
Hierarchal Decomposition for Unusual Fish Trajectory Detection 

Coral reefs are one of the most important natural environments which should be monitored 

to understand the environmental effects caused by global warming, pollution and so forth. 

Investigating such environments needs long-term monitoring and automatic analysis, although 

the traditional way is manual processing which is very labor intensive and time consuming. 

Analyzing fish behavior is useful to detect environmental changes as fish behavior reflects 

environmental conditions. This analysis can be made by extracting the change in behavior 

pattern of fish or by finding abnormal behaviors (Beyan and Fisher, 2013). For instance, by 

analyzing the behavior of fish hovering over coral, the health of coral can be determined.  

There are many video surveillance systems to observe fish behavior. The most well known 

way to analyze fish behavior is using video recordings where the camera is capturing the fish 

trajectories from a fish tank or in an aquarium (Papadakis, Papadakis, Lamprianidou, Glaroulos, 

& Kentouri, 2012). Diving to observe underwater using photography, hand-held video devices 

and optical systems are techniques that have been used to investigate fish behavior in natural 

environments. Acoustic systems, echo-systems and sonar have been used as well (Graham, 

Jones, & Reid, 2004). Alternatively, casting nets in the ocean and net casting with acoustic 

sensors are also popular to observe fish and determine their abundance (Spampinato et al., 2012). 

However, methods such as diving and net casting are not very suitable as they cause unusual fish 

behavior by frightening the fish. Moreover, with those approaches it is hard to capture huge 

amount of data and to do long-term monitoring (Spampinato et al., 2012). In recent years, as 

digital video recording systems become cheaper, collecting data in natural underwater 

environments with a fixed camera set up which is continuously recording underwater videos has 

become possible (Boom et al., 2014). Such a system results in massive amounts of underwater 



video although automatically and accurately analyzing data is still a challenging problem. At this 

point, computer vision techniques and pattern recognition methods could play an important role 

in analyzing the fish behaviors using underwater videos. 

 In the computer vision area, behavior understanding studies can be classified into two 

categories: 

 Activity recognition, 

 Unusual behavior detection (Piciarelli, Micheloni, & Foresti, 2008). 

When the number of possible behavior models in an uncontrolled and uncooperative real-world 

is considered, activity recognition is very challenging as the system needs a definition of each 

activity (Piciarelli et al., 2008). As fish are usually not goal-oriented and make erratic 

movements due to water currents, the complexity of the movements’ increases and makes 

encoding the behaviors into activities very challenging. On the other hand, unusual behavior 

detection analysis has become popular in recent years. To detect unusual behaviors, the system 

does not need any prior knowledge about the behaviors. The unusual behaviors are generally 

defined as outliers or rare events and are detected in an unsupervised fashion (Anjum and 

Cavallaro, 2008; Jiang, Yuan, Tsaftaris, & Katsaggelous, 2010). 

In this study, we present an unusual fish trajectory detection system that analyzes natural 

underwater environment videos. The detection and tracking of fish is out of the scope of this 

study and the fish trajectories are obtained using the tool described in (Boom et al., 2014). The 

method proposed here classifies the trajectories as normal and unusual. Normal fish trajectories 

are defined as the trajectories which contain frequently observed behaviors while unusual 

trajectories are defined as the behaviors that are rare or outliers. The proposed method is a 

hierarchical decomposition method which is based on clustered and labeled training data where 



the similarity of data is used to build a hierarchy. Different from the research that used a fixed 

hierarchy based on features or classes and the methods that used the same feature set for 

classification of any class, we present a novel hierarchical decomposition which uses different 

feature and data subsets at different levels of the hierarchy. This allows more specific features to 

be used once the data focus onto specific subclasses. At this point, to understand the proposed 

method properly, its differences between previously proposed hierarchical decomposition 

methods and hierarchal classifiers should be identified. Hierarchical decomposition methods are 

generally applied to divide a multi class problem in a hierarchical way to obtain binary classes 

(Silla and Freitas, 2010). On the other hand, hierarchal classifiers uses pre-defined hierarchy 

such as decision trees and the classes are organized using this tree or a graph. The most similar 

work to ours was proposed by (Silla and Freitas, 2011). In that study (Silla and Freitas, 2011), 

different feature sets at different levels of the hierarchy was also used. However, a fixed 

taxonomy was applied for classification which distinguishes this study from ours. 

The main contributions of this work are: i) presenting a novel approach for unusual fish 

trajectory detection which builds a feature or class taxonomy independent hierarchy, ii) 

demonstrating significantly improved performance on unusual fish trajectory analysis in 

unconstrained underwater videos, iii) given that the majority of works on unusual trajectory 

detection are unsupervised, the proposed method is different as being supervised and using 

labeled and clustered training data. 

In the rest of this chapter, we first present a literature review on fish behavior 

understanding and unusual trajectory detection methods (Section 2). In Section 3, the proposed 

method is introduced. In Section 4, the experiments, used datasets, results and the comparisons 



with the state of art methods are given. Finally, in Section 5, we conclude the chapter with 

possible future works. 

 

Recent Works 

The definition of unusual behavior is a bit ambiguous in the literature. Unusual, abnormal, 

rare, outlier, suspicious, subtle, interesting and anomaly are words that can be used 

interchangeably depending on the application while they all refer to the uncommon behaviors 

(Morris and Trivedi 2008; Xu, Tang, Liu,  & Zhang, 2010; Varadarajan and Odobez, 2009; 

Dickinson and Hunter, 2008; Jiang et al., 2010]. In this chapter, we prefer using the word 

“unusual” although reviews given below might use different wordings. On the other hand, 

behavior refers to trajectories for all sections of this chapter. 

In this Section, we review studies on fish behavior analysis and works on unusual 

trajectory detection. 

 

Review of Fish Behavior Understanding 

Fish behavior monitoring studies which utilize computer vision and machine learning 

methods are becoming popular not only in biology but also in artificial intelligence. Existing 

studies mostly focus on water quality monitoring and toxicity identification using the behavioral 

stress responses of fish (Thida, Eng, & Chew 2009; Nogita, Baba, Yahagi, Watanabe, & Mori 

1988; Schalie, Shedd, Knechtges, & Widder, 2001; Papadakis et al. 2012; Serra-Toro, Montoliu, 

Traver, & Hurtado-Melgar, 2010; Chew, Eng, & Thida, 2009). For instance, Thida et al. (2011) 

used trajectory shape features with a signed-distance function. Incremental spectral clustering 

was used to group the fish trajectories. Trajectories obtained from clean water were used to 



determine the abnormal trajectories in toxic water. Similarly, recurrence plots were used to 

analyze the swimming pattern of fish in the presence of chemicals in the water (Serra-Torro et 

al., 2010). The fish trajectories were represented as no movement, up, left, right and left 

movement and a string representing each trajectory was obtained using those movements. Strings 

were compared with Levenshtein and Hamming distances and used to build the recurrence-plots 

to detect abnormal swimming pattern. On the other hand, studies which consider other stress 

factors such as stocking density (Papadakis et al., 2012; Mancera et al., 2008) also exist. For 

instance, Papadakis et al. (2012) proposed a system to observe the behavior variability of Sparus 

aurata before and after feeding time during the day, the time that fish spent in inspecting the net 

and the number of bites on the net surface. The results in this study (Papadakis et al., 2012) 

showed that there is a connection between fish behavior, stocking density, and net condition. 

Fish feeding is influenced by stocking density and by the social interactions of fish. 

Differently, automatically monitoring abnormal behavior of fish to help the farm operator 

in aquaculture sea cages (Pinkiewicz, Purser, & Williams, 2011) also exists. In that study, fish 

are tracked by a Kalman filter. 30 random fish were selected to analyze the fish behaviors in 

terms of the average swimming speed and direction. Normal and abnormal behaviors were 

distinguished by thresholding the values of calculated features. 

A recent problem in this area is automatic fish motion pattern analysis in underwater 

environments (Spampinato et al., 2010; Amer et al., 2011; Beyan and Fisher, 2012; Beyan and 

Fisher, 2013). For instance, Spampinato et al. (2011) proposed an Adaptive Gaussian Mixture 

Model with the Adaptive Mean Shift algorithm to track fish in underwater. Texture and shape 

based features were used to recognize fish species. Lastly, fish trajectories were sub-sampled 

using the Douglass-Peucker algorithm and clustered using I-kMeans. This study can be seen as a 



preliminary work since it did not include any evaluation of the trajectory analysis. However, it is 

still important as it uses underwater videos and shows the importance of fish behavior analysis in 

that field. On the other hand, Amer et al. (2011) classified the underwater videos of fish using 

fish motion patterns. Fish behavior is modeled in terms of fish swimming speed, direction, 

periodicity and escape response time. Three sea depths were used and six behavior patterns were 

defined to identify a new video in terms of sea depth based on the behavior pattern. The most 

similar works to ours are (Beyan and Fisher, 2012; Beyan and Fisher, 2013) especially due to the 

trajectory dataset which contains unconstrained underwater videos. The former approach (Beyan 

and Fisher, 2012) tries to filter out normal trajectories to leave a more balanced normal and 

unusual trajectory set. It was applied to 2486 trajectories (to the best of our knowledge the 

second largest labeled fish trajectory dataset after the fish trajectory dataset used in this paper) 

which belong to 10 different fish species in Taiwanese Coral Reef. The results showed that the 

normal trajectory filtering rate of the method (Beyan and Fisher, 2012) is significant especially 

considering the behavior variations due to the different camera views and different fish species 

that were used in that paper. The later study (Beyan and Fisher, 2013) is a preliminary work of 

the proposed method in this chapter. It used a flat classifier with a single feature subset for 

classification of all trajectories therefore it is not based on the built hierarchy. 

Some studies focused on the behavior of individual fish such as (Nogita et al., 1988; 

Schalie et al., 2001) when others studies considered fish schools (Thida et al., 2009; Chew et al., 

2009). Some studies analyzed only one species like (Pinkiewicz et al., 2011; Chew et al., 2009; 

Kato et al., 2004; Xu, Liu, Cui, & Mioa, 2006). The majority of works analyzed the fish 

trajectories in a fish tank (Chew et al., 2009), aquarium (Thida et al., 2009) or an aquaculture sea 

cage (Pinkiewicz et al., 2011) which actually makes the analysis simpler as it decreases the 



number of fish behaviors, the variety of fish behaviors and most importantly eliminates the 

effects of habitat on the behavior of fish. A few studies worked on natural habitat underwater 

environments videos such as (Spampinato et al., 2010; Amer et al., 2011; Beyan and Fisher, 

2012; Beyan and Fisher, 2013). 

 

Reviews of Unusual Trajectory Detection Methods 

Trajectories describe the displacements of objects and are typically considered as positions 

in 2 dimensions over time. Unusual trajectory detection studies can be categorized based on: i) 

the trajectory representation methods that they used (extracting multiple features such as 

velocity, acceleration, shape based features etc, using raw trajectory positions, or processed 

trajectory positions such as by polynomial fitting, Discrete Fourier Transform etc.), ii) the 

learning method that they used (unsupervised, supervised, semi-supervised). 

Makris and Ellis (2002) used probabilistic Spline fitting to represent the trajectories, which 

was used to extract common pathways from a set of pedestrians’ trajectories. Spline fitting does 

not need machine learning methods but the accuracy depends on choosing the correct number of 

control points. Brand and Kettnaker (2000) classified movement regions using an HMM based 

trajectory representation. The HMM is successful if the trajectory length is fixed for all 

trajectories given that each object detection represents a state in HMM. However, usually the 

lengths of trajectories are not equal. Therefore, to use HMM trajectory interpolation might be 

needed. Besides HMM based representation needs training data to define the states and transition 

matrixes. Principal Component Analysis (PCA) to represent segmented trajectories is used by 

Bashir et al. (Bashir, Qu, Khokhar & Schonfeld, 2005). In this work, trajectories were segmented 

into atomic actions using velocity and acceleration. PCA is useful as it provides a compact 



representation using eigenvectors but the number of components should be determined carefully 

as it is possible to lose a part of trajectory information. Sillito and Fisher (2008) used a fixed arc-

length vector representation. The trajectory representation techniques: Haar wavelet coefficients, 

Discrete Fourier Transform (DFT), Chebyshev polynomial coefficients and Cubic B-spline 

control points were compared. These techniques were evaluated in terms of class separability 

since this metric is useful to evaluate an unusual trajectory detection method. Haar representation 

was found to be better than DFT while the highest separability values were obtained by 

Chebyshev or Spline representations. For more information, interested reader can refer to the 

survey on trajectory representations and similarity metrics (Morris and Trivedi, 2008). 

Rather than explicitly reproducing the trajectories, the trajectories can be represented by 

the multiple features obtained from trajectories. For example, Zhong et al. (Zhong, Shi, & 

Visontai, 2004) used color and texture histograms. Behavior patterns are classified as normal and 

unusual using co-occurrence of these features. Porikli and Haga (2004) proposed to use object 

based and frame based features together to detect abnormal behaviors. In that study, object based 

features includes the histogram of aspect ratio, orientation, speed, color size of the object, the 

HMM trajectory representation, duration, length, displacement and global direction of the 

trajectory etc. As frame based features histogram of orientations, location, speed, size of objects 

etc. were used. 

Unusual trajectory detection algorithms are commonly based on clustering and determine 

unusual trajectories as the trajectory that is not similar (close) to any known clusters using a pre-

defined distance threshold or the trajectories that are similar to clusters that have few trajectories. 

For example, Hu et al. (2006) presented a hierarchical trajectory clustering method to detect 

abnormal trajectories and make behavior predictions. Position, velocity and size of the object 



were used to describe trajectories. At the first level of the hierarchy, trajectories are clustered 

using spatial information. At the second level, clustered trajectories are grouped according to 

temporal information. Abnormal trajectories were defined as the trajectories that belong to 

clusters having few samples. Self organizing maps (SOM) have also been used to detect unusual 

trajectories (Owens and Hunter, 2000). The trajectories were translated into a feature vector in 

terms of time smoothed positions and instantaneous velocity. The Euclidean distance between 

trajectories and clusters and a pre-defined distance threshold were used to find the unusual 

trajectories. A trajectory having a distance larger than a threshold becomes unusual. Another 

unsupervised unusual trajectory detection method was proposed by Izo and Grimson (2007). The 

normal and unusual trajectories were individually clustered using the Normalized Cuts Spectral 

Clustering algorithm. To represent the trajectories, a feature vector composed of the area of the 

object’s bounding box, the speed, the direction of motion and the object position in the image 

were used. To classify a new trajectory, it is projected into the spectral embedding space of the 

obtained clusters and matched with the clusters. A 3-stage unsupervised hierarchical trajectory 

and activity learning process with an abnormal trajectory detection method was presented in 

(Morris and Trivedi, 2011). The trajectory points and the velocity extracted from the trajectory 

were used. In the first stage, interesting nodes were learned by GMM. In the second stage, the 

routes which represent each trajectory cluster were extracted using Longest Common 

Subsequence (LCSS) distance and spectral clustering. Following this, dynamics of activities 

were encoded using HMM. The abnormal trajectories were determined by comparing the 

trajectory's log-likelihood with a threshold. 

In contrast to the studies using unsupervised methods, there are other unusual trajectory 

detection methods that utilize semi-supervised or supervised methods such as Support Vector 



Machines (SVM) (Ivanov, Dufaux, Ha, & Ebrahimi, 2009), Hidden Markov Models (HMM) 

(Zhang, Gartica-Prez, Bengio, & McCowan, 2005), and Dynamic Bayesian Network (DBN) 

(Xiang and Gong, 2006; Loy, Xiang, & Gong, 2011). In these works, the methods use 

trajectories either fully labeled as normal and unusual (supervised methods) or only containing 

labeled normal trajectories (semi-supervised methods). For instance, velocity and acceleration 

features extracted from trajectories to detect unusual activities such as running or careless 

driving were used (Ivanov et al., 2009). In that study, SVM was applied and during training a 

model was learned using typical normal and unusual trajectories. The learned model was used to 

detect new unusual activities. As a different study, Xiang and Gong (Xiang and Gong, 2005) 

tried to find natural grouping of trajectories by eigenvectors of the behaviors’ affinity matrix. 

Besides, they presented a time accumulative reliability measure to detect abnormalities. When 

the sufficient number of trajectories that belong to same behavior class is observed which is 

determined by the reliability measure, the normal trajectories were determined on-the-fly without 

manual labeling in order to detect the abnormalities. Behavior patterns were used to find the 

natural groupings and each group was represented by a DBN with Multi-Observation Hidden 

Markov Model (MOHMM) topology. For each new trajectory, the log-likelihood of it was 

determined by the MOHMM model. Then, all log-likelihoods were used to determine the 

abnormality of the trajectory using the reliability measure which is based on a threshold. 

 

Proposed Method 

The proposed hierarchy decomposition method utilizes i) clustering, ii) outlier detection 

and iii) feature selection to build the hierarchy. To automatically construct the hierarchy during 

training, clustering and outlier detection is combined with feature selection. The data is 



partitioned by using the selected features which are determined by feature selection, outlier 

detection and the ground-truth labels of the training data. In other words, the clustered and 

labeled data is used to determine the best feature set for the subset of training data in a certain 

level of the hierarchy. The details of the proposed method are given below. 

 

Clustering 

To partition the data we used Affinity Propagation (AP) (Frey and Dueck, 2007). Various 

studies have applied AP for clustering including anomaly detection. Unlike traditional clustering 

methods, AP determines cluster centers from the actual data samples which are called cluster 

exemplars. The method is based on the pair-wise similarity of the data samples where the 

negative of the Euclidean distance between data samples is used to define the similarity. There 

are two objective functions which include similarity calculations. One of them determines how 

appropriate it would be for data sample (i) to be the exemplar of another data point (j). The 

second one determines how appropriate it would be for the other data point (j) to choose data 

point (i) as its exemplar. The exemplars are the data points that maximize the overall sum of 

these two objective functions between all exemplars and exemplars’ data samples. More 

information can be found in (Frey and Dueck, 2007). 

There are many reasons to prefer AP over traditional clustering methods (k-means, 

hierarchical clustering etc.). The main reasons here are its ability to produce smaller clusters and 

the ability to produce uneven sized clusters which is compatible with the outlier detection 

method that we propose. Additionally, its fast processing speed makes the proposed method 

faster. Being non-parametric, not requiring initialization and not depending on sample order 



makes using a validation set unnecessary and helps to reduce training time. Its scalability also 

makes the proposed classification algorithm scalable as well. 

 

Outlier Detection 

An outlier is generally defined as data sample that is far from the other data samples in the 

same cluster. The numbers of outliers are smaller than the numbers of other data samples in the 

same cluster. In the context of the work presented here, unusual trajectories are what we want to 

discover and outlier detection is used to detect unusual trajectories. 

Motivated by the study on trajectory clustering (Anjum and Cavallaro, 2008), two types of 

outliers are defined: 

 Outliers located in small clusters, 

 Outliers located in dense clusters but distant from the cluster exemplar 

The small and dense clusters are identified using the cardinality of the clusters. A cluster which 

has fewer trajectories than 10% of the median cardinality of the clusters or a cluster that has only 

one trajectory is defined as a small cluster. All trajectories belong to such a cluster are classified 

as unusual trajectories. If the cluster is not a small cluster, then the unusual trajectories (outliers) 

are detected using the Euclidean distance between the trajectory and the cluster exemplar. If the 

calculated distance is further than the threshold τ=μ+wσ (μ: mean, w: weight and σ: standard 

deviation of all distances between all trajectories and cluster exemplar) of that cluster, then that 

trajectory is classified as an outlier (unusual trajectory). Otherwise it is classified as a normal 

trajectory. As seen, this threshold is specific for each cluster as it is calculated in terms of the 

properties of the cluster such as mean, standard deviation of the distances between trajectories 

and the cluster exemplar. The w is chosen as it is given in Results section. On the other hand, 



evolutionary algorithms can be adapted to find the optimal w but in our experiments, the values 

of w that we used were good enough to obtain good performances. 

 

Feature Selection 

Feature selection is integrated with clustering and outlier detection. The advantage of 

feature selection is to prevent over-fitting, eliminate irrelevant and redundant features and the 

features which might misguide classification (Pudil, Novovicova, & Kittler, 1994).  Sequential 

Feature Selection (Pudil et al., 1994) is used to determine the best feature sets at each level of the 

hierarchy. As the feature selection criterion the mean of the true positive rate (TPrate) and the 

true negative rate (TNrate) as defined in experiments and result part are used. The traditional 

feature selection criterion (accuracy: total number of correctly detected trajectories over total 

number of trajectories) was not applied as it increased the misclassification of the unusual 

trajectories. 

Feature selection is applied as follows: 

 Given an empty feature set, clustering and outlier detection are applied to the data using 

each feature individually. The mean of TPrate and TNrate is calculated using the ground-

truth data. The set giving the highest mean of TPrate and TNrate determines the current 

feature set (which currently has single feature). 

 Given the remaining set of features and the current feature set, an additional feature is 

added by applying the same procedure. After all possible additional features are tried; the 

extended feature set which gives the best performance is kept. 

 Adding features to the current feature set continues until the classification performance 

decreases compared to the previous feature subset. 



Hierarchy Decomposition 

At each level of the hierarchy, using the best feature set found by feature selection, the data 

is clustered using AP. Outlier detection is applied to each cluster individually and the unusual 

trajectories at the current level of the hierarchy are found. Then, using the ground-truth data for 

each cluster, misclassified normal or unusual trajectories are found (if they exist). The clusters 

which do not contain any misclassified trajectory are kept for that level, and the corresponding 

trajectories are not used for construction of the rest of the hierarchy. Such clusters are called 

“perfectly classified clusters”. On the other hand, clusters which have at least one misclassified 

trajectory no matter whether unusual or normal are used to continue the hierarchy construction. 

Using the clusters that have misclassified trajectories, the hierarchy construction recurses in the 

same way. By repeating clustering, outlier detection and feature selection, the hierarchy 

construction continues until there is no cluster which is perfectly classified or all trajectories are 

perfectly classified. In summary, at each level of the hierarchy, different trajectories are used and 

to distinguish those trajectories, different feature subsets are utilized. Once a trajectory that 

belongs to perfectly classified cluster at any level of the hierarchy is detected, it is never used for 

hierarchy construction in the next levels. 

The leaf nodes of the hierarchy contain either: perfectly classified clusters (can mostly 

observed at the upper levels of the hierarchy) or misclassified clusters (can only be observed in 

the leaf nodes belong to the last level of the hierarchy). 

A cluster called perfectly classified can be either: 

 

 Perfectly classified mixed cluster: Contains unusual and normal trajectories. All 

trajectories are correctly classified using the outlier detection threshold. 



 Perfectly classified pure normal cluster: A dense cluster which contains only normal 

trajectories which are correctly classified using the outlier detection threshold. 

 Perfectly classified pure unusual cluster: Contains only unusual trajectories which are 

correctly classified since being in small clusters and we assume that small clusters 

contain only unusual trajectories. 

A cluster called misclassified can be either: 

 Misclassified mixed cluster: A dense or small cluster which contains both unusual and 

normal trajectories with at least one trajectory wrongly classified using the outlier 

detection threshold. 

 Misclassified pure normal and dense cluster: Contains only normal trajectories with at 

least one trajectory wrongly classified as an unusual trajectory using the outlier detection 

threshold. 

  Misclassified pure normal and small cluster: Contains only normal trajectories with at 

least one trajectory wrongly classified as unusual trajectory due to being in a small 

cluster. 

 Misclassified pure unusual cluster: A dense cluster that contains unusual trajectories with 

at least one trajectory wrongly classified as normal trajectory using the outlier detection 

threshold. 

The hierarchy construction algorithm is illustrated in Figure 1. 

 

 

New Trajectory Classification Using the Constructed Hierarchy 

A new trajectory is classified using the constructed hierarchy with all perfectly classified 

clusters and misclassified clusters at all levels, the selected feature subsets for each level and the 



outlier detection thresholds for each cluster. It is based on finding the closest clusters at each 

level of the hierarchy. The closest cluster is found using the Euclidean distance between the new 

trajectory and the cluster exemplars with the selected features for that specific level, including 

misclassified clusters as well. Therefore, at each level in the hierarchy, the closest cluster can be 

one of the cluster types given in hierarchy construction. Based on the closest cluster and the 

position in the closest cluster, the classification of the new trajectory can be: unusual trajectory, 

candidate normal trajectory or no effect on the decision, as given in Table 1. 

In summary, we used the heuristic that even a single level’s decision as unusual trajectory 

is enough to classify the new trajectory as an unusual trajectory no matter what the level of the 

hierarchy is. Any decision that the trajectory is candidate normal makes the new trajectory go to 

the next level to also be evaluated in there. If there is no decision as an unusual trajectory from 

any level and if the decision of at least one level is candidate normal then the final class of the 

new trajectory is determined as normal trajectory. A decision of “no decision” does not have any 

effect on the classification of the new trajectory. However, it is possible that the closest cluster at 

each level of the hierarchy is a misclassified cluster. In this case, the ground-truth labels of the 

training trajectories are used to apply the rules given in Table 2. The rules given in Table 1 and 2 

are illustrated in Figure 2. 

Other decision heuristics can be applied other than the heuristic that we use (decision as an 

unusual trajectory at any level stops classification of the new trajectory while a decision as a 

normal trajectory sends the new trajectory to the next level). For instance, the inverse heuristics: 

any decision as normal trajectory stops classification regardless of the level of the hierarchy 

while decision as an unusual trajectory send the new sample to the next hierarchy level can be 



applied. Alternatively, majority voting using the decisions from each level can determine the 

final class of the new trajectory. 

 

Experiments and Results 

The proposed method was compared with the state of art classification algorithms, outlier 

detection methods and trajectory analysis methods. The evaluations were performed using a fish 

trajectory dataset and a pedestrian dataset in terms of TPrate (unusual trajectory detection, Eq. 

1), TNrate (normal trajectory detection Eq. 2) and geometric mean of TPrate and TNrate 

(GeoMean: represents overall detection, Eq. 3). The positive class represents unusual trajectories 

and negative class represents normal trajectories. The GeoMean is preferred as it does not ignore 

the importance of the classification of unusual trajectories due to being under-represented and 

also is a suggested metric for imbalanced datasets (Kubat and Matwin, 1997). 

 

True Positive Rate (TPrate)= TP/ (TP+FN) (1) 

True Negative Rate (TNrate)= TN/ (TN+FP) (2) 

GeoMean=                  (3) 

 

In Eqs. 1-3; TP is the number of correctly classified unusual trajectories, TN is the number 

of correctly classified normal trajectories, FN is the number of misclassified unusual trajectories 

and FP is the number of misclassified normal trajectories. 

 

Datasets 

The fish trajectory dataset we used was the set presented in (Beyan and Fisher, 2013b) 

which includes 3120 fish trajectories all belong to Dascyllus reticulatus observed in the 



Taiwanese Coral Reef (http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/BEHAVIOR/). This set 

contains 3043 normal and 59 unusual trajectories with 179 features. This set is preferred as it is 

the largest public fish trajectory dataset and each trajectory has its class labels as well (Beyan 

and Fisher, 2013b). Examples of normal and unusual trajectories are given in Figure 3. 

In addition, the proposed method was applied to a pedestrian trajectory dataset as well. The 

data which belongs to 1st of September (one of the largest set, having 1634 normal, 718 unusual 

trajectories) in the Forum Pedestrian database (Majecka, 2009) was utilized. As features, similar 

to fish trajectory dataset we extract the features: acceleration based, vicinity based, curvature 

scale space based, centre distance function in 2 dimension, loop, moment based, turn, and 

velocity based as presented in (Beyan, and Fisher, 2013). Additionally, trajectory points after B-

spline fitting and the difference between the B-spline fitted trajectory and the real trajectory 

points were also used. Altogether 758 features are obtained. To prevent possible over-training or 

the curse of dimensionality, Principal Component Analysis (PCA) is applied to each group of 

features individually. To define the number of components for PCA, the smallest number of 

component that represents the 90% of the sum of all eigenvalues is used. As a result, 57 PCA 

features were obtained. 

 

Results 

The results presented in this section can be divided into 2 subsections: i) comparisons with 

the state of art methods and ii) evaluation of different heuristics for classification of new fish 

trajectory. 

For all experiments presented in this section, 9-fold cross validation was performed. 

Training, validation and test sets were constituted randomly. The normal and unusual trajectories 



are distributed equally in each set. For the methods using sequential forward feature selection, 

validation sets are used to pick the best feature set for each method individually. For others 

including the proposed method (constructs the hierarchy only using the training set) validation 

sets were not used. The training and testing sets are kept the same for all methods. 

Comparisons with the State of Art Methods 

The proposed method is compared with the following methods with the given settings: 

 k- Nearest Neighbors (kNN): k were used as {1, 2, 3, 4, 5, 10, 15, 25}. 

 k- Nearest Neighbors with Feature Selection (kNN-wFS): The same k values with the 

kNN were used while sequential forward feature selection was applied. 

 Support Vector Machines (SVM): Radial basis function with varying kernel parameters 

was used as the kernel function. Sequential Minimal Optimization was used to separate 

hyperplanes. All features are used for detecting unusual trajectories. 

 SVM with Feature Selection (SVM-wFS): Applied as given in SVM description but 

integrating with sequential forward feature selection. 

 Random Forest with Balanced Training (RF-BT): The trees are grown without 

pruning. A number of trees {10, 30, 50, 70, 100, 120, 150, 200, 500, 1000} were tested. For node 

splitting, the Gini index (Breiman, Friedman, Olshen, & Stone, 1984) was used. For balance 

training, all unusual trajectories were kept, and subsets of the normal trajectories were chosen 

randomly. Therefore, the numbers of normal trajectories in the chosen subset become equal to 

the numbers of total unusual trajectories. All features are used to detect unusual trajectories. 

 RF-BT with Feature Selection (RF-BT-wFS): Applied as given in RF-BT description 

but integrating with sequential forward feature selection. 



 Unsupervised Modeling of Object Tracks (Izo and Grimson, 2007) (UMOT): Normal 

and usual trajectories are clustered individually by normalized cuts spectral clustering. Each 

cluster was modeled as a mixture of Gaussians in the spectral embedding space.  A new 

trajectory is classified using the likelihood by projecting it into the spectral embedding space 

from normal and unusual classes. Different sigma values such as {1, 10, 20 etc.} and different 

cluster sizes {10, 15, 20, 30, 40, 50, 60, 80, 90} for normal and usual clusters were tested. 

 Local Outlier Factor (Janssens, 2009) (LOF): This method assumes that if there are not 

many samples in the surrounding space of a trajectory, then that trajectory is an outlier. 

Clustering is not needed. Training is performed only using normal classes. During validation 

normal and unusual class trajectories are used and the best feature set is selected using sequential 

forward feature selection. The neighborhood is defined with a parameter taken as {1, 3, 5, 10, 15, 

20 and 25}. 

 Filtering method (Beyan and Fisher, 2012) (Filtering): The search area pixel values 

were taken as {2, 4, 8, 16, 20}. 

 Flat Classifier (Beyan and Fisher 2013): Outlier detection parameter w was taken as {-

1, -0.3, 0, 0.3, 0.6, 0.9, 1, 2, 3, 6}. 

 Proposed Method (Proposed): Outlier detection parameter w was taken as {0, 0.3 and 

1} for the fish trajectory dataset and {-1, 0, 0.3, 0.6, 1 and 2} for Forum Pedestrian Database 

(Majecka, 2009). 

In Table 3, the best results for GeoMean and the corresponding TPrate, TNrate using the 

fish trajectory dataset are given. For each evaluation metric the standard deviation (considering 

cross validation folds) is also given after ± sign. The best results of each evaluation metric are 

emphasized in bold-face. 



The results show that the proposed method has highest unusual fish trajectory detection 

rate (TPrate) and is also the best method overall (GeoMean). For the proposed method the best 

performance was observed when the outlier detection threshold w is 0. The depth of the 

hierarchy was at most 3 while mostly 2 for the 9-folds. Paired t-tests were applied to the 

GeoMean data between each other method and the proposed method. It is found that the 

proposed method is significantly better than all methods except RF-BT, RF-BT-wFea and SVM 

(α=0.05). 

To show that the method is not limited to fish trajectory analysis but a general unusual 

trajectory detection method as well, we applied it to the pedestrian trajectory dataset (Majecka, 

2009). The performance of the proposed method is compared with RF-BT, RF-BT-wFea, SVM-

wFea as they performed well on the fish trajectory dataset. Also, LOF (Janssens, 2009) was 

compared since this method is one of the most popular outlier detection methods and was applied 

in (Hsiao, Xu, Calder, & Hero) as one of the state of art method for that dataset. 

The best results for GeoMean and the corresponding TPrate, TNrate using pedestrian 

trajectories are given in Table 4. For this dataset the best performance of the proposed method 

was observed when the outlier detection threshold w is 0.3. The depth of the hierarchy was at 

most 5 while mostly 3 for the 9-folds. For this dataset, the proposed method performed the best 

to detect unusual trajectories (TPrate) and also in terms of GeoMean. A paired t-test applied 

between each method and the proposed method using the GeoMean results showed that the 

proposed method is significantly better than each other method (α=0.05). 

 

 

 

 

 



Evaluation of Different Heuristics for Classification of New Fish Trajectories 

The proposed method is compared with variations of the algorithm using different 

heuristics to classify the new trajectories (Alter1-4). The contribution of having different levels 

with different subsets of trajectories and features is explored by applying the proposed method to 

all selected features from different levels as they are selected in a single level including all 

training trajectories (SingleLevProposed). Additionally, the features selected by the proposed 

method are evaluated by using SVM classifier (SVMwPropFea). The contribution of outlier 

detection algorithm is tested by keeping the same heuristics but changing the decision maker as 

SVM (Hie-SVM, Hie-SVM-Alter1). All those methods are defined below in detail and the best 

results in terms GeoMean with corresponding TPrate, TNrate are given in Table 5. 

The different heuristics used to classify new fish trajectories are: 

 Proposed Method (Proposed): Outlier detection parameter w was taken as {0, 0.3 and 

1}.The heuristic is: a decision as a “unusual trajectory” at any level stops the classification of 

the new trajectory and the new trajectory become unusual, while a decision as a “normal 

trajectory” sends the new trajectory to the next hierarchy level. 

 Single level classification using features selected by Proposed (SingleLev Proposed): 

The proposed method was applied using all the features selected (without feature selection) from 

all levels during hierarchy construction of proposed method. The classifier is outlier detection 

but the new hierarchy has only one level. Outlier detection parameter w was taken as {0, 0.3 and 

1}. 

 Alternative Heuristic 1 (Alter1): Outlier detection parameter w was taken as {0, 0.3 and 

1}.The heuristic is: a decision as a “normal trajectory” at any level stops the classification of 



the new trajectory and it become normal, while a decision as a “unusual trajectory” sends the 

new trajectory to the next hierarchy level. 

 Alternative Heuristic 2 (Alter2): Find the closest cluster at each level using 

corresponding features. Then, find the closest cluster of all which might be from any level of the 

hierarchy. If the closest cluster is a perfectly classified cluster then, a decision as unusual 

trajectory makes the new trajectory unusual and a decision as normal trajectory makes the new 

trajectory normal. If the closest cluster is a misclassified cluster then, the ground-truth labels are 

used as Proposed applies. The outlier detection parameter w was taken as {0, 0.3 and 1}. 

 Alternative Heuristic 3 (Alter3): Apply the proposed method, classify the new 

trajectory at every level of the hierarchy and combine the decisions using majority voting. If the 

numbers of levels classifying the new trajectory as unusual and normal are equal, then the new 

trajectory is unusual. The outlier detection parameter w was taken as {0, 0.3 and 1}. 

 Alternative Heuristic 4 (Alter4): Apply the proposed method, but classify the new 

trajectory at every level of the hierarchy and combine the decisions using majority voting. If the 

numbers of levels classifying trajectory as unusual and normal are equal then the new trajectory 

is normal. The outlier detection parameter w was taken as {0, 0.3 and 1}. 

 SVM using features selected by Proposed (SVM-wPropFea): The features selected by 

Proposed in all levels are utilized in a single SVM classifier. SVM was applied with the settings 

given above. 

 Hierarchical SVM (Hie-SVM): Applying Proposed but using SVM as the classifier 

instead of the outlier detection algorithm. SVM was applied with the settings given above. 



 Hierarchical SVM- Alternative Heuristic 1 (Hie-SVM-Alter1): Applying Alter1 but 

using SVM as the classifier instead of the outlier detection algorithm. SVM was applied with the 

settings given above. 

As seen in Table 5, the proposed method is the best in terms of GeoMean and TPrate. 

SVMwPropM3Fea also performed well which means that the selected features by proposed 

method are representative to detect unusual fish trajectories. SingleLevProposed did not perform 

as well as the proposed method which means that utilizing different features for different 

trajectory subsets is more successful. Alter1 and Alter4 did not perform as well as proposed 

method and Alter2 and Alter3. That is because their TNrate were not as good as their TPrate 

which decreased the GeoMean as well. Hie-SVM did not perform significantly worse than the 

proposed method but on average the proposed method is better with higher TPrate. Similar to 

Alter 1, Hie-SVM- Alter1 also tended to classify samples as the normal class therefore its TNrate 

is greater than the TNrate of Hie-SVM but its TPrate is much worse which makes its GeoMean 

worse than the GeoMean of Hie-SVM. 

 

Conclusions and Future Works 

In this chapter, we presented a hierarchical decomposition method which constructs the 

hierarchy based on clustered and labelled trajectories using the similarity of trajectories. 

Different feature sets applied to different subset of trajectories formed the hierarchy.  

The results showed that the proposed method had a better performance compared to the 

state of art classification methods and unusual trajectory detection methods and especially in 

terms of the unusual trajectory detection rate. Besides, its high normal trajectory detection rate is 

helpful for marine biologists since it allows filtering out many normal trajectories with a low 



error rate and lets them to focus more on unusual trajectories which are important given that they 

have huge amounts of data. The proposed algorithm’s performance was also validated by another 

trajectory dataset. Moreover, the proposed method is also computationally efficient at classifying 

a new trajectory as it is only based on distance calculations while traversing the built hierarchy. 

The proposed method can be applied for classification of binary imbalanced data sets 

including environmental data sets given that it is not limited to unusual fish trajectory detection. 

On the other hand, the proposed method can be considered closed to bagging since it does not 

use all the data samples to build up the hierarchy at each level. However, in our case, the bags 

are defined by the performance of the classifier (we continue to build up the hierarchy with the 

misclassified trajectories) but not as random subsets as happens in bagging. Moreover, it is 

different from boosting by using a subset of data in addition to not using a weight to support the 

classification of misclassified trajectories. 

 In the future, we will investigate the performance of the proposed method on imbalanced 

datasets from various application areas using the different heuristics that were presented. 

Moreover, the proposed method will be applied to larger fish datasets which might also include 

other fish species. 
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Table 1 

Possible class decisions for a new trajectory 

Decision Condition Next Action 

Unusual 

Trajectory 

 The closest cluster is a perfectly classified pure 

unusual cluster or 

 The closest cluster is a perfectly classified 

mixed cluster and the new trajectory is further 

than the outlier detection threshold of that 

cluster or 

 The closest cluster is a perfectly classified pure 

normal cluster and the new trajectory is further 

than the outlier detection threshold of that 

cluster. 

Classification stops (there 

is no need to look at any 

other level of the 

hierarchy). 

Candidate 

Normal 

Trajectory 

 The closest cluster is a perfectly classified pure 

normal cluster and the distance between the new 

trajectory and the corresponding cluster’s center 

is smaller than the outlier detection threshold of 

that cluster or 

 The closest cluster is a perfectly classified 

mixed cluster and the distance between the new 

trajectory and cluster center is smaller than the 

threshold. 

The new trajectory goes to 

the next hierarchy level. 

No Decision  The closest cluster is a misclassified cluster. The new trajectory 

proceeds to the next level. 

 



Table 2 

Class decisions for a new trajectory when the closest cluster at each level is a misclassified 

cluster. 

Decision Condition Next Action 

Unusual 

Trajectory 

 The closest cluster at the current level contains 

all normal trajectories by looking at the ground-

truth class labels and the new trajectory is 

further than the rest of the samples in that cluster 

or 

 The closest cluster contains all unusual training 

trajectories by the ground-truth or 

 The closest cluster contains both normal and 

unusual training trajectories. Then, the nearest 

neighbor rule which makes the class of the new 

trajectory the same as the closest training 

sample’s class is applied. If the class is an 

unusual class then this decision and 

corresponding action is given. 

Classification stops (there 

is no need to look at any 

other level of the 

hierarchy). 



Candidate 

Normal 

Trajectory 

 The closest cluster at the current level contains 

all normal trajectories by looking at the ground-

truth class labels and the new trajectory is not 

further than the rest of the samples in that cluster 

or 

 The closest cluster contains both normal and 

unusual training trajectories. Then, the nearest 

neighbor rule which makes the class of the new 

trajectory the same as the closest training 

sample’s class is applied. If the class is an 

unusual class then this decision and 

corresponding action is given. 

The new trajectory goes to 

the next hierarchy level. 

Normal 

Trajectory 

 If the new trajectory reaches the last level and 

could not be classified yet. 

Classifications stops. 

 

 

 

 

 

 

 

 

 

 



Table 3 

Best average GeoMean result of each method with the corresponding TPrate and TNrate using 

the fish trajectory dataset. The best results of each metric are emphasized in bold-face. 

 

Methods TPrate TNrate GeoMean 

KNN 0.26±0.08 0.99±0.01 0.50±0.09 

KNN-wFS 0.37±0.28 0.99±0.01 0.60±0.27 

SVM 0.21±0.07 0.99±0.01 0.45±0.07 

SVM-wFS 0.81±0.16 0.93±0.03 0.86±0.09 

RF-BT 0.87±0.01 0.93±0.06 0.90±0.03 

RF-BT-wFS 0.88±0.01 0.91±0.10 0.89±0.05 

UMOT 0.57±0.2 0.85±0.11 0.70±0.04 

LOF 0.62±0.17 0.97±0.01 0.77±0.08 

Filtering 0.80±0.20 0.77±0.04 0.78±0.09 

FlatClass 0.81±0.17 0.76±0.02 0.78±0.09 

Proposed 0.94±0.10 0.88±0.02 0.91±0.05 

 

 

 

 

 

 

 



Table 4 

Best average GeoMean result of each method with the corresponding TPrate and TNrate using 

the Forum Pedestrian Database (Majecka, 2009). The best results of each metric are emphasized 

in bold-face. 

 

Methods TPrate TNrate GeoMean 

SVM-wFea 0.83±0.03 0.79±0.04 0.81±0.01 

RF-BT 0.80±0.02 0.86±0.03 0.83±0.02 

RF-BT-wFea 0.79±0.04 0.81±0.05 0.80±0.04 

LOF 0.53±0.07 0.95±0.02 0.71±0.04 

Proposed 0.87±0.06 0.86±0.05 0.86±0.02 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 

Best best average GeoMean results of given methods in Table 4 with corresponding TPrate and 

TNrate using the fish trajectory dataset. The best results are emphasized in bold-face. 

 

Methods TPrate TNrate GeoMean 

Proposed 0.94±0.10 0.88±0.02 0.91±0.05 

SingleLevProposed 0.58±0.16 0.90±0.03 0.72±0.10 

Alter1 0.37±0.16 0.97±0.01 0.59±0.13 

Alter2 0.92±0.02 0.80±0.17 0.85±0.09 

Alter3 0.88±0.10 0.91±0.02 0.89±0.05 

Alter4 0.48±0.21 0.96±0.02 0.68±0.17 

SVM-wPropFea 0.89±0.11 0.86±0.05 0.87±0.06 

Hie-SVM 0.92±0.10 0.82±0.09 0.86±0.02 

Hie-SVM-Alter1 0.36±0.34 0.98±0.03 0.59±0.34 

 

 

 

 

 

 

 

 

 



Figure Captions 

Figure 1 Hierarchy Construction 

Figure 2 New Trajectory Classification using the Constructed Hierarchy 

Figure 3 Example of (a) normal fish trajectory, (b) unusual fish trajectory. 


