate for an
object the next step is to predict the appearance and
location of its features. This allows a critical comparison
between the predicted and observed features, and affords
a basis for reasoning about occlusion effects. Addition-
ally, image prediction can be used to search for features
not already found in the image and to subsequently refine
the position estimate of the object on the basis of any
new information obtained. As an example, suppose an
estimate of the position of a bicycle is obtained from the
positions of two coplanar wheels at the correct distance
apart, and then used to predict the location and appear-
ance of the saddle and handle bars. Using this predic-
tion, the image is then searched for these subcomponents
with the following questions in mind: If found, are they
where they should be and can they be used to refine the
position already obtained from the wheels? If not found,
can their absence be explained?

Two points need mentioning here which compli-
cate matters. Firstly, predicted features are not neces-
sarily pixel type entities. Although observed features are
derived from pixel based information, they are normally
described in terms of symbolic entities such as points,
lines, surfaces and so on. Image prediction must be
capable of handling both pixel and symbolic descriptions.
Secondly, real images are formed from objects which
have exact positions in the world, but prediction involves
objects whose positions are only estimated and must
reflect this by being able to form uncertain descriptions.

We now come to the second level of description of
our geometric reasoner - the abstract data types and
operations required in order to carry out the tasks out-
lined above.

Positions

The first and most obvious requirement is a data
type for representing positions. Positions are traditionally
represented by six independent quantities, three transla-
tional and three rotational. Unfortunately, this represen-
tation is not adequate for our purposes, for two reasons.
Firstly, because we want to model objects which have
flexible attachments, we need to be able to represent
positions with degrees of freedom, and secondly, because
a certain amount of uncertainty is present in image meas-
urements we also wish to represent positions which are
uncertain.

208

In what follows we will be giving some simple
data type specifications (Guttag, Horowitz and Musser
1978) using the operators FRAME and PLACED (capital
letters will be used for all operators). Both operate on
members of the set Position and return members of the
set Model. The latter includes the special ’'models’
World and Camera so that we can have world centered
and viewer centered coordinate systems as well as rela-
tive positions between models. The functionality of
FRAME and PLACED are written:

FRAME: Position — Model
PLACED: Position — Model

In other words, FRAME tells us which object the given
position is with respect to and PLACED tells us what
object is at the specified position.

Both FRAME and PLACED are termed observer
functions because they reveal a single aspect of a multi-
faceted object. Other observer functions would reveal
information about particular position parameters and
would map to pairs of real numbers (to denote a permit-
ted range) or perhaps to the mean and standard deviation
of a Guassian probability distribution. In the next sub-
section we will introduce some constructor functions
which generate instances of the Position data type from
other types or from other positions.

Estimating Positions from Features

Each pairing of a model to a data feature produces
constraints on the position of the model to which the
feature belongs. We have then an operation, LOCATE,
whose inputs are the model and image features:

LOCATE: Image_feature, Model_feature —
Position U {undefined}
for all
f. € Image_Feature &
o € Model_Feature:

let p = LOCATE(E,, f)
if p # undefined

FRAME(p) = Camera &
PLACED(p) =m

(fm belongs to model m).

As well as the functionality of the LOCATE opera-
tor we have stated a rule which must always apply, viz.
that LOCATE always places the model to which the
feature belongs relative to the camera frame (because the
geometric features of the image are in the Camera
frame), unless an illegal pairing has been attempted, an
image surface with a model edge for instance, when the
result is undefined. The latter possibility shows why the
range of the LOCATE function has to include the
undefined object.

Merging Positions

In general models consists of more than just a sin-
gle feature. A surface model, for instance, might consist
of several curve features to represent its boundary and
two vectors for its principle axes of curvature. If some
or all of these features have been identified and produced
constraints on the position of the surface then there must
be some way of verifying consistency and merging the
separate estimates into one.

Consequently, we need an operation MERGE
which operates on a set of positions and returns a posi-
tion. If #(Position) is the power set of Position (the set
of all possible subsets of Position) then:

MERGE: #(Position) — Position U
{undefined, inconsistent}
for all m;, m, € Model, S € #(Position):

ifqe S-—)FRAME(q)=m1 &
PLACED(Q) = m,
then
let p = MERGE(S)
if p # inconsistent

FRAME(p) =m, &
PLACED(p) = m,

else MERGE(S) = undefined

The result is only defined when all the input posi-
tions have the same coordinate frame and refer to the
same object. Another special device - the inconsistent
object - is used to signal that the positions in S are con-
tradictory, that is, when the intersection in 6D parameter
space of the volumes corresponding to the elements of S
is empty.

Transforming Position Constraints

Often we know the position of two objects relative
to one another, perhaps because they are parts of the
same model assembly or because there is a priori
knowledge (e.g. the position of the camera in the world).
Suppose we know the position of object A relative' to
object B, and consider two different problems. First, if
we know the position of A in the frame of some other
object C, what is the position of B in this frame?
Second, if instead we know the position of C in A’s
frame, what is the position of C in B’s frame? These
problems require the operations TRANSFORM and
INVERSE which obey the following rules in relation to
the operators FRAME and PLACED.

TRANSFORM: Position, Position —
Position U {undefined}

INVERSE: Position — Position
for all p, q € Position:

let t = TRANSFORM(p, q)
if PLACED(p) = FRAME(q) then

209

FRAME(t) = FRAME(p)
PLACED(f) = PLACED(qg)

else t = undefined
for all p € Position:

let q = INVERSE(p)

FRAME(q) = PLACED(p) &
PLACED(q) = FRAME(p)

Now if we represent by X/Y a position whose
FRAME is X and whose PLACED object is Y, our two
problems can be written as:

First problem: know A/B and C/A, want C/B:
C/B = TRANSFORM(C/A, A/B)

Second problem: know A/B and A/C, want B/C:
B/C = TRANSFORM(INVERSE(A/B), A/C)

Image Prediction

Subsumed under the heading image prediction are
a number of operations, ranging from the simple to the
complex, and differing by what is being predicted. Sim-
ple predictions include feature properties (the projected
length of an edge for example) and visibility (whether
something can be seen). The most complicated predic-
tion would be the whole image, pixel by pixel.

The operation to be performed in any given predic-
tion task depends not only on the task but also on the
nature of the object whose image is to be predicted. To
predict whether a plane surface is front-facing merely
requires the calculation of surface normal projected along
the line of sight. For non-planar surfaces something
more complicated has to be done. We abstract all such
predictions into the operation PREDICT:

PREDICT: Model_feature, Position ->
Pred_feature

where Pred_feature is a separate data type from
Image_feature because it must incorporate uncertainty
due to positions which are only estimated.

Finally, we illustrate the use of the operators we
have introduced. Suppose the vision system and the
geometric reasoner together have hypothesised and
located an object based on some subset of its constituent
surfaces. The position of any of its surfaces can be
obtained by TRANSFORMing the known (from the
model) position of the surface relative to the object by
the estimated position of the object relative to the cam-
era. Suppose that one of the object’s surfaces which has
not yet been found, but whose position has been
estimated, is PREDICTed to be visible. The vision sys-
tem then conducts a search for this image feature. If it
cannot be found then some explanation for its absence
(e.g. occlusion) is required if the object hypothesis is to
stand up. If it is present in the image, the LOCATE

operator can estimate its position which can then be
TRANSFORMed into a new estimate for the object posi-
tion. The hypothesis can then fail if this estimate does
not MERGE successfully with the original.

Review

Part of the motivation for an abstract specification
of geometric reasoning is to make explicit the important
implementation decisions. On the one hand, there may
not be easy solutions to some of the problems posed in
the specification. On the other, it might be possible to
relax the requirements of the specification so as to permit
a particular implementation solution but still retain an
acceptable level of competence. Each practical system is
made interesting by its own particular set of comprom-
ises between what is desired and what can be achieved.
We next review some existing geometric reasoners, and
discuss them in the light of the previous sections.

Our own vision system IMAGINE (see "The
design of the IMAGINE II scene analysis program" in
this volume) uses 3D image data and 3D models. Its
current geometric reasoning engine is described below in
sections 3 and 4. The old version used intervals for the
six position parameters to represent uncertainty.
MERGEs were done by intersecting the intervals.
TRANSFORMs were achieved by partitioning the inter-
vals, taking means, transforming each possible combina-
tion of six means by matrix multiplication and then
finding the smallest rectangular box enclosing the
transformed points in six dimensional parameter space.
Problems were encountered with the use of slant and tilt
for rotations because when zero was in the range of slant
values the tilt became unbounded (we now use quatern-
ions for representing rotations). Some of the problems
with the old method were caused by the LOCATE opera-
tion which did not handle data errors well, could only
operate on surface patches and required the location of
the patch central point so that difficulties arose when a
patch was partially occluded.

ACRONYM (Brooks 1981) is a vision system
which uses 2D data and 3D model primitives. Positions
are represented by variables, one for each of the six
degrees of freedom. Constraints on positions are formed
by relating expressions in the variables to uncertain
quantities measured from the image. A constraint mani-
pulation system (CMS) processed multiple constraints
symbolically leading to bounds on the individual position
parameters. The operations MERGE, TRANSFORM and
PREDICT (sections 3.3, 34 and 3.5) were achieved by,
respectively, unioning restriction sets, simplifying sym-
bolic compositions of positions and bounding expressions
in variables. Underpinning the geometric reasoner is
SUP/INF or interval arithmetic which the current IMA-
GINE reasoner also uses although it is implemented
differently and has certain advantages over ACRONYM
(see section 3).

RAPT (Popplestone, Ambler and Bellos 1980) is
an off-line programming language for planning robot
assembly tasks. Embedded in RAPT is a geometric rea-
soner which takes assertions about the relative positions
of bodies from the programming language and infers

210

their Cartesian positions. In the programming language,
relations are stated rather like a human might state them,
e.g. face 1 of body A is against face 2 of body B. Inter-
nally, however, a relation is represented by a symbolic
composition of translations and rotations which may
involve variables to represent the unconstrained degrees
of freedom. A graph is formed whose nodes are the
bodies in the assembly task and whose arcs are the rela-
tions between the bodies. If at least two independent
paths can be found between two nodes then there is an
equation which relates two or more independent expres-
sions for the body’s position and some or all of the vari-
ables (degrees of freedom) can be eliminated. The
difficulties with RAPT relations for our purposes are the
absence of any mechanism for incorporating uncertainty
and the restriction to relations which lead to algebraic
equalities and not to inequalities.

In (Faugeras and Herbert 1983) models and images
have features but are unstructured. The features (model
and image) are planar surface patches characterised by
surface normal and distance from the origin. The prob-
lem is to find the transformation that best maps the
model features into the image features. It is interpreted
as a least squares problem and elegantly solved by reduc-
ing it into the problem of finding the eigenvalues of a
symmetric 3 by 3 matrix. Their work can be viewed as
an implementation of the MERGE operator for a particu-
lar class of feature.

An alternative way of treating uncertain positions,
reported by (Durrant-Whyte 1987) has come out of work
in stochastic geometry (Harding and Kendall 1974)
Durrant-Whyte tackles the problem of applying (exact)
coordinate transformations to uncertain positions. Uncer-
tainty is represented by a probability distribution in
parameter space, and its functional form is chosen to be
Gaussian because the transformation of a Gaussian distri-
bution is also a Gaussian (though only to an approxima-
tion). Thus, all that is needed to specify an uncertain
position are the mean parameter values and a variance-
covariance matrix. The latter may be transformed by
multiplication with the matrix representing the (exact)
relation between the two coordinate frames. The method
is not a full implementation of the TRANSFORM func-
tion since the transforming position must be exact.

3. A Network Implementation

Of the various implementation alternatives dis-
cussed above algebraic inequalities of the type used in
the CMS of ACRONYM (Brooks 1981) have several
desirable properties. They provide a uniform mechanism
for a variety of relationships including a priori relation-
ships (e.g. the position of the camera), and model varia-
tions (variable dimensions or flexible attachments). Such
constraints involve known (observable) and unknown
quantities and estimates are sought for the unknowns.
To find such estimates the CMS symbolically combined
and simplified multiple constraints until the expressions
they bound reduced to single quantifiers. This had draw-
backs of a high cost for symbolic processing and an ina-
bility to properly handle non-linear constraints. Below
we describe a new implementation of this method which

confronts these problems.

The basic constraint solving method we use is
Bledsoe’s SUP-INF algorithm (Bledsoe 1975), later
refined by Shostak (Shostak 1977) and Brooks (Brooks
1981). Constraints are expressed in the form:

or

where the x. are members of a set {x,, X,,...x_} of vari-

1 727", .
ables and f; and g. are values or expressions involving
some or all of the X; A solution of the constraints
would be a substitution of real values for the variables
that maintained the truth of each inequality, The goal of
the algorithm, for a given set of constraints, is:

(1) to decide whether the set of possible solutions is
empty,
(2) to find bounds on the value that a given expression

(involving some or all of the xi) can attain over the
solution set.

The algorithm is based on the recursive application
of the functions SUP and INF on the expression to be
bound and its sub-expressions. SUP returns an upper
bound (supremum) and INF a lower bound (infimum). In
Brooks’ (Brooks 1981) program the simplification of
constraints and the application of SUP and INF was han-
dled by symbolic manipulation at run time. We present
a new implementation of the SUP-INF method that
transfers the cost of symbolic manipulation from run-
time to compile-time, improves the performance of the
algorithm for non-linear constraints and has a natural
parallel structure.

Structure of the network

The implementation has the structure of a network
with nodes and connections. There are two types of
nodes: value nodes and operation nodes. The value
nodes acquire numerical SUP and INF bounds on their
associated algebraic variable or expression. The bounds
are computed from connections with other value nodes or
with operation nodes that receive inputs from other value
or operation nodes. Each time new bounds are computed
the change propagates over the network causing other
nodes to acquire new bounds. The changes become
smaller as the bounds get closer and the network con-
verges asymptotically to a stable state when the desired
bounds on variables or expressions of interest can be
extracted from the associated value nodes.

Operation nodes implement a simple unary or
binary function and take their inputs from value nodes
and other operation nodes. The operators implemented
are: ("+", "-", "' "/ "sup_of_max", "sup_of_min",
"inf_of_max", "inf_of min", "extract_sup", "extract_inf",
"constant”, "cos", "sin", "sqrt", "<", "<", ">", "2", "and",

"or", "select”, and "enable").

Network Creation

A network is constructed by linking together
several network fragments or modules. Each module

211

represents a particular instance of a common constraint
type and there may be more than one module of the
same type in the network. The structure of modules is
defined by an off-line compilation process. Conse-
quently, an on-line program that uses the network, such
as a geometric reasoner, only has to connect instances of
the appropriate modules to solve the problem at hand.

A module is compiled from a list of algebraic ine-
qualities such as:

X<y+z

The inequalities are written by a human program-
mer after due consideration of the ’problem’ that the
module ’solves’. An example from geometric reasoning
is finding the rotation that maps one pair of direction
vectors to another. The relations between all the vari-
ables occurring in the problem are expressed as inequali-
ties. If an equality is encountered then it is split into
two inequalities:

X = expr becomes:

x <expr & x expr

If a product is encountered, then it is split into four
inequalities involving the signed reciprocal (’srecip’)
function:

x * y £z becomes:

x < z * srecip(y)

y < z * srecip(x)

X 2 -z * srecip(-y)

y 2 -z * srecip(-x)

This function has the definition:

srecip(x) = if x > O then 1/x
else 'undefined’

and consequently has the effect of turning off and on
constraints according to the sign of its argument. Expli-
cit conditionals are also possible such as:

if(z==0)thenx <y

so that the constraint x <y is only turned on if z is zero
(meaning INF(z) < 0 < SUP(z)).
Recursive constraints are allowed such as:

x2 21- y2
which becomes:
x 2 (1 - y2) * srecip(x)

x < (y2 - 1) * srecip(-x)

but are treated differently by bound simplification (see
below).

A parallel network based case construction is
needed because some operations produce different output
according to conditions on their input. Two special
operation types were used to implement the case struc-
ture. One is the ’enable’ operation, a function of a test
argument and a result argument whose output is the
result only if the test is true. The other is the ’select’
operation that returns the first of its arguments to become
defined. Using these, the ’enable’ operation turns on and
off results according to their applicability (as determined
by the test argument), and the ’select’ operation passes
through the "true" value. The logical value of the test
argument is generated by using a numerical comparison
operator (e.g. "<") or a logical operator (e.g. "and").

Ordinarily, an operator will not be evaluated until
all arguments have values. This causes problems when
using the operators that may not evaluate, such as the
*srecip’ function. A problem also occurs at initial startup,
because not all operators have all arguments ready,
which may block the evaluation of other nodes, which
may in turn block the evaluation of the operator, result-
ing in deadlock. The problem occurs often because the
bounds on value nodes are "max" and "min" operators of
(typically) many arguments.

To solve this problem, the "max" and "min" opera-
tors are evaluated differently according to whether the
SUP or INF is desired. The "sup_of_max" ("inf_of_min")
operator does not evaluate until all arguments are ready,
because increasing the upper (decreasing the lower)
bound may be necessary as other arguments become
ready, and the SUP (INF) bound is only allowed to
decrease (increase). However, the "inf_of max"
("sup_of_min") operator can evaluate when one argument
is ready, because later arguments either have no effect or
improve the bound.

Symbolic Manipulation

Before compiling the network, the list of inequali-
ties is checked for correct syntax, simplified and pro-
cessed by the functions SUP and INF. In general this is
a hard problem but the constraint manipulation system
(CMS) of Brooks’ program ACRONYM (Brooks 1981)
at least provides some competence. We have extended
this CMS to cope with square roots, powers of variables,
the unsigned reciprocal function, conditionals, the
undefined value and 'minus’!

Simplification is only applied to non-recursive con-
straints where the variable on the left hand side of the
inequality does not appear anywhere in the right hand
side. Recursive constraints are difficult to handle and if
simplified would generally just lead to the trivial:

=00 £ X £ 400

The CMS could be used directly (as in ACRO-
NYM) by the on-line program. Measurements made by
the program would add new constraints providing more
scope for simplification and eventually to bounds on
variables and expressions that are not measured directly.

212

However, symbolic reasoning is computationally expen-
sive and not suited to wide scale parallelism.

A more compelling reason for using a network is
that it can iterate to better bounds over non-linear con-
straints than the single pass method of the CMS. Con-
sider the following example.

x<1l+1fy
y21+1/x
0.1<x<10

0.1<y<10

The CMS (somewhat simplified) finds:
SUP®) = 1 + 1/INF(y)

=1+ 1/1 + 1/SUP(x))

When it gets to the embedded SUP(x) it uses the
numerical bound 10 to produce:

SUP(x) = 1 + 1/(1 + 1/10)

=191

However the network computation iterates to the
(analytically) best bound:

SUP(x) = 1.62

= (1 +5)2

Network Compilation

Value nodes are created for all variables occurring
in the constraint list. These are connected by various
operator nodes that extract values from value nodes or
other operators. The connections are determined by the
expressions found in the constraints. The following is a
list of the actions taken by the compiler when it
encounters the specified expression type:

constant:
An operation node (with no inputs) is created that
supplies the given constant.

variable:
An operation node is created that extracts the SUP
(or INF) of the associated value node.

plus: An operation node is created that adds the results
of the recursively compiled sub-expressions.

max (or min):
SUP(max(list)) is compiled to be max(SUP(list))
(analogously for INF and ’min’). Thus subfrag-
ments for each sub-expression in the list are
created and linked to a series of connected binary
'max’ (or ’'min’) nodes. Network evaluation is
different for max (or min) nodes created from SUP
or INF in their use of defaults when not all argu-

ments are evaluated (which may arise from timing
delays or alternative expressions being undefined).
The INF max function returns a value if at least
one argument is evaluated; the SUP max function
only returns a value when all arguments are
evaluated.

times:
SUP(A*B) is expanded to:

max(INF(A) * INF(B),
INF(A) * SUP(B),
SUP(A) * INF(B),
SUP(A) * SUP(B))
and then compiled. The same for INF(A*B) except
max’ is replaced by *min’.
recip(E) (where E is an expression):
A test-case node is required for the reciprocal
function. Test-case nodes select their output
according to a test defined at compile-time and car-
ried ont at run-time. If SUP is the desired bound,
the test-case construction is:
if INF(E)>0 or SUP(E)<0
then 1/INF(E)
else plus_infinity
If INF is the desired bound then:
if INF(E)>0 or SUP(E)<0
then 1/SUP(E)

else minus_infinity

srecip(E) (where E is an expression):
This is the signed reciprocal function where:

srecip(x) = if x > 0 then 1/x
else 'undefined’

If SUP is the desired bound, a test-case node is
created selecting:

if INF(E)>0
then 1/INF(E)
else 'undefined’

If INF is the desired bound then the test-case con-
struction is:

if INF(E) >0
then 1/SUP(E)

else "undefined’

v (where v is a variable and n is odd):
A sequence of ’times’ operation nodes are created
and linked to the SUP (or INF) of the variable.
The output of each ’times’ operation becomes the
input to the next.

Vv (where v is a variable and n is even):
If SUP is the desired bound then sequences of
’times’ nodes are created and linked to both the
INF and SUP of the variable and a final *max’
node linked to the output of each sequence. If INF
is the desired bound then a ’test-case’ node is
created selecting:
if SUP(v) <0
then [SUP(V)]"
else if INF(v) >0
then [INF(v)]"

else 0

square_root(E) (where E is an expression):
The positive square root is assumed. If SUP is the
desired bound then:
if SUP(E) =0
then sqrt(SUP(E))
else undefined’
If INF is the desired bound:
if INF(E) 20
then sqri(INF(E))

else 'undefined’

As the same expressions may be used more than
once in different constraints in the same module, the
recursive compiler uses a previous compilation for a
expression if ome exists, thus avoiding duplication.
Another simplification is the reduction of multiple con-
straints to a single *min’ or *'max’ function:

v< El’ v< E2, ... becomes:
v< min(El, E2,)

A similar simplification is performed for lower bounds
using the 'max’ function.

To illustrate the creation of a network module, sup-
pose we are interested in the *problem’:

A<B-C

which entails the further constraints:

B>2A+C

C<B-A

This list of constraints would be the input to the
CMS, that would have little to simplify but would recur-
sively apply the SUP and INF functions symbolically to
find:

SUP(A) = SUP(B) - INF(C)
INF(B) = INF(A) + INF(C)

SUP(C) = SUP(B) - INF(A)

The compiler then produces the network shown in
figure 1. This is a trivial example that even fails to com-
pute both bounds on the parameters involved. In practice
(see section 3) modules are larger and more complicated.

Figure 1: the network for A< B - C.

Modularisation

The run-time program constructs and evaluates its
own networks according to the problems it is presented
with. We assume that problems can be broken down into
several parts each of which can be managed by an
instance of some previously compiled module. Suppose
we have the following two constraints:

X<y-z

y<z-w

A network for this problem would be constructed
out of two. instances of the module defined above for the
constraint type:

A<B-C

and connected as shown in figure 2. The modules can be
thought of as black boxes with connections to the outside
world. For the first constraint the connections A->x, B->y
and C->z are made, while for the second constraint A->y,

214

B->z and C->w.

N T,
) e

Figure 2: two connected modules.

Network Evaluation

The values at each node are computed using the
values at the connecting nodes. The SUP (INF) compu-
tation chooses the minimum (maximum) of each of its
current bounds and its current value. Including the
current value in the calculation ensures that bounds can
only get tighter. Thus if:

SUP(A) < a;, SUP(A) < ay, ..
then:
SUP(At +1) = min(SUP(Al), a;, a,,)

is the updating function for the supremum of A from
time t to time t+1.

The following defines the evaluation functions for
the different operation types:

constant:
returns a constant value

extract_sup (extract_inf):
returns the SUP (INF) of the referenced value

plus:
returns a result if both arguments are initialised:
if +o0 + +oo, then return +eo
if -00 + -0, then return -co
if +o0 + -co, then indeterminate
if -e0 + +oo, then indeterminate
if only one argument is infinite then return it
otherwise return the sum of arguments

minus:
returns a result if both arguments are initialised:
if 400 - 400, then indeterminate
if -o0 - -00, then indeterminate
if 400 - -00, then return +oo
if -00 - 400, then oo
if only the first argument is infinite then return it
if only the second argument is infinite then return
its negative
otherwise return the difference of arguments

times:
returns a result if both arguments are initialised:
if one argument is +e and the other is > 0, then

return +oo

if one argument is +o and the other is = 0, then
return O

if one argument is +eo and the other is < 0, then
return -oo

if one argument is -co and the other is > 0, then
return -oo

if one argument is -co and the other is = 0, then
return 0

if one argument is -co and the other is < 0, then
return +oo

otherwise return product of arguments
recip:
returns a result if the argument is initialised:
if argument is oo, then return 0
if 0 < argument < +¢, then return +oo
if -€ < argument < 0, then return -oo otherwise
return 1/argument

sup_of_max:
returns the largest of the arguments if both initial-
ised

sup_of_min:
returns the largest of any initialised arguments

inf_of_max:
returns the smallest of any initialised arguments
inf of min:
returns the smallest of the arguments if both ini-
tialised
sqrt:
returns a result if the argument is initialised and
greater than or equal to0:
if argument is +oo, then return +oo
otherwise return +/(argument)
cos (sin):
returns a result if the argument is initialised:
if argument is *eo, then indeterminate
otherwise return cos(argument) (sin(argument))

greater:
returns a result if both arguments are initialised:
if first argument is -eo, then return false
if second argument is -co, then return true
if first argument is +oo, then return true
if second argument is +eo, then return false
if first argument > second argument, then return
true
otherwise return false
(similarly for greatereq, less, lesseq)
and:
returns a result if both arguments are initialised:
if both arguments are true, then return true
otherwise return false
or:
returns a result if at least one argument is initial-
ised:
if the first argument is not initialised, then return
the second

215

if the second argument is not initialised, then
return the first

if either argument is true, then return true
otherwise return false

enable:
returns the value argument if both arguments are
initialised and the test argument is true

select:
returns the value of any initialised argument (arbi-
trary if more than one).

The networks of modules are designed to be
evaluated in parallel. The whole network could be
evaluated synchronously or asynchronously in a MIMD
processor with non-local connectivity. Ideally, each node
would be stored in a separate processor, continually pol-
ling its inputs and updating its output if appropriate.

So far we only simulate the network serially. To
increase efficiency each node contains a list of its depen-
dent nodes and when its value changes its dependents are
put on a ’pending evaluation’ list. When the change at a
node drops below a preset threshold its dependent nodes
no longer require re-evaluation. -When the pending
evaluation list is empty the network has reached a stable
state and processing can stop. Alternatively, the network
stops when inconsistency is detected when a pair of
bounds cross over (the SUP of some value node becomes
lower than its INF).

It is easy to show that the networks must converge
asymtotically, that is, not oscillate. At any time when a
new bound becomes available for some variable V, if it
is a larger upper bound than the current SUP or a smaller
lower bound than the current INF then it has no effect,
as it makes no sense to increase the range of potential
values for V. As the bounds can at most be equal (incon-
sistency is declared if they cross), each bound has a limit
so must converge. In practice, when the change in a
value is below a threshold, no change is recorded, thus
forcing finite termination. Further details can be found
in (Fisher 1987b).
the Geometric

Implementing Reasoning

Functions

The TRANSFORM function is implemented as a
network module. Looked at as a black box, it has three
sets of ports to the outside world representing three posi-
tions (18 parameters in total): the position being
transformed, the transforming position and the resulting
position. When operating in the context of an evaluating
network, if any two of the sets of ports receive bounds
from outside, the module will reflect the new situation by
setting new bounds on the third set of ports. The
INVERSE function can be implemented using
TRANSFORM and the ’bi-directional’ nature of network
modules. Recall the second of the two problems relating
to TRANSFORM and INVERSE which were discussed
in section 2:

Second problem: we know A/B and A/C and want B/C:

B/C = TRANSFORM(INVERSE(A/B), A/C)

(X/Y = the position of Y relative to X)
By rearranging we can eliminate the INVERSE function:
A/C = TRANSFORM(A/B, B/C)

Now if we set up a TRANSFORM module for this prob-
lem, because of bi-directionality, it does not matter
which of the three positions are Gonstrained the other(s)
will be forced into agreement by evaluation. In particu-
lar, we can always generate constraints on B/C given
constraints on A/B and A/C.

In general we cannot always achieve the elimina-
tion of INVERSE, for example if:

We know A/B and B/C and want C/A, then:
C/A = INVERSE(TRANSFORM(A/B, B/C))

and rearranging will not remove the INVERSE operator.
In this case we must use the identity position (I) and
solve the problem with two linked TRANSFORM
modules implementing the relation:

I = TRANSFORM(
TRANSFORM(A/B, B/C), C/A)

The MERGE function is carried out at the nodes
linking the ports from different modules. Each port is
’saying something’ about the bounds on some variable
and if two or more ports are linked then they either agree
(the bounds intersect and the intersection improves the
estimate) or disagree. In the latter case, an inconsistency
has been detected - precisely what the MERGE function
was designed to do.

The functionalities of LOCATE and PREDICT,
unlike the other operations, depend on the types of
models and image entities used by the vision system. We
therefore postpone discussion of these operators until the
next section when we discuss a particular vision system.

Example

We illustrate the foregoing with an example of estimat-
ing an object’s 3D orientation. Assume the following
(exact) model direction vectors

m, =(-0.51, 0.83, 0.22)
m, = (0.68,-0.23, 0.69)

are rotated rigidly by rotation Q to give the vectors
Q(ml) and Q(r_nz). Then, assume we observe two
(exact) data vectors

d, = (040, 0.91, 0.04)
d, = (-0.52,-0.67, 0.51)

Because these vectors are exact, it can be shown
analytically that the rotation (represented as a quaternion)
which maps m, and m, into Ql and (_12 is:

Q =(0.73, 0.25,-0.62,-0.14)

216

Now suppose (more realistically) that we observe
uncertain data vectors

g =
lLow (0450, 0.892,-0.005)
High (0359, 0.932, 0.095)
42Low (-0.566,-0.711, 0.476)
High (-0.481.-0.637, 0.561)

These are the above exact vectors with € = 0.05
radians isotropic error added. Evaluating a network
which consists of a single module for transforming a pair
of vectors (see section 4) the following bounds are
achieved on the rotation:

Q=
Low
High

(0.674, 0.177,-0.761,-0.209)
(0.784, 0.342,-0.497,-0.087)

The result required 46 network update cycles with an
average of 85 operation node evaluations per cycle. In a
true parallel implementation (we can only simulate) the
node evaluations in each cycle can be done in parallel.
As ¢ increases the bounds on Q diverge, while as € tends
to zero the bounds converge and the solution approaches
the analytic result.

If we had had three pairs of vectors instead of just
two, there would be three different ways of pairing them
and therefore the network for this constraint would con-
sist of three modules. This is illustrated schematically in
figure 3 where the modules are the boxes labelled "(2,0)"
(the name is due to the module transforming two direc-
tions and no locations - see section 4) and the circles are
the linking external variables with "Q" representing the
rotation parameters.

Figure 3: the network structure
for three pairs of vectors.

In general for n matched pairs of vectors there are
(n-1)n/2 different pairings and the coerlexity of the
corresponding network is of order n“. Tests have
revealed the existence of at least one heuristic which can
be used to reduce the complexity, which is to discard the

pairings of matched vectors which have the high uncer-
tainty.

Related Work

The use of algebraic inequalities to represent
geometric constraints derives from Brooks’ ACRONYM
(Brooks 1981), as does the symbolic constraint manipula-
tion methods. The network computation is similar to the
many relaxation or constraint satisfaction algorithms that
are suitable for parallel processing. However, it differs
from the relaxation algorithms in that it is not a proba-
bilistic labelling computation and from constraint satis-
faction in that there is reduction of an infinite continuous
range of values rather than selection from a finite set of
discrete values. While the network relies on connections
between units, the computation is not in the distributed
connectionist form where the results are expressed as
states of the network. Instead, the results are the values
current at selected processors.

The work presented here differs significantly from
two other network based geometric reasoning systems.
Hinton and Lang (1985) learned and deduced positions of
2D patterns using a distributed connectionist network,
whose intermediate nodes represented object position and
gated connections between iconic image and model
representations. Ballard and Tanaka (1985) demonstrated
a 3D reasoning network whose nodes represent instances
of parameter values and whose connections represent
consistency according to model-determined algebraic
relationships. In both cases, patterns of network activity
result, with the dominant pattern accepted as the answer
(unlike here, where the result is explicit). Both systems
also simultaneously select a model, which is treated
separately in our analysis.

Davis (Davis 1987) has classified the types of con-
straint propagation systems. The system described here
is an interval label constraint machine applied over full
algebraic constraints (with some transcendental opera-
tions). It is used for geometric reasoning without depen-
dence on "sin" and "cos" because rotations are
represented by quaternions. His complexity analysis indi-
cates execution times may be doubly exponential and ter-
mination may not even occur (unless forced by truncat-
ing small changes, as is done here).

Here, the complexity does not appear to be a prob-
lem, with execution time of the order of network size,
presumably due to the truncation of small changes.
Davis also raises the problem of disjoint parameter inter-
vals. We believe the geometry understanding embedded
in the vision program will detect most cases of this in
advance (e.g. will know about n-fold symmetry) and
create separate hypotheses with only single intervals.

4. 3D Models and 3D Images

In the previous section it has been shown how,
with the aid of a special module for transforming posi-
tions, SUP/INF networks can be constructed which
implement the geometric reasoning operators
TRANSFORM, INVERSE and MERGE and the data
type Position. It remains to be shown how the remaining
operators, LOCATE and PREDICT, can be implemented.

217

These operators depend on the type of models and image
data used by the vision system. Our own system has 3D
models (Fisher 1986 and "SMS: a suggestive modeling
system for object recognition" in this volume) and 3D
images and the implementation of these operators for this
and similar systems is the subject of this section. For 2D
images, in ACRONYM for example (Brooks 1981), the
operators must account for projection from the camera
frame onto the image plane as well as transformations
from the model frames to the camera frame.

General Constraints

Since we are dealing with 3D geometric entities
the general position constraint from a match between a
model feature and an image feature involves m matched
directions and n matched points. However, since any
two points are equivalent to a single point and one direc-
tion, an (m, n>1) constraint can always be reduced to
(m+n-1, 1) by pairing up points. Further, since two
directions are sufficient to constrain rotation, an (m>2, n)
constraint can be split into m(m-1)/2 separate (2, n) con-
straints (or less if we use heuristics). Consequently, we
lose no generality if we only have network modules for
the constraints (1, 0), (0, 1), (1, 1), (2, 0) and (2, 1).
Three matched vectors and three matched points, for
example, would be dealt with by ten (2, 1) modules
linked together. There is a lot of redundancy in such a
constraint but in the presence of noise the redundancy
helps.

An important point to note is that two linked
modules representing constraints (m;, n,) and (m n,)
are not, in general, equivalent to one mo&ule representmg
the constraint (ml+m2 n;+n,). The equivalence only
exists when the separate constraints are individually
sufficient to fully constrain the unknown quantity. For
example, for PREDICT, two (1, 0) constraints are
equivalent to one (2, 0) constraint because a rotated vec-
tor is completely determined by the rotation and the vec-
tor to be rotated. However, for LOCATE, a single pair of
matched vectors is not sufficient to fully constrain the
rotation and so the equivalence no longer holds. Curi-
ously, a (2, 1) module is equivalent to linked (2, 0) and
(0, 1) modules, even though neither fully constrains posi-
tion. This works because rotation is fully constrained by
the (2, 0) module from which it can be ’exported’ to the
(0, 1) module where it combines with the pair of
matched points to fully constrain translation. More
details can be found in (Orr 1987a).

Thus, to summarise, we can cope with any (m, n)
position constraint with some combination of four types
of module: (1, 0), (0, 1), (1, 1), (2, 0). For geometric
reasoning we need these four modules plus the module
implementing the TRANSFORM and INVERSE opera-
tors as discussed in section 3. The number of operation
nodes in each of these modules is listed in table 1.

For illustration the mathematics underlying one of
the modules, the (0, 1) module (transformation of a loca-
tion), is given in an appendix. Other less crucial
modules may also be defined, such as those dealing with
isotropic errors (location spheres, direction cones) (Fisher
1987a).

Table 1
Module Nodes
(1, 0) 1704
©, 1) 1080
(1,1) 3016
2, 0) 3155
TRANSFORM | 2088
Table 2
Feature Constraint | Symmetry
_points 1, 0) none
curves
lines 0, 2) 2-fold
circular arc 2,1) 2-fold
ellipses 2, 4-fold
surface patches
plane 1, 0) none
cylinder 1, 0) 2-fold
cone 1, 1) none
torus a1 none
volumes
stick 1,1) 2-fold
bent stick 1, 2) 2-fold
plate 1,1 2-fold
bent plate (1, 1) none
blob 3, 1) 8-fold

Particular Constraints

Our implementation of the operators LOCATE and
PREDICT uses a catalogue of constraints from all legal
pairings between model and image features. For each
pairing the catalogue lists:

1) what vectors to extract from the model,
2) what vectors to extract from the image,

3) what modules to use, how they link to the vectors
and how they link with each other.

In PREDICTing, the position of the model (in the
Camera frame) is known while some of the data vectors
are not. The opposite is true for the LOCATE operator -
the vectors are known and an estimate is sought for the
position. The same network solves both problems
because it is inherently ’bi-directional’.

Table 2 lists legal pairings of features in our
modeling system with image features, their constraint
types and possible rotation ambiguities. Note that the
boundaries of a surface patch are not part of the patch
feature but separate features themselves.

Ambiguities are caused by n-fold symmetric
features and are handled by the vision system (rather
than the geometric reasoner) by the creation of n-fold
multiple hypotheses. Each hypothesis receives a position
estimate, the wrong ones are eventually eliminated by the
lack of other hypotheses with which they can MERGE.
More details are in (Orr 1987b) which includes some dis-

218

cussion of isotropic data errors and methods of overcom-
ing partial occlusion.

5. Conclusions

The methodology we have investigated is summar-
ised here. We start with sets of algebraic constraints
associated with particular geometric relationships. (For
reasoning with 3D models and 3D images there seem to
be at least five of these: the four vector combination
transformations of section 4 and the position transforma-
tion of section 3.) Image observables are represented by
variables at this stage. These constraints are then pro-
cessed by a CMS to produce symbolic bounds on each
variable. The bounds are compiled into a network
module where the structure of the module reflects the
structure of the expressions for the bounds. All the fore-
going is an off-line process and need not be repeated
unless new relationships or constraints are added. The
on-line program solves geometric problems with net-
works created by connecting compiled modules together
according to the structure of each problem. When
observable variables get bound to measured values the
other variables (position or model parameters) are forced
into consistency by evaluating the networks.

ACRONYM’s CMS was optimal when producing
numerical bounds on single variables over sets of linear
constraints. Since we reproduce the symbolic reasoning
in the network, only substituting data values later, the
network must have the same performance over linear
constraint sets. Over non-linear constraints, as we have
here, we cannot expect optimality, but our extensions to
the CMS and iterative evaluation in the network improve
the performance.

The SUP/INF method is only a partial decision
procedure in the sense that although consistent data will
always lead to a consistent network, inconsistent data can
occasionally also lead to a consistent network. We are
currently engaged in evaluating the importance of this
limitation and preliminary results suggest if the data
errors are low (less than about 10%) or if there is enough
data to over constrain the problem then the likelyhood of
reaching a consistent network state with an inconsistent
set of data is small (about 10% or less). Probably these
10% of incomrect evaluations involve data which is
’nearly consistent’, although we have yet to demonstrate
this.

We intend to apply the network formulation to the
problem of camera calibration by compiling a module to
do simultaneous equation solving. The coefficients in the
equations will depend on the uncertain components of
matched points in space and in the image and the vari-
ables will be the camera parameters. The key question
will be the extent to which errors in the reference points
are magnified in the camera parameters.

Further work is required to analyse the constraints
from feature matches in which a parameterised range of
model vectors corresponds to a measured image vector.
This often occurs when a feature is partially obscured
(e.g. a circular arc whose endpoints are not visible). Such
constraints are only important for heavily obscured
objects where there are few alternative constraints.

References

Ballard, D. and Tanaka, H., 1985, "Transformational
Form Perception in 3D: Constraints, Algorithms and
Implementation”, Proc. 9th Int. Joint Conf. on Artif.
Intel., p964.

Brooks, R.A., 1981, "Symbolic reasoning among 3-D
models and 2-D images", Artificial Intelligence, 17,
p285.

Davis, E., 1987, "Constraint Propagation with Interval
Labels", Artificial Intelligence, 32, p281.

Durrant-Whyte, H.F., 1987, "Uncertain geometry in
robotics”, Proceedings of the IEEE Conference on Robot-
ics and Automation, vol.2, p851.

Faugeras, O.D. and Hebert, H., 1983, "A 3-D recogni-
tion and positioning algorithm using geometrical match-
ing between primitive surfaces”, IJCAI Proceedings,
p996.

Fisher, R.B, 1986, "SMS - a suggestive modeling system
for object recognition”, Image and Vision Computing, 5,
p98.

Fisher, R.B, 1987a, "Solving algebraic constraints in a
parallel network, as applied to geometric reasoning”,
Working paper No. 205, Department of Artificial Intelli-
gence, Edinburgh University.

Fisher, R.B, 1987b, "Details of a network engine for
algebraic and geometric reasoning”, Working paper
(forthcoming), Department of Artificial Intelligence,
Edinburgh University.

Guttag, J.V., Horowitz, E. and Musser, D.R., 1978,
"The design of data type specifications”, in "Current
trends in programming methodology”, IV, (Ed. Yeh, R.),
Prentice-Hall.

Harding, EF. and Kendall, D.G., 1974, "Stochastic
Geometry", Wiley.

Hinton, G. and Lang, K., 1985, "Shape recognition and
illusory conjunctions”, Proc. 9th Int. Joint Conf. on Artif.
Intel., p252.

Orr, MJL. 1987a, "Coordinate transforms using
quaternions”, Working Paper No. 204, Department of
Artificial Intelligence, University of Edinburgh.

Orr, M.J.L., 1987b, "Geometric constraints in 3D com-
puter vision", Working Paper No. 203, Department of
Artificial Intelligence, University of Edinburgh.

Orr, M.J.L. and Fisher, R.B., 1987, "Geometric Rea-
soning for Computer Vision", Image and Vision Comput-
ing, 5, p233.

Popplestone, R.J., Ambler, A.P. and Bellos, .M., 1980,

219

"An interpreter for a language describing assemblies”,
Artificial Intelligence, 14, p79.

Appendix

Here, for illustration, we write out the mathematics
underlying one of the geometric reasoning modules and
briefly describe the modifications necessary to enable its
compilation into a module. The module is for transform-
ing a single location vector by a position P. We use
quaternions (in bold letters) and vectors (underlined). If
q is a quaternion then q, is its scalar part and q its vec-
tor part. "*" and "’" stand for the quaternion operations
of, respectively, multiplication and conjugation (where
the sign of the vector part is reversed). Let:

P=(r,t)
where:
r is a unit quaternion (the rotation)

t is a pure vector (to = 0) (the translation)
and let:

u be the untransformed vector (u0 =0)

v be the transformed vector (v0 =0)

then:

v=r*u*r +t (A1)

It follows from equation Al that:

t=v-r*u*p (A2)

u=r*v-t)*r (A3)

(v-t)*r=r*u

From this last equation we deduce that:

ru=r-9 (A4)

QU-L-W=gx@-t+1) ®3)
Equations Al-5 constitute the underlying

mathematics for the module. To prepare this as input to
the network compiler the following must be done:

1) write each vector (quaternion) equation as three
(four) separate scalar equations,

2) for product expressions on the left hand side take
one subexpression to the right hand side operated
on by srecip or recip,

3) replace each scalar equation by two equivalent ine-
qualities (< and >),

For example, equation AS is a vector equation, the
first component of which is:

vy -ty -8 =
Gug + V3 - 1) - Q3(y + V5 - 1)

Since the sign of (v, - t; - u,) is not known a priori we
> S S P &
use the srecip function and write:

Ao = (Glug + V3 - 13) - Gz + v -) *
srecip(v1 -t - ul)

Ao = (43(uy + ¥5 -) - Gyug + V3 - 1)) *
srccip(t1 +uy - Vl)

Finally, these two equations are replaced by four inequal-
ities.

220

