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Abstract

Generative object-centric scene representation learning is crucial for structural vi-
sual scene understanding. Built upon variational autoencoders (VAEs) [11], current ap-
proaches infer a set of latent object representations to interpret a scene observation (e.g.
an image) under the assumption that each part (e.g. a pixel) of a scene observation must
be explained by one and only one object of the underlying scene. Despite the impressive
performance these models achieved in unsupervised scene factorization and representa-
tion learning, we show empirically that they often produce duplicate scene object repre-
sentations which directly harms the scene factorization performance. In this paper, we
address the issue by introducing a differentiable prior that explicitly forces the inference
to suppress duplicate latent object representations. The extension is evaluated by adding
it to three different unsupervised scene factorization approaches. The results show that
the models trained with the proposed method not only outperform the original models
in scene factorization and have fewer duplicate representations, but also achieve better
variational posterior approximations than the original models.

1 Introduction
Variational autoencoders (VAEs) [11] have become a powerful tool for unsupervised visual
scene understanding and representation learning. As a particular type of generative model,
a VAE model not only inherits the ability to explain scene observations (e.g. images) by
learning a distribution p(x;q) over the observation data x 2RM but also it allows to describe
and represent the observed scenes in a more compact latent space z 2 RD (D ⌧ M) for
simplicity and efficiency. A rising trend in VAE research is to treat a multi-object scene as
a composition of scene objects (aka scene components), i.e. a scene representation z is a
set of K scene object representations z = {zk}, where each zk corresponds to one and only
one object in the scene. These object-based scene representation learning models are often
referred to as the multi-object VAEs, they are called component VAEs (abbr. CompVAEs) in
this paper for simplicity.

By making an assumption that each pixel of a scene image observation x must be ex-
plained by one and only one object in the scene, recent CompVAE advances [3, 7, 17] show
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great success in unsupervised image segmentation and object-based representation learning.
In these models, this assumption acts as a constraint to force different objects zk 2 {zk} to
explain different pixels of an image observation x, which implicitly assumes that the inferred
z 2 {zk} must be different from each other. However, all three CompVAEs investigated here
(i.e. MONET [3], IODINE [7], MulMON [17]) can infer duplicate latent object representa-
tions (see Figure 1 for an example), which violates the implicit assumption and thus harms
their performance in scene factorization (or image segmentation).

In this paper, we refer to the issues raised by inferring duplicate latent representations as
the uniqueness issues and the implicit assumption of 8z 2 {zk} being unique as the unique-

ness assumption. To address the uniqueness issues, we propose a differentiable prior, namely
for latent duplicate suppression (abbr. LDS), to train CompVAEs’ inference network to sup-
press duplicates while making inference at test time. The LDS prior essentially implements
the uniqueness assumption — two identical zk cannot appear in the same scene representation
set z = {zk}, i.e. latent object representation pairs that are highly similar will be penalized
during training.

In our experiments, we train two representative single-view CompVAEs, i.e. MONET [3]
and IODINE [7], and one multi-view CompVAE, i.e. MulMON [17], with LDS as the ex-
perimental group and train the same models without LDS as the control group. We show
the effectiveness of training CompVAEs’ with LDS in suppressing scene factorization dupli-
cates and achieving better variational approximation by comparing the performance of the
two groups of models. We claim and demonstrate: 1) Training a CompVAE with the pro-
posed LDS prior enables the CompVAE to produce better scene factorizations with fewer
duplicate objects (see Section 4.2). 2) Training a CompVAE with the proposed LDS prior
enables the CompVAE to achieve better variational posterior approximation, i.e. decrease
the inference gap [4] (see Section 4.3). 3) With better variational approximation achieved,
CompVAEs trained with the proposed LDS overcome local minima better and thus learn bet-
ter scene representations that supports better scene observation reconstructions (see Section
4.2).

2 Related Work
Our work lies in the research area of unsupervised scene factorization and representation
learning. Earlier works in this area like the Attend-Infer-Repeat (AIR) model [6] and its
variants [9, 12] perform object-centric scene factorization by sequentially searching for one
object at a time in the image plane until all objects in the image are captured. As these models
do not target a 3D understanding of a scene, they cannot resolve occlusions and handle
images with complex backgrounds. The problem is overcome by recent advances [3, 5, 7, 17]
that the pixel-level compositions of scene objects, i.e. each pixel needs to be explained by one
and only one scene component. This line of work is referred to as the scene-mixture models
by [15] as they all use the spatial mixture models [8, 21] to explain the image observations
of scenes. This allows the models to reason about depth and occlusions which are essential
for 3D understanding.

Our work is also related to relational reasoning works that are built upon CompVAEs.
We discuss them in two categories: implicit and explicit relational reasoning. Although
aforementioned works such as [5, 7, 17] do not explicitly reason about relationships, the dis-
covery of scene objects suggests mutual dependence of each other. These models violate the
implicitly-introduced uniqueness assumption and thus cannot suppress duplicate object
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Figure 1: The state-of-the-art unsupervised scene factorization and image segmentation ap-
proaches, ie. multi-object VAE models, often infer duplicate latent object representations
that harm the scene object segmentation performance (see top left). We propose a differen-
tiable latent-duplicate-suppression prior (abbr. LDS) to train better multi-object-VAE infer-
ence networks that suppress the duplicates (see bottom left). Middle & right Multi-object
VAEs that trained with the proposed LDS achieves better scene object segmentation (e.g.
higher mIoU on 2 datasets) and observation reconstruction performance (lower MSE).

representations, while we aim at fixing these issues in this work. There are unsupervised
scene factorization models that handle explicit relations among the inferred objects, e.g. R-
NEM [20], STOVE [13] and G-SWM [14]. They define “relations” as the interactions and
scene dynamics of the scene objects and thus differ from the problem solved in this paper,
which concerns relations between the inferred representations rather than the scene objects.

The proposed work is related to the duplicate-removal or non-maximum-suppression
(abbr. NMS) idea that is widely used across many computer-vision tasks such as edge de-
tection [18] and feature extraction [16]. Among all the applications, NMS’s usage in object
detection is the closest to ours, where duplicate detection candidates will be removed or
suppressed [1, 19] based on a quantifiable criterion, e.g. detection confidence. However, as
NMS in these models works as a post-processing technique so it cannot handle the mistakes
a model made in the inference stage. Also, the violation of the uniqueness assumption by
the aforementioned CompVAEs can lead to a worse variational approximation of the VAE
posterior [4], which is worse than what the traditional duplicate-removal techniques achieve.

3 Method

Our goal is to train CompVAEs’ inference networks that can suppress duplicates when mak-
ing inferences at test time. Our approach is to introduce a differentiable prior, i.e. the LDS

prior, as an additional constraint to train the CompVAEs’ inference models. In Section 3.1,
we briefly review the general construction of CompVAEs. In Section 3.2, we present the LDS

prior and how to train a CompVAE model with it. In Section 3.3, we discuss CompVAEs’
suboptimality and define a measure for the comparison of two posterior approximations.

3.1 Background

Similar to VAEs, a CompVAE model often consists of a generative model and an inference
model. The generative likelihood of a scene image observation in a CompVAE is often
modeled as a spatial Gaussian mixture [8, 21] parametrized by q (where the variables q
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parameterize the generative model):

pq (x|{zk}) =
M

’
i=1

K

Â
k=1

pq (Ci = k|zk) ·N (xik; gq (zk),s2), (1)

where i indexes a pixel location (M in total) and xik is the RGB value of the k-th object at the
location i. RGB values are samples of N (xik; gq (zk),s2) where gq (·) is a decoder network
and the standard deviation s is set to a fixed value, e.g. s = 0.1, for all pixels. The generated
K RGB values xik compete to explain a location i as an instance of object k. The objects
and their likelihoods, i.e. the mixing coefficients, are captured by a categorical distribution
pq (Ci = k|zk), where Ci = k denotes the event of object k’s winning. This formulation is
similar to that used in MulMON [17], but that approach investigated multi-view problems,
where viewpoints were taken as conditions.

To tackle the problems of scene factorization and object-centric learning, CompVAEs’
inference models infer a joint posterior of all interested factors (i.e. scene objects {zk}). Al-
though CompVAEs encode a fixed number (K) of object slots for the inferred object repre-
sentations, they do not make any assumption about the number of objects in a scene. Ideally,
one can use as many object slots as possible. However, in practice, a K that is slightly larger
than the number of scene objects is often chosen for efficient computation. Unfortunately,
this leads the CompVAEs to use the slots, and thus they may create duplicate representa-
tions. Based on the independence assumption about the scene objects, the inference problem
is solved by computing a tractable variational approximation:

qF({zk}|x) = qF(z1,z2, . . . ,zk|x) =
K

’
k=1

qF(zk|x,⇤), (2)

where F denotes the trainable amortized parameters [11] that parameterize a family of dis-
tributions and ⇤ denotes other conditions (e.g. z1:k�1 as in [5]). Note that equation 2 is a
general form of a CompVAE inference model, however, the amortization and factorization
hold for all existing CompVAE variants.

3.2 Latent Duplicate Suppression
The goal of the proposed LDS prior is to penalize duplicates during the training process so
the trained model produces fewer duplicate object representations during inference. In other
words, we want to train a F that better suppresses duplicates. Because CompVAEs use fixed
numbers (K) of object slots for the inferred latent representations, we can easily construct a
fixed-size pair-wise similarity matrix, S 2 RK⇥K using a kernel function.

In this paper, we use the cosine kernel function to compute the similarities between
any two objects’ latent representations in the set {zk}. This is computationally equivalent
to concatenating the inferred K D-dim object latent representations {zk} to make a matrix
Z 2 RK⇥D and computing the similarity matrix : S = ZZT/(||Zr|| · ||ZT

c
||), where ||Zr||

and ||ZT
c
|| compute the Euclidean norms for matrix Z and ZT ’s row and column vectors

respectively.
The self-similarities of the inferred objects are captured by the constructed S’s diagonal

elements and the mutual similarities are captured by S’s off-diagonal elements. To suppress
duplicates, we need to penalize high off-diagonal similarities, i.e. by maximizing the LDS
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prior:

LLDS({zk};F) =
K

Â
h=1

K

Â
, j=1,h 6= j

logN (Sh, j; 0,s2). (3)

The log normal density regulates its measure to a smaller range and s (which models small
variation in the similarity values) is fixed globally at 0.1. As both VAEs and CompVAEs
are variational Bayesian models, their training relies on maximizing their evidence lower
bounds (abbr. ELBO, denoted as LELBO(x;F,q)) w.r.t. the two trainable parameters F and
q . Taking a CompVAE model, we thus train it by maximizing:

L(x;F,q) = LELBO(x;F,q)+l ·LLDS({zk};F), (4)

where l is a Lagrange multiplier (set to default: 1). In general, combining Eqn. 1 and 2 leads
to a general formulation of CompVAE ELBO: LELBO(x;F,q)=EqF({zk}|x)[log pq (x|{zk})]�
DKL(qF({zk}|x)|pq ({zk})). However, the exact formulations for a specific CompVAE is
model-dependent. It is worth noting that although ELBOs are computed by the iterative
inference processes of IODINE and MulMON during testing, we use the LDS priors only in
training.

3.3 CompVAE Suboptimality Measure
In this paper, we use superscripts + and 0 on a variable to indicate if it is related to the ex-
perimental group (CompVAEs trained with LDS prior) or the control group (original Com-
pVAEs). To validate that after suppressing duplicate object representations, the CompVAE
models less often violate the uniqueness assumption and approximates better the variational
posterior p({zk}|x), i.e. qF+({zk}|x) becomes a better approximation than qF0({zk}|x) with
respect to p({zk}|x), we need a measure to quantify approximation qualities and thus support
model comparisons.

Through the derivation of VAEs’ ELBO [11], a gap between the observed evidence
log pq (x) and the ELBO LELBO(x;F,q) is illustrated:

DKL(qF(z|x)kpq (z|x)) = log pq (x)�LELBO(x;F,q)� 0. (5)

This is referred to as the inference gap of VAEs [4], which provides a quantitative measure of
how good is an approximation. Similarly, we formulate G = DKL(qF({zk}|x)kpq ({zk}|x))
as the approximation quality measure for a CompVAE. Therefore, by comparing G+ and G0

we can determine if the experimental group reaches better suboptimality than the control
group.

In practice, because log pq (x) is not inaccessible, G is not computable (see equation 5).
We thus approximate log pq (x) with a Monte Carlo estimate — the importance weighting
estimate [2], where the sample size (denoted as B) is set to 500. Therefore, we can compute
the inference gap G as:

G = DKL(qF({zk}|x)kpq ({zk}|x))

= Ez1,...,zb⇠qF(z|x)[log
1
B

B

Â
b=1

pq (x,zb)

qF(z|x)
] � LELBO(x;F,q)� 0. (6)
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Figure 2: Qualitative comparisons between the experimental group (tagged with “+”) and the
control group (tagged with “0”). The Obs column is a source image, Rec is the correspond-
ing reconstructed image based on the inferred representation. The next 7 columns show the
independent generation of the inferred scene components (order not important). The Seg
column shows the pixel label for the component with highest probability (pixel color is not
important). Top Training with LDS aids the original MONet model which suffers from lo-
cal minima: obtains fair factorization and reconstruction while fails to learn clean object
geometries and thus generates noisy scene components whereas MONet+ produces cleaner
inferred components. Middle Training with LDS aids IODINE: resolves duplicates (circled
in yellow) and fixes the weak background segmentation, as shown by the large colored re-
gions in the Seg column, which is a known issue of IODINE [7]. Bottom Training with
LDS allows MulMON to suppress duplicates and thus produce a better segmentation map.
(Colored boxes and circles highlight the duplicates and failures caused by them.)

to simplify the discussion hereafter, we define a measure inference gap drop (denoted as
DG+) using G0 and G+: DG+ = G0�G+. In general, a positive DG+ suggest a smaller gap is
achieved and thus provides better approximation, a negative DG+ suggests the opposite. In
our experiments, we use DG+ as an important metric for our model suboptimality analysis
(see Section 4.3).

4 Experiments
Our experiments are based on two datasets: CLE-MV [17] and Dolphin. The Dolphin dataset
is synthesized using CLE-MV’s graphics engine by adding more complex and general shapes
(e.g. dolphins, horses, ducks, etc.). There are in total 1700 and 3631 different scenes in the
CLE-MV and the Dolphin datasets respectively and each scene consists of 3-6 objects includ-
ing the background (a trivial object). As there are 10 image observations (with size 64⇥64)
taken from 10 different viewpoints, both the two datasets support multi-view tasks. We thus
randomly select 1500 scenes (15000 images) from CLE-MV and 3000 scenes (30000 im-
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ages) from Dolphin to make the training sets. At test time, we sample 160 unseen scenes
(i.e. 1600 images) from CLE-MV and 200 unseen scenes (2000 images) from Dolphin,
where “unseen scenes” denote scenes that are not in the training sets. Note that we use
multi-view CLEVR datasets instead of the original CLEVR [10] because we want to show
that the proposed method works for both single-view and multi-view scenarios. For the ex-
periments, we use three baseline CompVAE models including two single-view models, i.e.
MONet and IODINE, and a multi-view model MulMON, and create our experimental group
with the three CompVAEs trained with the proposed LDS prior. We train all models using
the same training specifications as that of the experimental group except for removing the
LDS prior. We thus study and demonstrate the effectiveness by comparing the two groups in
various aspects. We refer the reader to the Appendix for the ablation study and the model
specifications.

4.1 Duplicate Suppression
The first set of experiments justify the proposed LDS methods by demonstrating its effects
on suppressing duplicates. We ran both the control-group and experimental group models
on the 200 CLE-MV test scenes (2000 images) to get two quantitative measures: 1) the
average pair-wise similarities (see eqn (3), denoted as Sim) among all the inferred latent
object representations, 2) the percentage of images for which object duplicates were inferred.
To better visualize the effect of the proposed LDS on reducing latent-object-representation
similarities, we used the difference between average pair-wise similarities of the control- and
experimental-group models, i.e. DSim+

= Sim0 �Sim+, where a positive DSim+ suggests
positive effect of LDS in suppressing latent object replicates. For the second measure, we
randomly picked 100 images and counted the total number of image cases where duplicates
were produced. The results in Figure 3 suggest that the proposed LDS prior works effectively
reduces latent-object-representation similarities and suppresses duplicate representations.

Figure 3: Effectiveness of the proposed LDS in duplicate suppression. Left All of the three
tested CompVAEs give positive DSim+ values, where positive DSim+ suggests smaller simi-
larities (i.e. improvements) of the experimental-group (trained with LDS) latent object repre-
sentations than that of the control group. Right Direct comparison between the experimental-
(tagged with +) and control-groups (tagged with 0) in duplicate suppression. The lower per-
centages when using LDS mean fewer duplicates and thus effective duplicate suppression.

4.2 Task Performance
Scene Factorization The biggest advantage of CompVAEs over traditional VAEs in visual
scene understanding is that they can perform unsupervised scene factorization, which di-
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Figure 4: A partial-failure example from the “outlier” model (MONet0) on Dolphin (tagged
with “?” in Table 1). Top The model produces good factorization but fails badly to learn
good-quality object representations and thus shows noisy generations. The proposed LDS

fails to fix it. Bottom A good example shown by a model that achieves similar quantitative
performance (MulMON+).

CLE-MV Dolphin

Models LDS MSE# mIoU" MSE# mIoU"
MONet 0 0.0037±0.0002 0.6806±0.0072 ?0.0059±0.0002 ?0.6620±0.0070

+ 0.0024±0.0002 0.7899±0.0092 0.0063±0.0005 0.6567±0.0077

IODINE 0 0.0016±0.0002 0.1911±0.0042 0.0054±0.0001 0.3501±0.0043
+ 0.0020±0.0001 0.7252±0.0054 0.0050±0.0002 0.6224±0.0052

MulMON 0 0.0019±0.0001 0.7834±0.0046 0.0055±0.003 0.6246±0.0056
+ 0.0019±0.0001 0.7911±0.0043 0.0051±0.0002 0.6556+±0.0027

Table 1: Quantitative comparisons between the experimental group (tagged with “+”) and the
control group (tagged with “0”). All results are averaged over five different random seeds. ?
denotes the most significant case where LDS does not generate obvious improvements which
we will discuss in the text.

rectly links to observation segmentation. Therefore, we compared the scene object decom-
position performance between the experimental group (CompVAEs trained with LDS) and
control group (original CompVAEs) on scene object decomposition task. Because both the
CLE-MV and Dolphin datasets are synthesized with the ground-truth segmentation maps,
we can thus compute the mean intersection over union (mIoU) score as the performance
measure. To solve the bipartite matching problem as the output object masks (in a list) are
not in the same order as the GT masks, we used the Hungarian matching algorithm to find
the best match that maximizes the mIoU score for a scene. Table 1 shows that the exper-
imental group, i.e. CompVAEs trained with the proposed LDS prior, results in similar or
improved performance compared to the control group over most models and datasets. Fig-
ure 2 demonstrates the effectiveness of the proposed LDS prior in reducing duplicates and
aiding CompVAEs’ local minimas. We also examined the “outlier model”, i.e. MONet+
trained on Dolphin, and some output samples are shown in Figure 4. For the outlier model,
even though the quantitative measures are improved, the model still suffers from the local
minima. We also consider this a failure instance of the proposed LDS as it does not aid the
model like it does to MONet trained on the Dolphin dataset (see Figure 2).

Scene Reconstruction Reconstruction quality reflects the representation-learning qual-
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Pearson Correlations Coefficients
Reconstruction MSE vs. DG+ -0.2874
Segmentation mIoU vs. DG+ 0.2019

Table 2: Left Figure: The effect of LDS on the variational approximation quality: yellow
dots represents the DG+ for each test data sample (2000 test images), and the green line is
the mean DG+, which is the change in the ELBO (evidence lower bound) value from Eqn 5.
Positive values are improvements. Observe that most dots lie above the “no improvement”
line at 0, demonstrating that LDS generally produces improvements. Right Table: The cor-
relation between the task performance and the inference gap. 0 suggests no correlation and
+1/-1 denotes the strongest positive/negative correlation. The right table exhibits a positive
correlation between the inference gap drop DG+ and the reconstruction errors and a positive
correlation between the segmentation accuracy (mIoU) and DG+.

ity of a VAE model. Hence, we compared the experimental group and the control group also
on reconstruction quality using the mean squared error (MSE) between the observation im-
age and the reconstruction image as our quantitative measure. The MSE was computed from
the RGB vector distances, where color values are on a [0,1] scale. Table 1 shows that the
proposed LDS improves not only the scene factorization but also the scene reconstruction.
This suggests the proposed LDS helps CompVAEs to learn better scene representations.

4.3 Suboptimality Analysis

As shown in Fig 2, the proposed LDS prior not only suppressed the object replicates, but
it also fixed several issues (uniqueness and degenerated inference) that exist in the original
CompVAEs, improving scene reconstruction quality. The suboptimality analysis presented
in this section gives a better understanding of how the proposed LDS helps to improve the
task performance. To verify our hypothesis that the proposed LDS reduced the violation of
the uniqueness assumption and thus achieved a better variational approximation of the target
posterior pq (z = {z}|x) and improved the task performance, we studied: 1) the effect of the
proposed LDS on the variational approximation quality, and 2) the correlation between the
task performance (mIoU) and the variational approximation quality. We evaluated the varia-
tional approximation quality by computing the inference gap drop DG+ (see Section 3.3) for
the 2000 test images from the CLE-MV dataset and averaged the DG+ over 2000 samples to
obtain the mean DG+. Table 2 (left figure) shows the drop DG+ of these 2000 test samples
and their mean. As illustrated, MONet trained with the proposed LDS produces a positive
drop DG+ — the proposed LDS reduces the inference gap and is thus a better approxima-
tion than the original model. We computed the Pearson correlation coefficients between the
task performance measures, i.e. MSE (for reconstruction) and mIoU (for segmentation), and
DG+ on the 2000 test samples. As shown in Table 2 (right table) an increased inference gap

drop DG+ does indeed decrease the reconstruction error (negative correlation) and increase
the segmentation accuracy (positive correlation).
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5 Conclusion
In this work, we present a differentiable prior that leverages similarity measures to regu-
late the object-centric latent representations inferred by multi-object VAEs, i.e. CompVAEs.
Despite its simplicity, we demonstrate its effectiveness in fixing known issues, namely the
uniqueness issues, of the multi-object VAE models — inferring duplicate object representa-
tions. We ascribe the uniqueness issues to the violation of the uniqueness assumption that
is implicitly introduced by the scene-mixture-model assumption, i.e. each part of an scene
observation (e.g. a pixel) must be explained by one and only scene object. Therefore, we
demonstrate through experiments that, by suppressing duplicates, better variational approxi-
mation and task performance can be achieved. Regarding the future work, we are particularly
interested in modelling more flexible and possibly learnable similarity functions, e.g. a sim-
ilarity measure that can distinguish explicitly the inter-object correlations’ effect on each
dimension of an object’s latent representation and thus weight them accordingly.
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A. Implementation Details

Training specifications We refer to Table 1, 2 & 3 to the training configurations of MONet,
IODINE and MulMON respectively. Note that 1) for IODINE adn MulMON that use iter-
ative inference modules, we apply LDS per iterative step to compute their ELBOs during
training, and 2) for all CompVAEs, we apply LDS only in their training times.

Model Architecture Specifications As discussed in the main paper, we use three ex-
isting CompVAE models as our baselines and build our contributions on top of these ar-
chitectures. It is important to use the same architectures as the that of the original papers.
However, we found it difficult to use a latent dimension of 64 as in [5] for the CLEVR-based
datasets as it trains too slow, over one week for one run on two RTX2080TI, we thus reduced
the dimension of IODINE to 16 for our IODINE. As constructing the proposed LDS prior
requires no model architecture design and architecture parameter tweaking, we refer to the
original papers of MONet [2], IODINE [5], and MulMON [6] for the architecture details.

Table 1: Training Configurations For MONet

TYPE THE TRAININGS OF MONET0 AND MONET+

OPTIMIZER RMSPROP
INITIAL LEARNING RATE h0 3e

�4

BATCH SIZE 40 (UNIT: IMAGES)
LEARNING RATE AT STEP s N/A
TOTAL GRADIENT STEPS 600k

GRADIENT-NORM CLIPPING 5.0
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH b 0.5
KL (ATTENTION PRIOR) STRENGTH 0.5
LDS (MONET+ ONLY) STRENGTH 0.5

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Table 2: Training Configurations of IODINE0 and IODINE+

TYPE THE TRAININGS OF IODINE0 AND IODINE+

OPTIMIZER ADAM
INITIAL LEARNING RATE h0 1e

�4

BATCH SIZE 8
LEARNING RATE AT STEP s ?max{0.1h0 +0.9h0 · (1.0� s/1e

6),0.1h0}
TOTAL GRADIENT STEPS 600k

GRADIENT-NORM CLIPPING 5.0
INFERENCE ITERATIONS [5] 5
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH b 1.0
LDS (IODINE+ ONLY) STRENGTH 1.0
? : SAME SCHEDULER AS GQNS’.

Table 3: Training Configurations of MulMON0 and MulMON+

TYPE THE TRAININGS OF MULMON0 AND MULMON+

OPTIMIZER ADAM
INITIAL LEARNING RATE h0 2e

�4

BATCH SIZE 8
LEARNING RATE AT STEP s ?max{0.1h0 +0.9h0 · (1.0� s/1e

6),0.1h0}
TOTAL GRADIENT STEPS 600k

GRADIENT-NORM CLIPPING 5.0
INFERENCE ITERATIONS [5] 5
LOG-NORMAL LIKELIHOOD STRENGTH 1.0
KL (GAUSSIAN PRIOR) STRENGTH b 1.0
LDS (IODINE+ ONLY) STRENGTH 1.0
? : SAME SCHEDULER AS GQNS’.

B. CompVAE Rendering Process

Figure 1 shows the CompVAE rendering process we used to produce all qualitative results
presented in this paper. Importantly, we used softmax functions to compute the com-
positional probabilities of each components, i.e. the mixing probabilities in Eqn.(1),
to render the whole scene, and sigmoid functions to render independent objects. How-
ever, one might also see independent component rendering with other functions in the related
literature, e.g. IODINE [5] uses a linear mapping of xk to render independent components.
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Latent Object
Representations Decoder Output

Figure 1: Overview of a CompVAE rendering process. The rendering process starts by in-
putting a set of inferred latent object representations (Bottom left) into the generator network
gq . The generator gq outputs a raw mask (mlg

k
2 RH⇥W⇥1) and a color pool (xk 2 RH⇥W⇥3)

(Bottom middle). The decoder output is then passed into three different functions (Middle
row) to get different render results (Top row). All computations are defined pixel-wise but
executed in parallel.

C. Additional Results

C.1 Abalation Study

The ablation study focuses on two hyperparameters: 1) the standard deviation s used in the
LDS prior (see Section 3.2 of the main paper) and 2) the number of object slots K. The
former relates to the precision of the similarity measure and the latter determines the size of
the similarity matrix constructed in the LDS computation, i.e. it relates to the scalability of
LDS. We do the ablation study with only MONet and on only the CLE-MV dataset for com-
putation efficiency. We select 4 different s to train MONet and compare their performance
on the scene reconstruction and the scene factorization tasks. Figure 2 shows no significant
performance loss in tasks by changing s from the default value, 0.1, to other values. A future
investigation will be further increasing s until it is sufficiently close to a uniform distribution
and thus breaks the LDS prior. Moreover, the performance might get boosted in some cases.
For the object-slot quantity K, we first train MONet with K = 7 and K = 9 respectively and
test them with 7,9, 11, 15 object slots. Figure 2 shows: 1) the models trained with K = 7 and
K = 9 have very similar performance in both tasks and 2) testing with a different K does not
cause a significant performance drop.
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Figure 2: Ablation study results. Top left Scene decomposition performance vs. LDS prior
precision (s ). Top right Scene decomposition performance vs. the number of object slots
used in training and testing (K). Bottom left Scene observation reconstruction performance
vs. LDS prior precision (s ). Bottom right Scene observation reconstruction performance
vs. the number of object slots used in training and testing (K).

C.2 GENESIS on the CLE-MV Data
We tested GENESIS [4] on the CLE-MV data to assess how well the inference redundancy
problems are handled by the autoregressive model of GENESIS. The experiment was con-
ducted on top of the official implementation of GENESIS [1] with strict abidance of its
original hyperparameter configurations. However, as shown in Figure 3, GENESIS failed to
factorise CLE-MV scenes correctly—it treats a CLE-MV scene observation (i.e. an image)
as a big and flat object that contains all the content. As a result, it produces wrong image
segmentation. A possible reason could be that GENESIS represents the autoregressive con-
ditioning of object discovery in the latent space (i.e. zk |z1:k�1) instead of the image space
as that of MONet—a successive object mask conditions directly on all the previous obtained
masks (i.e. mk |m1:k�1). According to [3], this could introduce more severe global infor-
mation leaking issue. In general, future study is needed to better understand the practical
limitations and their causes in GENESIS.

C.3 Real-image Experiments
To demonstrate that the proposed LDS can efficiently perform duplicate suppression on real
images, we conducted comparison experiments between CompVAEs that are trained with
and without LDS priors on the a collected real-image dataset.

Real-image Dataset We created such dataset by randomly placing 2�4 cubes (of dif-
ferent colours) on white table top and taking photos with a webcam that is mounted on a
moving robot arm. We created 109 scenes in total and for each scene we captured 20�30

Citation
Citation
{Engelcke, Kosiorek, Parkerprotect unhbox voidb@x protect penalty @M  {}Jones, and Posner} 

Citation
Citation
{gen} 

Citation
Citation
{Emami, He, Ranka, and Rangarajan} 



LI NANBO AND ROBERT B. FISHER: LDS FOR MULTI-OBJECT VAES 5

Obs. Rec. Independent Component Generation Seg.

Figure 3: Qualitative results of GENESIS on the CLE-MV dataset.

Figure 4: Hardware platform for real-image dataset recording.

images from different viewing angles. We show the hardware platform setup in Figure 4.
Results Figure 5 shows that the original MONet0? infers redundant white table compo-

nents. Although MONet+ demonstrates a slight performance drop in handling occlusions
(e.g. renders the independent table component worse than MONet0? ), it does suppress the
duplicate table finding issues of MONet0? . Also, we see that MONet+ produces cleaner
segmentation results than MONet0? . Compared with synthetic data, real images often come
from complex distributions and thus exhibit significant larger pixel variances (due to uncon-
trolled lighting, materials, etc.), complicating the training of a generative model. This also
explains why neither MONet0? nor MONet+ model the independent table (always partially
occluded) distribution properly. In conclusion, LDS is an effective addition to CompVAEs
on real data and can potentially serve as a useful tool in some real applications.
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Figure 5: Qualitative results of MONet on real images. Symbols “0?” and “+” tag models that
trained with and without LDS respectively. Yellow circles highlight duplicated or partially
duplicated components.
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