Deep Image Representations

for Coral Image Classification

A. Mahmood*, M. Bennamoun®, S. An*, F. Sohel!, F. Boussaid*, R. Hovey",
G.A. Kendrick* and R.B. Fisher! *The University of Western Australia, Australia;
email: ammar.mahmood @research.uwa.edu.au "Murdoch University, Australia

*University of Edinburgh, Scotland

Abstract

Healthy coral reefs play a vital role in maintaining biodiversity in tropical marine ecosystems.
Remote imaging techniques have facilitated the scientific investigations of these intricate ecosystems,
particularly at depths beyond 10 meters where SCUBA diving techniques are not time or cost efficient.
With millions of digital images of the sea floor collected using Remotely Operated Vehicles (ROVs)
and Autonomous Underwater Vehicles (AUVs), manual annotation of this data by marine experts is a
tedious, repetitive and time consuming task. It takes 10-30 minutes for a marine expert to meticulously
annotate a single image. Automated technology to monitor the health of the oceans would allow for
transformational ecological outcomes by standardizing methods to detect and identify species. This
paper aims to automate the analysis of large available AUV imagery by developing advanced deep
learning tools for rapid and large-scale automatic annotation of marine coral species. Such an automated
technology would greatly benefit marine ecological studies in terms of cost, speed and accuracy. To this
end, we propose a deep learning based classification method for coral reefs and report the application
of the proposed technique to the automatic annotation of unlabelled mosaics of the coral reef in the
Abrolhos Islands, Western Australia. Our proposed method automatically quantified the coral coverage
in this region and detected a decreasing trend in coral population, which is in line with conclusions

drawn by marine ecologists.
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I. INTRODUCTION

Rapidly increasing carbon dioxide levels in the atmosphere due to ever expanding human
activities are posing severe threats to marine ecosystems in general [1] and coral reefs in particular
[2], [3] and [4]. Increased water temperatures are thought to be responsible for bleaching and
death of corals [2]. Some coral species are in danger of extinction due to these adverse effects of
climate change, as well as other human induced stressors such as pollution, coastal development
and exploitation of marine resources. This has resulted in a dramatic decline in our planet’s
marine biodiversity [5]. In order to minimize these negative impacts, marine ecosystems need to
be surveyed and monitored regularly using robust, cost effective techniques. Today’s underwater
video cameras mounted on AUVs are an excellent alternative to trawl nets, grabs and towed video
surveys for remote monitoring of marine ecosystems as they sample along a pre-programmed
survey path, producing geo-referenced imagery of the sea-floor [6]. However, the analyses of raw
imagery to extract useful information is not only labour intensive, but it also requires an expert
to manually process each image. Typically less than 2% of the acquired imagery ends up being
manually annotated by a marine expert, resulting in a significant under-utilization of information
[7]. An accurate automatic annotation of marine imagery would enable automatic counting, sizing
and movement tracking of specific marine organisms. Computer vision and machine learning
based techniques [8] have the potential to automate the annotation of marine images and also
reduce the time consumed in manual processing. The accuracy of these techniques depends on
the availability of high quality expertly annotated training and testing data.

Convolutional Neural Networks (CNNs) [9] are an important class of machine learning al-
gorithms applicable, among others, to numerous computer vision problems. Deep CNNs, in
particular, are composed of multiple layers of processing involving linear as well as non-linear
operators. To solve a particular task, the parameters of networks are learned in an end-to-end
manner. Image representations extracted from deep CNNs trained on a large dataset such as
ImageNet [10] have shown to produce a promising performance for diverse classification and
recognition tasks [11], [12], [13], [14] and [15]. Spatial Pyramid Pooling (SPP) [16] and Multi-
scale Orderless Pooling (MOP) [17] schemes have made CNNs independent of the input image
size and robust for diverse classification and recognition applications.

Image representations extracted from pre-trained deep networks have surpassed hand-crafted

features in most image classification and recognition tasks. These learned representations are



generic and transferable to other domains such as underwater image classification [18]. This
technique is an excellent alternative to end to end network training, the latter being time
consuming and computationally expensive. To further optimize the training time and accuracy,
the pre-trained CNN can be replaced by a faster and more efficient deep network: a pre-trained
deep residual network (ResNet) [19]. Image representations extracted from ResNets (termed as
ResFeats) outperformed CNN based features for image classification in general and coral image
classification in particular. State of the art classification results on MLC dataset [7] were reported
in [20].

This paper proposes a computer vision and deep learning based framework to automatically
annotate corals and analyse the trends in their population using CNN based features and ResFeats.
This framework is based on a novel coral classification algorithm, which employs the powerful
image representations of CNNs and ResNets. Since we do not have ground truth labels for
millions of coral reef images, a human expert is included in the loop to corroborate the accuracy
of the proposed classification method. With the trained coral classifiers, we analyse the coral
reefs of the Abrolhos Islands which form one of Western Australia’s unique marine areas. We
analyse unlabelled coral mosaics of three sites of this coral reef from two years.

The main contributions of this paper are:

1) A supervised coral image classification method to learn image representations using a
deep neural network and show that our technique outperforms the existing methods for
classification of coral reef images from Western Australia.

2) Automatic annotation of the unlabelled coral images and mosaics from the Abrolhos Islands
in Western Australia using our proposed method.

3) Coral population analysis by generating coral maps for the aforementioned mosaics. Our
results are validated by a marine expert and the results are in line with the outcomes of
previous researches conducted in this region [3].

The rest of the paper is organized as follows: we briefly discuss the related work in the next

section. In Sec. III, we present our proposed approach and explain the features extracted from
deep networks. Sec. IV reports the experimental results and coral population analysis. Sec. V

concludes this paper.



II. RELATED WORK

In 2010, the Collaborative and Automated Tools for the Analysis of Marine Imagery and
Video (CATAMI) [21] project was initiated in Australia to introduce a new classification system
that ensures consistent names are given to the marine species seen in underwater images.
However, this system does not actually automate the data analysis. It just streamlines the process
by facilitating manual data entry and provides a standard protocol for assigning ground truth
labels. Previous research ([7], [22], [23], [24] and [25]) have highlighted the potential of using
computer vision based techniques for the automatic annotation of benthic data. However, this is
an uphill task given the factors such as changing water turbidity, ambiguous class boundaries
and underwater color degradation.

Since color and texture are the discriminating factors in coral images, color and texture based
image descriptors are more suitable for coral classification. Corals have arbitrary shapes and the
class boundaries between coral and non-coral regions are not well defined in terms of shape as
well. Hence, shape based image descriptors have not been used extensively for this task. Color
and texture based features are preferred in tandem to maximize classification accuracy for coral
images. Moreover, no generic combination of these features has been found to achieve best
results for a variety of coral datasets. Different groups of researchers have relied on multiple
combinations of color and texture based features for a given dataset. Essentially, color, texture
and shape are the main discriminating factors, and thus associated hand-crafted features were
designed. A number of prominent studies conducted for coral classification using hand-crafted
features are summarized in the following.

Normalized Chromaticity Coordinate (NCC) for color and Local Binary Pattern (LBP) for
texture followed by a 3-layer back propagation neural network were used to classify five classes:
living corals, dead corals, corals with algae, abiotics and algae in [26]. Theoretically, NCC fea-
tures are invariant to illumination conditions and LBP is robust to brightness changes. However,
the NCC and LBP features were not discriminative enough for complex underwater images. This
method was further used to classify three coral classes in 300 images. A combination of LBP
and hue based features improved the performance further [26].

A color based descriptor consisting of normalized color histogram, Bag of Words (BoW) for
Scale-Invariant Feature Transform (SIFT) with 24-bin Hue-histograms was used to classify 453

marine images in [23]. A voting scheme was used to classify the test images into 8 classes. The



main focus of this approach was to use the color information effectively. Image normalization
was employed to overcome illumination variations and underwater color attenuation. However,
this method is not suitable for random point annotations and is prone to missing key details
in complex images containing multiple species. Also, BoW on SIFT features cannot represent
texture accurately in complex underwater scenes. A combination of normalized color histogram
and a discrete cosine transform (DCT) descriptors [22] was tested with 3000 images containing
18 distinct classes. For classification, a novel approach was proposed based on probability density
weighted mean distances. Although this method is fast, the weights of the descriptors still need
to be manually set, rendering it less robust in underwater imagery.

A Maximum Response (MR) filter bank followed by texton maps for feature extraction at
multiple scales was proposed in [7] to classify the Moorea Labelled Coral (MLC) dataset (with
four non-coral and five coral classes). A dictionary was generated for texton maps using a subset
of training images and k-means clustering. Transforming the images into the L*a*b color space
boosted the overall performance. A Support Vector Machine (SVM) classifier with a Radial
Basis Function (RBF) kernel was employed for classification. MLC dataset contained images
from three years: 2008, 2009 and 2010. A temporal survey of the coral reef was presented in
this paper as well.

Multiple combinations of hand-crafted features for color and texture (such as Completed
Local Binary Patterns (CLBP), grey level co-occurrence matrix (GLCM), Gabor feature, and
opponent angle and hue channel color histograms) were accessed for multiple benthic datasets
in [25]. For classification, different combinations of basic classifiers (such as SVM, k-nearest
neighbours (KNN), neural networks and probability density weighted mean distance (PDWMD))
were proposed. Different combinations of features and classifiers were tested to achieve the best
performance for the six test datasets. The descriptors used in this work were modified to deal
with scale invariance and variable illumination conditions.

A hybrid approach based on hand-crafted and CNN features for coral classification was
proposed in [18]. Domain independent off-the-shelf CNN features were concatenated with the
texture and color based features of [7] to complement each other. These hybrid features when
tested on MLC dataset, outperformed the previous methods by a significant margin to achieve
the state-of-the-art. To the best of our knowledge, this was the first application of off-the-shelf
CNN features for coral image classification.

The work in [27] reported the first application of an end-to-end CNN for coral classification.



In their work, reflectance and fluorescent images were combined with the RGB images to obtain
a 5-channel hyper-channel images. The fluorescent images encoded the contrast information for
the corals and the reflectance images provided context for the non-fluorescent substrates. Since
a traditional CNN have only three channels for input (i.e., R, G and B), a novel 5-channel CNN
architecture was proposed for the registered images. The performance of this 5-channel CNN was
compared with a traditional CNN and also with the baseline performance of [7]. The resulting
architecture achieved a 22% reduction in the error rate obtained by the baseline method.

In the following, we describe our proposed method to automate the annotation of coral images
and to assess the population of corals in Western Australia. Moreover, three image mosaics of
the coral reef of this region are analysed to detect and quantify the trends associated with the

coral population.

III. PROPOSED METHOD

The proposed method is outlined in Fig. 1. The training image set consists of images from
multiple locations in Western Australia, a subset of the Benthoz15 dataset [28]. These images are
used to train a deep network which then classifies unlabelled images and mosaics. Marine experts
are included in this pipeline to give feedback on the classification accuracy. The best performing
classifier is then used to generate coral maps from the mosaics of the Abrolhos Islands. Next,

we explain the key components of the proposed method in the following subsections.

A. CNN Features for Coral Classification

Image representations extracted from deep neural networks, trained on large datasets such as
ImageNet [9] and fine tuned on domain specific datasets, have shown state-of-art performance in
numerous image classification problems [14]. The activation vectors of the first fully connected
layer of a pre-trained VGGnet [29] are employed as feature representations in our work. The
weights of this deep network are fine tuned using the Benthoz15 dataset [28] which consists of
expert-annotated and geo-referenced marine images from Australian seas.

Coral images consist of irregularly shaped assemblages of species, which hinders the seg-
mentation ground truth assignments. Also, a single image may contain multiple species which
rules out the possibility of assigning one specie-level label to each image. Subsequently, it is a

common practice in marine imagery to annotate the images with randomly selected pixel labels.



Training

Images

Multiscale

> Feature

Extraction

Classifier
—_> Training

Evaluation

>| onTest
Images
Unlabeled
>| Images &

Mosaics

Fig. 1: Block diagram of our proposed framework.

Each training image has up to 200 pixels marked with corresponding ground truth labels. State-
of-art deep learning architectures take an input image of a fixed size and hence image or patch
ground truth labels are required. To overcome this problem, square patches were extracted with
the labelled pixel at their centre. There is no restriction on the size of these patches. Instead
of using the whole image for training, we extracted patches at multiple scales centered around
the given labelled pixels. We achieved higher classification accuracy when multi-scale patches
were used instead of just one fixed size. This technique is termed as spatial pyramid pooling
(SPP) [16]. This patch extraction method makes the resulting features scale invariant. A 2-
layered neural network was then used to classify corals from non-corals. More details on the
classification process are given in our previous work [18].

Selecting patch sizes that give the best classification accuracy is an important step. We trained
our classifier using multiple patches at different scales and achieved the best performance when
the following four patch sizes were used: 56 x 56, 112 x 112, 224 x 224, and 448 x 448. Feature

extraction at different scales ensures an efficient encoding of coral species independently of
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Fig. 2: Block diagram of the proposed classification method for CNN features.

their scale. The image representations extracted at these four scales were then max-pooled to
retain the most prominent information, which is present in the neighbourhood of a labelled pixel.
These multi-scale deep features were used to train a Multi Layer Perceptron (MLP) network for
classification. This network consists of two fully connected hidden layers of neurons followed by
an output layer with 2 nodes: corals and non-corals. The number of neurons in the hidden layers
was optimized for best performance. Max pooling was used to pool the features extracted at
multiple scales to make the feature vector scale invariant. Max pooling followed by an MLP has
been shown to outperform an SVM based classification method for coral classification in [18].

Fig. 2 shows the block diagram of our proposed classification method for CNN based features.

B. ResFeats for Coral Classification

Residual networks as deep as 152 layers are still easier to optimize as compared to 19-layer
deep CNNs (such as VGGnet [29]). They owe this attribute to residual learning [19] and identity
short-cut mappings [30]. We adopted the ResFeat extraction method of [20] and used a 152-layer
deep ResNet. In this method, ResFeats are extracted from the deeper convolutional layers of the
source network, ResNet-152 [19] in this case. The extracted features are 3-dimensional arrays:
the first and the second dimensions being the size of the feature vector and the third dimension

represents the number of channels in that layer. These features are used to train a shallow CNN



(sCNN) classifier for coral classification with random initializations and the trained network is
finally used to annotate the test images. ResFeats extracted from the last convolutional layer
are 3-dimensional arrays (i.e., 7 X 7 x 2048). In order to use SVMs for such large feature
vectors, a dimensionality reduction step must be included. The first convolutional layer of the 4-
layer sCNN classifier reduces the dimension of ResFeats. Experimental results given in the next
section demonstrated the superior discriminating power of ResFeats compared to CNN features.
Therefore, we opted to use ResFeats for further experiments. Fig. 3 shows the block diagram of
our proposed classification method for ResFeats.

Multi-scale Data Augmentation: To address the inherent class imbalance problem, we pro-
pose to sub-sample the majority class i.e., non-corals and augment the minority class i.e., corals
with patches extracted at multiple scales. Scale selection is more important for corals than non-
corals because of the varying size of coral species. Note that the max-pooling module of Fig.
2 has been replaced by a data augmentation module in Fig. 3. In order to increase the number
of coral samples in our training data, we extract the coral patches at four different scales (56,
112, 224 and 448 pixel square patches) and augment them instead of taking a max-pool. This
technique effectively increases the number of coral samples by a factor of four. It also removes
any scale invariance in corals. Non-coral patches are only extracted at one suitable scale, square
patches of 112 pixels, and used for training the classifier. This data augmentation technique
proved effective in decreasing the number of misclassification instances of corals at test time.
Further discussion on ResFeats for coral classification and experiments with data augmentation

are provided in the next section.

C. Unlabelled Mosaics and Coral Maps

In order to validate the automatic annotations, unlabelled images and mosaics from the
Abrolhos Islands were annotated with the best performing trained coral classifier. We analysed
mosaics of three different sites of the Abrolhos Islands spanning an area of 625 sq. meters each
for years 2010 and 2013. Fig. 4 shows the path followed by the Sirius AUV [28] to capture
the coral reef and some sample images. A marine expert was added in the loop to validate the
labels assigned by this classifier and to assert that the trained model is reasonably good. After
validation, the coral mosaics of each site were analysed to investigate the changes in the coral
population. We focused on generating coral maps for these sites to investigate the health of

coral population for each site over a period of three years. These coral maps were automatically
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Fig. 3: Block diagram of the proposed classification method for ResFeats.

generated by our classifier and provide useful insight for quantifying the population changes of
the reef. Marine experts included in the loop to corroborate the accuracy of these maps validated

the results of our proposed method.

IV. EXPERIMENTS AND RESULTS
A. Benthozl5 Dataset

This Australian benthic data set (Benthoz15) [28] consists of an expert-annotated set of
georeferenced benthic images and associated sensor data, captured by an autonomous underwater
vehicle (AUV) around Australia. Many marine experts spent several minutes to manually annotate
each of these images according to the CATAMI protocols. For each image, up to 50 randomly
selected pixels were hand labelled using the Coral Point Count with Excel Extensions (CPCe)
software package [31]. The whole dataset contains 407,968 expert labelled points, on 9,874
distinct images collected at different depths from nine sites around Australia over the past few
years. We have used only a subset of this dataset containing images from Western Australia
(WA) to train our classifier. This subset consists of 3,749 images with 237,923 expert-annotated
points collected over a span of 3 years (2011 to 2013). There are 35 distinct class labels in this
subset, with pixel labels ranging from 7 to 56,000 per class. This makes the classification quite

challenging. Nine out of these 35 classes belong to coral species. Table I details some statistics
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Fig. 4: The path traversed and the three 25 x 25 m grids surveyed by the Sirius AUV over the
3 years near the Abrolhos Islands in WA and sample images. Location is 28° 48 S and 113°
57" E. The depth of these sites is 15 meters. Four sample images from this region are shown as

well.

Site Survey Year # of Labels # of Images
Abrolhos Islands 2011, 2012, 2013 119,273 1,377
Rottnest Island 2011 63,600 1,272
Jurien Bay 2011 55,050 1,101

TABLE I: WA subset of Benthoz15 in numbers.

of the Western Australia (WA) subset of this dataset. For binary classification experiments, all
the coral species are merged together in one class and the remaining classes are bundled together
in a non-coral class. For multi-class classification experiments, nine coral classes are retained
and the non-coral classes are merged in one class, resulting in 10 distinct classes. Table. VII in

the appendix details the class labels and number of training and test samples for each class.

B. Pre-processing and Implementation Details

We applied color channel stretch on each image in the dataset. We calculated the 1% and

99% intensity percentiles for each color channel. The lower intensity was subtracted from all the



Experiment # of Training Samples Coral Samples # of Test Samples  Coral Samples

Exp 1: Train and test on 2011 108,000 9,636 53,000 4,624

Exp 2: Train on 2011 and test on 2012 and 2013 108,000 9,636 129,923 23,884
Exp 3: Train and test on 2011,2012 and 2013 157,173 22,678 80,750 10,824
Exp 4: Exp 3 with multi-scale data augmentation 88,665 51,150 43,440 24,442

TABLE II: Training and test set distribution of different experiments with the number of coral

samples in each set.

intensities in each respective channel and the negative values were set to zero. These intensities
were then divided by the upper percentile. The resulting intensities achieved a better performance
compared to the original ones.

We used two deep network architectures in our experiments namely VGG-16 (configuration
D) [29] and ResNet-152 [19]. We used the publicly available models of these two networks,
which were pre-trained on the ImageNet dataset [9]. We implemented our proposed method and

the sSCNN classifier network using MatConvNet [32].

C. Binary Classification with CNN Features

We conducted three sets of experiments to evaluate our classifier: (i) the classifier was trained
on two-thirds of the images from the year 2011 and tested on the remaining images from the
same year, (ii) the images from year 2011 were used for training while the images from 2012
and 2013 formed the test set, (iii) the training set consisted of two-thirds of the images from
the years 2011, 2012 and 2013, whereas the test set consisted of all the remaining images
from the same years. Table III shows the details of our experiments and reports the results
of coral classification on the Benthoz15 dataset. We used a 3-fold cross validation scheme in
our experiments and the mean classification accuracies are reported in Table III along with
the standard deviations. We achieved a classification accuracy greater than 90% in all of our
experiments. Table III also shows that our MLP classifier consistently outperforms the linear
SVM classifier. The best performance is achieved when the training and testing sets contain
images from the same year. The performance dropped when the experiments were done across
multiple years. This illustrates the difficulty encountered when the training and test set have

images from different years. This may be due to the changes occurring in the coral reefs with



Method Experiment Accuracy (%) Precision (%) Recall (%)
CNN Features + SVM Exp 1: Train and test on 2011 96.1+0.6 98+1.0 82+1.5
Exp 2: Train on 2011 and test on 2012 and 2013 91.4+0.4 90+£1.0 79£1.0
Exp 3: Train and test on 2011,2012 and 2013 95.1+0.5 97+£1.0 84+1.5
Exp 4: Exp 3 with multi-scale data augmentation 89.0+0.5 88+1.5 89+1.0
CNN Features + MLP Exp 1: Train and test on 2011 96.5+0.5 99+0.5 80£1.0
Exp 2: Train on 2011 and test on 2012 and 2013 92.3+0.3 96£1.0 70+1.5
Exp 3: Train and test on 2011,2012 and 2013 95.3+0.4 91+1.0 82+1.0
Exp 4: Exp 3 with multi-scale data augmentation 89.64+0.6 89+1.0 90+£1.0
ResFeats + SVM Exp 1: Train and test on 2011 97.0+0.3 99+0.5 80+1.5
Exp 2: Train on 2011 and test on 2012 and 2013 92.4+0.4 95+1.0 70£1.0
Exp 3: Train and test on 2011,2012 and 2013 95.1+0.6 93+1.5 85+1.5
Exp 4: Exp 3 with multi-scale data augmentation 91.1+£0.4 91£1.0 90+£1.0
ResFeats + sCNN Exp 1: Train and test on 2011 97.3+0.3 99+0.0 81+1.0
Exp 2: Train on 2011 and test on 2012 and 2013 94.0+0.3 97+£1.0 71£1.5
Exp 3: Train and test on 2011,2012 and 2013 96.6+0.4 95+1.0 84+1.0
Exp 4: Exp 3 with multi-scale data augmentation 91.8+0.5 93+0.0 93+£1.0

TABLE III: Overall classification accuracies for different experiments using the methods of the

first column along with the precision and the recall values for coral class.

time. The major causes of misclassification were: the ambiguous boundaries between corals and
non-corals, dead corals (non-coral species start covering corals) and the imbalance between the
coral and non-coral labels in the dataset.

However, the recall values of corals are less than precision for each of these three experiments.
Improving the recall for corals is as important as improving the precision or overall accuracy of
the classifier. For a single image with 50 labelled coral points, a recall of value of 80% implies
that 10 coral labels will be misclassified as non-corals. One might add that with an accuracy of
98%, 49 out of 50 points are correctly identified in every image. It is worth noting here that the
training data is imbalanced towards non-corals and a higher overall classification accuracy alone
cannot justify the classification performance. In the next sub-section, we use ResFeats along
with multi-scale data augmentation to improve the recall for corals at the expense of a slight

decrease in precision.



D. Binary Classification with ResFeats

Table III shows the overall classification accuracies of ResFeats for the three baseline exper-
iments and a fourth experiment with data augmentation at multiple scales. ResFeats achieves
higher classification accuracy than the CNN based features. For experiment 4, the coral samples
from the year 2011 are extracted at four scales to decrease the majority of non-corals in the
training and test sets. Images from the years 2012 and 2013 are used without any augmentation.
The non-corals from 2011 are sub-sampled as well. Table II shows that the coral samples form
less than 15% of the training set for the first three experiments. After data augmentation, the
percentage of the coral samples in the training set has increased to 57%. Therefore, the resulting
training set for experiment 4 is less imbalanced. ResFeats achieve a classification accuracy of
91.90% in this experiment which is lower than the first three experiments. However, the precision
and recall values for coral class are 93% each. For every given image with 50 randomly selected
points, our classifier will correctly annotate 46 points. Moreover, for every 50 points which are
corals, 46 points will be correctly annotated as corals. The resulting classifier can annotate 3
images per minute with 50 sample points per image, implying an annotation rate of 180 images
per hour (9000 points per hour or 2.5 points per second) for coral images. The average time for
the manual annotation with 50 sample points per image is 8 minutes, or equivalently, a trained
marine scientist can annotate up to 8 images per hour (400 points per hour).This fact emphasizes

on the efficiency of our proposed method.

E. Multi-class Classification

Up until now, we have discussed the classification experiments between two classes: corals and
non-corals. There are nine coral classes in the Benthoz15 dataset with the number of annotated
points per class ranging from 7 to 10,000. All the non-coral species in this dataset are bundled
into one non-coral class for this experiment resulting in a total of 10 classes. Table IV compares
the overall classification accuracies achieved by CNN based features with ResFeats in this
experiment. ResFeats outperformed the traditional CNN features by a margin of 4.46%. The
main reason of classification errors in the multi-class experiment is the under representation of
some coral classes in the training data of Benthoz15. Table V outlines the class distribution
of the Benthoz15 dataset used in multi-class classification experiment and also shows precision
and recall values for each class for the best performing CNN features and ResFeats methods

respectively.



Method # of Classes Accuracy (%)

CNN Features + SVM 10(9 coral, 1 non-coral) 76.31+0.6
CNN Features + MLP  10(9 coral, 1 non-coral) 76.6+0.5
ResFeats + SVM 10 (9 coral, 1 non-coral) 80.44+0.4
ResFeats + sCNN 10 (9 coral, 1 non-coral) 81.1+0.5

TABLE IV: Overall classification accuracies for multi-class coral classifaction on Benthoz15

dataset.

FE. Coral Population Analysis

For the coral population analysis of the Abrolhos Islands, we automatically annotated the
unlabelled mosaics using our best binary classifier: ResFeats + SCNN from experiment 4. We
opted for this classifier due to its high recall rate for coral class. Outputs were validated by a
marine expert as ground-truth labels were not available. A human expert requires on average
256 minutes to manually label a mosaic of this size (1600 pixel labels). However, our algorithm
automatically annotated these 1600 pixel points in under 11 minutes. Coral cover maps were
then generated using the best performance classifier for years 2010 and 2013, and percentage
coral cover was calculated for each site and year. Fig. 5 shows a geographical map of these three
sites. The results of this analysis reveal a decline in coral coverage at all three sites between
years 2010 and 2013 as reported in Table VI. Fig. 6 presents the coral maps of the three sites
generated using our method for year 2010 and 2013. A decrease in coral population is evident
from these coral maps for all the sites under study. This loss of corals was expected as an acute
warming event occurred in 2011, which resulted in significant coral bleaching [3]. Importantly,
the magnitude of decline reported here is comparable to those previously reported across a similar
time period for the Abrolhos Islands from imagery annotated by marine experts, with an average
decline in coral cover from 73% to 59% across multiple sites [3]. Moreover, the mosaics which
were provided by marine experts had small registration errors and missing data. This accounts
for the minor changes from ‘“non-corals” to “corals” in the coral maps which are generated by

our algorithm (e.g., the bottom left corner of Fig. 6 b and e).



Fig. 5: Left: Map for the three sites of the Abrolhos Island. Right: A zoom-in to a small area

of site 1 mosaic.

Class Training Test CNN: Pr (%) CNN: Re (%) ResFeats: Pr (%) ResFeats: Re (%)

Non-corals 142876 61527 86£1.5 95+1.0 91£1.0 95+1.0
Cnidaria 24 4 0+0.0 - 0+0.0 -

Cnidaria: Corals 9271 3871 54+1.0 44+1.0 60£1.0 49+1.0

Cnidaria: Corals: Stony corals 12713 5195 56+1.0 42+1.0 60+1.0 50+1.0
Cnidaria: Corals: Stony corals: Sub-massive 84 27 0+0.0 0+0.0 0+0.0 -
Chnidaria: Corals: Stony corals: Massive 35 17 0+0.0 0+£0.0 0+£0.0 -

Cnidaria: Corals: Stony corals: Encrusting 1237 616 8+1.0 7£1.0 11£1.0 11£1.0
Cnidaria: Corals: Black & Octocorals 9 0 - - - -
Chnidaria: Corals: Black & Octocorals: Whip 10 1 0+£0.0 - 0+£0.0 -

Bryozoa 307 93 0+0.0 0+0.0 0+0.0 0+0.0

TABLE V: Class distribution of WA subset of Benthoz15 dataset for multi-class classification
alongwith precision (Pr) and recall (Re) values for the two multi-class classification experiments:

CNN Features + MLP and ResFeats + sCNN
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Fig. 6: Coral Maps for the 3 sites of the Abrolhos Island; (a-c) Mosaics for 2010 for the three
sites; (d-f) Coral Maps for 2010 for the three sites and (g-i) Coral Maps for 2013 for the

respective sites. Legend key: C is coral and NC is non-coral.



Site  Coral Coverage in 2010  Coral Coverage in 2013

1 95% 79%
2 82% 53%
3 96% 74%

TABLE VI: Coral coverage of three sites of the Abrolhos Islands for years 2010 and 2013.

V. CONCLUSION

In this work, we exploited pre-trained image representations extracted from deep neural
networks to a coral reef classification problem. We applied generic features extracted from
VGGnet and ResNet to classify corals and non-corals. We further investigated the effectiveness
of the best trained classifier on unlabelled coral mosaics of the Abrolhos Islands. We analysed the
coral reef of this WA region to investigate the trends in coral population. We generated coral maps
from the mosaics of this region and quantified the coral population automatically. Our framework
automatically detected the decreasing trend in the coral population of this region observed
from 2011 to 2013, which is consistent with the previous findings. The proposed framework
is an important step towards investigating the long-term effects of environmental change on the
effective sustenance of marine ecosystems automatically. The ability to efficiently report coral
response to particular impacts (such as intense warming events) or gradual environmental change,
is crucial for implementing appropriate management strategies [4]. Our initial results indicate
that the combination of AUVs and automated image analysis have the capacity to improve the
efficiency of transferring information to managers and policy makers. Our results also aim to
offer useful insights for the automatic annotations of benthic images and the limitations of the
assessment framework. Future work will extend the proposed automatic population analysis to

species of corals in order to generate specie-level spatial and temporal coral distribution maps.
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APPENDIX

A. Class Distribution of Benthozl5 WA Subset

TABLE VII: Class distribution of WA subset of Benthoz15 dataset
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Label Class ID  Training Samples Test Samples Class Name

1 2 39 15 Biota

2 13 2795 1098 Sponges

3 30 26 13 Seagrasses

4 33 8 2 Molluscs: Gastropods

5 38 1 2 Molluscs: Bivalves

6 39 51766 21884 Macroalgae

7 42 32 9 Macroalgae: Sheet-like / membraneous: Green
8 44 30 16 Macroalgae: Large canopy-forming

9 45 41461 17540 Macroalgae: Large canopy-forming: Brown
10 54 149 81 Macroalgae: Filamentous / filiform

11 64 938 471 Macroalgae: Erect coarse branching: Green

12 65 326 144 Macroalgae: Erect coarse branching: Brown
13 66 12688 5515 Macroalgae: Encrusting

14 67 6738 3343 Macroalgae: Encrusting: Red

15 71 1130 333 Macroalgae: Articulated calcareous: Red

16 88 14 3 Echinoderms

17 89 8 2 Echinoderms: Sea urchins

18 118 24 4 Cnidaria

19 126 9277 3871 Cnidaria: Corals

20 127 12713 5195 Cnidaria: Corals: Stony corals

21 129 84 27 Cnidaria: Corals: Stony corals: Sub-massive
22 134 35 17 Cnidaria: Corals: Stony corals: Massive

23 137 1237 616 Cnidaria: Corals: Stony corals: Encrusting

24 143 9 0 Cnidaria: Corals: Black & Octocorals

25 144 10 1 Cnidaria: Corals: Black & Octocorals: Whip
26 165 307 93 Bryozoa

27 231 182 64 Ascidians

28 239 755 296 Substrate

29 241 14535 6268 Substrate: Unconsolidated (soft): Sand / mud (<2mm)
30 245 187 97 Substrate: Unconsolidated (soft): Pebble / gravel
31 249 19 2 Substrate: Unconsolidated (soft): Pebble / gravel: Biologenic: Coral rubble
32 253 6037 2870 Substrate: Consolidated (hard): Rock

33 273 2310 1009 Unscorable.

34 274 103 17 Not of Interest

35 655 599 433 Unknown




