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Abstract

This project report describes an approach used to automatically determine the lines of
visual force which correspond to the convex and concave features in a natural landscape.
Using digital terrain data as input, ridges and valleys (the convex and concave features)
are identified — by estimating the surface fit around each pixel — and tracked using
a Canny, non-maximal suppression type algorithm. The lines of visual force are then
determined according to feature strength and orientation, to be plotted on top of a

wireframe mesh representing the landscape.
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Chapter 1

Introduction

1.1 What is Visual Force ?

Visual force is a principle embodied in art, architecture and graphic design which causes
the eye and mind to react in a predictable and dynamic way. By exploiting these
predictable responses, the illusion of motion, for example, can be introduced through
the interaction of carefully designed patterns and shapes.

In a landscape, visual force occurs naturally, automatically drawing an observer’s
eye up concave features — valleys and gullies — and down the convex features — ridges

and spars.

1.2 The Role of the Forestry Commission

Vegetation growing naturally tends to follow the lines of visual force by rising higher in
hollows (the concave features) than on the more exposed, convex features. This natural
pattern of growth works with the observing eye to create an overall, harmonious and
non—disrupted view of the land.

For this reason, it is important that artificially planted forests are designed so as not
to upset the natural balance or look out of place. A well unified relationship between
the visual forces and the planted vegetation must be created and maintained and so, the
Forestry Commission must carefully plan the design of forests along the lines of visual

force.
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1.3 Project Motivation

Presently, this form of land appraisal is done manually by the Forestry Commission
where a landscape architect, beginning with a contour map, identifies the concave and
convex features (essentially the valleys and ridges) and plots the lines of visual force
which are correspondingly tied to those features.

This process can take anything up to a whole day, depending on the landform un-
der consideration. Hence, the aim of this project is to automate and speed up the

identification, spatial location and quantification of the lines of visual force.

1.4 Design Approach

The problem of identifying the lines of visual force in a landscape can be sub—divided
into a number of smaller, distinct problems. Each smaller problem can be thought of as
a separate module applying its own solution towards the overall, larger task.

The various different stages necessary in planning can be visualised as shown in
Figure 1.1 and can be described as follows — the letters corresponding to boxes in the

figure :

[a] Firstly, the data to be used must be in a suitable format for input into the system.
This involves extracting the required information and the removal of noise and/or

finer detail which may cause difficulties.

[b] From the data, the local surface shape about each pixel, and then the curvature,

can be calculated.

[c] Using the surface curvature information from [b] the orientation of the curvature

directions at each pixel can then be estimated.

[d] Stage [b] also provides the necessary curvature information to be able to classify

each pixel into one of a number of types (valley, ridge, other).

[e] Combining the results from [b] & [c] enables the grouping of similar pixels into

distinct features, which can then be tracked and identified.



== |




[f] Having identified the features in the landscape, the visual saliency of each can be

calculated, depending on their scale and irregularity.

[g] The final stage sees the graphical results of plotting the calculated lines of visual

force on top of a mesh which represents the landscape data.

{b}

{d}

{a}

Adapt Image Contour
Data for Suitable Use

=

Calculate Surface
Pixel Curvatures

——

Calculate Local
Orientation Image

v

Pixel Classification
[1] Valley
{2] Ridge
[3] Other

Group Similar

{e} Pixel Regions
Into Features
" Calculate Visual
Saliency of Features
{8} Graphical Output

Figure 1.1: Structured Plan.

{c}
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1.5 Project Report Overview

The body of the report describes the research results on identifying the lines of visual
force, detailing the choices made, problems encountered along the way, results found
and conclusions formed for each of the stages outlined in the structured plan.

Chapter 2 provides further background to the project, dealing with how visual force
can actually be represented, along with the reasons behind the choice of data to be used
with the system, and how overall performance may be measured.

Chapter 3 details the conversion of the original data into a form suitable for manipu-
lation (Stage [a]), with Chapter 4 covering the mathematical methods used in Stages [b],
[c] & [d] for calculating the pixel curvature, orientation and classification information.

Chapter 5 deals with the Canny non-maximal suppression type algorithm used to
isolate the ridge apexes and valley minima in the data (Stage [e]), while Chapter 6
outlines the approach to be used in calculating the visual saliency (Stage [f]) of the
features.

A critical analysis of the performance is provided in Chapter 7 along with some point-
ers and ideas towards further work. Also included is a brief summary of an alternative

approach to ridge finding which could be adapted and extended.
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Chapter 2

Background

2.1 Representing Visual Force

We know that the aspects of visual force are tied to the concave and convex features in
a natural landscape, but how can these forces be represented?

As stated earlier, the visual forces which occur naturally draw the eye up concave and
down convex slopes. It makes sense then to show visual forces through the use of arrows,
directed in the way the observing eye is drawn. Within the Forestry Commission, these
arrows are colour—coded : green for visual forces pulling the eye up the concave features;
red for those pushing the eye downwards.

However, directed arrows only indicate the ways in which the visual forces flow —
they give no measure of the strength of the forces. This strength information is easily
represented though by combining the scale and irregularity of the feature in order to
determine a width for the force representing arrows. The scale of a feature (depth of
a valley or height of a ridge) can be found from the contour values being worked with,
however, heuristics are often needed and employed in determining the irregularities.

In short then, visual forces are depicted by means of directed arrows whose width is
a measure of the degree of concavity or convexity of the underlying feature slope. Green

arrows depict attracting, red arrows repellent forces.

11
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2.2 A Region to Work With

What use is a system unless it has been built to take into account the problems that
real data can present? In order to overcome such possibilities and give the system wide
enough scope to cover all eventualities, it is necessary to provide a suitable test region
with which to work. Such an area should offer a wide diversity of feature type, of
differing scale and irregularity.

For this reason, the area chosen to be used is a region of the Cullin Mountains on
the Isle of Skye, in Scotland. Two Ordnance Survey (0.S.) National Grid Squares —
references NG40 & NG42 — cover a suitable portion of these mountains. They provide
ample opportunity for locating ridges and valleys in order to identify the visual forces,

thus acting as a good testbed for an automated system.

2.3 The Data

Having decided on a suitable test area, it was then necessary to obtain the relevant data
for input into the system. However, real data, representing the chosen region, is far too
complex for initial algorithm development due to the level of detail it contains. We need
to be sure that the techniques work correctly on simple cases before we can possibly

apply them to data representative of a natural landscape.

2.3.1 Synthetic Test Data

To enable testing of the techniques to be employed, non—complex data needed to be
used. This ideal, noise—free data was generated artificially and could be used to represent
simple, precise landform features (ridges and valleys) to which the visual forces are so
closely tied.

To allow for all cases where natural features could have any arbitrary orientation,

the synthetic test data was created using the following formulae :
valley generation :z =14 (z sin (6) — y cos (8))?

ridge generation :z = 10 — (z sin (8) — y cos (8))?

12






This generates an (z,y) array of z height values, with 8 specifying the angle at which
the feature is orientated about the y—axis. Figure 2.1 shows an artificially created ridge,

while Figure 2.2 shows a valley, both generated using the above formulae!.

177”7;77’7;;;’:5‘::‘::‘::\::“‘\::“ M
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Figure 2.1: Synthetic Test Ridge.

Figure 2.2: Synthetic Test Valley.

1Plotted using the Matlab package, ©The Maths Works, Inc.
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As well as using just single—feature data, a small “landscape” was also artificially
created. This data is just a convolution of the valley and ridge data, but without any
orientation specification. This data would allow us to envisage any problems that might
be encountered when different feature types, and thus differing visual force aspects,

interact. Figure 2.8 below, shows what this data looks like.

Figure 2.3: Synthetic Landscape.

2.3.2 Real Data

The real data to be used with the system comes from the Ordnance Survey who have
transformed every 20km? O.S. National Grid Square into digital terrain data. Each grid
square dataset is purchasable, under licence, at a cost of £25, with an additional price
of £48 to cover the storage media. Funding for the NG40 & NG42 datasets came from
the Department of Artificial Intelligence here at the University of Edinburgh.

The digital terrain data comes in National Transfer Format (NTF) and consists of
header information detailing the region it covers, and a stream of height values, taken
at 100 metre intervals. However, in this original format, it is not quite suitable for use
and so needed to be adapted before it could be used.

The adaptation of the original digital terrain data was done by Dr. R. B. Fisher,

the project supervisor. The new format is described in detail in Appendiz A.

14
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Figure 2.4: NG42 Region Landscape.

Figure 2.4 shows what this data looks like in real life, however, it is only an approx-
imation. The above image was produced from a 100 x 100 reduced size dataset, which

took an average over every four values in the original 401 x 401 sized data, hence the

jaggedness of the taller peaks.

2.3.3 Packaging the Data for Input

The data, be it real or artificial, is input into the system as a 2-dimensional (z,y) array
of z height values. However, for the benefit of producing graphical results along each
stage of the process, these arrays have been packaged up into HIPS image files.

Numerical value arrays which represent both the original data and subsequently pro-
cessed information, make much better sense when displayed in graphical form. Packaging
up these arrays into HIPS format allows the use of library routines, available within the
Department, to display the information in a more meaningful way.

With regard to the real data, the images shown in the main body of the report all
relate to the NG42 region, produced at the various system stages. Appendiz B collects

together all the corresponding images for the NG40 region.

15
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2.4 Measuring System Performance

Using the artificial data, it is quite easy to gauge how effectively visual forces can
be identified, albeit in these simple cases. The artificially created ridges and valleys
are used to check that such features can be located and identified at any arbitrary
orientation, while the test landscape allows the examination of problems that may arise
when different features are closely interwoven.

However, obtaining a thorough measurement of the performance of the system, when
used with real data representing a natural landscape, can only be achieved through
collaboration with an expert — the landscape architect.

The initial decision to choose the region of the Isle of Skye as input into the system
was made in conjunction with Mr. Simon Bell, a senior landscape architect with The
Forestry Commission in Edinburgh. It was decided that a traditional, manual appraisal
of the area, done by him, would be compared with any output to gauge how effectively

the system identifies and quantifies the lines of visual force.

16
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Chapter 3

Preprocessing the Data

The first main stage of building an automatic system capable of identifying the aspects
of visual force is the preprocessing of the data. This stage converts the data from the
format described in Appendiz A, into one that the system can make the best use of.

Preprocessing of the data occurs in two stages :

e Converting the data into HIPS image format.

¢ Smoothing to reduce the complexity.

3.1 HIPS Image Format

The HIPS image software, available within the Artificial Intelligence Department, pro-
vides a convenient way of packaging data into a format which allows it to be viewed
graphically.

A HIPS image consists of a header which contains a number of fields describing the
data, and the data itself. The most useful fields in the header describe the image size
by specifying the number of rows and columns, and how the the data is represented —
whether as bytes, integers, floating—point values or in some other format.

By representing data as an N X M array of a single type, a HIPS image can then
be generated and displayed using the available software library routines. Treating the
data as an array allows further arrays to be produced by the various stages of system
processing. These too can be displayed as HIPS images which allows the user to see

how the system progresses in determining the lines of visual force.
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3.1.1 Representing Data as HIPS Images

Two HIPS images, representing the regions NG40 and NG42 are generated by reading
the 401 height values in each of the 401 blocks into a 401 x 401 size array. The values
entered into the array are integer values ranging from —100 metres to 1500 metres,
however they are stored as floating—point values for reasons that will become apparent
in §3.2.1. The appropriate header information is written and the two — header and
array — are then appended together to form the stored HIPS image.

A contour map of the array representing the NG42 region, as plotted by Matlab'™,
is shown in Figure 8.1. Figure 3.2 shows the result of packaging and displaying the
NG42 data as a HIPS image. The image acts like a solid grey-level contour map where
different heights are represented by differing intensities. Lower values are depicted by
the darker intensities; sea—level pixels being represented by a distinguishable, uniform
grey.

The synthetic test data is also packaged in a similar way. Each HIPS image has
its own header which details the number of rows and columns in each image. This
information can be accessed by the system, allowing it to adjust to the smaller test

images accordingly.

3.2 Smoothing the Data

The data which represents the regions of the Isle of Skye were chosen so as to provide bold
enough features with which to work. However, the nature of this data — and natural
landscape in general — provides a level of detail that is too complex for producing
good, distinct results. For this reason, the data needs to be smoothed into a much more
“manageable” format.

Smoothing removes isolated points of noise which, in landscape data, correspond
to isolated pixels whose values differ markedly from their closest neighbours. Since the
digital terrain data is measured at 100 metres intervals, adjacent pixels could quite easily
have very different height values. This could cause severe problems during later stages

of processing and so such differences must be minimised.

18
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3.2.1 Gaussian Convolution

Gaussian Convolution provides a method for smoothing by looking at the values within
a local neighbourhood and adjusting the value of the central pixel accordingly.

The process involves convolving an operator mask with every image data point which
calculates an average weighted sum of all the pixels the mask covers. The Gaussian

Convolution mask is :

1 21
2 12 2| +24
1 21

It is because of this average smoothing that the original integer height values are stored
as floating—point numbers, as mentioned in §3.1.1.
Each application of the operator mask alters the value of a single pixel. However,

the mask must be applied to every pixel in the image before any changes can be made,

otherwise each successive application would be considering incorrect values. For this
reason, the changed values are stored in a new data array, while the mask is applied to

the original data values.

3.2.2 Number of Passes and the Problems

Obviously, a single pass of the operator over the entire image will not render much effect
with regard to reducing the complexity of the data, and so a number of passes must be
made. Each subsequent pass creates a new data array which, in turn, is used for the
next operation.

But how many passes should we make? Every time we make a smoothing pass, we
reduce the level of complexity — too few passes and we are no better off than we were
originally; too many and we smooth the data to a level that it becomes useless.

There is no ideal number. The more smoothing passes made, the more smaller
features tend to “disappear” from the data. This is a good thing in that ideally we
should be trying to identify the larger features which contribute more to the visual forces,
to a greater extent. However, the smaller features are just as important and provide a
necessary detail, yet too few passes and the level of detail remains too confusing to work

with.
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The smoothing process is invaluable in reducing the complexity of the natural land-
scape data, however, not all pixels should be smoothed. Consider coastline sea-level
pixels whose neighbouring height values could be measured at the top of a cliff. Ap-
plying the Gaussian operator to these pixels would effectively cause a landslide into the
sea as the average weighting calculations would effect a continual increase to an initially
zero value. Further smoothing passes would cause this landslide effect to extend further
and further into the sea — clearly an undesirable side—effect — and so, sea—level pixels

are not considered for smoothing.

3.3 Results Summary

As mentioned earlier, it is difficult to decide on exactly how many passes of the smooth-
ing operator to make. Clearly, a decision on the optimal number needed to maintain
sufficient detail without causing too much confusion, can only be made through hindsight
by viewing the results achieved at later stages.

A command line parameter, supplied to data conversion program preprocess.cxx,
allows the production of datasets which are smoothed to varying degrees. These different
datasets are then used to explore how smoothing affects the later stages of processing
and how many smoothing passes can be tolerated in order to achieve the best results.

The following page depicts the original NG42 region as it comes without any smooth-
ing, through both a contour map (Figure 3.1) and the HIPS range image (Figure 3.2).
Having smoothed the image both 20 and 80 times — contour map Figures 3.3 & 8.4
— I have drawn the conclusion, from subsequent processing, that the data smoothed
40 times reduces the noise level factor considerably yet maintains a sufficient level of
detail to be used constructively. The contour map and view of this data are depicted in
Figures 8.5 & 3.6.

Appendiz C.1 contains the code preprocess.cxx which allows the user to specify the
number of passes required to smooth the data. It then creates the required HIPS format
image using the array2hips.cxx routine. This routine is used extensively throughout

all stages — the code can be found in Appendiz C.4.
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Figure 3.1: NG42 Contour Map (Original).

Figure 3.2: NG42 Range Image (Original).
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Figure 3.3: NG42 Contour Map (Smoothed X20).

Figure 3.4: NG42 Contour Map (Smoothed x80).
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Figure 3.5: NG42 Contour Map (Smoothed x40).

Figure 3.6: NG42 Range Image (Smoothed x40 ).
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Chapter 4

Calculating Local Curvature,

Shape and Orientation

4.1 Fitting a Bi-Quadratic Surface

The way in which to determine the local shape of an individual pixel is to estimate
the shape of a model surface which best fits the pixel and its neighbouring data points.
The coefficients of the parametric equation which describes this surface can then be
combined, according to known mathematical equations, to give both the local shape
and orientation information that is needed.

The method described below fits a bi—quadratic surface about every image pixel and
calculates the corresponding coefficients for the representative parametric equation. The

equation for a bi~quadratic surface is :
z=a+ bz + cy+ dz? + ey? + fzy (4.1)

which yields the six coefficients (a— f). However, the subsequent formulae for calculating
the local pixel shape and orientation are easier to describe in terms of the derivatives of

the surface :

zz=b+2dz + fy, z,=c+2ey+ fz,

Zgg =2d, zyy=2e, zzgy=1f (4.2)
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4.1.1 A Window on Neighbourhood Regions

Estimating a surface fit can only be done with a number of data points and so the
neighbourhood of a pixel must be defined. Here, this neighbourhood is a user-defined
N x N pixel size window!, centered around the data point in question. The data values
within this window are then used to estimate the surface shape.

Greater accuracy in estimating the fit can be achieved by using a larger window,
however, a tradeoff exists. With any window, we lose a %(N —1) border of pixels around
the image as there, the N x N window lies partially outside the dataset and we cannot
determine the elevation values which lie outside the data currently being processed.
Larger windows will therefore have wider borders and we lose more image pixels.

Further improvements in accuracy can also be made (although this is not always
the case — see Ch.7, §2) by transposing the window to the origin so that the pixel
coordinates become [z = 0,y = 0]. This eases the calculations involved with respect to
machine dependent floating—point inaccuracies and changes the z and y first derivatives

of the surface from equation (4.2) into :
zz = b, Zy=c¢ (4.3)

4.1.2 The Solution : Singular Value Decomposition

Given the information contained in the window, how then can the bi—quadratic surface
fit be estimated to yield the necessary coefficients? A well known method used for this,
the parametric modelling of data, is singular value decomposition (SVD). Mathematical
library routines for implementing SVD exist and are called by the system to solve the
many dimensional minimisation problem which estimating the parameters of a surface
presents.

Using SVD to estimate these parameters is a robust and well-documented solution
that improves on other approaches such as the least-squares method. See [Pres 88]
for a general discussion on how, and why, singular value decomposition is implemented,

along with the library routines used.

1The default window size is 3 x 3.
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4.2 Using Mean and Gaussian Curvatures

4.2.1 H & K Calculation

Having fitted a bi-quadratic surface around every image pixel, the corresponding Mean
and Gaussian curvatures (see [I&J 85]) can be calculated from the associated paramet-

ric coefficients. The Mean Curvature, H, for a given (z,y) pixel is given by :

_ 2d+2e+2d(c+ 2ey + fo)’ + 2¢(b+ 2de + fy)* — 2f(c + 2ey + fz)(b+ 2dz + fy)

H 3
2(1 + (c+ 2ey + fz)2 + (b + 2dz + fy)?)2

(4.4)

with the Gaussian Curvature, K, by :

K = 4de — f?
T (14 (c+2ey + fz)? + (b + 2dz + fy)?)?

(4.5)

However, the relevant equations can be expressed more concisely from the surface
derivatives given in equations (4.2) and (4.8), and these are in fact the equations used

by the system :
2 2
Zgx T Zyy + 22y + zyyzy — 2zxzyzzy

H = a
21+ 22+ zg)i

(4.6)

Zatyy = Zay (4.7)

K=———7-— -2
T+ 24 227
4.2.2 Local Shape Classification

The shape of any surface can be classified based on the signs of the Mean and Gaussian
curvatures for that surface, as shown by [B&J 85]. Nine different combinations of
the signs of H and K being positive, negative or equal to zero, result in eight distinct
classification types with the 9t* possibility, [H = 0, K > 0], never arising (but see §4.2.3).
The possible classifications are shown in Figure 4.1.

Using the bi—quadratic surface fit, the shape at each image data point can be es-
timated and we can then calculate the local shape classification. This is done after
calculating the H and K values for the individual pixels, however, for reasons that will

become clear in §4.2.4, not all possible classifications are applied.
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H<0 K>0 Peak
H<O0 K=0 Ridge Ridge

H<0 K<0 Saddle Ridge

H=0 K>0 Unclassified
H=0 K=0 Plane Uninteresting
H=0 K<0 Minimal

H>0 K<0 Saddle Valley
H>0 K=0 Valley Valley
H>0 K>0 Pit

Figure 4.1: Classification Types.

4.2.3 Thresholding

Local shape classification based on the values of the Mean and Gaussian Curvatures
is subject to two problems. The first is noise, where random small perturbations can
change local shape. The second is that flat surfaces, ie. surfaces with zero H and K
values, very rarely occur naturally in the real world.

As a results of these factors, the “exactly zero” constraint used in classification
must be relaxed. This is done by the user supplying a tolerance value ¢ which allows
approximations to flat surfaces to be made while also removing the possibility of errors
arising due to noise. Effectively, this thresholding procedure reduces values, in the range

limited by e, to zero for the purposes of classification, ie. :

value € [-e,...,+€] = value =0 (4.8)

Since we are evaluating separately whether the two different values are equal to zero
or not, a single threshold cannot represent both required deviations — the H and K
values are independent. [Cai2 90] discusses the relationship between two thresholds,

‘H. for the Mean curvature values and K, to be used with the Gaussian values.
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Taking this into account, the user specified threshold is treated as H. and the cor-

responding K, is calculated according equation (4.9) :

1 M
Ke=(2x(5; > Hi) X He) + M (4.9)

i=1
where M is the number of data points in the image being processed.
Unfortunately, by using thresholds it is then possible for the 9t* (invalid) classifica-
tion to arise when [H = 0, K > 0] £e. Luckily however, we are not concerned with this,
or either of the two surface classification types which do not contribute to visual forces

— planes and minimals. We only need to identify the ridge and valley types.

4.2.4 Generalising Shape Classification

Although the preceding discussion details what can be achieved and the importance
of using both curvature descriptions, hindsight has shown that Gaussian curvature in-
formation is actually unnecessary. Local shape classification can be generalised into
simplified classes which detail enough information needed for the purposes of detecting
visual forces in a natural landscape.

The reason for this is that the lines of visual force are, as described earlier, inherently
tied to the convex and concave features in general — there is no need to distinguish
between different types of each. Peaks, ridges and saddle ridges are all examples of
convex features; pits, valleys and saddle valleys of concave features.

By observing the sign of the Mean curvature values in Figure 4.1, it can be seen
that negative H values correspond to positive cylinders — the ridge-like features —
while negative cylinders, the valley-like features, have positive H values. Flat surfaces
(planes) and minimals, which do not contribute to the aspects of visual force, have a
zero H value and can thus be “ignored.” However, for the reasons given in §4.2.3, a
threshold still needs to be used and this remains as the user—specified £, input to the
system.

It is interesting to note that if H was actually calculated as —H, then the more
intuitive association of positive cylinders with positive H values, and negative cylinders
with negative values, could be used. However, the choice of the sign of curvature is

arbitrary and these standard formula produce negative values for positive cylinders.
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4.3 Local Pixel Orientation

Having successfully determined local shape information for every image pixel, it is then
necessary to obtain the local orientation details of each. Mean and Gaussian curvatures
tell nothing about the orientation or degree of curvature of a surface directly. This
information can only be obtained when we know something about the two principal
curvatures — the direction of the minimum curvature, which runs along a surface, can
give an indication of the orientation of the ridge or valley; the maximum curvature across

a surface allowing the degree of concavity or convexity to be measured.

4.3.1 Calculating Principal Curvature Magnitudes

Once again, the coefficients of the parametric equation describing the bi-quadratic sur-
face fit can be used in calculating the maximum and minimum curvatures. As before,
the equations are best described in terms of the surface derivatives given in equations

(4.2) and (4.3).
First of all, I define the Weingarten mapping matrix, W, (see [B&J 85]) :

1 GL-FM GM-FN A B

We_ 1 1
EG-F>\ EM_-FL EN-FM S\c b

(4.10)

where :

E=1+22, F=2z2, G=1+z§,

L=—22 M= o Aw
? - bl -
1+ 224 22 1+ 22+ 22 1+ 22+ 22

The matrix W has the property that its eigenvalues are the principal curvatures, Cp,

N

while the eigenvectors give the (u,v) curvature directions in the (z,y) plane, ie. :

(4.11)

By using equation (4.11) it is possible to calculate the two principal curvature direc-
tion vectors in two dimensions, of which the minimum curvature vector gives the local

orientation information. However, knowing these direction vectors does not allow us to
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distinguish which corresponds to which principal curvature. The curvature magnitudes
enable us to make the distinction, but the (u,v) components alone do not give enough
information to calculate the true magnitude values.

A different approach, which first calculates the principal curvature magnitudes is
used. From this, the smaller magnitude can then be determined and used in calculating
the correct direction vector. By combining the Weingarten matrix elements from equa-
tion (4.10) a formula can be expressed to calculate the two magnitudes. The formula

used, derived with the help of Andrew Fitzgibbon, is :

Cr=13 [(D +a)x(D- A7+ 430] (4.12)

4.3.2 Orientation from Principal Curvatures

By distinguishing between the two principal curvatures, a local orientation can then be
determined. The orientation required is represented by the principal curvature which
has the smaller magnitude.

Calculating the (u, v) components of the minimum curvature direction vector can be

done, again using the matrix elements from W. The formula :

v (5 X Crin,) — A
== = (4.13)

represents the valley / ridge direction vector, orientated at an angle ¢ anti—clockwise
from the y—axis, ie. :

tan(¢p) = %

4.4 Cosine Shading

From the bi—quadratic surface parameters, we can also generate a cosine shaded image
which makes the structure of the range image (Ch.3, §1.1, Figures 3.2 & 8.6) much
clearer to the human observer. In a cosine shaded image, the degree of shading of a
surface is related to the cosine of the angle the surface normal makes with the light
source vector, as stated by Lambert’s Cosine Law for diffuse reflection — see [Fole 91]

for further details.
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For the range images, there is only a single viewing direction — from directly over-
head — with the light source considered to be at infinity. This allows the formula for
calculating the cosine shaded value of an image pixel to be expressed simply in terms of
the surface derivatives :

(4.14)

Figure 4.2: NG42 Cosine Shaded Image.

Figure 4.2 shows the cosine shaded image corresponding to the original NG42 range
data. The greater the angle between a surface normal and the light source vector, the
smaller the cosine and hence, the cosine shaded value calculated by equation (4.14)
increases. This results in surfaces with normals pointing straight—up towards the view-
point (ie. out of the page), such as the sea, appearing brightest (whitest) in the image,

with steeper faced surfaces appearing darker.
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4.5 Results Summary

The entire process of calculating local curvature, shape and orientation information, as
described in the previous sections, is contained in the second program section which uses
the various SVD library routines mentioned. The pseudo-algorithm below summarises
the whole process.

Pseudo-algorithm :

for every image pixel do
{
extract NxN window;
generate bi-quadratic parameters using SVD;
calculate Mean curvature, H, value;
determine orientation from minimum curvature;
calculate cosine shaded value;
}
dump H and orientation details for later use;

generate cosine shaded image;

Generating an H classification for every image pixel is essential as it allows us to
distinguish between the two main features types needed to identify the different aspects
of visual force. The classification generalises local shape information into one of three
categories : ridge, valley or other. These classification types are represented in the
following figures as black, white and grey respectively.

Figure 4.3 highlights how the classification works with respect to the 32x32 testimage
shown in Figure 2.3 (p.8). However, from this we can see the difficulty arising in trying
to classify flat surfaces correctly without using a threshold, but, by using ¢ = 0.1 in
Figure 4.4, a better classification can be generated.

It has become obvious from using the thresholding procedure mentioned in §4.2.3,
that regions of maximum curvature — the ridge apexes and valley minima — have mean
curvature values which deviate the greatest from zero. This fact allows us to broaden
the range of values which classify surfaces as being non—contributory to visual force,

enough for us to produce H classifications which tend towards depicting just the valley

32



L

L4

b4



minima and ridge apexes. Unfortunately though, choosing a threshold which identifies
only the maxima and minima is difficult (see Figures 4.4 and 4.5).

Figure 4.5 uses a smaller threshold than in Figure 4.4 of ¢ = 0.01. This reduces
the valley and ridge classified points into smaller regions, more associated with the

corresponding minima and apexes.
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Figure 4.3: Test Image Classification (No Threshold).

Figure 4.4: Test Image Classification (Threshold = 0.1).

Figure 4.5: Test Image Classification (Threshold = 0.01).
white = valley; black = ridge; grey = flat.

34



r=y

B

w1

1

1




Figures 4.6 — 4.10 show the HIPS images which represent possible H classifications
for the NG42 region.

Figure 4.6 shows the level of complexity we are dealing with in the original data while
Figures 4.7 & 4.8 show the benefits of smoothing this data 40 and 80 times respectively.
Although the smoother images allow us to see patterns emerging in the grouping of
similar feature types, more so in Figure 4.8, specific features are not obviously apparent,
nor are the feature maxima and minima which determine the lines of visual force.

Figure 4.9 shows the original data, classified with a tolerance value of ¢ = 0.1, and
from this we can begin to visualise the distinct feature tracks emerging (ridges in black;
valleys in white). But still, the level of detail is too complex. The classified image
produced using the data smoothed 40 times is shown in Figure 4.10. Here, again using
a threshold value of ¢ = 0.1, the distinct classification of ridge apexes and valley minima
is more apparent.

It may seem from Figures 4.9 and 4.10 that we could proceed to calculate the visual
saliency directly from these results, however, this is not the case. Not only is it difficult
to chose an exact threshold which isolates the ridges apexes and valley minima alone —
as in Figure 4.4 which uses the same threshold — but, by specifying the tolerance value,
we also classify surfaces with mean curvature values within the +¢ bounded range, as
not contributing to visual force.

In otherwords, this method only allows the identification of ridges and valleys with
H < 0.1 and H > 0.1 respectively. More gently sloping terrain may produce adequate
feature definitions which have H values outside these constraints, and so will not be
picked—up by thresholding.

In the case of the NG42 and NG40 regions being used, chosen for the boldness of
features, the rare existence of these shallower features do not present a major problem.
However, for less “rugged” landscapes the problem cannot be ignored. A better method
for identifying all ridge apexes and valley minima is needed. Chapter 5 addresses this
problem.

The code, process.cxx, and the routines for calculating the Mean curvature val-
ues (hkcode.cxx) used for classification purposes, and the orientation information,

(orient.cxx), are included in their entirety in Appendiz C.2.

35






Figure 4.6: NG42 Classified Image (Original).
white = valley; black = ridge; grey = flat.
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Figure 4.8: NG42 Classified Image (Smoothed x80).
white = valley; black = ridge; grey = flat.
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Figure 4.10: Thresholded NG42 Classified Image (Smoothed x40 ).
white = valley; black = ridge; grey = flat.
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Chapter 5

Feature Identification & Tracking

Having concluded in the previous chapter that classification based on thresholded Mean
curvature values is prone to “ignoring” shallow sloped features, a more reliable method is
needed. An adapted version of the standard Canny non-maximal suppression algorithm
([Cann 86]) used in image edge detection, provides a basis for such a solution which

enables the finding of all possible ridge apexes and valley minima.

5.1 Non—Maximal Suppression

A non-maximal suppression algorithm uses orientation information in deciding whether
a pixel should be suppressed or not. The decision is made based on the values of two
immediate neighbours on either side of the pixel under consideration, chosen depending
on the pixel orientation. If the pixel’s value is strictly less than both the neighbouring
values (ie. not maximal), then that pixel is suppressed.

Using the original, non-thresholded H classification from Ch.4, §2, the above method
can be used to identify both ridge apexes and valley minima. Identifying minima is done
by checking that the height value of a classified valley pixel is less than the neighbouring
values along the line of maximum curvature. The orientation of the maximum curvature,
which represents the curvature across a feature, is easily determined being perpendicular
to the minimum curvature — the earlier calculated pixel orientation (Ch.4, §3). If the
value is not minimal, then it is suppressed. With classified ridge pixels, the opposite

occurs — height values must be maximal if they are to survive suppression.
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Minimum Curvature
Orientation

PA

Minimum Curvature
Orientation

Figure 5.1: The Four Orientation Dependant Cases.

5.1.1 Interpolation

However, using non-maximal suppression is not so straight forward. The maximum
curvature of a pixel may not be orientated at an ideal angle so that its line goes through
exact data points, it may fall between pixels. For this reason, a method of interpolating
values must be used to estimate values which are otherwise unknown.

Four cases can be envisaged — shown in Figure 5.1 above — depending on the angle

#, the minimum curvature makes with the x—axis :
e Case[1]:0°< 60 <45°
e Case [2] : 45° < 6 < 90°
e Case [3]: 90° < 6 < 135°

o Case [4] : 135° < 0 < 180°
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Having calculated the orientation of each pixel, a decision can be made on which
of the four cases holds. From this, we can use the correct pixel values, Aly, & A2,y
and Bl,qy & B2, in order to calculate the interpolated values, PA,q and PB,,
respectively. These two values lie along the line of maximum curvature and are used in
the comparison with P,,; to determine whether P is to be suppressed or not.

Each interpolated point is calculated as a distance weighted sum of the two pixels it
lies between. All pixels are unit distance apart, and so these distances can be calculated

based on the tan of the angle @ which subtends the corresponding line segment :

|A1 PA| = |B1 PB| = tan(a) (5.1)
|A2 PA| = |B2 PB| = (1 — tan(a)) (5.2)

Angle a is related, case dependent, to the orientation angle 8 by way of similar angles
between the axes and the perpendicular curvatures — Case [1] @ = 6; Case [2] a = (90
- 8); Case [3] o = (6 - 90); Case [4] o = (180 - 9).

The interpolated value PA,q is calculated according to equation (5.3) below which
sums the values of Aly. & A2,,;, weighted by the distances from PA as calculated by
equations (5.1) and (5.2). Calculation of PB,, occurs in similar fashion.

PAyy=(1- ta,n(a))Alual + tan(a)A2ua1 (5.3)

PByg = (1 - tan(a))Blyer + tan(a) B2y (5.4)

Each valley pixel is compared with interpolated values PA,,;; and PB,y to see if it
is less than both, while a ridge pixel value must be greater. If it is, then the pixel is

considered to be a minima (or apex) and need not be suppressed.

5.1.2 Relaxing the Suppression Constraint

Non-maximal suppression works well in that it considers every possible point as being a
candidate apex (if classified as a ridge pixel), or minima (if a valley pixel), irrespective
of the feature strength or slope. However problems do exist which must be taken care

of in order to produce an image that contains all correct maxima and minima.
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One problem is that of strictness — how strictly should we enforce the constraint
that minima must be less than, and maxima greater than, both interpolated values?
It is possible that the apex of a ridge (or valley minima) may cover two, equal height
image pixels which are classed as ridge pixels. In this case, both pixels must not be
suppressed, even though neither is strictly maximal. Therefore, the constraints must
be relaxed to allow maxima to be greater than or equal, and minima to be less than or
equal, to the interpolated values.

However, relaxing the constraints gives rise to another problem as the surface fit
procedure classifies coastline sea-level pixels as being valley instances. Such a pixel
will have a lower height than its coastline neighbour and a height equal to its sea~level
neighbour, so, it will be considered a minima. Although this is a problem caused by the
surface fit and subsequent classification, it is much easier to solve during the suppression
stage by automatically suppressing all sea~level pixels — determined by their zero height

values.

5.2 False Suppression at Junctions

Another major problem inherent in using non—-maximal suppression, as highlighted in
[DuLi 89], is the fact that the method fails to connect features at junctions where they
should otherwise be connected. This is because the apex height value of one ridge is often
less than that of another where the two (or more) form a junction. According to the
algorithm, such a pixel is suppressed as it is not locally maximal in the neighbourhood

of the other feature apex. This false suppression is undesirable.

5.2.1 Reconnecting Junctions

[Duli 89] suggests an approach to solving the connectivity problem. In the case of
falsely suppressed ridges, a probe is temporarily extended from an apex endpoint in the
direction of that pixel’s orientation (minimum curvature). Provided height values along
the probe continue to increase and the relative orientation remains within a specified
deviation from pixel to pixel, the probe can be treated as an extension to the apex which

is now known to have falsely ended as a result of suppression.
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However, an extended ridge apex probe must be carefully examined to ensure that
it does not cross classified valley pixels or previously identified minima. The argument

for extending the valley minima is equivalent.

5.2.2 Results and Associated Problems

Valley minima and ridge apexes are identified in the image data by considering every
point for suppression. All valley pixels which are non-minimal, and ridge pixels which
are non-maximal, are suppressed, leaving identified feature tracks in the image.

Figure 5.2 below depicts the identified valley minima in the synthetic testimage ( Fiig-

ure 2.8, p.14) with the ridge apexes shown in Figure 5.3.

Figure 5.2: Testimage Valley Minima.

Figure 5.3: Testimage Unconnected Ridge Apexes.
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For the NG42 region data (smoothed 40 times) the results of suppression are dis-
played in Figure 5.5 — showing the identified valley minima — and in Figure 5.6, which
depicts the ridge apexes.

Falsely suppressed maxima and minima at junctions have been extended using avail-
able standard library HIPS image processing routines accrete and erode. Although
this is not the approach described in §5.2.1 above, it approximates the same operation
by replacing pixels which do not conform with their immediate neighbours.

The procedure effectively connects up small pixel gaps in the maxima and minima
tracks. The size of the gap is determined by an argument, n, supplied to accrete and
erode which replaces differing neighbours upto 2n pixels away. A value of n=1 was
used for connecting up the ridge apex tracks in the testimage, the results of which are
shown in Figure 5.4 below. For the NG42 region tracks of Figures 5.5 and 5.6, a value

of n=2 was used to connect gaps of upto four pixels.

Figure 5.4: Connecting Up Track Gaps in the Testimage.

As can be seen in Figures 5.7 and 5.8 which show the new connections, the valley
minima and ridge maxima are no longer isolated thin tracks. This is because using
accrete and erode effectively extends single pixels into wider regions, and so, the now
wider tracks need to be thinned. The thinning process is performed by another library
routine 1thin2 which produces the results depicted in Figures 6.9 and 5.10, however
the effects often produce tracks which are not representative of real maxima and minima

(this problem is addressed at a later stage, see §5.4 and Ch.7, §2.4).
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5.3 Removing Isolated Tracks

It is both important and necessary to remove isolated feature tracks that arise from
noise and features which contain only a small number of points. This is mainly because
the visual forces tied to these small tracks will be overwhelmed by the forces associated
with the larger, more striking features.

Isolated track removal is a simple procedure that can be easily implemented using

stacks. This is best described in terms of a pseudo-algorithm :

do scan image until next apex/minima found
{
remove current point from image;
place point on new tracklist (length = 1);

push 8 neighbours onto stack;

while (not stack_empty) do
{
pop stack top;
if (not popped point == apex/minima) then continue;
else
{
remove point from image;
place point on tracklist;
increment length;

push 8 neighbours onto stack;

if (length < some minimum) then delete track;

The process creates a data structure which is an array of pointers to lists of track

coordinates. These tracks all have lengths greater than or equal to the “some minimum”
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which is a value specified by the user as input to the system. Figures 5.11 and 5.12
show the results of removing all tracks in the NG42 image consisting of less than 20
pixel points.

The method works well and is useful in that by specifying a minimum length re-
quirement, we can ultimately identify only visual forces of a certain length and above,
if necessary.

The code for the above algorithm to remove small tracks (remove.cxx) is included

in Appendiz C.8 which also contains the non—-maximal suppression code suppress.cxx.

5.4 Conclusions

Overall, the adapted non-maximal suppression algorithm works well in identifying all
possible ridge apexes and valley minima, regardless of the width, length or slope of
the associated features. All features are considered equal candidates for providing the
evidence which will eventually lead to determining and identifying the lines of visual
force in a natural landscape.

However, the solution used in reconnecting up feature tracks, as caused by the failure
of the algorithm at junctions, is far from ideal. We can see the usefulness of the method
in Figure 5.4, but, we can also see the drawbacks — in this case a border pixel (which
we have no information about) has been “identified” as a ridge apex, while a previously
identified maxima pixel has been removed.

In the testimage, the problem is easy to see, yet, in the real data, the addition of false
(and the removal of true) maxima and minima is not so clearly apparent. A number
of obviously wrong maxima/minima pixels can be noticed which cross the longer tracks
perpendicularly at various points Figures 5.9, 5.10, 5.11 & 5.12.

Yet these tracked errors only play a small part. While isolated tracks can be
painlessly removed, the original major tracks remain, more or less intact. The hope
is that generation of the actual lines of visual force from these, more influential tracks,

will help to override the minor side-effect anomalies which are produced.
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Figure 5.6: NG42 (Smoothed x40) Unconnected Ridge Apexes.
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Figure 5.8: Connecting Gaps in the NG42 Ridge Aper Tracks.

48



)




——

——

i
% N 4 Y 5 i
R ¥ S .
£y { ‘ b
- - . et o I et P
bt & - . n . -
- t\ ] . ‘ ol ; o r :
/ T i ! N\, w e
-~ 3, } L e X -
i fin o
e s
\h."“"«-'- 3 ']' % %
O
i g i
." ", %=

i
t
i
S
b it -
7 i
e
i\
X
it
\“‘\—«__vf-

iy VL
D i Y i T § !
/ Bl e 3 3y T _.! . /‘/_l‘
i i : AN i /
L : 3 i
; . "—‘.' L S _1“’-\.‘..’, 3. /““\.“ '1“ i
~ 2 |,...__ i = i . S
"1‘ s ' ; 4\\ [ . ¢ 4
.[ il :
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Chapter 6

Calculating Visual Force

In this chapter I will attempt to describe an approach towards how the aspects of visual
force can be calculated. This method will use the information currently available to the
system, both in terms of the data originally presented and the results arrived at up to

this stage.

6.1 Feature Strength as an Indicator

Not only do lines of visual force follow the features in a natural landscape — up concave
slopes and down convex, but the strength of force is closely related to the scale and
irregularity of the features to which they are tied.

The visual saliency of a feature can be described as a function of both the feature’s
width and relative height (or depth). Determining the actual visual forces associated

with each feature is thus performed as a related function of the feature’s visual saliency.

6.1.1 Ridge Height / Valley Depth

Calculating the height of a ridge (or depth of a valley) provides us with the first starting
point, but the question is how can we measure this factor? Clearly, the maxima height
point alone is not a suitable indicator since it does not give the relative height.

In order to do this, we need to identify the extremities of the ridge, ie. the bounding
local minima. These points (z1,¥:1) and (22, y2) are shown in Figures 6.1 & 6.2 overleaf,

and yield the height values z; and z; respectively.
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Figure 6.1: Ridge Aper Cross Section.
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Figure 6.2: Valley Minima Cross Section.

The local minima that bound the apex are across the ridge — in a direction indicated
by the maximum curvature. From the known pixel orientation information calculated in
Chapter 4, §3, the maximum curvature direction can be calculated, being perpendicular
to the orientation.

The height values at the corresponding minima points can then be averaged and
compared with the height value z, at (z,,y,) to indicate the ridge height, h. A similar

procedure is used in determining the depth of a valley.

6.1.2 Width

The bounding minima of a ridge, or maxima of a valley, can also be used in determining
that feature’s width. This time, since we know that data points are 100 metres apart,
the z; and x4 values can be combined to give a measure of the width across the direction

of maximum curvature.
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6.1.3 Averaging Values and Smoothing

Calculating the visual saliency and using this information to determine the visual force
at a single pixel, however, is probably not the best approach. A ridge (or valley) might
vary dramatically in either width or height anywhere along its track. But we wish to
represent the corresponding line of visual force with a smoothly changing arrow (whose
width is an indication of the strength of force) and not a ragged one of differing widths
at each pixel point.

Two options to help achieve such a gradual change in the force representing arrow
width are averaging and smoothing. Having produced the width and height values at
each pixel along the ridge track, an average could be taken to arrive at a mean value.
This could be a single average over all values for a small track, or a number of averages
for longer tracks which uses interpolated values to maintain a gradual change in width.

Another method is to calculate the visual saliency at each point and then the cor-
responding strength of visual force. Each value could then be smoothed depending on

the values of its two immediate neighbours.

6.2 Implementation

The above ideas can be implemented to calculate the visual saliency of each identified
valley minima and ridge apex track. This information can then be combined with the
feature orientation and relative position in order to determine the width of the visual
force representing arrow

Pseudo—algorithm :

// calculate visual force
for each identified track do
for each point i do
Vf; = F(orientation;, position;, height;, width;);
// smooth a bit
for each point i (1 < i < N - 1) do
Vi,

t

= F(Vf;_q, V£, VEi41);
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Although the algorithm itself is simple, as shown in the pseudo-code, the difficulty
lies in calculating the information with which to produce the ideal results.

The method in general does not take into account anything about the irregularity of
a feature. Visual saliency is calculated from information local to a point, with perhaps
some influence from its neighbours through averaging or smoothing. However, there is
no notion of how a feature may be changing further down (or previously along) the track
— a factor which also can affect the lines of visual force.

Also, without any results, it is impossible to gauge whether calculating visual force

as Vf; is the appropriate method. It may be better to adopt a function such as :

VE; = \ﬂheight,- x width;)

These methods of calculating visual force, as a function of height and width, is
subject to one major drawback. The values give a measure of the feature cross section
and so, will treat deep and narrow features like wide shallow ones. This may not be ideal
and suggests the need to adopt a more complex approach to calculating visual force.

A better understanding of how visual forces are related to feature scale and irregu-

larity, which may involve heuristic methods, is needed.
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Chapter 7

Concluding Comments

7.1 Overall Performance

Unfortunately, without having calculated the visual saliency of the features in the region
landscape, it was not possible to compare the automatically identified visual forces with
those found manually — as done using the traditional method of land appraisal by the
landscape architect Mr. Simon Bell.

However, since the method of estimating visual force is closely tied to the identifi-
cation and tracking of valley minima and ridge apexes, it seems appropriate to mention
how effectively this task of identification is performed.

Figures 7.1 and 7.2 overleaf show overlays of the the tracked valley minima and ridge
apexes (Figures 5.11 & 5.12, p.50) on the NG42 region HIPS range image (Figure 3.6,
p.25). Remembering that lighter values in the range image correspond to higher points
in the data (which are more likely to be ridges), it can be seen how well the method of
non—maximal suppression manages to identify the minima and maxima.

The major features which provide the strongest evidence for visual forces are clearly
defined, albeit with small deviations from the real tracks — a side—effect of the thinning
process used in Chapter 5, §2.2 (p.43). However, these tracks should not be a significant
cause for concern. Strength of force is related to the tracked feature’s scale and irregu-
larity and so, the forces associated with the minor deviations will inherently be smaller
and thus, be overwhelmed by the stronger forces which correspond to the true, larger

feature maxima and minima.
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Figure 7.1: NG42 Overlaid Valley Minima.

Figure 7.2: NG42 Overlaid Ridge Apexes.
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7.2 Criticisms and the Room for Improvement

There are a number of areas where I see shortfalls in the performance of the system. Each
of these shortcomings are described below, pointing out the reasons for the criticism and
how, in turn, they can be used as a basis for further work to aid in improving the overall

effectiveness of an automatic system.

7.2.1 Real Data Measurements.

The digital terrain data, which represents natural landscapes, is the initial starting point
from which we can proceed to identify visual force.

The problem associated with the digital terrain data is related to its measurement
and how well it represents the landscape. Points in the data are Ordnance Survey height
values taken at 100 metre intervals. Unfortunately, this scale of measuring interval is
too large. Since natural landscape can change dramatically over only a few metres, such
changes cannot be recorded in such large steps — a smaller interval is needed.

This is especially true of the regions of the Cullin Mountains, NG40 and NG42,
chosen because of their rugged, bold features. For all we know, height values between
actual data points could be radically different — for example a 90 metre wide gorge
between measured points — a possibility not considered when we interpolate between
points during the non—-maximal suppression stage. However, for less rugged landscapes
that slope more gently, intervals of 100 metres are adequate. This suggests the need,
perhaps, for a more dynamic scale.

Identified maxima and minima may be “real” in accordance with the data points
we have access to, yet they may not be the true maxima and minima of the natural
landscape. Worse still, some maxima and minima may be missed entirely. The effect of
this is that lines of visual force are identified where real lines (which are not found) do
not actually exist.

But what can be done? More precise data is needed to work with, but the question

remains how precise 7 Such data is not extensively available.
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7.2.2 Automatic Parameter Determination.

At various stages in the system, the user can specify certain parameters — the number
of smoothing iterations to perform (Ch.3, §2.2, p.19); the threshold value for use in the
H classification process (Ch.4, §2.3, p.27); the minimum length requirement for isolated
track removal (Ch.5, §3, p.45).

But, an automatic system should be able to perform without intervention in that the
best choice of parameter in the above, and possibly other, cases is made independently
by the system. Automatic determination of such parameters can be done effectively in
some cases, but not so easily in others.

For example, the number of smoothing passes needed to remove minute and complex
detail from the original digital terrain data, yet leave enough to produce sufficient results,
is only made through hindsight on behalf of the user (though even this can be helpful
compared to spending a day calculating the visual force by hand). To decide on the
number of passes needed automatically would involve the system being able to gauge
the effectiveness of the results produced at later stages, and performing “roll-back” to
smooth the data fewer or more times, as required.

In the case of deciding on a minimum length requirement to be used with the removal
of isolated tracked valley minima and ridge apexes, a value can be more easily determined
using a histogram method. In tracking all the maxima and minima, the length of each
unique track is determined. From a collection of track lengths, the system could then
decide on the best minimum length requirement to be used in order to remove the

smaller tracks.

7.2.83 Bi—Quadratic Surface Fit Accuracy.

Two approaches to improving the accuracy of the estimated bi-quadratic surface fit can
be considered, as hinted at in Chapter 4, §1.1 (p.25) : [1] using a window whose size
changes dynamically over more complex data; and [2] the calculation of mean residuals
as a method of determining whether transposing the window to the origin produces a

better estimate than calculating the surface fit with the window in—place.
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Dynamic Neighbourhood Windows.

The more points we have in a window, the more evidence we have for estimating a bi-
quadratic surface fit and so, the accuracy of an estimate increases. Where we have more
rugged data which is difficult to characterise in terms of only a few number of points, a
larger window may improve the accuracy of the fit.

For this reason, it would seem to make sense to dynamically alter the size of the
window being used, depending on the complexity of the data being examined. Mean
residuals (see below) could be calculated to give a measure of the fit accuracy, but the
problem here is in automatically determining the data complexity in order to adjust the
window? What size should the window be adjusted to?

I have examined the results of processing the NG42 region using the default 3 x 3
window, as compared to using both a 5 X 5 and 7 X 7 window over all the image. By
counting the number of minima and maxima tracks found alone, I have concluded that
the larger windows do not make any substantial difference to the number, or types of
features found. However, this is with data which varies dramatically in places. In the
case of more gradual changing landscape, differently sized windows may prove more
effective in the long run.

Of course, more complex surface shapes cannot necessarily be represented accurately
by a bi-quadratic fit — a more complex parametric model may be needed. A better
surface to fit would include zz, zy and 22 terms, although calculating the corresponding

coefficients is somewhat more more of a problem!

Mean Residuals and Window Transposition

It was stated that transposing the neighbourhood window to the origin, so that the
pixel coordinates became [z = 0,y = 0], greatly improved the accuracy of the estimated
surface fit. This is not always the case.

The accuracy of the bi-quadratic surface fit around the data points in the window
can be measured. Singular Value Decomposition returns the parametric coefficients of
the estimated surface and these can then be used in conjunction with the window values

to get an overall mean residual value.
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The mean residual R is calculated by averaging over the differences between the M
z—values in a window, z;, and the z—values returned by the parametric equation for each

(z,y)—coordinate pair. Each calculation uses the SVD estimated coefficients (a — f):

R= % li(a+bmi+cyi +dz? + ey? + friyi) — = (7.1)
Mean residuals for both the original and transposed window can then be compared
and used to choose the more accurately estimated surface fit — the smaller residual
indicating greater accuracy.
Discontinuities in the set of data points to be fitted, such as a cliff face, can also
lead to major surface fit inaccuracies. By checking that mean residuals remain within a

certain threshold limit, such problem cases can be identified, and the system (or user)

notified of the need to produce a better fit using a more accurate method.

7.2.4 Maxima / Minima Connections.

Another major critical point is the method used in connecting up gaps in the valley
minima and ridge apex tracks. As shown in Figures 5.4 (p.44), 5.7 & 5.8 (p.48),
the method of widening the tracks to “subsume” small gaps works fine in terms of
performing the connection. However, this method does not take into account that it may
be connecting valley minima across ridge apexes, or vice—versa, while also identifying
pixels which are not necessarily representative of true. maxima or minima

Had more time been available, it would have been much better to adopt Du Li’s
approach ([DuLi 89]) of examining endpoint orientations and extending tracks accord-
ingly. The method involves adding new pixels to a track provided they follow a similar
orientation, change in height value and are of the same classification. All these details

are currently available within the system.
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7.3 Further Work

So, apart from some fine tuning methods which could be employed, as described in the
previous section, what further work remains to be done?

Obviously, the first problem to be tackled is that of calculating the visual saliency of
the features, and hence the associated visual forces. This can be done along the lines as
suggested in Chapter 6, however I feel that more work is needed to determine the scale
and irregularity of features, along with a better understanding of how the strength of
depicted visual forces is related to this information.

Having determined the aspects of visual force, the next hurdle would be to produce a
3—dimensional wireframe plot, representative of the landscape under consideration. The
visual forces could then be plotted on top of the mesh — green for forces which push
the eye up concave slopes, red for those that attract the eye down convex features —
thus allowing the user to see how the forces interact with the lie of the land.

Adopting this approach would clearly be better than just viewing the directions of
force, as seen in a 2-dimensional environment from directly above, which is, perhaps,
suggested by the graphical images produced at each stage of the process so far. Further
to this, being able to view the plot from any arbitrary direction would give a clearer
indication of how lines of visual forces follow the concave and convex features in natural

landscapes.
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Appendix A

Digital Terrain Data Format

The data input into the system is a massaged version of the original digital terrain
data, consisting of two separate files — representing the two O.S. National Grid Squares

(NG40 & NG42). It is structured (and read in) as follows :

e cach file consists of 401 blocks of data arranged in a West — East direction, each

containing 401 height values.

o each block starts with a row having “51” as characters 0-1 and characters 27-29

encoding which block it is (1-401). The rest of the row is ignored.

o the next 21 rows have 19 4—character height records, followed by a “1”, going in a

South — North direction.

e the height records, encoded in ASCII, represent the elevation in metres ranging

from -100m to 1500m.

o each block ends with a 237 row that has 2 final 4—character height records (ie.
the 400" and 401°t), followed by a “0”.

e a typical block example is shown overleaf along with a graphical representation of

how the data is arranged.
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begin block number
! !

51 01400820 900201 000000 200 200 1 401 1 100011 10001 + row 1
329 337 334 335 339 339 330 322 315 310 308 302 293 285 276 270 263 257 2521 « row 2
246 242 239 237 238 239 242 249 261 274 284 295 303 308 312 307 302 300 2991 « row 3
296 291 296 299 305 314 313 286 244 228 201 184 168 155 145 135 127 128 1241 + row 4

170 169 164 162 162 170 170 174 175 174 171 171 170 169 164 155 149 147 1471 « row 20

146 146 146 146 145 144 140 134 125 116 100 98 97 90 84 81 88 93 931 + row 21

93 91 90 86 76 68 66 63 61 658 57 56 56 54 53 b52 50 48 481 « row 22

48 470 1 + row 23
1 end char

end char

Figure A.1: Exzample Real Data Block No. 200.
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Figure A.2: Arrangement of Data.
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Appendix B

NG40 Figures

In the main body of the report, all figures are related only to the results of processing
0.S. Grid Square reference NG42. The second Grid Square reference NG40 was also
used extensively throughout, and all the corresponding figures are collected here along
with the corresponding NG42 figure references.

The figures included are :

o NG40 Region Landscape — Figure 2.4.

e NG40 Contour Map (Original) — Figure 3.1.

o NG40 Range Image (Original) — Figure 3.2.

e NG40 Contour Map (Smoothed x20) — Figure 3.3.
e NG40 Contour Map (Smoothed x80) — Figure 3.4.
e NG40 Contour Map (Smoothed x40) — Figure 3.5.
e NG40 Range Image (Smoothed x40) — Figure 3.6.
e NG42 Cosine Shaded Image — Figure 4.2.

o N G40 Classified Image (Original) — Figure 4.6.

e NG40 Classified Image (Smoothed x40) — Figure 4.7.

e NG40 Classified Image (Smoothed x80) — Figure 4.8.
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Thresholded NG40 Classified Image (Original) — Figure 4.9.
Thresholded NG40 Classified Image (Smoothed x40) — Figure 4.10.
NG40 (Smoothed x40) Unconnected Valley Minima — Figure 5.5.
NG40 (Smoothed x40) Unconnected Ridge Apexes — Figure 5.6.
Connecting Gaps in the NG40 Valley Minima Tracks. — Figure 5.7.
Connecting Gaps in the NG40 Ridge Apex Tracks. — Figure 5.8.
The Effect of Track Thinning (NG40 Valley Minima) — Figure 5.9.
The Effect of Track Thinning (NG40 Ridge Apexes) — Figure 5.10.
NG40 Valley Minima of < 20 Pixels Removed — Figure 5.11.
NG40 Ridge Apexes of < 20 Pixels Removed — Figure §.12.

NG40 Overlaid Valley Minima — Figure 7.1.

NG40 Overlaid Ridge Apexes — Figure 7.2.
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Figure B.1: NG40 Region Landscape.
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Figure B.2: NG40 Contour Map (Original).

Figure B.3: NG40 Range Image (Original).
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Figure B.5: NG40 Contour Map (Smoothed x80).
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