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Abstract

Textures in 3D meshes represent intrinsic surface properties and are essential for various applications, including retrieval,
segmentation, and classification. However, it is distinct from other types of 3D object analysis. The primary objective is to capture
the surface variations induced by multiple textures. While numerous classical approaches are published in the literature, only a
few work directly on 3D meshes. Given the versatility of graph representations, we propose a graph learning- based approach for
classifying the texture of each facet in a 3D mesh. First, a three-dimensional mesh is transformed into a graph structure in which
every node is a facet of a given mesh. Further, each facet is described by a feature vector computed utilizing the neighboring
facets within a radius and their geometric properties. The graph structure is then fed into a graph neural network, classifying each
node as a texture or non-textured class. The proposed technique has been validated using texture patterns from SHREC’18 and
demonstrated positive performance.

Index Terms

Relief pattern, 3D texture, Feature descriptor, Classification

I. INTRODUCTION

Texture analysis is a computer vision study that is utilized in two-dimensional and three-dimensional domains to categorize,
segment, and retrieve distinct texture patterns [2], [3], [9]. On the other hand, texture analysis has been extensively explored in
the 2D domain, and it is a relatively new area in the 3D domain. The main goal is to develop a method to extract texture patterns
from 3D meshes and compare them to other 3D meshes to evaluate similarity. The relationship between texture and polygonal
resolution, for example, is crucial in museums and cultural institutions for the preservation, research, and presentation of cultural
heritage content [7]. Also, understanding the texture of damaged sculptures and artifacts might aid in precise reproduction
in the 3D reconstruction of archaeological sites. There are a few ways to analyze texture patterns (Figure 1) in 3D meshes
available in the literature [25]; these approaches effectively classify the texture patterns. Several existing algorithms convert 3D
meshes to 2D images and employ texture detection techniques on the obtained 2D images [3], [6]. However, there are only a
few methods for directly recognizing texture patterns on 3D meshes. These algorithms construct spatial and frequency domain
global or local descriptors to recognize texture patterns. Geometrical parameters such as curvature, curvedness, and normals
are used to build three-dimensional descriptors in the time domain, whereas the Laplace-Beltrami operator generates the most
spectral descriptors. However, these techniques are inefficient in various situations, including surfaces with many textures and
a significant degree of texture variation. Recently, introduced a 3D mesh convolutional algorithm for texture retrieval and
classification. This technique employs a grid structure derived at each facet through an ordered ring and then performs 2D
convolution on the computed grid [20].

Deep learning has gained in popularity due to its many applications, including handwritten character identification, image
and video recognition, text analysis, and voice recognition. Several deep learning-based algorithms for 3D object recognition,
classification, and segmentation are available in the 3D domain [16], [17]. However, it is unclear how these techniques may
be extended to handle texture pattern recognition because texture patterns are distinguished by parts and local features that are
independent of the overall shape. A CNN-based approach, in general, accepts as input a two-dimensional image with a regular
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Fig. 1. A few example patches from the SHREC’18 dataset have texture and non-texture regions. The first patch has two textures and one non-texture,
whereas the other three have one texture and one non-texture region. The first and third patches have a texture in common, and the remaining textures present
in other patches are different.

grid structure. As a result, deep learning is being used to address texture recognition by transforming 3D models into depth
images and 2D images. The transformation from one domain to another, on the other hand, loses information regarding surface
variation, which is crucial for texture detection. 3D meshes, on the other hand, can be directly used by using networks such
as MeshCNN [8]. However, the feature generated by this technique is a result of tessellation rather than geometric features.
As a result, there is a huge demand for novel algorithms to generate efficient features to identify texture patterns.

To address the issues mentioned above, we present a deep graph neural network-based technique for 3D meshes. Though
classical graph-based algorithms are known for texture classification [14], this is the first time a 3D mesh texture classification
problem has been addressed using a graph neural network. The 3D meshes are converted to a graph structure, and each node in
the graph is classified. In graph construction, we assume that each facet has three neighboring facets. Each face in a 3D mesh
serves as a node, with edge connections created with adjacent facets. At each node, we compute a geometrical feature called
local depth, and this feature is used for message passing and aggregation between nodes in the graph network. As a result, the
features computed at each node are critical; therefore, the computed geometric surface features should be more efficient than
curvature and curvedness features. The performance of the proposed technique is evaluated using the SHREC’18 dataset and
is found to be promising.

The remainder of this article is organized as follows. In Section II, we review related work. Section III describes the proposed
algorithm in detail, followed by the implementation. The experimental evaluations and discussions are presented in Section
IV. Finally, the conclusions are drawn in Section V.

II. RELATED WORK

In the 2D image domain, numerous methods for defining texture patterns based on repeatability, randomness, and orientation
have been developed [5], [12]. The most widely used techniques extracted this information by local descriptors derived from
convolution-based filtering operations such as Gabor or Local Binary Pattern (LBP) [15], where LBP, in particular, is one of
the most basic and widely used local texture descriptors. The texture analysis is a mature field in the 2D domain; however, in
the 3D domain, it is in the early stage. Therefore, several techniques [3] in the literature extend the texture analysis used in
2D to 3D. For example, in [20], a 3D mesh convolution is introduced, an extended version of 2D. Likewise, we can find the
extension of the most popular 2D techniques, HOG [5] and LBP extensions as MeshHOG [24], and MeshLBP [21]. Inspired
by LBP in 2D, a mesh local binary pattern (meshLBP) is introduced in [21]–[23]. To have a regular grid-like structure similar
to 2D images, this technique introduced ordered ring facets (ORF) to have an ordered structure of mesh support region for
LBP computation. Depending on the requirement, this technique computes multi rings at each facet, and through subsampling,
twelve facets are chosen at each ring. Further, the difference between central facets and the neighbouring facets is used in
LBP computation using geometric properties obtained at facets. This technique faces challenges with boundary facets where
adjacent facets are absent. A few other techniques use images obtained from 3D meshes [4] and then apply image processing
techniques such as morphological operations to find the texture pattern. Though these techniques are simple and easy to handle,
in SHREC’17, a track on relief patterns, these techniques performed better than many other techniques. In [3], a covariance
descriptor is introduced using 2D images obtained from 3D mesh. These covariance descriptors are computed for patches and
utilized to find the similarity of texture patterns. Similarly, Giachetti et al. use a 2D raster image of 3D meshes, and then IFV
(improved fisher vector) is applied to the obtained 2D image to get the feature vectors [6]. Tatsuma and Aono obtained depth
images from 3D meshes and then converted them into LBP images. Further, Kaze features are computed on the LBP image.
A few statistical features were computed on the LBP image and concatenated as the final feature [3].
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Fig. 2. Outline of the proposed method. (a) 3D mesh patch with a yellow box around a facet, (b) adjacent facets (1, 2, 3) of the chosen facet (0), (c) sample
edge connections between the central facet and the adjacent facet, where the facets are nodes, and each node is represented by a feature descriptor (for node
0 and node 2 are shown), (d) constructed graph with its node feature fed to graph neural network for classification.

Like MeshLBP, an EdgeLBP on the mesh surface where concentric spheres with different radii are used at each facet.
For each intersecting contour, a sequence of 12 equidistant points is generated. Further, these points are used in computing
the local binary pattern [19]. A few works in mesh convolution can be applied directly on 3D meshes. In [8], a method is
introduced where all types of common operations, such as convolution and pooling, similar to 2D images, are performed on 3D
meshes. This technique has shown better performance in the benchmark dataset; however, the features constructed are not from
geometric surface properties but from tessellation modification. Another technique in [20] introduced two mesh convolutions
where one uses a 2D grid computed at each facet, and further, a 2D convolution is performed on the obtained grid. Another
one uses ORF and polar coordinates similar to regular grids and Cartesian coordinates used in 2D. Similarly, a geodesic
convolution neural network (GCNN) is introduced in [13], applicable in non-Euclidean space. However, the complexity of
geodesic distance computation increases linearly with a number of points is a disadvantage. Sun et al. introduced a descriptor
using the interior dihedral angle of mesh edges. The obtained angles are used to construct a histogram which is used to find
similarities between texture patches [3]. Texture based applications are more popular with wavelet transform in the 2D domain.
Inspired by this, Masoumi et al. introduced a signature using wavelet and geodesic distances [14].

There is another category called spectral descriptor, which is more robust to 3D object transformation. Limberger and
Wilson [11] introduced a curvature-based Laplace Beltrami operator, which is decomposed to construct an improved wave
kernel signature (IWKS). Further, the obtained kernel is encoded using the Fisher vector and Super vector. Though the method
follows a standard approach, it is robust to non-rigid motion because of curvature, which down weights the articulated region.
Signature Quadratic Form Distance (SQFD) [18] introduces a distance metric for matching the local features of 3D objects to
evaluate their similarity. This technique generated the spectral descriptor using the Laplace-Beltrami operator and employed
wave kernel descriptor variants to evaluate the performance of the proposed distance metric. The spectral descriptors, on the
other hand, have their drawback. The complexity of these descriptors is directly proportional to the number of vertices in the
input mesh since they rely on the computation of the Laplace-Beltrami operator and its eigendecomposition. As a result, the
input 3D samples are downsampled to minimize complexity while simultaneously ensuring that the number of vertices is equal
across all samples in a dataset. This results in a loss of fine details and reduced texture recognition performance.

III. PROPOSED APPROACH

We adopt deep learning-based algorithms for 3D mesh texture classification since they are successful in 2D computer vision
applications such as recognition, classification, and segmentation. In 2D vision problems, CNN-based techniques generate the
feature descriptor using the regular structure of a 2D image and convolution. However, these techniques are incompatible with
3D meshes due to the mesh structure. We approached the texture problem as a graph due to its versatile data structure. The
graphs are fed into a graph neural network for node classification to predict the nodes’ class in a graph with only partial node
labeling. The following sections illustrate how to create a graph from a three-dimensional mesh and use geometrical features
to describe each node in the graph for message passing and aggregation during network training. The outline of the proposed
technique is illustrated in Figure 2.

A. Graph construction

A three-dimensional mesh is represented as a graph structure, with each facet representing a node in the graph. Each facet
in the mesh has three adjacent facets, which are utilized to generate an adjacency matrix that creates the edge connection
between the graph nodes. Further, each node is defined by a feature descriptor derived from the corresponding facet in the 3D
mesh.
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(a) (b)
Fig. 3. Construction of an ordered ring of facets. (a) A single ring is created around the central facet using the adjacent facets (1, 2, 3) and the Fgap facets;
(b) two rings are constructed similarly.

B. Node feature extraction

Two approaches are utilized to construct the descriptor to create an ordered ring around a facet and then a mesh grid based
on it because the existing mesh structure is frequently uneven. The grid employed in this paper is inspired by [20], where it
is constructed at each facet, fc, using the ordered ring facet (ORF) developed by Werghi et al. [22]. Each facet in a mesh
has three neighboring facets (1, 2, 3), and the gap between the adjacent facets to construct the ring is filled with three facets
(Fgap), as illustrated in Figure 3(a). Similarly, multiple rings can be constructed at each facet, extending the coverage of the
ordered region. Figure 3(b) depicts two rings created using the same process.

The indexes of the facets surrounding the central facet exhibit an arithmetic progression pattern that is used in grid
construction. The grid is made up of four quadrants, each of which has its arithmetic pattern. We can extract the four quadrants
that make up the Mesh-Grid by defining the quadrant size. The Mesh-Grid allows rotations based on the first neighboring facets
to the center facets using the ORF ordered structure. Three different Mesh-Grid are thus feasible, one for each fc neighboring
facet. An example of three grids constructed around a central facet is shown in Figure 4. The node feature is constructed
using these mesh grids computed from three orientations. After constructing the grid, each position in the grid is filled with

Fig. 4. Example of three grids extracted around a central facet (red).

a local depth (LD) value such that a two-dimension descriptor is obtained at each facet. The algebraic distance between a
point on a manifold and a reference plane is defined as the LD value. The reference plane is determined by the vertices in the
neighborhood that have the least eigenvector of the covariance matrix as normal. However, this feature captures local depth
variation that differs from the curvature-based features H, C, and K2 in expressing the geometric texture.

C. Graph CNN

The graph network used consists of graph convolution, a linear layer, and a nonlinear activation. The data fed to the network
is normalized to avoid varying degrees at each node. The node features are used as message passing between the nodes, and
an average operation is used to aggregate the messages received at each node. Further, passing it to a dense layer and finally
applying a nonlinear activation. Since the feature used is local depth at each node, it captures the geometric variations in the
local vicinity. This helps the network to learn better as compared to other geometric features. The intuition here is that similar
nodes are likely to share the same label where this has happened by passing the message, where each layer of the network
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takes an aggregate of a neighbor node and passes it one “hop” away to the next node. So in our network with two-layer, we
can convolve each node’s ‘second-order’ neighborhood. Three networks are used in classifying the nodes, with the base model
[10], and the other two models are the variants of the base model with residual layer and gated skip connected layer.

D. Training loss

A binary cross-entropy loss function is chosen and minimized during training to learn a set of parameters. Consider the
parameter vector θ corresponding to the task of locating the texture region in a given mesh and is given as

L(θ) = 1

N

N∑
i=1

−(yilog(pi) + (1− yi)log(1− pi)) (1)

where pi represents the probability of a textured region, 1− pi represents the probability of a non-textured region, and yi = 1
represents the label for a textured region and yi = 0 otherwise. By passing training graphs, the optimal parameters are updated
in each iteration. The optimal parameters learned are used to classify texture and non-texture regions in a test 3D mesh.

E. Implementation details

The proposed network is implemented using Tensorflow [1] on 2 RTX 2080 NVIDIA GPUs for 1000 epochs. The training
is carried out using the dataset with pre-processing of 3D meshes to compute the node features. The binary cross-entropy loss
function is minimized using the Adam optimizer with a learning rate of 0.001 and a dropout of 0.5. We used annotated label
mask for the training graphs, where zero is assigned to the non-textured region and one is assigned to the textured regions.

IV. EXPERIMENTAL EVALUATION

The performance of the proposed approach is evaluated using the SHREC’18 dataset [4]. It consists of 10 patches, three
of which include multiple texture patterns, while the remaining contain a single texture pattern and a non-textured region.
There are 11 distinct texture patterns, excluding the non-textured region. Each patch contains various facets and is labeled as
texture and non-textured using MeshLab. We conducted experiments and reported the results using three network architectures.
The objective is to classify whether each facet in a patch corresponds to a node in a given graph that belongs to texture or
non-texture. We evaluate our network’s performance using accuracy, precision, recall, and F1-score. Precision is the proportion
of correctly predicted positive instances, recall is the fraction of correctly predicted positive cases to all positive cases, and
F1-score is a combination of precision and recall. Each patch is fed with 70% of the mesh facets as training and the rest of
the facets as the test sample to train the network. An example training patch is shown visually in Figure 5(b). We used local
depth features for each node, where one derived from a single orientation and the other derived using three orientations. These
features are constructed as a grid with dimension 14 × 14 and later fattened to a single dimension. In the case of a single
orientation, one grid is computed, and in the case of three orientations, three grids are computed. These grids are flattened and
concatenated as the node feature. Hence, the dimension of the local depth feature from a single orientation is 1× 196, and the
dimension of the other is 1× 588.

A. Quantitative results

To demonstrate the performance of the proposed technique, four metrics, accuracy, precision, recall, and F1-score, are
computed on the SHREC’18 dataset. The performance of the proposed network is shown in Tables I and II. We measured
performance using seven patches in which half of the nodes are not seen by the network. In patches containing multiple texture
regions, we consider the texture regions with the highest percentage to be the texture and the others to be non-texture. The
results obtained using single orientation local depth features demonstrated better performance than the other. In the case of a
single orientation, the precision and recall values are less for a few patches compared to three orientations. However, a single
orientation’s accuracy is always high compared to a three orientation. Also, while training the network using three orientations,
we found that the accuracy reduces after a certain epoch; however, there is a steady increase in accuracy and loss convergence
in a single orientation.

B. Qualitative results

A few visual examples are shown to demonstrate the performance of the proposed technique. The mesh’s texture and non-
textured facets are used along with the ground truth labels. The results are obtained using local depth features derived in single
and three orientations. Figure 5 show the results for one orientation, and Figure 6 shows the results for three orientation. The
ground truth of a patch is shown in Figure 5 (a), where red represents the texture region and blue represents the non-textured
region. A portion of nodes from this ground truth patch, as shown in Figure 5(b), is given as input to train the graph network.
The predicted results for three models are shown in Figure 5(c-e), where the based model has produced better results as
compared to the gated skip-connected network. However, the base model with residual layer has been predicted better than the
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TABLE I
THE PERFORMANCE OF THE PROPOSED APPROACH IN TEXTURE CLASSIFICATION USING LOCAL DEPTH FEATURES DERIVED USING SINGLE

ORIENTATION. THE RESULTS ARE SHOWN FOR THREE MODELS WHERE THE BASE MODEL WITH THE RESIDUAL LAYER HAS PRODUCED BETTER RESULTS
THAN THE OTHER TWO. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Patch Base model Base model with
Residual layer

Base model with Gated
Skip Connection

Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

1 0.64 0.71 0.67 0.63 0.64 0.72 0.68 0.64 0.73 0.76 0.74 0.69

2 0.58 0.61 0.60 0.59 0.60 0.66 0.63 0.62 0.56 0.61 0.59 0.58

3 0.62 0.65 0.63 0.61 0.64 0.70 0.67 0.64 0.59 0.58 0.58 0.59

4 0.69 0.72 0.71 0.68 0.65 0.68 0.67 0.65 0.61 0.67 0.64 0.62

5 0.59 0.61 0.60 0.60 0.62 0.69 0.66 0.67 0.56 0.59 0.58 0.57

6 0.57 0.59 0.58 0.56 0.61 0.66 0.64 0.62 0.54 0.57 0.55 0.56

7 0.66 0.72 0.69 0.65 0.63 0.67 0.65 0.64 0.60 0.63 0.62 0.61

TABLE II
THE PERFORMANCE OF THE PROPOSED APPROACH IN TEXTURE CLASSIFICATION USING LOCAL DEPTH FEATURES DERIVED USING THREE

ORIENTATIONS. THE RESULTS ARE SHOWN FOR THREE MODELS WHERE THE BASE MODEL WITH THE RESIDUAL LAYER HAS PRODUCED BETTER RESULTS
THAN THE OTHER TWO. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Patch Base model Base model with
Residual layer

Base model with Gated
Skip Connection

Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

1 0.64 0.71 0.67 0.63 0.60 0.66 0.63 0.57 0.70 0.74 0.72 0.66

2 0.58 0.61 0.59 0.54 0.59 0.61 0.60 0.58 0.51 0.57 0.54 0.52

3 0.54 0.60 0.57 0.53 0.60 0.64 0.62 0.59 0.56 0.58 0.57 0.53

4 0.59 0.60 0.60 0.56 0.59 0.69 0.65 0.61 0.60 0.62 0.61 0.59

5 0.54 0.61 0.58 0.56 0.61 0.64 0.63 0.60 0.58 0.61 0.60 0.57

6 0.51 0.55 0.53 0.52 0.56 0.60 0.58 0.58 0.52 0.58 0.55 0.55

7 0.60 0.67 0.64 0.61 0.58 0.60 0.59 0.60 0.62 0.65 0.63 0.58

other two networks. Similarly, Figure 6(c-e) shows the results for local depth derived from three orientations. The predicted
results show less performance as compared to single-oriented features. This reduction is because the feature vector length
produced from three orientations is three times that of a single orientation. Increasing the number of rings around a facet may
also improve its performance. Nevertheless, determining the optimal number of rings is challenging. A large number results
in a global feature representation instead of a local representation. This issue can be addressed by using adaptive rings around
a facet, given that a facet in the non-textured region requires fewer rings than one in the texture region.

(a) (b) (c) (d) (e)
Fig. 5. The proposed approach achieved visual results for texture classification using local depth features derived using a single orientation. (a) A sample’s
ground truth, with red representing texture and blue representing non-texture, (b) a partial mesh facet used for training the network, (c) predicted results of
the base model, (d) predicted results of base model with residual layer, and (e) predicted results of the base model with gated skip connection.

V. CONCLUSIONS

This article proposed a texture classification approach based on a graph deep neural network and a mesh grid local depth
feature. We demonstrated categorizing texture at the facet level in a patch using a graph neural network. The three-dimensional



7

(a) (b) (c) (d) (e)
Fig. 6. The proposed approach achieved visual results for texture classification using local depth features derived using three orientations. (a) A sample’s
ground truth, with red representing texture and blue representing non-texture, (b) a partial mesh facet used for training the network, (c) predicted results of
the base model, (d) predicted results of base model with residual layer, and (e) predicted results of the base model with gated skip connection.

mesh is first represented as a graph, and then each node in the graph is described by a geometric feature. We constructed local
depth features in three orientations using a mesh grid formed by an ordered mesh ring to derive the feature descriptor. These
features are used to categorize the nodes in a graph. The proposed network has been validated using data from the SHREC’18
dataset. Experimental results demonstrate an encouraging performance and effectiveness in classifying texture and non-textured
nodes. We intend to expand on this work by developing custom aggregation for graph networks, allowing the aggregation to
focus on nodes with similar textures during training for multi-class texture classification.
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