A Three Dimensional
Image Processing Program
For A Parallel Computer

Michael G Norman

MSc in Information Technology
Department of Artificial Intelligence
University 1cz)f8%3dinburgh

S e R Seun Y s (N e (Y oo (I snse: B oy B oo NN e N QN —— [o R = o e S e R ovos (R e (R e

\

Abstract

A program has been developed to manipulate and display three
dimensional NMR bodyscan data on a Multiple Instruction Multiple
Data parallel computer: the Meiko Computing Surface.

A similar program had been implemented on a SUN 2 serial machine
by previous MSc students.

Innovative aspects of the work have been in dividing the three di-
mensional dataset between processors, in arranging for secure com-
munications between processors and in implementing a generalisa-
tion of the Zucker-Hummel surface detection operator to non-cubic
voxels

The main features of the are that it will display data in two di-
mensions, calculate the derived T1 datasct, calculate the Zucker
Hummel coefficients, threshold data and manipulate binary flagset
maps of the dataset.

E

]

S B3

e |

=3

= =3

Acknowledgements

Undertaking this project has been an extremely rewarding expe-
rience for me, and I would doubtless have floundered without the
constant help of many people of many different affiliations. The fact
that it happened at all is a remarkable tribute to the collaboration
between departments in the university, and between the university
and industry. I should like to explicitly thank the following people,
although in truth they are the tip of the iceberg.

Dr Robert Fisher of the Department of Artificial Intelligence.

Greg Wilson of the Department of Physics.
For their help as day to day, (and day to night) supervisors.

Duncan Roweth of Meiko Itd.
For his invaluable help with the inscrutable Meiko M40.

Adam Zentner of the Department of Computer Science.
Ior developing the user interface through which the program com-
municates, and for his constant help and companionship.

Professor David Wallace of the Department of Physics.
For allowing access to the Edinburgh Concurrent Supercomputer
facilities.

=]

L2

EE B3

E=

.

4

Contents

1. INTPOAUCTION oottt st s e e e at s as s nssaessen s e naess e sasnsernensenans 1
1.1, BaCKBIOUNAeoiiiiiiiiiceiiceietneeect et rete st s et e sse s e e st e e nnessesssseesresssessnssnnesmneesnonan 1
1.2. The Previous Programccccccceccceerrirerrieersseemenrneneeeraressssesssssessnsessssessssessnsesssesnn 3
1.3. A Description Of The Problemccccocviiviireeniinninieneerretineeeteeeresaeeseeseeeneens 4
1.4. Constraints On The Programc.ccceccceomoremneneennnnneereeeceeteenee e e et eee s 5
1.5. An Overview Of The Programc.ccccccooeecrmnenneenerscnscenrenneeernesseeneesssesseesnns 7
1.6. Innovative aspects Of the PrOGrAmMccececeveerrcorrrereriesseninensessenseseeseesesnsseesennane 8

2. Distribution of Data and ProCessingccecececeveiieeeeierereeeeeeseeseeeesenceesesesssesesese s 10
2.1. Programming with Communicating Processesceecoceveveveevereveeeeeeeeeeeennennnn. 10
2.2. Hardware and Data CONSLTAINLS ..cccoreeereererererenineniieireseseeseeseneeeeseseeses s e 12
2.3. Approaches to ParalleliSalioncecccevcereeieieienieteeieeeies ettt 13
2.4. Mapping tasks ONtO POCESSOISc.cococeertetrrmurrermsasserseeresesesssessseeeseoseceseesesesessssns 15
2.4.1. The Type of Mapping USEdccccceserreereseererrerereeeeeeeteeeeeeeeessseeseeseessssesssnns 15
2.4.2. Dataset Partitioningcccceceoeoeeceesceeeeneneneeenietese et eeteeee e e ee s sesen e 16
2.4.3. Assignment of Data 10 PrOCESSOTS .coeoeereeerrrererereretemerisicaceeeeeeeeeeseseeeseeesesnn. 18
2.4.4. The reasons behind the MAPPING ..cceeererieiieieeeieeeceeeeeeeeeeee e eeesee e 20
2.45. A Lisp Model To Assess Parallelisation Efficiencycocoooooeoveeeevoreennnnn. 22

2.5. Accessing the Distributed DataSetcccoceoeeeeoeeiiececereeereeeeeeeeseeeeesereseseeseeeeenns 24
2.6. Conclusions on Dividing the Datasetcceceeeeereemimieereceeeeeneeeeeeeseeeeseresssesenon. 26

r

| |

L

1

=

_—

o o

3. Processor Connection and Communicationcccccecceecrrcecreereneniesrreesescereeseeseesaenes 27
3.1. GOAIS ettt st ettt e s e ettt e e snesranane 27
3.2, Connecting PrOCESSOISccceeiiirimiiriiirceeereeneescereesseeresseeseeseeaesesseestesasenseasessnsnns 28

3.2.1. Literature ReVIEW ..ccccccciiiiiiiciiiiiciiteeniteeseesecsteeeteessesssseaessensananasnseesssasssaeens 28
3.2.2. The Chosen ATITANGEMENTccccevcercrrmererierireterieserstescesesnessessassescesesseseseessessans 32
3.3. Signals and Signal Handlingcccecceeomiiiirennneneeieecntreeece et e 36
3.3.1. Processes Internal to Each Image Processor.cciimenoncrcnncnenn. 36
3.3.2. Packets and AdAIESSEScccoceececirrcienierinisiseeiiceiessestesssneseenessessssassassersnasas 39
3.4. Assessment of the INELWOTK ..cccccccormierirermsinintreieeneeetecee e sre s sse e e see e ane 43

4. Image ProCeSSINEccccoiiiininiiieiiiiiiciiieeeece e ereeee s eeesesssessee st s eeeneeaesses st e seasasseneanassaan 45
4.1, The IMAGE oottt sttt et s ene st e e e e s e e e st ennens 45
4.2. A non-interpolated version of the Zucker-Hummel operatorc.cocecee... 46
4.3. An improved surface tracking algorithmccccecmnemnmeeneecrnescccececncnene S0

4.3.1. The Changes to the AIGOFItAIMccccooecrmrnerimntirinrcneneetescreseeseeaesaesaassesnans 51
4.3.2. The Parallelisation of the AIOTItAM ...ccocevioiiicieiciesinceeeeecreeeeeeeeecennas 53
4.3.3. The Lisp Model Versus The Implementationc.cccceeceveereereneecererennnnes 53
4.4. The Display of Edge-IMagescccccoecmemmnrirensersenccreneeserseentrsesscesesssssssessssssssenes 57
4.5. A new Datastructure for Boundariesccccomecceeeerereescnsennsseesceseeseeseneenenns 59

5o CONCIUSION ettt e e e e st ses e s et e e s e s st e e tssensanasannee 60
5.1. A Summary of the Facilities Providedc.cceccveereeeeerererrecreierinneseeneessenenenns 60
5.2. Some Conclusions about Parallel 3-D Image Processingcc.ccceveersreeresnenns 61
5.3, Some DENCHMATKScccoceriiircncrnnreneeseennssssnseseesssesessssseesesessesesesessasesasansssssesesesssens 62
5.4. An Assessment of the Computing SULfacecccoveeeorrieereererereveseereeerereneaeennens 63
5.5. Suggestions fOr IMPIOVEMENLccccceveeeieeremeeieeeeeesentesecteeesssssseseesesssssseseaneneseas 64

APPENDICES
{ T _
f PL, Currek Edibinal Comcomet Supereompder Facdy

"”Q"‘”‘ Usey %uc\t

chm% ?vo bocoly,

|9

2 B2 ED E B EE E] B EE R B E e BB E=m B2

Chapter 1

Introduction

1.1. Background

This dissertation describes a study to show how three-dimensional
bodyscan data can be manipulated within a Multiple Instruction /

Multiple Data (MIMD) parallel architecture.

Bodyscan data comes in three main types: Computerised Tomography
or Computerised Axial Tomography (CT or CAT) is an X-Ray based
three dimensional imaging system. The pictures may be produced in
real time and are rarely subjected to significant image processing;
Positron Emission Tomography (PET) is a relatively new imaging
technique whose clinical usefulness is currently under investigation;
Nuclear Magnetic Resonance or Magnetic Resonance Imaging (NMR or
MRI) is a well known and useful imaging technique, currently in use

in most Area Health Authorities in the UK.

The program is set up to analyse MRI data, although with a little
modification CT, and PET could be used. Indeed there is no reason
why any type of three dimensional data such as sequential embryonic
sections or gamma scan images of industrial parts might not be

analysed by the system.

MRI data is of the form of sections through the body or part of the
body. The spatial resolution of the data is lower in the axial

direction (normal to the plane of the section) than in the plane of the

section. Typically datasets have 128*128 or 256*256 pixels in the

section, and there are 10 - 20 sections.

Over the past two years there have been two MSc projects in the
Department of Artificial Intelligence which have addressed the
problems of applying A.I. techniques to medical images. (Nelson [85]
and Reeve [86]). The work described here was an attempt to
implement a similar program within a multiple instruction multiple
data (MIMD) parallel architecture so that it would run at an

acceptable speed.

This work had two main goals. On the one hand, it aimed to
duplicate and enhance many of the image processing functions which
Nelson and Reeve had previously implemented. On the other hand it
aimed to show how three-dimensional image processing could be
mapped efficiently onto MIMD parallel hardware. The structure of
this document reflect the two aspects. Chapter two describes the way
tasks and data were distributed between processors and chapter three
describes how communications were arranged between processors.
Chapter four deals with the image processing aspects of the work. It
describes the enhancements and other changes made to the image

processing algorithms of Nelson and Reeve.

Chapter five gives an assessment of the program produced, both in
terms of the efficacy and speed of the implementation and also in
terms of the general feasibility of medical image processing on MIMD
hardware. This chapter also discusses possible extensions and

improvements to the system.

Appendices include a user guide (which may be read separately from

this document); a description of the protocols used for inter-processor

communication signals; and a description of the hardware on which it

was implemented.

1.2. The Previous Program

Over the past two years, between the two MSc students involved, a

large program was developed for bodyscan manipulation.

Nelson originated the program, and developed a three-dimensional
surface detection algorithm based upon the Zucker-Hummel edge
detection operator. Boundary detection was achieved in the f ollowing

way:

The user specified a point which was judged to be on the surface.
The boundary was tracked away from this point using values of edge
contrast and edge orientation to guide the formation of the boundary.
The detected boundary was made up of voxels, and the surface of the
boundary was determined by marking those faces of the voxel which
were on the boundary. A surface display was produced by displaying
the marked faces, and using the standard computer graphics techniques
of viewing transformation, surface shading and hidden surface
removal, as supplied by the Suncore graphics interface. He also
developed a surface editor to allow the operations of union intersection
and difference to be performed on surfaces, and surfaces to clipped in

the X or Y planes.

Reeve’s contribution was to improve the techniques of surface
detection by developing three-dimensional generalisations of the Canny
and Walsh edge detection operators. He also improved the quality of

the user interface.

1.3. A Description Of The Problem

Although Nelson and Reeve have together produced a program which
is capable of manipulating and presenting bodyscan data, it must be
rcmembercd that the program was implemented on conventional

hardware: a SUN 2 workstation, in a conventional language: C.

The move to parallel hardware was necessary to improve the speed of
the program. From a commercial point of view it is important that a
medical image handling system should be powerful, fast and not
excessively expensive. The parallel architecture of the Meiko
Computing Surface allows considerable computing power to be attained

at a fraction of the cost of comparable machines.

It has been traditional for A.l. workers to abstract their programs
from the hardware on which they were to run, but in the case of the
move to parallel hardware this is. at:present difficult to achieve. It is
apparent that for a program to run efficiently and for the benelits of
parallelisation to be seen, the structure of the program must map
very closely onto the architecture of the machine on which it is to
run. The task of producing a parallel implementation of the
bodyscanner program is not best solved by parallelising the existing

code, but by re-assessing the problem and writing a program which

solves it in parallel.

The goals of this research were to implement the following operations

which Nelson and Reeve had previously implemented.
1. Display two dimensional sections of medical NMR image data.

2. Calculate the T1 dataset, given Proton Density and Difference

datasets.

3. Apply conservative smoothing to the data.

4. Apply a three-dimensional version of the Zucker-Hummel edge

detection operator to the data.

5. Detect surfaces in the three-dimensional data by tracking points of

high edge magnitude away from a user specified seed point.

6. Store surfaces and manipulate them with intersection, union and

other operators.
7. Display the surfaces in three dimensions
In addition it was possible to implement the following operations:

8. Display of the magnitude of the surface normal found by the

Zucker Hummel operator.
9. Display only of data lying within user-defined thresholds:
(a) Thresholding the intensity of the data at each point.

(b) Thresholding the intensity of the edge at each point.

1.4. Constraints On The Program

There are constraints on the way that the program was written.
Some of these were due to the specific medical requirements of the
program, others with the data, and still others were related to the

hardware being used.

As explained earliecr in section 1.1, the volume of data to be
manipulated is very large, typically there will be 128*128 pixcls in a

section, each pixel taking up 8 bits, and 10 to 20 sections will be

required to make up a whole three dimensional image. It is possible
that the data will be of higher resolution than this, perhaps 256*256.

In addition it will be necessary to store up to three such datasets.

The new program was written for a Meiko Computing Surface, a
multi transputer machine, and developed on the machine belonging to
the Edinburgh Concurrent supercomputer facility. The current

configuration of that machine is given in Appendix 1.

Twenty five processors were available for image processing and one
for controlling the program. Each of these processors was an INMOS
IMS T414 microprocessor with 256K Bytes of memory. The program
was written in the language occam which is the native language of
the Transputer. The input and output of the program were supplied

by interfaces written by Zentner [87] and Meiko [87], [85].

Some difficulties were encountered during the work which related
directly to problems with the hardware and system software being
used. The Edinburgh Concurrent Supercomputer facility is still under
development and there remain several bugs and inconsistencies in it. I
do not intend to discuss system problems in detail, although chapter
five does contains some assessment of the Computing Surface’s

suitability for this type of program.

Next come the medical constraints. The move to a parallel
architecture was made primarily to increase the speed of image
processing. This speed is directly related to the size of the dataset,
and to its tomographic nature. Many slow image processing operations
work on the neighbourhood of a voxel. Examples include the
boundary tracking and Zucker-Hummel operations mentioned earlier as

goals for the program. In three dimensions each image element has

27 neighbours as compared to only 9 neighbours for elements of a
two dimensional image. Moreover, the three dimensional datasets
typically have an order of magnitude more data than the typical two

dimensional image.

The image processing operations need to be performed at a speed
which medical practitioners would consider as real time. Some
assessment of the speed of the program is given in Chapter Five. It
is beyond the scope of this project to discuss the medical usefulness

of the operations that the program performs.

LS. An Overview Of The Program

Below is a block diagram of the modules into which the program

divides.
Overall System Configuration
M VAX File Of Parallel Bodyscanner Program
Disc Utilities \
Program
Contral
Image
| Menu Processing
USER Handler Network
\ \ \ \
Graphics Pre—Processor
e
Colour Graphics Utilities
P

Screen MgN 87

The conceptual program as discussed previously only refers to the
program control and image processing parts of the diagram. The other
modules are separate processes, many of which run on separate
transputers, but in truth they may be regarded as interfaces similar in
essence to the menu, window and 3D graphics facilities of the Suncore

Library on the SUN 2.

Graphics and file utilities are Meiko system code, but the Menu
Handler and the graphics pre-processor were written specifically for

the bodyscan project by Adam Zentner (Zentner [87]).

Arrowed lines in the above diagram represent directional connections
between program modules. The dotted line between the graphics and
the program control shows the intended connections for a mouse

interface to the program.

1.6. Innovative aspects of the program

The task of producing a parallel implementation of any program
centres around two main problems. First there is the problem of
dividing the processing load among processors, second there is the

problem of arranging for communication between these processors.

There is no consensus as to how processing should be divided between
processors, neither is there a useful library of communication
harnesses available for the Meiko Computing Surface. Some of the
innovative elements of the work I have done lie in these two areas,
and [shall discuss them briefly in the following paragraphs. There
have been two other major innovations. First it has been possible to
implement a generalisation of the three dimensional Zucker-Hummel

edge detection operator to non-cubic voxels. Second a simple

modification of the datastructures used for storing surface data has
allowed an increase in speed for surface manipulation. Nelson and
Reeve’s approach, where two lists were intersected took of the order
of fifteen minutes for a decent sized surface. The version I have is a
straight bitwise comparison of two integer vectors on each processor,

and takes of the order of fifty milliseconds for a surface of any size.

The distribution of tasks among processors is done in a way that is
essentially data determined. The data is divided into blocks which
are assigned to each of the different processors. The dataset division
is done so as to approximately equalise the data which is assigned to
each processor in both a given section and the whole dataset. It is
complicated by aiming to optimise the speed of the surface tracking
operations. The details of the block assignment process are given in '

chapter 2.

The protocols for communication between the processors are performed
by separate processes from those which are performing image
processing, and in parallel. The communications are packeted, and
each processor redirects packets so as best to spread the load of
communication across the available inter-processor bandwidth. The
communications are actively buffered, and elaborate mechanisms are in
place which aim to stop the network from deadlocking, and also to

allow for slight variations in the inter-processor communication rates.

Chapter 2

Distribution of Data and Processing

2.1. Programming with Communicating Processes

In order to perform a task within a conventional serial computer
architecture it must be broken down into subtasks to be executed in
sequence. Each of these subtasks may be further broken down into
smaller subtasks until each is a machine instruction. It is the
execution of the machine instructions in sequence which performs the

computation.

When decomposing a task for a program which is to execute on
MIMD parallel hardware, at each level of subdivision there is a
choice: whether to execute the subtasks in sequence or in parallel.
Subtasks whether executed in sequence or in parallel are usually

referred to as processes.

In practice the choice of sequential or parallel subdivision is not
arbitrary. It is possible to perform any computation in either mode,
but the efficiency of particular mappings of code onto hardware, and
the conceptual ease of programming vary markedly according to the
choices which are made. It is most important that the division of the
problem allows each processor within the MIMD machine to run a
different parallel process, since only then may all the processors in the

machine be in use.

-11 -

In understanding the MIMD parallel approach to programming, as
exemplified by the language occam it is useful to think of programs
as sets of processes which communicate. The description applies as
well to sequential programs as to parallel ones. Consider a generalised

sequential program constructed of subroutines.

Sequential Processing

Process Process Process Process
—> 1 >) 3 —= 4 =

JAVAVAVA

Dota Results of Resuits of Results of
Process 1 Process 2 Process 3

Memory

Results

The subroutines may be thought of as communicating via the
processor’s associated memory. A parallel version of the program is
shown below. It is composed of processes arranged in a pipeline which
communicate their results to each other via channels. (A channel is a
conceptual entity which allows secure communication between
processors. The implementation of a channel may vary considerably.)
The input of the pipeline is the data to be manipulated, and the
output is the result of the processing. Each of the processes may be
allowed to execute in parallel, and indeed be separated in space from
the other processes since communication occurs via channels.

Parallel Processing

! | | !

Data Process Results of | Frocess Results of | Process Results of | PTOCESS Results

1 2 3 4 —>

= = = |

A Model of Parallel Processing Showing

Communication Between Processes via Channels

The language occam embodies the concepts of communicating processes
within its structure . The following is given as an introduction to
the language by May [87]
A process starts, performs a number of actions, and then
either stops or terminates. Each action may be either an
assignment, an input or an output. An assignment changes
the value of a variable, an input receives a value from a
channel, and an output sends a value to a channel.
At any time between its start and termination, a process may
be ready to communicate on one or more of its channels.
Each channel provides a one way connection between two

concurrent processes; one of the processes may only output to
the channel, and the other may only input from it.

2.2. Hardware and Data Constraints

At this point it is useful to describe the hardware for which the
program was written. The image processing was distributed between
25 INMOS IMS T414 processors (transputers), part of the Meiko
M40 Computing Surface of the Edinburgh Concurrent Supercomputer
Project, at the University of Edinburgh A description of the current

system configuration is given as Appendix 1

The INMOS IMS T414 transputer (INMOS [87]) is a high performance
32 bit microprocessor with 2K bytes of on chip random access
memory and on chip communications hardware. It has four
bidirectional hardware buffered communications links which allow
point to point connection between transputers, and along each of
which it may communicate simultaneously. The native language of
the transputer is occam. The processor shares its time between any
number of concurrent processes, a process waiting for communication
does not consume any processor time. The time for process switching
is sub-microsecond, the same order as the time required to generate a

procedure call. Communication between internal processes is

-13-

implemented by memory to memory block move operations.
Communication to external processes is available via the

communications links.

The Meiko M40 (Meiko [87]) is one of a range of multiprocessor
machines built by Meiko and based around the INMOS transputer.
The machine allows dynamic reconfiguration of networks of
transputers. It provides a programming environment and some utilities.
These are supplemented by interfaces specially written for the
bodyscan program. Screen output and keyboard input are available via
a menu shell developed by Zentner [87). Graphics output is available
via a graphics pre-processor (Zentner [87], Theoharis [86]),

The test datasets to be manipulated by the program are two
128*128*12 arrays of 8 bit data. (Proton Density and Difference) and
a further 128*128*12 array (T1 data) to be calculated from the other
two. The total size of the datasets is therefore 128*128*12*3 Bytes;
576 K Bytes. The inhomogeneity of the data precludes any great
reduction in the size of the datasets by such techniques as run length

encoding or octree representations.

2.3. Approaches to Parallelisation

The division of a task into separate subtasks to be executed by
different processes in parallel is the essence of parallel programming.
Optimal solutions to the problem of task division maximise the
processing load at each processor, whilst minimising the proportion of

the processing which results directly from inter-process communication.

There are three opposed approaches.

- 14 -

The algebraic parallelism, or task parallelism approach, as exemplified
by the pipeline of processors (see Theoharis [86] for a graphics
pipeline example) divides the given task among processes in a similar
way to the way sequential programmers tend to modularise programs.
The program is divided into as many processes as there are modules

to be executed.

Task parallelism is often simple to program. In particular the signals
to be communicated between processes tend to be stereotyped so that
communication protocols are simplified. The efficiency of parallelism is
often low in comparison to that which may be attained with data
parallelism, and it is often difficult to extend the approach to large

number of processors. (Morrow & Perrot [87])

The data parallelism approach, as exemplified by the usual SIMD
programming method, Reddaway [87]is to divide the data, and to
assign a portion of the dataset to each of the processes. It is then
possible to arrange that all operations on a given portion of the
dataset are performed by a single process, and that each process runs

the same program.

Data parallelism can be shown to be efficient only if operations are to
be performed globally on the dataset or if the flow of computation is
known in advance and the data can be assigned so as to maximise

processor usage.

The task farm approach as exemplified by the ALICE is to assign both
data and processes to processors dynamically at runtime according to
the overall processing strategy. It is common in task farming
approaches for the task to be sent out in the form of the actual code

which must be executed.

- 1§ -

It is also possible to implement a distributed task farming control
structure where every processor is able to generate tasks to be

performed by other processors.

Task-farming is efficient only if the overheads inherent in the farming
process are insignificant as a proportion of the processing involved in
performing the tasks. Since the data and the task are both sent out
in the farming process it is clearly less suitable for data intensive

tasks such as low level image processing.

2.4. Mapping tasks onto Processors

2.4.1. The Type of Mapping Used

The major problem that was faced in determining an efficient problem
decomposition was the large size of the dataset. It was not possible
for the whole of the data to be placed on a single processor nor was
it practicable for it to be overlaid to disk: the rate of data transfer
from disk to processors was so slow as to make this unworkable. A
form of data parallelism was required simply to allow the whole of
the data set to be available to the set of processors. Given that the
task mapping had to include an element of data parallelism, there was
no necessity for it to be exclusively data determined. The possibility
remained of a distributed task-farming approach where although the
data was distributed between processors, each processor could generate
tasks to be performed by other processors. It was also possible to
allow a degree of processor task specialisation within the essentially
data-parallel framework.

The task decomposition that was used included a large degree of data

- 16 -

parallelism, and I should like to describe it initially in these terms.
The specialisations which allow a limited form of task-farming will
be described along with the reasons for my choice of task mapping in

section 2.4.4. .

In mapping 2D _image arrays onto 4-connected processor arrays, such
as arrays of transputers, and indeed the ICL DAP there are two
broad approaches (Reddaway [87]). In both cases the image is divided
into regions at the edges of which there are discontinuities in the way
the data is assigned. The sheet mapping assigns adjacent pixels within
given regions of the image to adjacent processors, and the crinkled
mapping assigns all of the pixels within an region to the same
processor. In its pure form there are as many pixels as there are

processors.

The approach I have used is similar to the crinkled mapping in that
the data is broken down into physically contiguous regions each of
which is assigned to a processor. It differs from a pure crinkled
mapping in that more than one box in the image is assigned to each
processor. Another difference is that the bodyscan data is tomographic
and so the regions have a third dimension, they are boxes of data

rather than flat image segments.
2.4.2. Dataset Partitioning

The dataset is divided in the following way

1. The data is divided into boxes in X,Y and Z dimensions. The X
and Y dimensions are defined as being in the plane of the data

section, the Z dimension being normal to the plane of the section.

-17-

The box size allows a whole number of voxel widths in each
dimension, and the size of the box in a given dimension is
invariant across the dataset. Typical box sizes will be 8 by 8 in
the X and Y dimensions, and 4 in the Z dimension, reflecting the

undersampling of the data in the Z dimension.

If the data is viewed as slabs of boxes then the X,Y box origins
in each slab are offset from those in the box above by one half a
box size in both the X and the Y dimensions. Each box is thus
face-connected to four boxes within the slab, four boxes in the
slab above and four boxes in the slab below. In general a slab

will contain more than one section, typically four.

The Boxes of Voxels Within the Data
With the Z-dimension Exploded to Show

the Inter Slab Stagger.

- 18 -
2.4.3. Assignment of Data to Processors

The assignment of processors to boxes within the slab is done so that
if any cell of S boxes (one central and its 4 face adjacent neighbours)

is considered all the boxes are assigned to different processors.

There are two further constraints. Processors which are face-connected
in their box assignments within the slab are never neighbours in the
physical arrangement of processors (see chapter 3) and the number of
boxes assigned to each processor within the slab should be about the

same.

Each of the slab of assignments is identical except that there is a one
and a half box size stagger in the X and Y dimensions between slabs

which are adjacent in the Z dimensions.

The 12 Neighbours of a Box

intra Slab Relations of the Box Inter slab relations of the box

PTO, for k,es& .

-19 -
a,bc and d are all assigned to different processors from each
other and from the central box.

ef,g and h are all assigned to different processors from each
other and from the central box.

i,jk and 1 are all assigned to different processors from each
other and from the central box.

The net result is that each assignment box is face-adjacent in its own
slab to 4 boxes which are neither assigned to the same processor as
the box nor to any of that processor’s immediate neighbour processors.
The box has four neighbours in the slab below each of which is
assigned to a different processor, and four neighbours in the slab

above each of which is also assigned to a different processor.

The box dimensions are fixed at compile-time (in order to allow array
dimensioning in occam) but the overall dimensions of the dataset are
input by the user. Once these values are available the assignment of
boxes to processors is performed (in parallel to either generation of
test data or loading of real NMR data). A list of processor
assignments which have not been used is kept. The assignment
process randomly cycles through this list, attempting to find an
assignment for each box which meets all the constraints. If no
suitable assignment can be found then the list of processors available
to be assigned is re-filled and the cycling process is re-started. The

assignment process does not allow backtracking.

There are at most 20 processors that a assigned box may not be
assigned to: the four that its in-slab neighbours are assigned to and
each of those processors’ four neighbours in the physical array of
transputers. The above assignment process is therefore guaranteed to
succeed if more than 20 processors are available for assignment. The

program was implemented on twenty five processors. In practice the

assignment process tends to succeed unmodified if fewer processors are
available. To make sure that it does so the condition of physically
connected processors never being assigned to face-connected boxes may
be waived if after cycling through the refilled list of available

processors, no suitable processor is found.

I would have liked to have implemented a more conventional search
process to find the optimal assignment of data to processors given the
above constraints and to have attached heuristic forfeits to breaking
them. Indeed there is a spare moment during data load up when all
25 image processing transputers are available to perform the search.
It is, however, difficult to implement search in occam, especially in

parallel so this task was left for future work.

2A4.4. The reasons behind the mapping
The mapping aims to optimise three classes of computation.

1. An operation is to be applied globally across a section within the

dataset. (eg a section is to be drawn)

Each processor is assigned approximately the same number of
boxes within each slab, and within each slab it is assigned all of
the sections. For each section every processor will therefore hold
approximately the same amount of data for the section, and the

processing load will be approximately evenly distributed.

2. An operation is to be applied globally across the dataset. (eg the
data is to be smoothed)

Each processor is assigned approximately the same number of

boxes within a slab, and the dataset is composed of a set of slabs

-21 -

therefore each processor will hold approximately the same
proportion of the datasets, and again the processing load will be
approximately evenly distributed.

3. An operation is to be performed which spreads from a single
arbitrary point in the data across any arbitrary surface in the
data. (e.g the boundary detection and the surface tracking

operations of Nelson [85].)

Many of the features of the mapping relate to this particular
class of operation. Consider a boundary being detected by
tracking away from a single point. Initially only one processor,
the one assigned to the data at that point is active in detecting
the boundary. As soon, however, as a voxel on the edge of the
box is detected as being on the boundary the processor is in a
position to seed the processor to which the neighbouring box is
assigned. It is important at this point that the box of data into
which the seed is to be sent is assigned to a different processor
from the one that has generated the seed voxel. The processing

will then spread to another processors

The processor that is initially active can seed any of its four
neighbouring boxes in the slab, all of which are assigned to
different processors. It can also seed the eight boxes which it is

face-connected to in the sections above and below it.

In describing the data mapping described above I have for simplicity
omitted to explain task-farming component of the task to processor
mapping. It was envisaged that space on the transputers would allow
five copies of the dataset to be kept: one on each of the neighbours of

a nominally "in charge" transputer for each box of the data. Every

transputer could then farm out tasks for boundary detection to its
physically connected neighbours in the network of processors without
sending the data associated with the task. The returned datastructure
including only the boundary detected voxels within that box would be
returning only from the physically adjacent processor and thus a large
communication overhead would be avoided. The transputers available
for the project were only supplied with 256K bytes of memory, so

lack of space did not allow the necessary duplication of the data.

24.5. A Lisp Model To Assess Parallelisation Efficiency

In the early stages of the project (whilst parallelisation approaches
were being developed) a model of the spread of processing across a
surface was used in order to test the efficiency of proposed task to

processor mappings.

The model considered the spread of processing across the surface of a
sphere within a box of data which was assigned to a set of processors

according to various assignment methods.

The model considered concentric rings of surface tracking activity
spreading out from a point on the surface of the sphere. The rate of
movement of the ring of activity was judged to be proportional to the
number of processors active in processing: the number whose
assignments of data were intersected by the ring. It was also judged
to be inversely proportional to the length of the ring. The mean
number of processors active in tracking the ring was approximated by
averaging the number of processors active in tracking a large set of
rings. Each ring was weighted according to a value inversely

proportional to the rate of movement of the ring.

-23-

The assumptions in the model were numerous, and are discussed in
chapter 4. It remains to be seen whether the model does indeed

usefully describe the spread of processing.
Two investigations were carried out with the model.

1. In order to show the inadequacy of a simple mapping of

processors to data a comparison between

(a) assigning to each of 27 processors 1/27 of the image in a single
box.

And

(b) Assigning to each of the processors 8 spatially separated boxes of
data, together comprising 1/27 of the image.

In each case the processing was to track the surface of the largest

sphere which could be wholly included in the box of data.

The results showed that when a single box of data was assigned to
each processor on average only 29% of processors were active in
tracking the sphere. When each processor’s assignment of data was

split into 8 sites on average 49% were active in tracking the sphere.

2. Once the image to processor assignment as described above had
been implemented in occam, a sample assignment was tested

within the Lisp model.

Again 27 processors were assumed, each of which was assigned 8

spatially separated boxes. Two cases were compared.

(a) Each processor was only able to process data which had been
explicitly assigned to it.

(b) Each processor was allowed to process data which had been

explicitly assigned either to
neighbours

according to the rules given in chapter 3.

in a physical arrangement

it or to one of its immediate

of processors devised

This corresponded to

the task-farming described above.

The average processing load of the network was determined for

tracking the surface of spheres of various sizes centred within a cubic

dataset.

Proportion of
processors

active in
tracking
sphere

100 7]

20 4
80
70 4
60
50
40 4
30 4
20

10 4

Graph to Show the Expected Increase in Parallelisation Efficiency
Associated with Nearest Neigbour Task—Farmming for @ Network
of Twenty Seven Transputers Surface Tracking Spheres of Various Sizes

With Task—Farming

Without Task—Farming

1 14 ! 4 1 1 1 1 4

T T T T T T T T 1
a2 a3 a.4 (] a.8 a7 o.B a9 1.0

Ratio of Sphere Dicmeter to Side of Data Cube

The task-farming can be seen to increase the processor loading by a

factor of two to three for a wide range of sizes of spheres.

For large

spheres the loading can approach 100%.

2.5. Accessing the Distributed Dataset

The distribution of the data into blocks and its assignment to different

processors means that the dataset is distributed, both notionally and
also in spatial terms. The division of the dataset causes programming
problems since a given processor may only directly access the data

which it has in its own memory.

When the Zucker Hummel surface detection operator is applied to a
voxel it is necessary to reference all of that voxel’s twenty six
neighbours. To perform the Zucker Hummel operation on voxels which
are at the edge of a block of data as defined by the assignment
process requires access to voxels which are over the edge of the block.
There are two solutions to the problem: either the processor
performing the Zucker Hummel operation must request the value of
voxels from that processor to which the face-connected block of data
has been assigned, or each block must be sent out with an extra
voxel-width layer of data all the way around it. The former solution
requires communication, the latter solution requires more data storage
on each processor since data is duplicated. In the case of blocks of
data which are 8 by 8 by 4 voxels (as was used) a block of 10 by
10 by 6 must be stored. 600 voxels must be stored in place of 256.

Despite the increased memory requirement, the latter solution was
used.

Another problem is that after the assignment process has occurred,
and the data has been distributed it is necessary for each processor to
know something about how blocks other than its own are distributed.
One solution would be for each processor to have a record of the
assignment of each block of data. Given the above block sizes, and
128 by 128 by 12 datasets each processor would need to store 768
integer values for the addresses of the blocks, or 3K bytes of data.
The approach I used was to send out with each block of data the

-26-

addresses of the processors to which the six blocks face-connected to

it had been assigned.

2.6. Conclusions on Dividing the Dataset

As the above discussion would suggest, the programming overheads
involved in dividing the datasets between processors are large. The
task would be simplified if all of the data could be stored on each
processor. An assignment of tasks to processors would still be
required, along the lines of the current assignment of data to
processors, but the efficiency of the local task-farming algorithm might
be increased if all the processors in the network, rather than merely 4
immediate neighbours, were available for the task to be farmed to.
There would, however, be a problem in assuring that the flags which

made up the surface were consistent across the network of processors.

The problem of devising an efficient distribution of tasks relates
mainly to the surface tracking operators. It might be possible to
implement a similar process which was less sequential in nature, and

which therefore mapped easier onto the parallel architecture.

-27-

Chapter 3

Processor Connection and Communication

3.1. Goals

Chapter 2 discussed the communicating process model of computation,
and the way in which computation was mapped onto processors.
Little stress was put on the need for inter-processor communication,
but clearly each processor requires such communications to receive
data and tasks to process, and also to transmit its results. In this
Section I discuss the way in which the processors were connected in a

network so as to allow them to communicate.
The goals set for the network were:

1. to connect the n processors in such away as to make it possible
for any processor to send a signal to any other that it may

require to communicate with.
2. to minimise the average distance such a signal has to travel.
In addition it was necessary for the network EITHER

3. a) to arrange for the signals to be transmitted and interpreted
with optimal speed given that any of the processors en route may

be busy performing their own processing.

b) to handle the received signal given that the recipient itself
may be busy.

- 28-

OR

4. to arrange for synchrony within the network so that signals are

passed during allotted parts of a processing cycle.

1 and 2 will be discussed in section 3.2 and then 3, and 4 in section
3.3

3.2. Connecting Processors

3.2.1. Literature Review
The problem is stated by Yao-Nan Lien [86] in the following way

There is a problem of partitioning the problem to be solved
into many subtasks and mapping these tasks to the real
processors. The major concern is to balance the processor

utilisation and to minimise the possible communication among

Processors.

In order to minimise the communication within a network of
processors a connection scheme where each processor is connected to
each other processor by as few links as possible is often advocated.
Such networks are often viewed as graphs and the network problem is
then the converse of a famous mathematical puzzle first set by Moore
(circa 1958) and stated by J.Holm [85] in the following way (I have
changed his symbols to conform to those which it is more usual to

employ)

Consider undirected, connected graphs where the degree of any
vertex does not exceed A and there is a path traversing at

most D vertices. For fixed constants A what is the maximum

-29 -
number of vertices contained by such graphs ?

Moore’s original bound to the number of vertices is given below

(diameter Moore's Bound Greatest Number of
D of graph) Vertices Found

1 o S
17 13
03 40
161 95

B~ N

Optimal Delta D Graph Sizes for 4—Connected Nodes
And the Best Graphs that Have Been Found

After Bermonde & Delorme (87)

Unfortunately it may be seen from the above that graphs with as
many nodes as Moore’s Bound predicts have not been found even for
small D. Furthermore it may be shown by higher algebra (Biggs [74])
that such graphs are not achievable for A = 4 and D > 1.

The architecture of the Meiko Computing Surface allows arbitrary
interconnection of processors. Within the constraint that A = 4 The
hardware does not force the user’s network to conform to any
particular family of connected graphs, so in theory any of the best-
found-so-far graphs that are collected by Bermonde, Delorme and
Quisquater [86] may be mapped onto the hardware, providing sufficient
wiring resource is available (Meiko [86]).

There are many reasons for not using any of those arrangements.
First it is not clear how to generalise such a graph to n processors.
The obvious approach is to take an optimal network with a larger
number of nodes and to remove nodes from it. The removal of a
node from an optimal graph containing n processors leaves eight
'sticky’ links (to use a biochemical analogy). Any four pairs of links
can be connected together to complete the network, however it is not
clear that the network resulting is the best that can be achieved for

n-1 processors.

Indeed in regarding the design of networks as equivalent to Moore’s
problem we are merely asking how many processors may be connected
within D links of each other. We are not addressing the problem of
connecting arbitrary numbers of processors within the shortest distance

of each other.

Second, if one is intending to minimise interprocessor link distances, it
is the average interprocessor distance that should be minimised, not
the maximum interprocessor distance. Moreover the network design
problem is more complex than this simplistic argument would suggest
since it is how the network behaves in a given program that counts.
As a result of the structure of a program each processor in a network
may spend much of its time communicating to a small set of other
processes and so the graph should be optimised for the minimum
average signal transfer distance, rather than the minimum average

inter-processor distance.

Third, the graphs of Moore et al are fully connected. A system based
on such a graph could never receive user input or indeed input or

output to/from any external agent since it has no spare links.

- 31-

Inclusion of the user, for example, as a node in the network is not

possible since users are rarely 4-connected.

Finally, it makes sense to modularise the program so that some
processors are running one part and others are running another part.
In terms of the approaches to task mapping described in Section 2 this
corresponds to task parallelism at a modular level. In the context of
the program it was envisaged that image processing and graphics
would be separated into modules and that the image processing part
of the program would have to communicate to a graphics pre-processor

with a fixed small number of input channels.

If it can be arranged that the communication among modules in the
program is bandwidth limited than there is no visible speed increase

to be gained by ultra-efficient networks within those modules.

The following constraints are put upon the network arrangement for

the image processing part of the program.

1. There is one link in and out of the network to and from the

user.
2. There is one link out of the network to the filing system.

3. There are links out to the graphics pre-processor (the number

chosen was 4).

4. It is most important that the network should generalise according
to some relatively simple algorithm to n available image

processing transputers.

3.2.2. The Chosen Arrangement

For a network of n processors the arrangement is a helical toroid of 1
by m rectangularly connected nodes. Alternatively it may be looked
at as a pair of interlaced chains of connections The values of m are
chosen in the following way: they are the smallest pair of integers

such that 1 X m 2 nand |1-m| € 1.

At the corners of the network (or the ends of the chains) the links
are left free to communicate with other modules of the program. If 1
X m > n then the last row of the minor axis of the toroid is left

incomplete.

44 A

C—"lps P 6 P 7J| (P8 P9

=

L

C,";;1 P 1 P 1 P 1

BT
R P 1 P 17 P 1
|

Chain Along Long Axis

T YN I Ut A s s
A

POIP1IP2IP3IP4IP5IP6IP7IPBIP9IHOIH1IHZIH3IH4IH51HGIH7IH8

Chain Along Short Axis

I I T N L Wi
P T YTy YT T T I T T T T T TT

W4IP9IH4|P3|P8|H3IHBIPZ!P7IH2|H7IP1lP5|H1IHGIPOIPSIHOIHS

MgN 87

The diagram shows the network for nineteen processors numbered
from O to 18 The processors may both receive and transmit on each
of their four connections. The arrows outline a chain of inter-
processor links which is drawn above as the "chain along the long
axis". The "chain along the short axis" of the toroid is also shown.

Using the notation as above, for n=19, 1=4 and m=S5. *m=20 thus

the last row of the toroid is incomplete.

connected to Image processor 14 instead of the non-existent Image

Processor 19 in order to complete the loop.

It may be seen that the arrangement has 4 output connections for any

n. It has the following inter-processor connection lengths for various

Image Processor 3 is

1.
Processors | KO | X | mrecserer ovtence | Froemees ivince

49 717 8 3.5
25 515 5 2.4
20 51 4 4 2.2
19 51 4 4 2.1
12 4 1 3 3 1.7

9 313 3 1.4

Inter—Processor Connection Statistics

For Various Numbers Of Processors

To complete the description of the arrangement of processors it
remains only to add in the other parts of the program: The program

controller and the graphics processing transputers (Zentner [87]).

-35-

The Arrangement of Processors for the Bodyscan Program

9 8 8 8]

Host| [Program PO P 1 P 2 P3 P4
Control

yd
Scan Scan Scan Scan
0 1 2 3

Graphics © MN/ANZ L7

3.3. Signals and Signal Handling

3.3.1. Processes Internal to Each Image Processor.

Occam has the facility to allow many processes to run in parallel on
a single physical processor. The transputer invisibly time-slices
between them, and sets up the secure communication between processes
along virtual channels. In addition to easing prototyping, the use of
parallel processes to handle communications and image processing
allows an abstraction from the detailed mechanics of the order in

which communication events happen.

To separate communication from image processing, each image
processor runs three major processes in parallel. The unit is analogous
to an office, and consists of a Receptionist, a Postman and an
Executive. The Receptionist processes of incoming signals, the Postman
forwards signals to other transputers and the Executive performs

image processing.

Virtual channels are set up to allow communication between the three

major processes.

Nortt

> o

Wost

> oue

2[3]
Executive
\ 212)
\
\
3 4/ 5 \\9
|
Receptionist / > Postman
N IO 6 2[1]
L
Input o~
[o]
Weat Reception 1{0]
_9 Nerth Input North Output
Input
West Input TrcnsPUter Eost Input
< a—
West Output Eest Output
South Input T\L South Output
Key:
1) [4] CHAN reception.to.receptionist:
2) [4] CHAN postmon.to.despatch:
3) CHAN executive.to.receptionist:
4) CHAN receptionist.to.executive.DATA:
5) CHAN receptionist.to.executive.COMMAND:
6) CHAN postman.to.receptionist:
7) CHAN receptionist.to.postman:
8) CHAN executive.to.postman:

The Receptionist communicates to the Executive through two channels:
the receptionist.to.executive. DATA channel which is used to transmit

signals containing data, and the receptionist.to.executive. COMMAND

- 38 -

channel which is used to transmit signals containing tasks for the
Executive to perform and is also used to interrupt Executive processes

which do not terminate.

The Executive communicates back to the Receptionist through a single
channel, executive.to.receptionist which is only used under
circumstances when the Receptionist has directly requested its use. If
both the Receptionist to Executive channel, and the Executive to
Receptionist channels were freely used then deadlock situations could
occur where the Receptionist was attempting to communicate with the
Executive whilst the Executive was attempting to communicate to the

Receptionist.

The Receptionist communicates directly with the Postman along a
single channel, receptionist.to.postman. This route allows signals which
are not destined for the processor to bypass the Executive and to be
forwarded regardless of the current activity of the Executive. The
reverse route back from the Postman to the Receptionist is available

but unused for deadlock reasons (see immediately above).

The Executive communicates to the Postman along a single channel,
executive.to.postman which constitutes the output from the image
processing on the transputer to all other processors. There is no

channel from the Postman back to the Executive.

Finally there are eight processes - four Receptions and four Despatches
- which run in parallel to the main three and act as software buffers
between the communications processes and the channels. They allow
the transmission and receipt on all input channels simultaneously since
transfers along virtual channels can be executed orders of magnitude

faster than transfers along physical inter-processor links, and the

-39 -

physical channels are hardware buffered.

3.3.2. Packets and Addresses

All processors within the image processing network may generate
signals to be transmitted to any other processor. In addition signals
must be passed in and out of the network. To accomplish this
without the aid of global control, the signal must contain within it
the address of the processor to which it is to be sent, and some

indicator of the way in which it is to be interpreted upon arrival.

In the solution adopted, each processor is given a unique address and
each type of signal is given a unique flag code. Flags are listed in an
appendix. The signals are packeted, the length of the packet being
variable and transmitted in advance of the packet. The first two
bytes of the packet contain a 16 bit value, the address of the packet.
The next two bytes contain two flags indicating how the packet is to

be interpreted.

Each of the image processors is given a number along the major axis
of the helical toroid, processor O being at the notional top corner, and
connected to the program controller. Destinations outside the network
are given negative identifiers, -1 for the controller and -2 for the
nearest link to the graphics pre-processor. The links into the graphics
pre-processor may also be individually addressed, although this has
not been found to be necessary.

The routing of the packets is carried out locally at each image

processor which decides

(a) If the packet has reached its destination

(b) If not, which of the links to send it out of so as to get it closer

to its destination.

To get from any processor to any other on the network may be
achieved in many ways, some of which will be shorter than others.
For many inter-processor transfers (particularly over long distances in
large networks) there are more than one different equally short ways
of accomplishing the transfer. In an attempt to utilise the full signal

bandwidth of the network the following routing procedures are used

1. At start up each processor searches from its position in the
network using a limited depth-first branch and bound search
algorithm wuntil it has found and stored the initial send-out
direction(s) for the shortest route(s) to every processor in the

network.

2. Packets which have addresses inside the network are sent to their
destinations by sending out of the physical channel in one of the
directions which will allow a shortest route. Subsequent packets
to that destination are sent via any alternative output channel
which allows a shortest route, and so on. Once all possible
shortest-route output channels have been used the next packet is

sent out through the first in the list again.

3. Packets which have addresses outside the network are treated as
destined for the corners of the network at which output channels
are situated. At these corners they are sent out through the

appropriate output channel.

-41 -
3.3.3. Queues and Packet Handling

The packet handling process is similar in some ways to that sug-
gested and implemented (on SIMD hardware) by Jesshope [87]. The
essential components are the separation of processing and commu-
nication, and the queuing of packets received by the communication

process for subsequent processing.

Jesshope’s system requires a global control of every processor. the
Meiko hardware has no such facility, and so an asynchronous com-

munications network has been built.
Details are given below.

Fach processor maintains three queues of packets. First there is
the command queue: a list of commands that the executive is to
execute in sequence. Second the interesting queue: The executive
may request the receptionist to pass packets out of the queue when

it requires them.

It was envisaged that this queue would be required during stages of
the program where every processor was generating large numbers
of data packets whose destinations were inside the network. The
interesting queue would then work as a sponge soaking up packets
and removing any possibility of deadlock. The particular stage of
the program for which the interesting queue was intended was the
farm-out of data to neighbouring processors at initialisation. This

has not been implemented so the interesting queue is unused.

Finally the strange data queue, which is an attempt to allow for
variations in the exact data transmission rates in the network. If
the data associated with a command is received before the command

itself (as is possible given that although they may be coming from

- 42 -

the same processor they may follow different routes), it is important

that the data is stored until its associated command arrives.

The sequence of events when a packet is received by the receptionist

1s as follows.

1. The packet is received by the Receptionist via one of its recep-

tions.
2. The status of the packet is analysed:

(a) If the packet is an interrupt, it is sent to the executive via

the COMMAND channel.
(b) If the packet flag is in the list of those packets currently re-

quired as soon as possible by the executive, it is sent directly
to the executive via the DATA channel.

(c) If the packet flag is in the list of those packets currently
considered to be interesting by the executive, it is placed in

the interesting queue.

(d) If the packet is a command to be executed by the Executive,

it is placed in the command queue.

(e) If the packet is in none of the above categories it is held in

a queue for strange packets.

3. The packet is received by the Executive from the Receptionist.

The events occurring at this point depend upon the nature of

the packet, and the current state of the executive.

(a) If a termination signal is received while a procedure which
requires continuous data input is running on the Executive
(such as the initial load-up process) then that procedure is

terminated.

- 43 -

b) If a packet is received which is required as soon as possi-
P
ble by the Executive then the processing of that packet is

determined by the procedure which has requested it.

(c) Similarly to the above, procedures running in the execu-
tive may request packets from the receptionist’s interesting

queue, and the processing of them will be procedure specific.

(d) If the packet is a command then that command is executed.

The receipt of a command by the Executive can only occur
after a handshake between the Receptionist and the Execu-
tive. The Executive notifies the Receptionist that it is no-
longer busy and the Receptionist sends on to the Executive
the next packet in the command queue (if any). The Ex-
ecutive then sends back the lists of those packets which it
now considers interesting, and those packets it requires as
soon as possible so as to be able to perform the command
it has received. The Receptionist then shuffles its queues as

described below.

4. If a command has been transmitted on to the Executive the

Receptionist shuffles its queues.

(a) The interesting queue is searched for those packets which
are now required as soon as possible by the Executive which
are forwarded. Those packets in the interesting queue which
are still interesting are retained in the queue, others are dis-

carded.

(b) The queue of strange packets is checked similarly, those
which are required being sent to the executive, those which
are interesting being passed into the interesting queue, and

those which are still strange being discarded.

3.4. Assessment of the Network

The original goals of the network have, at least in part been satisfied.
The following list corresponds to that given at the beginning of the
chapter.

1. The routing of signals both within the network and to processors
outside is accomplished by packet headers and re-direction at

intervening processors.

2. The network is not optimised so as to minimise the distance
signals have to travel, but it is not clear as to how such an
optimisation might be accomplished. The network is certainly
not the worst possible, and satisfies the constraints put upon it

by the rest of the program.

3. (a) Passing of signals between processors which are actively im-
age processing is accomplished by separating the processes
of communication from those of calculation, and communi-

cating between them by virtual channels.

(b) The packet queueing and storing procedures performed by
the receptionist allow the received packet to be processed

even though the Executive may be busy image processing.

4. Network synchrony has been rejected for reasons given above.

- 45 -

Chapter 4
Image Processing

4.1. The Image

.Techniques such as nuclear magnetic resonance, (NMR) or X-ray
computerised tomography produce two-dimensional image sections
through the body. Each of these sections is made up of rectangularly
prismatic volumes or voxels arranged in a planar array. The intensity
of the image at a given voxel is calculated from the intensity of
projections taken from different angles around the body. The
intensity represents the calculated value of some property of the
tissue at the volume of space corresponding to the volume of the

voxel in the image.

For NMR data there are two measured sets of intensity values: the
proton density data, a rough measure of the amount of water present
in the tissue, and the Difference data, a value related to the rate of
spin re-reversal of the nucleus of the proton after being subjected to
an initial reversal by an electromagnetic pulse. A third dataset may
be calculated from these two, for example the T1 dataset used for

cardiac data.

The particular data used for testing the program was that obtained by
Nelson in 1985. The formula used to calculated the T1 data was as
given in his thesis (Nelson [85]).

Tl = 200.0
In (Proton Density / Difference)

4.2. A non-interpolated version of the Zucker-Hummel operator

Datasets generated by NMR imaging techniques have voxels which are
non-cubical. The length of the side of the voxel in the Z dimension
is considerably longer than the corresponding length in the other two

dimensions. The voxel may be considered to be a cubic prism.

The Zucker-Hummel ‘optimal’ gradient operator, (Zucker and Hummel
[81]) as used by Nelson is a three dimensional generalisation of the
two dimensional Sobel operator. It defines for every voxel the best
orientation of surface plane to match the data. It also gives the
intensity of the edge at the point in the data.

The data is convoluted with three operators, one in each dimension.
The operator is given below for the X/Y plane in the case of
perfectly cubic voxels.

The Zucker Hummel

'‘Optimal' 3-D. 3
Gradient % 41 %
Operator

(Mask for 5
Z Component) /0 70,0
0 0] 0

- 47 -

Nelson’s approach to the problem of non-cubic voxels was to define a
set of cubic voxels such that every section was divided into five
interpolated sections each of which was assigned the same value as the

original section of which it was a part.

It was impracticable for this approach to be used on the parallelised
version because of the memory limits of the system. Furthermore it
is not a justifiable approach since the contribution of the Z dimension
to the overall surface gradient calculated by the Zucker-Hummel
operator varies greatly between the interpolated sections within the
original section. The central interpolated sections within the original
section have identical interpolated sections above and below them.
The Z component of the surface gradient is therefore non-existent.
Interpolated sections which are at the edges of the original section
have an identical interpolated section on one side, and a different one
on the other side, and so the of the Z component of the gradient for

these sections is roughly half the value of the Y and X components.

As a result, the overall magnitude of the surface gradient, and indeed
the calculated direction of the surface gradient vary greatly between
adjacent interpolated sections. The criteria used for surface tracking
are dependent on the direction of the surface normal calculated from
the components to the gradient, and so the interpolation approach used

by Nelson is clearly inapplicable.

As a response to the problems of interpolated sections, and to the
impossibility of storing them in the way that Nelson did, an attempt
was made to generalise the Zucker-Hummel operator to non-cubic

voxels.

- 48 -

The Zucker-Hummel operator is a local gradient operator, the values
of the weighting factors of the voxel’s neighbours which are used in
the convolution may be seen to vary as the distance of the neighbour
from the voxel. A faceconnected voxel is weighted at 1, an edge

connected voxel at 1/4/2 and a corner connected voxel at 1/-/3

The weighting may be seen to be exactly dependent on the distance of
the centre of the neighbour from the centre of the voxel. One
approach to generalising the operator to a non-square metric in all
dimensions is to correct the weighting factors so as to take into

account the variable distance between voxel centres.

Whenever voxels in the section are used in the convolution their
weightings are as originally suggested by Zucker and Hummel. When
voxels are in sections above and below, their weightings are dependent
on the value of the ratio between the X/Y side-length of the voxel,
and the Z side-length. This value is set as a parameter by the user
at initial data load up time, and is referred to in the diagram below

as R. The block of weightings that is used is shown below.

A Non-—-Square Metric

Version of the L P
/\jR-fZ-/\JRcH IR S
Zucker A5 K é)\j’;:/
Hummel Jrr2 /Ar+ Srv2 /]
1
Gradient
Operator R e
S VU L
72 I 72
Z
e Vi~ [—
L\JR*Z /:\4R+I 7NR +2
R+t R+1
Y R+2 /L[l SNR*Z

||

- 49 -

The convolution masks for each of the X,Y and Z dimensions are
made using the weights as above. For a dimension D, the voxels of
the plane which shares the same D coordinate as the voxel are given
zero weighting. The voxels of the plane which has a D coordinate one
greater than the D coordinate of the voxel are given positive
weightings as in the above diagram, and those whose D coordinate is
one less than that of the voxel are given weightings which are the

negative of the values in the above diagram.

One of the reasons that Nelson gives for using the interpolated data is
that it allows the display of cubic section polygons for three
dimensional projection. In fact it is quite possible to draw polygons
which are sections through non-cubic rectangular prisms, although I
have not been able to complete the three dimensional display for this

project.

A more usual interpolation method than the one that Nelson used is
merely a linear interpolation between sections. Nelson suggests that
this would blur edges in the third dimension. I would suggest that
the edge detection operator I have used is equivalent to unmodified
edge detection with linearly interpolated sections. The local-ness of
the Zucker-Hummel operator requires that data which comes from a
large distance away is considered as less important. The contribution
of the Z dimension to the value and direction of the local gradient is
therefore decreased, which is equivalent to the blurring of the linear

interpolation.

The linearly interpolated data is often used by radiologists and it
would not be hard for it to be generated as an extension to the

system.

- 50 -
4.3. An improved surface tracking algorithm

The surface tracking operation aims to generate a representation of the
surfaces of objects within the body to allow three dimensional
projection of those objects. The user specifies a point which is
considered to be on the surface of the object and the surface is

tracked away from that point according to various criteria.

According to Nelson [85] the properties used to qualify a voxel as

belonging to the boundary are:

(a) Connectivity with previous boundary elements.

(b) High boundary contrasts.

(c) Similarity of contrast across neighbouring elements.
(d) Consistency of the surface normal.

The boundary detection algorithm of Nelson is a sequential process
driven by a queue of boundary voxels. Voxels which are neighbours
of a voxel which is already found to be on the boundary are tested
for inclusion on the boundary according to the above criteria. The

initial boundary voxel is specified by the user.

The exact method used by Nelson is as follows. The first boundary
voxel on the queue is de-queued, its six face-adjacent neighbours are
then considered for inclusion on the boundary. If a neighbour has
previously been marked as visited then it is skipped, otherwise it is
marked as visited. The surface normal of the voxel is then compared
with the value of an average of surface normals of voxels previously
found on the boundary. If the normal exceeds a given fraction of

the average of surface normals found so far then it passes on to the

- 51 -
final test.

The angle between the surface normal of the neighbour and the
surface normal of the voxel is compared (actually the cosine of this
angle). Neighbours whose surface normals are wildly deviant from
the surface normals of their neighbours are rejected. Only those

voxels which pass all three tests are included in the boundary.

The method was modified by Reeve to include voxels which were

edge—connected for consideration for inclusion in the boundary.

The modifications I made to the surface tracking algorithm fall into
two categories: The parallelisation modifications and the fundamental
modifications.

4.3.1. The Changes to the Algorithm

Consider the heart shown below.

A cross section through the thorax in Diff €rence data. The edges

within the data are shown displayed side by side with the image.

The surface tracking algorithm outlined above suffers from a
fundamental weakness when tracking around surfaces of objects in
complex surroundings. It may be seen that the neighbouring structures
to the heart vary from lung through to body wall. The intensity of
the surface of the heart as rneasﬁred by the edge operator will vary
depending upon the tissue with which the heart is contiguous. The
strength of the edge is not a good indication of the continuity of the

surface.

Given that the edge tracking attempts to find continuous closed
surfaces, a more useful measure of surface continuity is a comparison
between the value of the voxel internal to the voxel being considered,
with a local average intensity value of the tissue internal to the
surface. One problem associated with such a comparison is determining
the voxel which is internal to the surface. This may be accomplished
by asking the user to specify a voxel on the inside of the surface to
start with. The surface then starts at the strongest edge in the
vicinity of the voxel, and the value of the local average of internal
intensity is initialised at the intensity of the initial voxel. The

direction corresponding to internal is also initialised.

The continuity of the direction associated with internalness may be
maintained by using a technique similar to that which assures that

only face voxels are drawn by Nelson’s program.

Unfortunately this enhancement has not been implemented.

. 83.
4.32. The Parallelisation of the Algorithm

The division of the dataset into blocks has been discussed in chapter
2. The problem arises as to what to do at the edges of a block of
data during surface tracking. If the surface tracking reaches a voxel
which is over the edge of a block then this voxel must be seeded to

another processor, the one on which that voxel is resident.

Nelson’s algorithm was implemented as a single process communicating
with a neighbour seeding process in parallel. Whenever the tracking
algorithm reaches a voxel at the edge of the block of data that the
processor has been assigned, the voxel is passed to the neighbour

seeding process.

The seeding process holds lists of voxels for each of the six
neighbouring blocks of data. The voxel is added to the list which
relates to the block of data which it its primary home When each of
these lists becomes full it is sent as a list of seed points to the
processor associated with that block. The exceptions to this rule are

as follows:

First the initial seed point for each of the six neighbouring blocks is
sent out as a single element in a list of seed points. This is to
activate as many processors as soon as possible. Second when the
surface tracking process has finished tracking within the block of data,

the seed point lists are sent out whether or not they are full.

4.3.3. The Lisp Model Versus The Implementation

At this point I should like to demonstrate the correspondence between

my model of processing and the surface tracking algorithm

implemented by Nelson and Reeve. The model gives an insight into
the surface tracking algorithm and, importantly into how to parallelise
it.

Consider a flat surface within the dataset. An original seed point is
specified by the user in the centre of the surface. The surface is
then tracked away from the seed point according to a) face connected
rules and b) edge and face connected rules. For each voxel those
neighbours in the surface which qualify are put into the queue of
voxels to be processes. The queue is processed sequentially. The
resulting spread of detected surface is shown below. The search may
be seen to be breadth first and the generations of the search are as

indicated on the diagrams.

Surface Tracking from o Point on a Flat Surface

Generations of a Breadth First Search Process

a) Face—Connected Rules b) Face And Edge
Connected Rules

2] [21[21[2121 2]
[21[11[2] (20 2]
[Zi1ifoi1i2! [21[110l 2!
[210 2] AHEA
21 2i[2][21[21[21

I |1

- 85 .

The time taken to move between generations is as follows. Values are

in terms of units of voxels to be processed.

Time To Move Between Generations

-1 1-2 2-3
Foce Connected Rules: 1 4 8
Fece and Edge Connected Rules: 1 8 16

For my model I assume the time to process a voxel is independent of
whether its neighbours have been visited. This was not true of
Nelson and Reeve’s program, but is closer for mine since I pre-

calculate the Zucker-Hummel coefficients of the neighbouring voxels.

If the planes shown above are spread across the surface of a sphere it
may be seen that the generations approximate to circular rings on the
surface of the sphere being tracked. This approximation was used in
the model. The time taken to process a ring depends on how many
voxels are in it, or on its circumference. Rings are processed

sequentially, as in the model.

The model is parallelised in the following way. The number of
processors which have been assigned to at least one block on the ring
is calculated and the time taken to process the ring is determined by
dividing the circumference of the ring by the number of processors

active in processing it.

The major approximation of this model of parallelisation is that
processing is assumed to be shared equally between those processors
which are capable of processing. In fact where a processor is active

at more than one place along the circumference of the ring it cannot

be as active at each location as a processor which is active at only
one location along the ring. The result must be for the growth of

the ring to be retarded at one or more places along the ring.

Counter-intuitively this will probably increase the parallelisation
efficiency since the distorted ring is longer than a circle would be, and

on average will pass through blocks assigned to more processors.

Task farming is modelled by allowing any of the physical neighbours
of a processor to become active, if they are not already processing
data along the ring. The grand total of processors active is then kept,
and the speed of movement of the ring is dependent on it.
Intuitively it seems possible that task farming may approximately
normalise the effects of having a processor active at more than one

location along the ring.

There remains the question of the time-resolution of task-farming.
Are tasks farmed out on a block by block basis, a voxel by voxel
basis, or what? The model assumes that task-farming is a process
with continuous (rather than discrete) time resolution since processing
is shared equally between processors which are able to be active on
the ring. A continuous time-resolution is precluded by the division of
the data into voxels. Since the aim of the task-farming is to keep as
many processors active as possible, whilst not producing excessive
communication overheads, the time-resolution of the farming process is
important. I have not been able to come to any conclusions on how
to do it since it has not been possible to implement task-farming in

the program.

There is also the problem of maintaining the continuity of the flags

which are held on each of the processors involved in the task

- 57-

farming. The overheads involved in this might well negate the

apparent advantage of task-farming outlined in chapter 2.

44. The Display of Edge-Images

The program calculates and stores the values of the Zucker-Hummel
edge detection operator for the whole dataset. The calculation takes
about ten seconds for a 128 by 128 by 12 image, and occurs at a
stage when the user is unlikely to require any other processing to be
performed. The values of the surface normals in each of the
directions are normalised with respect to the overall magnitude of the
edge vector, and stored scaled up to signed byte format. The
magnitude of the surface normal vector is also stored, but it too is

normalised, although in a different way.

The global calculation of the Zucker-Hummel coefficients allows the
display of the value of the magnitude of the surface normal for any
point in the image, but the dynamic range of the value is such that a

purely linear scaling does not show much detail in the edge-image.

The surface tracking algorithm requires access to the magnitude of the
surface normal to decide whether candidate points are on the surface,
but the discrimination threshold used in the test tends to be a
reasonably low value. The value of the magnitude of the surface
normal in real NMR images tends to vary between O and about 1000.
It was decided to keep the scaling factor of the magnitude of the
surface normal into its stored value unity over the range O - 128.
This is the range over which the surface tracking algorithm requires
to discriminate between surface normal values. The graph below

shows the whole scaling.

- S8 -

Stored
Yalue

255

191

127

63

T 1 1 | i i T 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Coleuisted Vaiue

The Scaling of Calculoted Zucker Hummei Magnitude
Into the Stored 8 bitt Value

The following picture shows the sort of images which are produced

by the display of the Zucker-Hummel normal. From top right to

bottom right in a ¢yclic order they are Proton Density, Difference data

- 59 -

4.5. A new Datastructure for Boundaries

Nelson implemented the Boundary datastructure as a list of voxels
which were on the surface. To intersect or union surfaces required
set operations to be carried out on the two lists. Such operations
require order of n squared calculations. [implement the Boundary
datastructure as a vector of flags. The position of the flag associated
with a voxel is directly related to the position of that voxel in the
vector of data stored by the processor to which it has been assigned.
To intersect or union two such datastructures requires a global bitwise
compare and assignment on the integers which make up the bit
vectors of the datastructure. The operation is simple, fast and works
well in a parallel assignment of data to processors. It requires order
of n operations. The achieved speed up for this operation has been
about five orders of magnitude, as outlined in the introduction, section

1.6.

Chapter §

Conclusion

S.1. A Summary of the Facilities Provided

At this point it is useful to give a summary of what the program
actually does. The complete set of facilities available to the user are
described in the user manual in Appendix 2, but below there is a
summary. The program will display two dimensional sections of
medical NMR data, it will calculate the T1 derived dataset, and apply
conservative smoothing to the data. It will perform global calculation
and normalisation of the Zucker Hummel edge detection operator
coeflicients. For all points in the image it will display the magnitude
of the surface in a direction normal to the surface, scaled using a
compressive non-linearity as described in chapter 4. The displays are
in the same section based format as the two dimensional data

displays, and may be displayed simultaneously with them.

The program will apply a simple thresholding operator to the intensity
of the data, and also to the magnitude of the Zucker Hummel edge
operator. Only voxels whose values lie between the upper and lower
bounds of the threshold are displayed. The operations is useful for

segmenting the image into regions.

Boundaries in the data may not be successfully tracked, nor may
three dimensional projections of surfaces be drawn. Datastructures

corresponding to surfaces, but generated by the thresholding procedures

- 61 -

may be manipulated with the bitwise set operations.

5.2. Some Conclusions about Parallel 3-D Image Processing

To efficiently parallelise low level global image processing operations
given the constraints put upon the program which are described in
Chapter two three it was only practicable to use a data determined
division of processing. Task or algorithmic parallelism would have
been inefficient since large numbers of processors were available, and
task farming would have been inefficient because the processing would
have required a large amount of data to be passed around in the

farming process, with the associated overheads.

Surface tracking is an operation which is basically sequential in
nature. (Nelson [85]) The efficient implementation of this operation
on a parallel machine requires a division of data between processors
which is more complex than the simple sheet or crinkled mappings
generally used for SIMD low level image processing. (Reddaway [87])
The approached used was to divide the data into physically contiguous
blocks and to assign each of the blocks to a processor. Each processor
was given more than one block, and each block contained the voxels
which nominally extended over the edge of the block to allow the
Zucker Hummel operator to be calculated without requiring
communication between the processor and those to which the

neighbouring blocks of voxels were assigned.

The assignment of blocks to processors was done in such a way as to
allow a high degree of efficiency of parallelisation of the surface track
operation. It was intended to implement local task farming within

the network of transputers used for image processing, and the

-62 -

assignment algorithm reflected this. During early stages of the surface
tracking operation the processing occurs in a small section of the
image. The process is analogous to a breadth first search which spreads
away from a point on the surface, finding all the other points which
are on that surface. It is necessary for processing to spread as soon as
possible to other processors if the algorithm is to be efficiently

parallelised.

The algorithm which was used to generate the assignment of data to
image processors aims to maximise the rate of spread of processing
among the processors. It staggers the block assignments within the
image so as to allow each of the blocks to have twelve neighbours.
It was written under the assumption that processing of a block of
data could be shared among five processors, each of which had a copy
of the data, and four of which were connected via a physical channel
around the fifth. The algorithm aims to keep blocks of data which
are close together assigned to processors which are far apart in the
network. A model of the processing showed high levels of processor
utilisation for the network with such a local task-farming process in
place. It was not possible to implement the task-farming because of

lack of space on the transputers.

5.3. Some benchmarks

The Following timings were produced for twelve sections of 64 by 64
sections. The version of the graphics pre-processor (Zentner [87])

used for timings was only running on a single processor.
San 2 Mewe ML

Action 0ld Time (sec) New Time (sec)
Surface voxel detection 130 kel
Surface face tracking 4o i
2D section display 60 2
3D shaded surface display 150 * %%
Image editing (clip) 20 €<
Image editing (peel] 45 L4

Image editing (intersect) 10 K

- 63 -
S54. An Assessment of the Computing Surface

The facilities which was used for developing the program were: a
Meiko M40 running the Occam Programming System OPS2; a Meiko
multi-user machine running Multiops (the Meiko multi-user operating
system currently under development); and various IBM PC compatible
machines with INMOS B0O04 boards running the TDS2 transputer
development system. The facilities belonged to the Edinburgh
Concurrent Supercomputer Project. The problems with the system

have been many:
1. The facilities were under development and continuously changing.

2. The Occam Programming System contains several inconsistencies,
and bugs. In several parts the software is counter-intuitive. File
input output is tortuous, and debugging facilities are poor and
themselves bugged.

3. Occam is a low level language. The compiler for the transputer
is bugged, some of these bugs are documented, but the most

obscure and time-wasting ones are not.

4. There is no consensus as to how to produce efficient and effective
occam programs. Indeed there are very limited subroutine
libraries: an equivalent of the Executive Receptionist Postman
facilities 1 developed and which are explained in chapter 3
should be available as system code.

On the other hand the potential for implementing three dimensional
image processing on parallel hardware is very good, and I should like

to list some positive aspects of a Computing Surface approach.

1. The system performs very fast, and there is possibility of
considerable further improvement in processing speed by adding
more processors. The efficiency must in part be attributed to the

efficient implementation of occam code on the transputer.

2. Since there is no necessity in the occam language to specify which
processor a process runs on, it is simple to develop a program on
a small machine which will scale up easily on to one with many
processors. As a suggestion for future users of the facilities, the
PC AT compatibles provide a reliable, self-contained and stable
environment for program development and it is advisable to

continue developing code on them for as long as possible.

3. The staff of the Edinburgh Concurrent Supercomputer Project, and
indeed Meiko employees are very helpful in solving system-related

problems.

5.5. Suggestions for Improvement

The achievements of the project have been mainly in achieving efficient
parallelisation, in the connection of processors and in the arrangement
of communication. Unfortunately it has not been possible to achieve
the image processing and displays which the previous program of

Nelson & Reeve could.

Simply improving the system to incorporate these facilities is probably
the first and simplest suggestion for improvement. To achieve
boundary detection would have required merely a few days, assuming
the bugs in the system code could be fixed to allow proper debugging.
To get a program incorporating all the features available in the

previous program, with suitable modifications, would require about

- 68 -

two months development on a reliable computing surface, assuming the

existence of suitable three dimensional graphics utilities.

The next set of improvements I should like to suggest relate to the
user interface. There has been increasing interest over the last few

years in bodyscan data manipulation (New Scientist [87])

The consensus among the image processing community is that three
dimensional surface display is a useful goal for bodyscan data
manipulation programs. Whether this statement is justified is rather
dependent on the attitude of the medical profession to the technique.
It is important for a bodyscan data manipulation program to address
the needs of three groups of clinical personnel: The Clincians, both
medical and surgical, Radiologists, and those who have to use it, the
Radiographers. The technology, in the long term, must gain the

acceptance of the medical profession.

The structure of the present menu driven software is closely matched
to the procedures being executed by the program. It would be useful
to have a comprehensive study of the potential for human-computer
interaction in the field of bodyscan data manipulation and presentation.
This study should be carried out at a level which is abstracted from
the details of what has been achieved in the programs that have been
developed over the last three years. Once this has been performed a
proper user interface might be written. Perhaps this might be suitable

for another MSc project.

On a more specific level, there are a list of improvements which

might be made to the new bodyscanner program:

1. Produce a shell of the existing program, incorporating only the

networking and communications, and benchmark the
communications within it. Modify the shell so as to improve
communication speeds and the secure-ness of the protocols. It is
possible to deadlock the network during the data load-up phase
by sending commands in from the program controller, and I have

once managed it at another stage of the program.

2. Implement the task-farming for which the algorithm used to
assign data to processors was written (given processors with more

memory to do it with).

3. Improve the algorithm used to assign data to processors to allow
a backtracking heuristic based search process to be performed
during the data load up phase.

4. Give clinicians the option of displaying the linear interpolations

between sections that they often use.

5. Draw two dimensional displays in planes other than the plane of

the section.

In the tradition of my predecessors Nelson and Reeve I shall also
suggest the general modification of the code I have written to improve

its efficiency.

References

Bermonde, Delorme and Quisquater [86]
Bermond,J.-C, Delorme C , and Quisquater J.-J,
Stratgies for Interconnection Networks: Some Methods from Graph Theory,
Journal of Parallel and Distributed Computing 3, pp 433-449 1986.

Biggs [74] Biggs N.
Algebraic Graph Theory Cambridge Tracts in Math. No. 67.
Cambridge University Press, London, 1974.

Jesshope [87] Jesshope C.,
A Dynamic Load-Balanced, Active-Data model of Parallel Processing for
Vision
British Computer Society Parallel Processing Specialist Group,
Parallel Architectures and Computer Vision Workshop. 1987.

Holm [85]
Holm J.,

INMOS [87]
Transputer Reference Manual
INMOS Limited 1987.

May [87]
May, D. ”Occam 2 Language Definition” in

A Tutorial Introduction To Occam Programming (Pountain).
INMOS Limited 1987.

Meiko [86]
The Computing Surface Reference Manual
Meiko Limited 1986.

Meiko [87]
GFX user manual
Meiko Limited 1987.

Morrow and Perrot [87]
Morrow, P.J, Perrot, R.H,
An Investigation Of Low Level Image Processing Algorithms On A Trans-
puter Network
British Computer Society Parallel Processing Specialist Group,
Parallel Architectures and Computer Vision Workshop. 1987.

Nelson [85]
Nelson, A,
Body Scan Data Surface Detection And Presentation
MSc Dissertation, Department of Artificial Intelligence, University of Edin-
burgh 1985.

New Scientist [87]

Reddaway [87]
Reddaway, S,
"Mapping Images onto Processor Array Hardware”
British Computer Society Parallel Processing Specialist Group,
Parallel Architectures and Computer Vision Workshop. 1987.

Reeve [86]
Reeve, D.P,
Walsh and Canny Based Surface Detection in Body Scan Data MSc Disser-
tation, Department of Artificial Intelligence, University of Edinburgh 1986.

Theoharis [86]
Theoharis, T,
Exploiting Parallelism in the Graphics Pipeline Oxford University Press, 1986.

Yao-Nan Lien [86]

Zentner [87]
Zentner, A,
Parallel Front End for Processing 3D ‘Bodyscan’ Images on the
Meiko Computing Surface.
MSc Dissertation, Department of Computer Science, University of Edinburgh
1987.

Zucker and Hummel [81]
Zucker, S.W. and Hummel, R.A. "An Optimal Three Dimensional Edge-
Operator”,
IEEE Transactions on Pattern Analysis and Machine Intelligence Vol PAMI-
3 pp324-331. 1081.

_ -
1R
t 8
IS 5| Dd
S 8 D
IMQ o oMW X1 —)
m N.o«.iwn- r\u.lﬂﬂém A(uio’o’\vsn—
M .- bOO%w X Ot .ﬂmﬂ\—l
T Ot =—
L S
34
w o
C m
\w o
- A 22133
18»0.»:

x«)
Cuc.sdm
SN J&‘Plnv / .& 82 .[.
. K] ! Bt wearng
_ _ m..”{rsuu
oh
04/#.(4 .

A mee\.‘x i :

C. Foster (Mako Lhd)

o,ducwblﬁenc»}s \'b

e R - e O — T — T N — TN — N N — B - S - N =

Appendix

Contents of Appendix 2

1. Introduction . 2

2. Starting up the Program .3
3. A demonstrationcccccecceeceeceernennenes 6
4. The Menus . 8
4.1. Menu 1: Getting started .. emeesneeseesenseee st et e s et s en s s a s a bt e e e ne e e e n e e aneennasanes 8
4.2. Calculating T1 or T2 9
4.3. Manipulation of 3 datasets & dataset selection 10
4.4. Manipulation of 2 Single ALASELcicceeerecreencrreceereeneesssesesesssssesessesensasseseasarssesesss 12
4.5. Bitwise COMPATE IMENU ...cccceeeeeruireccccnsnenessssenseasssessssssessessesssssesssosesssssssensasesssssnsesnssnsese 14

5. The Questions 15
5.1. Data SELUDP QUESLIONSccceveriemrarecenrareuesescsesssnasessesmasessessssesessssoseseseasssssessasassssssssosesensnsenssenes 15
5.2. Section and SUTfACE QUESLIONSccccoeesreeerererereerrenessessenssnesesesesesenessessessomeneosansessesasesensases 16
5.3. BitWiSe OPEratOr QUESTIONScccceceermrremecscnsersecacosemensassasssmssssssssssassssesssssssssssssnssssssosssesasssses 17
5.4. Threshold QUESLIONScccceeeroraerecrecssaaessssnnrasesneseesasssensessssesessesssssssnsssesmenmmnssssnsassasnsensenessenes 18
5.5. T1 calculation questions 19
5.6. Surface Tracking Questions 20
Bodyscan Program User Guide 1.0

< |

E] —

[—

=3

= — T — B B U B T

s |

B BB E=

RPPENIDIX s
User Manual For Bodyscan Data Manipulation Program.

This program was written as part of the research portion of of an MSc
course in Information technology by:.

Michael Norman (Knowledge Based Systems)
Adam Zentner Computer Systems Engineering)

Submission date 30/9/87

This version is currently under development and is available for
demonstration use only under the condition that all bugs found in it and its
documentation are notified to Mike Norman (mgn@ed.edai).

Any enquiries concerning the commercial application of this program should
be addressed to Dr. Robert Fisher, Dept of Artificial Intelligence, Forrest Hill
Edinburgh. (email: rbf@ed.edai).

References to Norman [87] are to the MSc thesis:

Implementation_of Medical 3D Image Processing
r on MIMD Parallel Hardware.

M. Norman.
Department of Artificial Intelligence.
University of Edinburgh.

Bodyscan Program ' User Guide 1.0

== = - = I I - — 0 -0 - BB I - R e

Appendix
1. Introduction

The program is an initial study to show how three dimensional bodyscan
data data can be manipulated within the parallel architecture of the Meiko

Computing Surface.

Over the last two years a bodyscan data manipulation program has been
developed within the Department of Artificial Intelligence at the University of
Edinburgh. It runs on conventional (SUN 2) hardware and suffers from the
speed limitations of that machine. A new program has been written in order
to harness the speed of the Computing Surface. The program uses the full
power of data parallelism and is extendable to any number of processors. It

is written in occam around the standard Meiko system utilities.

The present version of the system has only one Transputer for graphics pre-
processing. It is envisaged that the number will be extended to thirteen. At
present the system draws pictures fifty times as fast as the SUN 2 program,

and performs data processing five hundred times as fast.

Bodyscanner data comes in three main types: Computerised Tomography or
Computerised Axial Tomography (CT or CAT) is an X-Ray based three
dimensional imaging system. The pictures may be produced in real time and
are rarely subjected to significant image processing; Positron Emission
Tomography (PET) is a relatively new imaging technique whose clinical
usefulness is currently under investigation; Nuclear Magnetic Resonance or
Magnetic Resonance Imaging (NMR or MRI) is a well known and useful
imaging technique, currently in use in most Area Health Authorities in the
UK.

The program is set up to analyse MRI data, although with a little
modification CT, and PET could be used. Indeed there is no reason why

Bodyscan Program User Guide 1.0

Appendix
any type of tomographic data might not be analysed by the system.

MRI data is of the form of sections through the body or part of the body.
The spatial resolution of the data is lower in the axial direction (normal to
the plane of the section) than in the plane of the section. Typically datasets
have 128*128 or 256*256 pixels in the section, and there are 10 - 20

sections.

The MRI machines produce two datasets, Proton Density which is effectively
a measure of the amount of water present in the tissue being imaged, and
Difference, a rough measure of the relaxation time of the proton nucleus
after reversal of its spin by an electromagnetic pulse. From the two datasets
others may be calculated, for example T1 and t2 which are used for cardiac

imaging.

An important feature of MRI, and one reason that it is preferable in many
cases to X-ray based imaging techniques is that it images soft tissue. For
example our demonstration images of thorax show heart, lungs and the
mediastinal vessels clearly and without artefacts from the overlying bone.
Images of thorax do show an artefactual ’shadow’ asssociated with the wire
used to synchronise the MRI pulses with the ECG of the patient. This will
explain the rather alarming hole in the lung wall of the patient in the

thorax images used for demonstrations.

The achievements of the program have been in showing the possibility of
three dimensional data manipulation within a parallel processing environment.
The operations which may be carried out on the data are not as wide-ranging
as those which were implemented on the SUN, although it is hoped that in

time they will be extended. The operations available include:

Drawing of the sections and calculation of the derived datasets.

Bodyscan Program User Guide 1.0

Appendix
Thresholding of the data.

A three dimensional Zucker Hummel edge detection operation and display of

the value of the gradient calculated.
Tracking of edges detected by the Zucker Hummel operator.

AND-ing and OR-ing etc. of surfaces and thresholds.

Bodyscan Program User Guide 1.0

Appendix
2. Starting up the Program

The instructions below assume a basic knowledge of the occam Programming
System (OPS) as implemented on the Computing Surface. For further details
refer to the Meiko Computing Surface Reference Manual.

The program lives in the directory [import.users.ecrul3.project] Enter OPS on

the M40 and give import/users/ecrul3/project as the OPS root directory.

Once inside the top level fold, get the electronic router , and run it. Reply n
to the default and type r bodyscan.wir to read the wiring diagram used by

the program. Type p to place the wiring, and q to exit the router.

Get the configurer and the terminal emulator, and load the" program fold

"bodyscan.tsr”, or alternatively the cpr file associated with the program.
Finally run the program.

Bodyscan Program User Guide 1.0

Appendix

3. A demonstration

Below is a sample run of the program in which a display is generated of the
heart, separated from other structures in the thorax. The display clearly
shows both the inner and the outer walls of the ventricles.

Options to be selected on menus are shown in the following format:

<option number to be selected> OPTION <accompanying text>.

The user must input only the option number to be selected.

Answers to be given to questions are shown in the following format:
<answer to question> <text of question>.

The user must input only the answer to the question.

The user input values are thus present in a column indented by one tab
from the left hand margin of this document.

-000

First load up 12 sections of real data from thorax.dat.

2 OPTION Use real NMR data.
12 Pixels in Z direction.
6 Ratio of X/Y pixel size to thickness of section.

It may take several minutes to read in the data from the Microvax host. The
exact time depends on the level of usage of the multiuser file server. Once
the data is loaded, change the T1 calculation parameters.

4 OPTION Change T1 Calculation Parameters.

60 Low Threshold For P.Density.
100 Low Threshold For T1.
7080 High Threshold For Tt.

ghen calculate the T1 data from the two measured datasets already on
isplay.

3 OPTION Calculate And Display Ti1.
In the T1 dataset the blood in the left ventricle is yellow and clearly
differentiated from the thick muscular wall. The contrast is good for cardiac
data in T1, the resolution is however necessarily poorer than in the two
directly measured datasets.
Now that T1 is calculated, move on to the next menu.

1 OPTION Accoept the calculated dataset.
Change section to show a section slightly lower down the thorax, and set a
low threshold at 30 to isolate the thorax from artefactual noise in the
background of the dataset.

4 OPTION Draw Another Section.

Bodyscan Program User Guide 1.0

Appendix

8 Which Section.

5 OPTION Threshold The Data.
Je Lower Threshold.
255 Upper Threshold.

Next draw the three datasets alongside their edge-detected versions. The
Zucker Hummel may be looked upon as a three dimensional spatial frequency
filter which lets through only the high spatial frequencies associated with
edges. [Edges are thus seen as yellow, high intensity, and areas where there
are no edges are blue. The thresholding out of the background applies to the
Zucker-Hummelled data too in as much as only those areas which have data
values between the previously set thresholds are displayed as edge-images.
The inner walls of the ventricles are easily seen as strong edges.

7 OPTION Draw Both The Image And Its Edge Detected Version.
Now move on using Difference data, all the other data is wiped.
2 OPTION Move on Using Difference Data.

Finally produce a line-drawing of the heart, showing the internal structure of
the atria and ventricles by thresholding and dataset intersections.

6 OPTION Threshold the data.
60 Lower Threshold.
255 Upper Threshold.

8 OPTION Store.

13 OPTION Threshold The Detected Edges.
8e Lower Thresholid.
255 Upper Threshold.

8 OPTION Store.

7 OPTION Compare Or Combine.
2 OPTION Intersection (And).
1 First Surface.

2 Second Surface.

8 OPTION Store.

In the resulting line-drawing the heart is isolated from its background.
Sections 4 to 9 show cross-sections from inferior to superior (bottom to top
if the patient were standing upright). Inferior sections show left ventricle.
Right ventricle becomes visible at about section 5, riﬁht atrium at about 6,
and left atrium at about section 7. Section 7 also shows the entry of left
atrium into left ventricle.

Bodyscan Program User Guide 1.0

Appendix
4. The Menus

4.1. Menu 1: Getting started

Option. Action.

1. Use Fabricated Data Generate a 3D ’egg’ of data for
Proton Density and Difference
and display it.

2. Use real NMR data Load up to 12 sections of Proton
dgnsliqt{ and Difference data from
the file

import /users/ecrul3/project.

3. Use test data Generate a noisy surface to be
tracked by the surface tracking
algorithm, to test the of the
tracking process. (Not
Yet Implemented).

Bodyscan Program User Guide 1.0

Appendix

4.2, Calculating T1 or T2

Option Action.
1. Accept the calculated Move on to the next menu, the
dataset acceptance of the dataset is

not final — this menu may be
revisited once left.

2. Draw another section. Display another of the
available sections.
3. Calculate and display T1. Calculate the T1 data

corresponding to the proton
density and gDifference data
already on display, and

display in the third window on
the screen. Use the current
values of T1 parameters, or
default values if they have

not been set.
4. Change T1 calculation Cha.lrlllge the parameters used to
parameters. calculate T1. This does not

perform the calculation.

5. Calculate and display T2. Calculate T2 according to the
current set of T2 calculation
parameters, in a similar way
to the T1 calculation as above.
(Not Yet Implemented).

6. Change T2 calculation Change the parameters used to
parameters. calculate T2. This does not
rform the calculation.
flslot Yet Implemented).

7. Return to previous menu. Return to initial data load—u
menu. (Not Yet Implemented).

Note that the first picture drawn is either raw data as input from thorax.dat

or raw calculated egg data. For subsequent pictures the datasets have been
subjected to conservative smoothing.

Bodyscan Program User Guide 1.0

Appendix

4.3. Manipulation of 3 datasets & dataset selection

Option

1. Move on using Proton
Density data.

2. Move on using Difference
data.

3. Move on using T1 data.
4. Draw another section.

5. Threshold the data.

6. Draw the image after
edge—detection (Zucker
Hummel

Bodyscan Program

Action.

Draw the Proton Density
display, scaled up to fill the
screen. This option also
shuffles the data so as to
remove data that is not Proton
Density, and calculates the
Zucker Hummel edge operator
values for every point 1n
every section of the Proton
Density data, storing the
values for later reference.

As for Proton Density above,
using the Difference data.

As for Proton Density above,
using the plgeviously
calculated T1 data.

Display another of the
available sections.

Mask out all data except that
between upper and lower
thresholds set by the user
Masked data appears as black.

Show the magnitude of the
Zucker Hummel edge operator at
every point in the i1mage
instead of the actual value of
the data at that point. The
operator is a high spatial
frequency filter, and thus
edges are enhanced. The
values are scaled into the
available palette using a
compressive non-linearity.
(Norman [87] ch. 4)

User Guide 1.0

Appendix

7. Draw both the image and Show the edge magnitude and
its edge-detected version. the original data side by side.
8. Restore original Return to showing only the he
un-thresholded data. actual data if either ot the
two previous options have been
selected.
9. Return to the previous Return to the T1 menu
menu.

Bodyscan Program User Guide 1.0

Appendix
4.4. Manipulation of a single dataset

1. Draw a 3.D display. Display a surface as a three
dimensional projection.
(Not Yet Implemented)
2. Detect a surface.
Perform surface tracking from
a user specified point on the
image. he surface will be
displayed as a black line in
the section on display.
3. Change the surface
detection parameters. Change the parameters used by
the surface tracking
algorithm.
4. Draw another section.
Display another section of the
data set being used.
5. Change detected surface on
display. The threshold and surface
track operators produce
notional surfaces. The data
on display is ANDed with these
surfaces at all times. By
default the display is anded
with the Working Surface which
is initially set universally
true. Surfaces may be stored
by using option 8 on tis menu,
and recalled using this
option.
6. Threshold the data.
Mask out all data except that
between upper and lower
thresholds set by the user
Masked data appears as black.
7. Compare or combine two
stored surfaces. Surfaces which have been
stored with the option below
may be combined using the
bitwise operators AND, OR,
XOR, etc. In addition a
single stored surface may be

inverted. See the menu below
for details.

Bodyscan Program User Guide 1.0

Appendix

8. Store the Working Surface Store the working surface,
only four surfaces may be
stored at present, they are
used sequentially until all

9. Return to showing have been used, then the user
unprocessed data. is prompted for one to
overwrite.
Return to showing unprocessed
10. Draw the image after edge data if ed%:a detection images
detection (Zucker Hummel) are being displayed. If not,

this option has no effect.

Show the magnitude of the
Zucker Hummel edge operator at
every J)Oint in the 1mage
instead of the actual value of
the data at that point. The
operator is a high spatial
frequency filter, and thus

es are enhanced. The
values are scaled into the

11. Draw both the image and available palette using a
its edge—detected version. compressive non-linearity.
. (Norman [87] ch. 4)
12. Wipe the Working Surface,
restoring the original Show the edge magnitude and
data. the original data side by side.
Remove the thresholding or
13. Threshold the detected surface detection flags on the
edges. dataset and return to showing

the original data.

Mask out all data except those
points where the magnitude of
the Zucker Hummel edge
operator lies

between upper and lower
thresholds set by the user
Masked data appears as black.

Note that initially the graphics screen may not respond to the menu
commands. The program is calculating Zucker Hummel coefficients for the
whole of the selected dataset for the first few seconds that the menu is
active. All commands that the menu received will eventually be executed in
sequence.

Bodyscan Program User Guide 1.0

Appendix

4.5. Bitwise Compare menu
Option

1. Invert a dataset (NOT)
2. Intersection of two datasets (AND)

3. Union of two datasets(OR)

4. Inverse intersection of two datasets (NAND)

5. Difference between two datasets (XOR)

6. I did not want to do this anyway

Inverting a dataset reverses it so that, for example, data which has been
thresholded out becomes thresholded in. For surfaces, data in the surface
becomes visible, while points not on the surface become black. The other
operators allow logical point-by-point combination of two surfaces. In both
cases surfaces must have been stored in registers. The result is stored in the
Working Surface.

"l did not want to do this anyway" exits the menu without executing
anything.

Bodyscan Program User Guide 1.0

Appendix

S. The Questions

S.1. Data setup questions
1. Pixels in x direction ?
2. Pixels in y direction ?

The dimensions of a section must be specified by the user. The maximum
allowable value for the X and Y coordinates is 128 the minimum being 16.
If small datasets are used not all 25 image processing Transputers are active.
Large datasets require large initial data generation times. This is done
sequentially on a single Transputer, so if egg data is required, it may be

necessary to wait.
3. Ratio of X/Y pixel size to thickness of section (1 - 1000) ?

NMR data typically has much lower resolution in the axial (Z) dimension
than in the other two (X and Y). The degree of this undersampling must
be given by the user both for real NMR data and also for the generated egg.
TRY 6 - it’s about right for the real data.

4. Pixels in z direction ?

The number of sections, or pixels in the Z direction is given by the user. If
using fabricated data only this number of sections are generated, and the egg
is centralised in the sections. If using real data only this number of sections
are read from the data file. If more sections are specified than are present in
the data file an error message is output, but the program will continue, using

as many sections as were present.

Bodyscan Program User Guide 1.0

Appendix
5.2. Section and surface questions

1. Which section, numbered from 1 ?

The above question is asked whenever the user attempts to change section.
Only when the returned value is within the number of data sets
read/generated is the user allowed to proceed. The section referred to is a
cross section in the XY plane of the data set. The current section on display
is changeable using options on menus 2 to 4. A section remains on display
until changed. In particular although edge detections and thresholding occur
on the whole dataset, their effects on the current section only are displayed.

2. Which surface numbered from 1, surface 0 is Working.Section ?

3. You have exhausted all the available surface buffers Please give a surface
you are prepared to overwrite if you wish NOT to continue you may

enter O

For a description of what a surface is, see Norman [87] ch 4. These
Questions refer to storage and recall of surfaces. At present only three
surfaces are available to the user in addition to thee Working Surface. Note
that when a surface other than the Working Surface is being viewed that
surface remains on display until a threshold, surface track or bitwise
compare operation is performed, when the result (stored in the Working
Surface) is displayed.

Bodyscan Program User Guide 1.0

Appendix
5.3. Bitwise operator questions
1. Give a surface you wish to be manipulated ?
2. Give a second surface you wish to be manipulated ?

The surface to be manipulated must previously have been stored. The result
is put into the Working Surface. It too may then be stored. (The NOT

operator only requires specification of one surface.)

Bodyscan Program User Guide 1.0

Appendix
S4. Threshold Questions

1. Give lower threshold, O -> 255, (-1 to quit) ?

2. Give upper threshold, lower threshold -> 255, (-1 to quit) ?

Both the thresholding of data and the thresholding of edge require two
values. The first value is the lower threshold, the value below which
data/edge will be ignored. The second value is the upper threshold, the value
above which data/edge will be ignored. When displaying real NMR data a
lower threshold of about 30 will remove the noisy background of a dataset
without removing the tissue being imaged. To remove all but interesting

edges try thresholding the edge magnitude at 60.

Bodyscan Program User Guide 1.0

Appendix
5.5. T1 calculation questions
1. Low threshold for P.Density (20 - 100) default was 30 ?
2. Low threshold for T1 (50 - 200) default was 100 ?
3. High threshold for T1 (400 - 1000) default was 612 ?

The Proton Density threshold is a value below which T1 will not be
calculated (to avoid spuriously high values of T1 where the percentage
Difference between log Proton Density and log Difference is high merely
because the values themselves are low) The result in these areas for T1 will
be set to O. For real NMR data a value of about 60 will remove most of
the spuriously high T1 data.

The high and low thresholds for T1 are the highest and lowest values of T1
which are considered acceptable. Values calculated to be outside this range
are set to the extremities of the range. The values are then scaled into the
available dataset range: O at T1 high threshold and 255 at T1 low threshold.
The scaling is linear.

Bodyscan Program User Guide 1.0

Appendix
5.6. Surface Tracking Questions
1. X position of voxel to be tracked from (origin lower left) ?
2. Y position of voxel to be tracked from (origin lower left) ?

In the absence of a mouse interface the user is required to specify the x and
y coordinates of a point on the currently displayed section from which the

surface tracking must start.
3. What is the new value for threshold gradient ?
4. What is the new value for threshold cosine ?

The threshold gradient is the lowest gradient along which the edge tracker
will continue tracking. The threshold cosine is the cosine of the greatest
voxel to voxel discrepancy in edge direction that the edge tracker will

continue to track along.

Bodyscan Program User Guide 1.0

Appendix 3:
The Packet Handling Protocols.

-- Variables used to input packets, or to hold status information.
-- longest packet array size constants

-- The longest packet is the notional packet length which is never

-- exceeded by the packet generating subroutines.

~- part of it is used to input all packets of length less than or equal

-- to its length. It happens to be equal to the length of the DATA packet

VAL Header.Ints IS 12:
VAL Header.Bytes IS Header.Ints * 2:

VAL Extended.X.B IS Voxels.Per.X.B
B

+ 2:
VAL Extended.Y.B IS Voxels.Per.Y.B + 2:
VAL Pkt.Data.Bytes IS ((Voxels.Per.X.B + 2) *
(Voxels.Per.Y.B + 2)) * (Voxels.Per.Z.B + 2):

-- the extra twos are for boundary conditions

VAL Data.Pkt.Length IS Header.Bytes + Pkt.Data.Bytes:
VAL Longest.Pkt.Length IS Data.Pkt.Length:

-- longest packet declarations

-- The address of all packets is held in the first two bytes as an INT16
-- number. The Flag of the packet is always the third byte, and the
-- auxiliary flag is the fourth.

-~ Headers may, of course, contain more information than this but it
-- is left to packet receiving procedures to specify the location of
-- this information.

INT pkt.length:

[Longest.Pkt.Length] BYTE longest.packet:

[Header.Ints] INT16 header RETYPES
[longest.packet FROM O FOR Header.Bytes]:

VAL Flag.Byte IS 2:
address IS header[0]:

flag IS longest.packet [Flag.Byte]: -- These two are BYTE values which
aux.flag IS longest.packet [3]: ----- together make up header[1] (INT 16)

-- The flags associated with packets

VAL Command IS 0 (BYTE) :
VAL Terminate.Flag Is1 {BYTE) :
VAL Initialisation.Stream IS 5 (BYTE) :
VAL Data.Stream IS 10 (BYTE):
VAL Data.Termination IS 11 (BYTE):
VAL Image.Stream IS 20 (BYTE):
VAL Dummy.Flag IS 255 (BYTE):

-- The codes associated with commands.

VAL Terminate.Signal Is 0 (BYTE):
VAL Initialise.Command IS 1 (BYTE):
VAL Take.In.Data.Command IS 2 (BYTE):
VAL Draw.2.D.Image.Command IS 3 (BYTE):
VAL Farm.Out.Data.Command IS 4 (BYTE):
VAL Threshold.Command IS 5 (BYTE):
VAL Store.Command IS 6 (BYTE):
VAL Bitwise.Compare.Command IS 7 (BYTE):
VAL Vipe.Working.Flag.Vector IS 8 (BYTE):
VAL Clear.Scene IS 9 (BYTE):
VAL Draw.Processed.2.D.Command IS 10 (BYTE):
VAL Calculate.Tl.Command IS 11 (BYTE):
VAL Cons.Smooth.Command IS 12 (BYTE):
VAL Shuffle.Data.Command IS 13 (BYTE):
VAL Global.ZH.Command IS 14 (BYTE):
VAL Threshold.Gradient.Command IS 15 (BYTE):
VAL Track.Gradient.Command IS 16 (BYTE):
VAL Continue.Tracking.Command IS 17 (BYTE):

-- The notional addresses associated with channels out of the network

VAL Controller IS -1 (INT16):
VAL Nearest.Corner IS -2 (INT16):

VAL North.Neighbour IS -10 (INT16):
VAL South.Neighbour IS -11 (INT16):
VAL East.Neighbour IS -12 (INT16):
VAL West.Neighbour IS -13 (INT16):

= e B2 [— =N e | == | [| E=— | e | e ED =3 E=3 E

