
 

 

 

Abstract 
 

The paper addresses two problems related to 3D camera 

calibration using a single mono-plane calibration target 

with circular control marks. The first problem is how to 

compute accurately the locations of the features (ellipses) 

in images of the target. Since the structure of the control 

marks is known beforehand, we propose to use a 

shape-specific searching technique to find the optimal 

locations of the features. Our experiments have shown this 

technique generates more accurate feature locations than 

the state-of-the-art ellipse extraction methods. The second 

problem is how to refine the control mark locations with 

unknown manufacturing errors. We demonstrate in a case 

study, where the control marks are laser printed on a A4 

paper, that the manufacturing errors of the control marks 

can be compensated to a good extent so that the remaining 

calibration errors are reduced significantly. 

 

1. Introduction 

Recent years have seen the popularity of camera 

calibration using a mono-plane target (on which the control 

points are all coplanar). A mono-plane target can be 

economically made by just simply attaching a paper printed 

with identifiable marks (control marks) to a flat surface [1], 

offering great convenience for camera calibration in vision 

applications such as DVS (Desktop Vision System) [2]. 

However, the easy-to-use property of the mono-plane target 

should not compromise the accuracy of calibration. In this 

paper, we discuss issues related to how to improve 

calibration accuracy with a mono-plane target. Specifically 

we investigate two problems: 1) how to extract accurate 

features (projection of control marks) in images of the target 

and 2) how to obtain accurate locations of the actual control 

marks on the target, given unknown manufacturing errors. It 

is clear that a better calibration can be achieved if we have 

more accurate features and control marks. 

The control marks on the calibration target used in this 

study are a 2D array of circles (Fig.1). Circular marks are 

commonly adopted for calibration targets [3]. Compared 

with checkerboard patterns, another popular category of 

control marks for calibration, circular marks offer at least 

the following advantages: 1) circular marks can be 

efficiently manufactured with good precision; 2) accuracy 

of ellipse (projection of circle) detection in images is 

arguably higher ( for instance, [4] reports a 1/100 pixel level 

of ellipse detection accuracy, while corner detection from 

checkerboard images can achieve only about 1/10 pixel 

level of localization accuracy [17]); 3) the symmetry in 

shape of circles and ellipses can be used to improve 

significantly the accuracy of localization of the circles and 

ellipses, making them very “blur-resistant” (see Section 

2.1); 4) the smoothness of circular/elliptical shapes allows 

the application of effective optimization techniques in 

searching for optimal locations of the circles/ellipses. 

The projection of a circle is often an ellipse. In previous 

work, various ellipse detection techniques were used for 

calibration [4-8]. However, a majority of these methods 

extract ellipses individually in images without reference to 

the structure of the circles on the calibration target. We 

argue that such methodology may not be optimal for 

accurate feature extraction, since detection of a single 

ellipse can be vulnerable to image deficiencies such as 

noise, non-uniform illumination, etc. There are methods that 

map the entire structure of the control marks to the image 

planes and match them with real calibration images [9]. 

While seemingly more accurate, they suffer from modeling 

unknown factors in the imaging process such as 

illumination, surface reflectance, point-spread function of 

the lens, etc., degrading their performance in real world 

applications. In this paper, we propose a method that 

employs the structure of the control circles on the 

calibration target to guide the extraction of the 

corresponding ellipses in images. It still extracts each 

ellipse individually, however, the shape of the ellipse is 

constrained by the location and orientation of its 

corresponding circle on the calibration target, therefore 

potentially more accurate and reliable ellipse locations can 

be achieved. 

   The other problem studied in this paper is related to the 

locations of the control circles on the calibration target. 

Ideally the locations should be known beforehand. 

However, for the calibration target we used on which the 
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control circles are printed by a high-precision laser printer, 

we have found the minor offsets of the printed circle 

locations relative to their ideal locations contribute 

considerably to the overall residual calibration errors. We 

propose a method to compensate for the offsets based on the 

assumption that the offsets are caused by non-uniform paper 

loading speed by the printer. Our experiments support this 

hypothesis, and demonstrate that calibration errors are 

significantly reduced after the compensation. 

   While the paper is largely about 2D issues, camera 

intrinsic, extrinsic and lens distortion parameter estimation 

is fundamental to and is primarily seen in 3D contexts, 

where stereo cameras or light stripe triangulation systems 

depend on accurate camera calibration. 

The remainder of the paper is organized as follows. 

Section 2 discusses the problem of ellipse extraction and 

Section 3 addresses the problem of circle location 

correction. 

 

2. Feature extraction 

2.1. Techniques 

The control marks used for calibration in this study are 

circles. When a camera observes the calibration target, the 

circles on the target surface are projected to the image plane 

as ellipses (Fig.1). In order to calculate parameters of the 

camera, the locations of the ellipses in the images of the 

target are needed, which is usually done through ellipse 

extraction techniques.  

 

     
Figure 1: The calibration target at different views. 

 

Ellipse extraction has a long history of study in computer 

vision with applications ranging from object recognition [5] 

to 3D reconstruction [6]. Early methods often take three 

steps: extract edge points, then use the Hough transform 

[10] to find points belonging to ellipses, and finally use 

ellipse fitting techniques [11] to obtain ellipse equations. 

Latest methods achieve subpixel accuracy in ellipse 

extraction by employing a template to compute subpixel 

edge locations [7] and using image gradients to derive 

additional curvature information [8]. While these methods 

are for general purpose, they are not necessarily optimal in 

the specific case of ellipse extraction for camera calibration. 

First, the multi-step approach (image-edge-ellipse) 

employed in previous work does not have an overall 

measurement of the quality of extracted ellipses. Instead, 

each step introduces its own errors, allowing errors to 

propagate. Second, it is well known that edge detection and 

gradient calculation are sensitive to image deficiencies, 

which may render many extraction results invalid. Finally, 

the specific information about the calibration scene is not 

used. We argue that better ellipse extraction results can be 

achieved by exploiting the scene information and not 

separating ellipse extraction into multiple steps.  

Look at the calibration scene in Fig.1. The circles are 

arranged in a 2D array. The radii of the circles and the 

distances between the circles are known. The background is 

a white paper and the foreground objects are solid black 

circles. In such a specific circumstance, it is quite possible 

that the scene information, e.g., the structure of the control 

circles and the background/foreground properties, can be 

used to assist ellipse extraction to achieve better accuracy 

and reliability. To this end, we devised a method to find 

optimal ellipse parameters from the target images directly, 

avoiding the problems with the previous multi-step 

approaches.  The method maximizes the difference of 

intensity between the inside and outside of the ellipse, 

which provides a simple and yet effective measurement of 

the quality of ellipse extraction justified by the 

background/foreground property of the images. The metric 

structure of the control circles is used to initialize the 

optimization for the ellipse to avoid local minima. 

 
Figure 2: 1D profile of an ellipse from Fig. 1 and half 

points. 

 

The graylevel properties of target images are illustrated 

in Fig. 2, where the 1D graylevel profile of an ellipse in 

Fig.1 is plotted. Ideally the profile should be a binary signal 

with a flat bottom and a flat top representing the foreground 

and background respectively, and a step edge between them 

representing the boundary of the ellipse. However, the real 

profile has a noisy top, noisy bottom and a few pixels of 

width in transition, due to various factors including 

illumination, imaging noise, image blur, etc. It is nontrivial 

to recover the true location of the edge (ellipse boundary) 

from a contaminated signal like Fig.2, especially when the 

models of illumination, image noise, and image blur are not 



 

 

known. In this paper, we propose to use the half-points of 

the signal to capture the edge locations. A half point of a 

signal is the point where the signal has a graylevel value of 

the middle between the top and the bottom of the ideal 

binary signal. Since the ideal signal is usually unknown, we 

use the following formula to estimate a half point: 
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where g(u) denotes a graylevel signal, ω is a coefficient to 

define an integration window. The window should be set 

around an edge of the signal and not extend to the other 

edges. For the signal in Fig. 2, ω=5 works sufficiently. 

It is not difficult to prove that formula (1) gives the exact 

half point x if the signal is linearly interpolated between the 

top and the bottom. If it is not, our hypothesis is that formula 

(1) generates consistent systematic shifts on the edge 

locations and the shifts can be compensated when an ellipse 

is extracted as a whole with its boundary all satisfying 

formula (1) since shifts in opposite directions of the ellipse 

have opposite signs. The ellipse can then be estimated using 

the following formula: 
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In formula (2), +Ω denotes the region between the 

ellipse boundary C and its offset curve that is parallel to C 

with distance ω, and the area of +Ω is +A . Similarly, −Ω is 

the region between the ellipse boundary and its offset curve 

with distance -ω, and the area of −Ω is −A . CV  denotes 

the parameters of the ellipse C. In our implementation of the 

method proposed in this paper, the ellipse parameters are 

chosen as semi axes radii, ellipse orientation and ellipse 

center. The ellipse orientation is expressed by the angle 

between the major axis and the x-axis in the image 

coordinate frame. 

By definition, formula (2) is equivalent to maximizing 

the difference of mean graylevel values between the inside 

and the outside of the ellipse. In principle, it is similar to the 

SUSAN edge detector [12]. The numerical approximation 

of formula (2) is as follows: 
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In formula (3), the integrals in formula (2) are turned to 

sums of graylevel values on grids in +Ω  and −Ω . The 

latitudes of the grids are parallel to the ellipse boundary C 

which is sampled at points ix , and the longitudes are 

decided by in  which are unit normal vectors of the ellipse 

boundary C at ix . s is used to adjust the sampling interval 

along a longitude. The graylevel values of the sampled 

points on the grids can be calculated from the original image 

using interpolation techniques [13]. Equation (3) can be 

optimized using the Simplex technique [14]. 

To ensure the optimization finds the correct ellipse 

boundary locations, it is important to initialize the ellipse 

parameters near the optimal solution. The initialization is 

done as follows. First a blob detection technique called 

BCoM (see details in the Section 2.2) is used to roughly 

estimate the ellipse centers, and then the camera is 

calibrated using the feature points, finally the parameters of 

the ellipses are obtained by projecting the circles on the 

calibration target to the image plane. It has been shown in 

our experiments that the BCoM is able to achieve subpixel 

accuracy in ellipse center extraction (some quantitative 

evaluation in Section 2.2), which serves well to provide 

initial estimate of the ellipse parameters. 

 

2.2. Results 

We carried out experiments to evaluate the ellipse 

extraction technique above. The first experiment is with 

synthetic data that was generated as follows. Five 

parameters: semi axes radii a and b, orientation φ, ellipse 

center u0, v0 were used to specify the geometry of an ellipse. 

The parameters were randomly chosen in the ranges a ∈ [7, 

13], b ∈ [3, 7], φ ∈ [-π, π], and u0, v0 ∈ [20,21]. The 

graylevel value inside the ellipses is 150 and outside is 50. 

The images were first produced in higher resolution (410 by 

410) and then smoothed using Gaussian filter with σ = 10, 

finally rescaled to resolution 41 by 41 and contaminated by 

additive Gaussian noise with σ = 2. 100 test images were 

generated. 

The condition of synthesizing the ellipse images is the 

same as [4], in which two subpixel ellipse extraction 

methods: the moment preserving (MP) ellipse detector [7] 

and the moment and curvature preserving (MCP) detector 

[4] were tested and compared. The simulated images were 

used to test our maximizing outside-inside difference 

(MOID) ellipse extraction method, therefore we can make a 

fair comparison with the previous MP and MCP methods.  

The parameters of MOID in this test were chosen as ω=3 

and s= 0.1. Since the blur kernel in synthetic data is 

Gaussian with σ = 1 (implemented in Gaussian with σ = 10 

in the 10X enlarged images), ω=3 proved a good balance 

between algorithm efficiency and accuracy in our 

experiments. Larger ω only produced negligible accuracy 

improvement with a increased computational cost linearly 

proportional to ω. Similarly, s= 0.1 was chosen empirically 

from a few trials of the MOID performance. With this setup 



 

 

of parameters, the MOID detected all 100 ellipses in a time 

of 61.6563 seconds. Our implementation of the algorithm 

was written in Matlab script, and the computer is a windows 

PC with 2GB RAM and Intel Xeon 2.99 GHz CPU. 

The comparison results are summarized in Table 1, 

where the RMS (root mean square) errors of the extracted 

ellipse centers are listed. It can be seen that our MOID 

method achieves higher precision in ellipse center 

extraction from the synthetic images than the MP and MCP 

methods, with about 20% and 10% improvement each. 

The accuracy of the MOID method has also been tested in 

real calibration tasks. Table 3 reports the calibration results 

from ellipse centers using the MOID method for three 

stereovision systems. The reported measurements are 

described below. Each stereovision system has a pair of 

cameras of different type, as summarized in Table 2. Binary 

Center of Mass (BCoM) and Graylevel Center of Mass 

(GCoM) are also computed from the images to make 

comparison. The BCoM method computes the centroid of a 

blob (representing an ellipse) segmented from the original 

image (the technique is equivalent to computing the center 

of mass of the binary image of the blob). The segmentation 

is done by using Ostu’s method [15]. The graylevel center 

of mass [10] is calculated on an image window which is 

expanded 10 pixels from the bounding box of the segmented 

blob. The BCoMs and GCoMs can be used as estimate to 

the centers of their underlying ellipses.  

 

Table 1 RMS of detected ellipse centers 

method MP MCP MOID 

x0 0.0156 0.0137 0.0117 

y0 0.0150 0.0134 0.0121 

 
Table 2 Specifications of the stereo systems evaluated 

System 1 2 3 

Camera Make Mikrotron Pulnix Canon 

Camera Type Video B/W Video 

B/W  

Static 

Colour 

Resolution 1280x1024 1392x1040 3456x2304 

Lenses 75mm 35mm 58mm 

Lighting LED Panel Diffusive Flash 

Baseline Horizontal Vertical  Horizontal 

 
Table 3 Calibration errors using different feature 

extraction methods 

 System 1 System 2 System 3 

Reproj-

ection 

MOID 0.1094 0.0993 0.1755 

BCoM 0.1083 0.1160 0.1810 

GCoM 0.2632 0.1569 0.1951 

Rectific

ation 

MOID 0.0843 0.0600 0.2494 

BCoM 0.1023 0.0813 0.2859 

GCoM 0.1778 0.0754 0.2612 

 

The ellipse centers extracted by the three methods were 

used for calibration of the stereovision systems respectively. 

Once a calibration was done, two types of calibration errors 

were calculated to evaluate the quality of the calibration. 

The first calibration error is RMS of the calibration 

residuals (also known as reprojection errors). The other 

calibration error is the RMS of the vertical offsets of 

corresponding ellipse centers on the left and right images 

after stereo rectification. Ideally a pair of corresponding 

points on the left and right images can be rectified in such a 

way that only horizontal disparities exist. The rectification 

algorithms in [16] was chosen in this study since it 

minimizes image distortion after rectification. The vertical 

offsets between rectified corresponding points in real-world 

data are caused by the errors in the estimated epipolar 

geometry between the stereo cameras. The reprojection and 

rectification errors are two indicators to the accuracy of 

calibration of stereovision systems.  

It can be seen that the MOID method consistently 

produces smaller calibration errors than the other two 

methods. GCoM produces noisy results especially in the 

LED lighting system (system 1) where the illumination is 

non-uniform, suggesting some sensitivity to lighting 

conditions. BCoM performs consistently as well in all the 

tests, but it generates larger calibration errors than MOID in 

most of the tests, especially rectification errors. The result 

suggests the MOID method is more accurate and precise 

than the other two methods. 

 

3. Control point correction 

When calibrating, the metric structure of the control 

marks (circles in this study) on the calibration target is often 

supposed to be accurate so that it can be used as “known” 

information to derive other parameters of the camera 

system. However, the precision of control marks comes with 

manufacturing cost, which may limit the achievement of 

high accuracy for a camera system. In this research, we 

proposed a method that can compensate for a fair amount of 

errors in the structure of control marks. Since the shifts 

between the real and ideal 3D coordinates of the control 

marks are fixed for a specific calibration target, our 

hypothesis is that they can be estimated and corrected using 

a sufficient number of observations. 

Let us assume the location errors of control points are 

fixed and the location errors of feature points are i.i.d. 

Random. Then their relation can be expressed as below: 

mjnif jiiijji ,,1,,,1,)( LK ==++= δ∆Xx (4) 

where jf  is the projection function of camera in the j-view, 

iX  are the ideal coordinates of the i-th control point, jix  

are the image coordinates of the feature point, i∆  are a 



 

 

constant 3-vectors representing the shift of the control point, 

and jiδ  is i.i.d 2D zero-mean white noise. Given this 

model, camera parameters and shifts of control points can 

be estimated by minimizing the following least squares 

error: 
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Formula (5) gives an unbiased estimate of the camera 

parameters V and the shift of the control point i∆  if the 

number of observations m is sufficient. However, if jiδ  is 

not i.i.d random and m is small finite number, which is quite 

often the case in a real calibration task, systematic errors 

may occur in the calibration, and the errors will be partly 

reflected in the estimated i∆ . This is the so-called 

overfitting problem.  

Since jiδ  may behave differently due to different 

conditions in the calibration tests such as illumination, 

image noise, etc., i∆  estimated using Formula (5) may not 

be consistent in all tests, which nevertheless will render the 

i∆  invalid. While realistically it is hard to devise a general 

method for estimating i∆  given unknown properties of  

jiδ , extra constraints must be used to make the problem 

tractable. In the special case of this study, the calibration 

circles were printed on an A4 paper by a laserjet printer and 

then attached to a flat surface. We hypothesized the shifts of 

circles are caused by the non-uniform loading speed of the 

paper, therefore they only occur along the paper feeding 

direction (vertically on the A4 paper). The control points 

(centers of the control circles) form a 2D array where 

ideally a row of control points have the same vertical 

coordinate and a column of control points have the same 

horizontal coordinate. We assume the horizontal 

coordinates of the control points are unchanged (zero 

horizontal shift) and a row of control points are affected 

identically by the paper rolling speed and have the same 

shift in their vertical coordinate (identical vertical shift). 

With these assumptions, we only need to associate a 

variable representing a vertical shift to a row of control 

points rather than a translation vector to each individual 

control point. Then Formula (5) can be re-written as: 
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The indices j,i,k in Formula (6) are used to denote j-view 

of the calibration target, i-row and k-column of the control 

points. It is clear that problem (6) has less degree of freedom 

(number of parameters) than problem (5), and therefore is 

potentially able to generate more reliable results. Even 

though the overfitting problem may still exist, its influence 

has been alleviated. 

 

  
(a)                                            (b)  

      
(c)                                              (d) 

Figure 3: Calibration residuals for control points of the 

target in Fig 1. Before control point correction: (a) 

y-residuals when target was placed in normal orientation as 

in Fig. 1; (b) x-residuals when target was placed in 

orientation 90
o
 to Fig. 1. After control point correction: (c)  

y-residuals for the calibration data in (a); y-residuals for the 

calibration data in (b). 

  

Our experiments show the zero-horizontal-shift and 

identical-vertical-shift assumptions are valid. First, we 

calibrated a camera using the calibration target placed in 

normal orientation as in Fig. 1, and we obtained a 

calibration residual map as in Fig.3(a). Horizontal stripe 

patterns appeared in the residuals in y-coordinate, which 

indicates that a row of control points have similar vertical 

shifts on the target plane. When we rotated the target by 90
o
 

and used it to calibrate the same camera again, we obtained 

vertical stripe patterns in x-residuals of the calibration. This 

can be explained as the vertical shifts of control points have 

been turned to horizontal due to the 90
o
 rotation of the 

target. Second, we have estimated the vertical offsets of the 

control point rows from different sets of calibration images 

of the same target from 3 different cameras. Fig. 4 depicts 

the vertical shifts of 10 rows of control points for the 

calibration target in Fig. 1 estimated from 5 frames of 

images acquired from the left and right cameras of stereo 

system 1 (Cam 1F and Cam 1R) and the top and bottom 

cameras of stereo system 2 (Cam 2T and Cam 2B) 

mentioned in Table 2. It can be seen that the vertical shifts 

are consistent across the cameras and stereo systems, which 

supports the validity of the zero-horizontal-shift and the 

identical-vertical-shift assumptions about the control 

circles. In the meantime, the results also demonstrate that 



 

 

the degree of overfitting for each estimate of the vertical 

shifts is not severe. We hypothesize that the unknown errors 

of feature point locations have behaved relatively randomly 

for each row of control points and therefore been 

compensated well in solving problem (6). Since the 

variation of the vertical shifts for each row of control points 

is not large, we calculate their mean value and use it to 

correct the coordinates of the control points of that row. 

After the control point correction, we can use the new 

control point coordinates for camera calibration. 

Fig.3(c,d) illustrate the calibration residual maps using 

the corrected control point positions. The image feature data 

are the same as those in Fig.3(a,b) respectively. It can be 

seen that Fig.3(c,d) do not have the stripe patterns in 

Fig.3(a,b), and also the magnitude of residuals in Fig.3(c,d) 

is significantly reduced,  indicating that the systematic drift 

of the control points have been compensated effectively. 

Note that the residual maps in Fig.3(c,d) are still not 

completely spatial-random, which suggests that there may 

be still some other sources of systematic error in the 

calibration process, e.g., unknown illumination.  

 

 
Figure 4: Estimated vertical shifts of control points for 

the calibration target in Fig. 1. 

 

Table 4 Calibration errors before and after control 
point correction (in pixels) 

 System 1 System 2 System 3 

Reproj-

ection 

before 0.1628 0.1817 0.2789 

after 0.1094 0.0993 0.1755 

Rectific

ation 

before 0.0825 0.0714 0.2813 

after 0.0843 0.0600 0.2494 

 
 
We verified the corrected control point coordinates in 

new camera calibration applications. The calibration errors 

listed in Table 3 are the results of calibration using the 

corrected control point coordinates for all 3 algorithms. The 

results using uncorrected control point coordinates are 

compared in Table 4. The MOID ellipse extraction method 

was chosen to acquire feature points since the MOID 

method has been proved accurate. It can be seen that the 

correction of the control point coordinates significantly 

reduced the calibration errors (especially the re-projection 

errors) despite the difference in camera types, lighting 

conditions, and stereo configurations. It also shows that a 

small amount of location compensation (0.05 mm maximum 

in Fig. 4) can significantly reduce calibration errors and 

improve calibration accuracy. 

 

4. Conclusion 

This paper has reported our study on two issues related to 

camera calibration, namely, how to achieve accurate 

features and how to obtain accurate control points. It has 

been shown that more accurate feature extraction can be 

done by employing the information of the metric structure 

of the control marks and integrating the multiple steps of 

feature extraction to a single optimization framework. The 

objective function of the optimization, namely, the 

difference between the inside and outside of the features has 

been proved valid.  

For 3D locations of control points, it is demonstrated that 

the offsets between ideal locations and real locations can be 

estimated by hypothesizing correctly the cause of the 

offsets. In this particular case of study, it has been shown 

that the location errors occurred mainly on vertical 

direction. A correction of the control point locations is done 

to effectively improve calibration performance. 

The principles in the feature extraction and control point 

correction in this paper may be easily extended to other 

types of control marks and calibration targets.  
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