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Abstract

The principal goal of this project is to determine the likely positions of small

complex features i.e. eyes, noses and mouths from intensity image data.

There are many image processing and pattern recognition systems, traditional
and non-traditional. Most of them are memory consuming and need elaborate
and expensive hardware. There is, however, a very big interest in these systems
not only because humans need a definite improvement of pictorial information for
their interpretation of image density data, but also because today’s robots, have
to be able to perceive their environment reliably and this has been proven feasible

with the aid of such systems.

A specific area, that of facial recognition, was examined in this project, using

artificial neural nets instead of the traditional pattern recognition methods.

Three pre-procesing techniques have been used in order to ensure that the

produced results are reliable.

If the net topology is the optimum, and the preprocessing technique produces
consistent and concise data, the net can recognise and identify the position of

facial characteristics successfully.
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Chapter 1

Introduction

1.1 Background

There is an increasing need for face recognition systems, within security facilities,
in big companies, or in other places where the identity of the people entering or
leaving is important. The human face is a dynamic three dimensional structure
and it has been proved that traditional pattern recognition techniques fail to do

the task efficiently and effectively.

The goal of this project is to combine connectionist methods with computer
vision and digital image processing techniques so as to achieve the recognition of

facial features, and as a verification to determine their position on the facial image.

There are already various systems used for recognising individual facial features
or whole faces, like WISARD [9], or others that recognise numbers like Cognitron[7]

Neocognitron[§]etc.

The most common approach has been to extract from the configuration of
facial features some geometric details and then to compare these with already

stored information in a database, examples include Kaya and Kobayashi[25] and

Harmon.[13]

These methods, however, have not been efficient enough for commercial use,
because they are either not reliable or are memory consuming and hardware ex-

pensive.

Connectionist methods have been applied before with quite successful results,
which were more reliable than those obtained by other techniques in the cases of

complex 2-D patterns. [13] [12] [9] [24]



Connectionist computing methods [15] [16] [14] have been proven successful
in this task, but there are some disadvantages, such as the net easily forgetting

already known data and taking some time to learn new ones.

This kind of problem is attributed to the usually complex structure of the
neural net that is used for the recognition task and its large number of input
units. In this project an attempt was made to reduce to the minimum these

problems by decreasing significantly the number of inputs to the net.

This was achieved by pre-processing the image to be used as input to the net
which will make some distinct areas i.e. the small complex features, ‘visible’ to

the net and will effectively reduce the dimensionality of data.

This project investigates the neural net facial feature recognition approach in
combination with three preprocessing techniques prior to entering the patterns to

the neural net. More specifically these techniques are :

1. eigenvectors and alpha values

2. ft analysis along with phase angles in radians of the resulting complex matrix.

The angles lie between - 7 and .

3. ft analysis, with reduced frequencies.

These methods are explained further in Chapter three.

The neural net with which we experiment is the Multilayer Perceptron and it
was chosen because we believe it can perform the recognition task more efficiently

and effectively.

2



1.2 Previous Recognition Techniques

There have been quite a few attempts to automate face recognition procedures.

Examples include Goldstein et al, (1971,1972), who produced interesting re-
sults, Harmon et al, (1981), Takahashi et al (1990). All of them were successful
in performing the recognition task, but they could not quite automate the entire
procedure and the results were not as reliable as those of the connectionists. In
some cases, template matching was applied and whenever the template was not

correctly placed, it was adjusted manually.

Connectionist methods, on the other hand have been more successful in au-
tomating the entire procedure. Examples include Kohonen et al (1981), who
attempted to do face recognition using whole images of faces without elaborate

preprocessing.

WISARD [9] detected facial features with the purpose of helping the face recog-

nition task in general.

Cognitron (7] is a self organised multi-layered neural net by Fukushima, was
quite successful as well in recognition tasks, while Neocognitron [8] is a better

version that can recognise patterns, without being affected by position shifts.

Vincent et al [12], compared traditional recognition techniques with connec-

tionist methods, and proved that the latter were more successful, although not

100%.

Turk and Pentland {13] were also successful in recognising faces. They treated
the face image as a vector and they performed eigenvector analysis on a set of facial
vectors as such. They then selected the best eigenvectors by principle component

analysis and they proved that their method had a big success rate.

The research reported here differs for these results in that we are looking to
identify and locate individual features, such as left eyes, rather than complete

faces.



1.3 Pattern Recognition

Pattern recognition is closely linked with perception and cognition. The main aim
is to extract, identify, classify and describe the patterns in data gathered from real

and simulated environments. [18] [16]

Scientists have been studying the human and the animal perception systems, so
as to find evidence of their function [22]. It is very important that we understand
how the perceptual system is structured and exactly how it works in order to be

able to copy it and apply it to robots and machines [28].

This apparent lack of ability to understand the nervous system in depth has
not prevented people from making perceptual models based on mathematics that

provide the theoretical hasis for classifier design.

Several measurements are required in order to be able to adequately distinguish
inputs that belong to different categories. If we take n-measurements from the
input pattern each ol which is a unique feature we can then create a set of these

features that form a feature vector.

There are statistical pattern recognition techniques that cannot handle very
well the structural information about the interconnections in a complex pattern.
Of them, the Bayesian classification technique is a powerful tool. The Problem
Reduction Representations seem to work in certain cases only, and the neural
nets and the genetic algorithms have succeeded repeatedly in pattern recognition

tasks.[25]

It is very important to find the necessary parameters while designing a pattern
recognition system. Usually these parameters are unknown and this is why non-
numeric or non-parametric systems are used to find a suitable density function.
A very interesting method could be estimating this function from the sample

patterns.

Classifiers rely on distance metrics and probability theory. The distance met-
rics can be found by calculating the Hamming distance, the Eucledian distance,

the city-block distance, or the square distance.[17] [15] [11]



An essential step is to train the classifiers; this can be done in two ways, either
by supervised learning or unsupervised. In the first case the classifier is presented
with the output that it has to produce. A problem that can occur is due to the
big demand for training patterns which grows exponentially with the number of

dimensions in the pattern space.

In the case of unsupervised learning, different clustering algorithms are used
that seek to find clusters and/or natural groupings in the data. An example is the

hierarchical clustering method, which happens to be quite complicated.
For the scope of this project supervised learning has been preferred.

The three preprocessing techniques were carefully selected so as to maintain
as much as possible valuable information for the patterns to be recognised. In the
case of the eigenvectors, a principal components analysis was applied in order to
decide the most important of them. In the case of the fast fourier transform phase
angles, the vector’s direction was kept intact, and finally in the case of the fast
fourier transform reduced frequencies, the frequence filtering was carefully done
in order to produce a reconstructed image that would be similar to the original
one. The result of this careful selection of preprocessing techniques was that the
neural net was trained relatively quickly and the identification and recognition

were successful.

1.4 Gray Level Representation

A way to deal with classification problems is to use an automatic scene analysis

technique such as the gray level representation. [27]

Suppose that we have to analyse a black and white image. This can be rep-
resented as a real-valued function of two variables i.e f(x,y). The intensity of the
of the image is the gray level or brightness. This fact enables us to represent an
image in the computer. An image function to be suitable for image processing
must be digitised both spatially and in amplitude. Samples of the digitised image
have to be acquired and this is done by digitising the spatial co-ordinates (x,y).

The amplitude digitisation is the gray-level quantisation [26].



The image is eventually represented by an array of integers, where each member
of the array or pixel specifies its approximate gray level for a corresponding cell.
Usually the quantities are an integer power of 2. N = 2™ and G = 2™, where
G is the number of gray levels and N x N is the size of the image. The discrete
levels are equally spaced between 0 and 255 in the gray scale. The number of bits

required to store a digitised image is given by the formula bits = N x N x m.

The resolution of a picture depends on N and m. The more these values increase
the better the image becomes. This implies that the storage and the processing
requirements increase as a function of N and m. However, if the resolution is very

low, in an effort to decrease those two, we have the checker-board effect. [27]

In order to obtain better results with this method it is necessary to normalise
the image first, because there might be too many dark or very bright regions and
subsequently the partitioning of the image into sets of distinct gray levels might
lead to wrong decisions on behalf of the neural net. Low values in the function

represent dark levels of intensity while high values represent bright ones.

The key decision with gray level representation is to select which gray level
transitions are significant, because there is the danger of one being unable to

reach efficient and effective solutions.

The number of gray levels for this project was decided to be 256, because we

tried to maintain an acceptable quality in terms of resolution.

1.5 Artificial Neural Nets

According to neuroscience. {rom the study of the spatial behaviour of mammals,
the spatial orientation and navigation involve the combination of sensory infor-
mation along with the organisin’s own measurements with respect to the sources
of these stimuli. More specifically spatial cognition requires the computation of
either previous memories or the ones newly generated that are being experienced
directly from the organism. The assumption is that such an ability must involve
the internal manipulation of spatial representations, something similar to the ten-
sorial matrix theory in mathematics. It is assumed that there is a mechanism

which makes transformations from one sensory space to another. This function
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also serves as a general model for the ability to foresee the consequences of par-
ticular actions in specific contexts. This ability of the human nervous system is
valuable, although not very well understood. It is this exact ability that the sci-
entists are trying to copy by having introduced the concept of the artificial neural

nets. [28]

It has been proved that neural nets are very good at recognising faces. There
are of course drawbacks in using them, like the net forgetting the learned patterns
when trained with new ones, or sometimes being overtrained, but they are indeed
very important since they can be used to perform tasks for which computational
algorithms may not exist. they change and adapt their behaviour dynamically and
they have a distributed nature. which can work on fault tolerant hardware. It is
also important not to overtrain the net, because then instead of generalising it

memorises the patterns and we want to avoid exaclty that.

The neural nets learn from example and they do not require vast amounts of
memory, depending off course on the network size. The innovation here is that
the net does not have anywhere an explicit model of the small complex feature
that it is supposed to recognise but it has retained in memory its reaction to the

feature recognition. [11]

The need to find a simple learning rule is urgent. The good behaviour - the
behaviour we want - should be reinforced, while the undesirable one should be
reprimanded [14]. This idea is transfered to the neural nets. Of the various types

of neural nets, in this project we deal with the Multilayer Perceptron (MLP).

The MLP was chosen, because it learns fast, it does not forget easily, and as
all neural nets, its distributed processing nature makes it fault tolerant. MLPs
can recognise noisy patterns quite successfully. The structure and properties of

the Multilayer Perceptron are explained further in Chapter Four.



1.6 Project Overview

The figures that follow figure 1-1 figure 1-2, show graphically the structure of
the project. During Phase-I the images are normalised, the subimages containing
individual features are extracted and the data files are prepared according to the
three preprocessing techniques. These are described in detail in Chapters two and
three. When the three data files are prepared then the net training takes place as
well as various tests are performed in order to find the net configuration that will
learn the training patters fast and with a small error per unit. This procedure is
explained further in Chapter four. The outcome of Phase-I is the three trained

nets.

During Phase-II the postprocessing and verification procedure take place. We
select two faces that are unknown to the net. These faces are scanned and subim-
ages are extracted starting from the first pixel until the last one. The scanning

program extracts these windows as follows:

1

o Extract a 12x30 or a 16x32 window ! starting from pixel Number one

e Extract a 12x30 or a 16x32 window starting from pixel Number two, and so

on until you reach the last pixel

When the image scanning is complete the extracted windows are processed ac-
cording to each of the three methods : eigenvectors principal components analysis
and alpha values, ? the fast fourier transform phase angles or else ft-I, and finally

the fast fourier transform reduced frequencies or else {t-II.

The outcome of each of these methods is a data file containing input patterns to
be fed to the corresponding trained classifier. The outcome of Phase-1I is three files

containing the probabilities assinged by the each of the nets and the projection

!The window/subimage dimensions depend on the preprocessing technique to be used

but more about this in Chapter 3

2From now we shall refer to this technique as the alpha values method
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of these on the actual image. So for each image there are three sets of results
that show graphically the probabilities assigned by the nets for each pixel. More
information about them is given in Chapter five and in Appendix A where all the

net results are kept.

1.7 Chapter Overview

The thesis is organised into five chapters :

Chapter one refers to background information about Pattern recognition, pre-
vious recognition techniques, gray level representation and its significance in this

project and finally, to a briel summary about artificial neural nets.

Chapter two describes the structure of the multilayer perceptron and its prop-

erties, the Matlab program and the Input Data morphology.
Chapter three explains analytically the preprocessing methods,
Chapter four refers to the net configurations, training and results

Chapter five explains in depth the post-processing and verification procedures

and finally

Chapter six summarises the conclusions and talks about future work.

At the end of Chapter five there is a detailed appendix illustrating the net
results graphically while at the end of the thesis in Appendix B there are all the

matlab programs that were used for this project.
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Chapter 2

The Multilayer Perceptron - MLP

2.1 Structure and Properties of the MLP

The Multilayer Perceptron has three layers : an input layer, a second layer called
hidden layer and finally the third one called output layer.[17] The units in the
second and the third layer are perceptron units, crude models of neurons that
function as thresholding units with 1 to n inputs each either 1 or 0 denoted by
Ty z,. Each input is modified by the weight factor w; so as to produce the
1

desired output. If the actual output of the neural net is similar or the same as

the desired output then the learning is complete.

The perceptron cannot solve linearly inseparable problems while the MLP can
cope very well with such cases. Also the Multilayer Perceptron is fault and noise
tolerant and it has the ability to generalise what it has learned quite successfully.
For these reasons we chose to use this net for this project, since it happens to be

one of the net structures that has been successful in recognition tasks.

MLPs are used nowadays for a number of scientific and commercial applica-

tions, like NeTalk.
The function the MLP computes looks like :

VM u) = g(Th wpVid — 1(w)

w;, = weights ¢ = sigmoidal threshold V}(u) = value of k* unit = A** loga-

rithm on input signal .

IMost of the times this is impossible

12
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Vi (u) = M, = kth input A =1,2,3

The thresholding function is the sigmoid one. The input layer distributes the

values it receives to the hidden layer.[11]

The following figure 2-1 shows the structure of the MLP.

INPUT LAYER MIDDLE LAYER OUTPUT LAYER

Figure 2—1: The Multilayer Perceptron

The learning rule for the MLP is the generalised delta rule or else back propa-
gation [15] [17] [10] [11]. According to this rule, the weights of the net are adjusted
until the net reaches a satisfactory level of learning the input pattern. The algo-
rithm continuously compares the actual output with the desired one and adjusts

the weights accordingly.

This is done with the help of an error function. The calculated error is back
propagated from one layer to the previous one. It is through this error propagation
that the net finds out about the erroneously learned pattern and thus modifies the
weights until learning is achieved. If the error is big, the weight has to be altered
significantly, while if the error is small, the weight adjustment has to be small as

well.

This method of learning is called supervised learning, because the net has been

instructed in advance to associate a given input to a given output.

13



The sigmoidal was selected as the thresholding function because it retains a

lot of information. This function looks like :

a;i = g(d_ wija;) (2.1)
i=o

1/(1+exp(-x)) = 7]

08 [
07
06
05 [
04
03[

0.1

i
1
i
|
4
i
1
1
1
1

-10 -5 0 5 10

Figure 2—-2: The sigmoid function

The rbp program in the Departmental machines was used in order to train
the MLP. Rbp stands for recurrent back propagation and it was simulating this
procedure i.e. it was back propagating the error from the output layer to the
middle layer and then to the input layer until the pattern was learned as best as
possible. Throughout this back propagation the weights on the arcs among the
three layers were accordingly adgusted in order to reach a point at the weight
space where the error was small. The only net configuration that had difficulties
in getting out of the local minima was that of the ft reduced frequencies. This
problem was tackled by changing the seed, and therfore the initial weights, as well

as by modifying the number of the hidden units.

The recurrent back propagation usually gets stuck to local minima or maxima
within the weight space. A small positive constant called momentum and sym-
bolised by a is used to give the net energy boosts and in this way help it avoid
situations such as these. The goal is to reach a global minimum, since the error

per unit never reaches 0.

When such a minimum is reached then the net has learned the patterns as best

as possible.

14



2.2 Matlab

MATLAB is a technical computing environment for high performance numeric
computation and visualisation. It integrates numerical analysis, matrix manipu-
lation, signal processing and graphics in a friendly environment, where traditional
programming is not required; mathematical expressions are expressed as they are

written [19]

The algorithms that do all the preprocessing and the postprocessing were writ-
ten in matlab , which was proved to be invaluable and fast for the required com-

plicated calculations.

2.3 Input Data and its Properties

The pictures were taken by Erdinc Dermenioglou, who tried to maintain the same
light conditions, and the same distance from the camera with all the subjects
during the image capturing. For this purpose a CCTV camera with a digitiser

and SUN 3 workstation were used. The background lighting was minimised. [24]

Each picture was initially 512x512 pixels, each pixel 8 bits, and the gray levels
totalled 256. Later on for practical reasons and to save memory the image resolu-
tion was reduced in half, which means that in the end the entire experimentation

and the net result verification was done on 256x256 images.

Erdinc used ISIS as an image processing tool and a script to generate and store
the captured images. Because of the technique he used with the script program
(a bounding box placed around the image area to be stored), some images were

smaller than 512x512. These images have not been used for this project.

The lighting was provided by two fluorescent tubes mounted on either side of
the camera on the lighting rig, while the subject was sitting on a stool placed at
one metre distance {from the camera. He used the fluorescent tubes to provide a
correctly illuminated environment and he also examined the gray level histograms

of the produced images in order to make sure that they were correct.

15
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The idea was that {rom these images subimages with 12x30 or 16x32 dimensions
were to be extracted depending on the preprocessing technique. These windows
contain the facial features individually, ie a 12x30 window contains the left eye

only.

Based on these images. the centre of the window to be extracted had to be
located first. This was mainly done manually, either with the use of the ISIS
software, or with the xv program. The centre of that window was decided by
moving the cursor to an appropriate central pixel for that window and by recording
the x,y cooridnates in a text file which would be later used for the entire extraction

procedure.

A crucial point was to decide where the centre of each individual feature would
be. For the left and the right eyes the centre was in the pupil, in order to facilitate
the net training. The window containing an eye does not include any extra pixels
from around the eye. The centre for the nose was decided to be the left nostril,
first because it was more prominent in most of the images and secondly because
the size of the nose did not allow for a window to contain it. The centre for
the mouth, was the geometrical centre of a 12x30 rectangle and it was located in

between the lips.

The file containing the grouped facial features is consisted of 223 samples,
which amounts to circa 45 samples of a kind. Each group has a threefold set of
each facial feature, ie the left eye in three orientations, upright, tilted to the left
and tilted to the right. These diflerent orientations were considered critical to the
success of this project since the neural net had to be able to cope with the various

eye orientations and sizes. The same applies for the rest of the features as well.

A program that reads in the face image produces an output file with the gray

level value of each pixel in numerical format.

The images are normalised before any preprocessing starts. Normalisation is

discussed extensively in Chapter 3.

The extraction program given the coordinates of the centre of a 12x30 window
or a 16x32 only in the case of the ft filtered data, extracts the facial features
from the normalised HIPS image and gives the centered subimages which are used

during the preprocessing. The images have been given numbers according to the

16
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order they were taken. and a character as a specification of their orientation. For
example the filename corrseponding to an upright normalised image that was taken

tenth would be 10.norm.

As previously mentioned the same image was taken in two different orientations
as well, one with the head tilted on the left and another on the right. These

filenames would be 10.r.norm for the right orientation and 10.l.norm for the left.

The extracted features belore they are compiled together to a single file, are
kept in individual files, that are named according to this ‘sorting code’ as well.
The left eye files begin with ‘le.’, then follows the number of the picture they were
extracted from and in the end, is the ‘norm’ extension, which indicates their status

(whether normalised or not).

A similar method had been followed for the rest of the features, only that the
first part of the name varies according to the feature the file holds. For example
the right eye files start with "ri1.”, the nose files with "nos.”, the mouth files with
"m.” and the non examples with "non.” This classification code was proved very
efficient and effective since it saved a lot of time, throughout the project. I did

not have to remember which file belongs to which image, by just looking at the

name of the extracted image I knew what it represented.

Each set of files was kept in a separate directory, along with the coordinates

files and all the rest of the relevant files.

All the shell programs were kept in the /bin/sun4 directory, from where the

invocation was very easily done from any part of my home directory.

All the major procedures i.e. generation of gray levels matrix, feature extrac-
tion, normalisation and file compilation, were done by shell programs which were
invoking either the C programs or the matlab functions. So instead of giving the
coordinates to the extract program separately, there was a shell program that was
reading in a file of coordinates along with the actual name of the file they refer to,
and producing a series of extracted images, whose number depended on the user

specifications.

For example a typical entry would be:

genle 1 24
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The result of this would be the generation of gray level representations for

images numbered 1 to 24 and the gray levels would be kept in files for further use.

In the end the only time-consuming operation was the training of the neural

net which was took 12 to 20 hours, depending on the net configuration.

2.4 Summary

In this chapter we discussed the MLP structure and functions, the matlab package

and the input data and its properties.



Chapter 3

Preprocessing Techniques

3.1 Normalisation Algorithm

The input images were normalised prior to being fed to the neural net. This had
to be done because the normalised image, enhanced the features, and improved
the image statistics. The neural net was then able to identify and locate more
accurately facial features. In general, the homogenous picture obtained by the
normalisation process gave better results when it went through the project mech-

anism than the non-normalised ones.

The normalisation was done with a c program called ‘normalise.c’. This algo-
rithm takes as input the HIPS image and treats it as a normally distributed matrix
of integers, with variance 02 and mean M In order to produce the normalised im-
age, it subtracts from each pixel the mean, then it divides this result by o. This
normalises the image. However, in order to resolve the 0-255 distribution it adds
3 and finally it multiplies the entire product with 42.6. This had to done as such

because it produced a better normalised image.

So for an image of N pixels P;,7 = 1...N the mean M is given by :

1 N
_Llsp 1
M=~ ; P (3.1)
The variance o? is given by:
2 1 & 2
=—) (—M 2
o = g S AR M) 32)
the normalised intensity is given by:

P-M

p=t "V (3.3)
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and the Final Image is :
F; = 42.6(P; + 3) (3.4)

where M is the mean intensity, P is the pixels, and o is the standard deviation.

The image is treated as a normal distribution and the normalisation is done on
each picture separately. In this way the normalisation results improve the image

globally on an individual basis.
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Figure 3—-1: Normalised Image

Figure 3-2: Raw Image



3.2 Preprocessing Overview

Before feeding the net with data, three preprocessing techniques were applied so
as to enable us to make a constructive comparison of the results for those three
methods. As it mentioned before, the preprocessing was done in order to reduce
the data dimensionality and subsequently the net complexity. The alpha values
method and the fourier transform reduced frequencies acheived that, the first by
reducing it to 60 from the original 360 and the second to 114 from 512. The
fourier transform phase angles did not attempt to do it, but instead it was used
as a means to prove that even if less than the original dimensions are used the net

results are quite good.

It is the preprocessing that decides the number of input units to the neural

net.

The method that gave the most accurate results was the phase angles technique,
as was expected, since all the {requencies were used, thus reducing the input noise

to the net (see section 3.4).

The second best was the eigenvector analysis technique (see section 3.3), and
the technique that gave less accurate results among the three was the ft reduced
frequencies (see section 3.5). These results are explicitely illustrated in Appendix

A.

There are three matlab programs that are dedicated to the preprocessing of

the net data.

Each algorithm first reads the file that contains all the extracted facial features
together in groups. These features are extracted from the normalised facial images
and they have size equal to 360 pixels. Each feature is read as a 360 vector long
since the extracted images were 12x30 i.e 360 pixels, and as such it represents a
single pattern for the neural net. Therefore each facial feature ie left eye, right
eye, nose and mouth, is a 360 vector that is preprocessed prior to being fed to the

net.

In the case of the eigenvector analysis, the optimum number of vector compo-

nents was 60.

[S)
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In the case of the fourier analysis (ft) all the 360 frequencies were used. The
program that was doing the fourier transform to the set of data was deriving
from the generated complex matrix the ‘angle’ data, in reality the phase angles
in radians. These angles lie between - 7 and #. This had to be done in this
way because the multilayer perceptron does not accept as input complex numbers;

therefore a meaningful representation had to be found for the net.

The ft method was used again as a third preprocessing technique. This time
a reduction in the data dimensionality was attempted through the utilisation of a

smaller number of frequencies for each facial feature.

While the maximum number of frequencies was 512, in this case only 57 of them
were used. The algorithm was filtering the number of frequencies above a certain
limit in an effort to determine the optimum number to be used for representing
eventually the image to the neural net. After a lot of experimentation it was
concluded that 57 was the optimum number of frequencies to be used in order for

the net to receive a meaningful representation.

The files produced by the preprocessing procedure are then fed to the corre-
sponding neural nets that have been created according to the preprocessing spec-
ifications. At this stage, the neural net gets trained, while various configurations
are tested for better results. The {ollowing figure 3-3 represents graphically the

pre-processing methodology

To summarise the preprocessing stage was as follows:

e Normalise the 256x256 facial images

o Extract sequential subimages/windows starting from the first pixel until the
last one. The coordinates of this pixel denoted the top left coordinates of
the extracted window whose size was either 12x30 for the alpha values and
the phase angles techniques or 16x32 for the ft reduced frequencies. Each
extracted window was represented as a vector either 360 long for the first

two cases or 512 for the last.

¢ In the alpha values case, find the eigenvectors of the 12x30 extracted win-
dows, normalise them, apply principal components analysis, select the ones

with the bigger eigenvalues and then prepare the file for the net training.

23



e In the case of the {t-phase angles, do the fourier transform of the 12x30

extracted windows, find the phase angles in radians and then prepare the

file for the net.

In the case of the {t reduced frequencies, do the fourier transform of the
extracted 16x32 windows, select the thresholding value for the frequencies,
separate the real from the imaginary part, put in a file the the combined

thresholded matrix and prepare the file for the net.

3.3 Eigenvectors and Reduced Dimension-

ality

One of the major preprocessing techniques was the eigenvector analysis along
with a subsequent reduced data dimensionality. This proved to be the second
best method when it was coming to pattern recognition and identification

on behalf of the net.

A technique very similar to Principal Components Analysis has been used

quite successfully before in the face and small features recognition task, by

M. Turk and A. Pentland. [13]

This method actually reduces the data dimensionality so that a suitable lin-
ear transformation of the co-ordinate system is found, such that the data
variance is small and subsequently these dimensions can be ignored. Princi-
pal Components Analysis is in reality a way to make a concise representation
of a set of data points. The best solution is represented by the eigenvectors
corresponding to the larger eigenvalues. The eigenvectors taken in the order
of size of the eigenvalues are the solutions. Note that the eigenvectors have
to be orthogonal among themselves which means that 2X2, = 0. The dimen-
sional reduction is achieved by ignoring the eigenvectors that correspond to

small eigenvalues.[15]

An important issue in this method was the speed of the entire procedure, not
only throughout the preprocessing stage, where the net had to be trained,

but also afterwards when the net had to classify the presented patterns.
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The eigenvector analysis was accomplished much faster using the Turk and
Pentland approach, in comparison to the traditional principal components
analysis technique that was taking overnight to run. It was not considered
practical to pursue this methodology, not only because of the actual prepro-
cessing stage, but because of the postprocessing one, during which the net
would have to be fed with extracted images from the entire face as a set of
patterns. The number of these patterns was 2562, since the scanned facial

images used were 256x256.

The reason for this significant increase in speed was the different approach

for the covariance matrix :

For the traditional Principal Components Analysis technique :
C=M'M/(m-1)

The entry in the i-th row and j-th column is :

Cij = =3 Torey (Pri — 1) (Prs — 1)

P = (P11,P12,"',P1n)
_ . . p2 = (pa1,p22, ", P2n)
m = a set of points each n dimensional:
Pm = (Pm1,Pm2," s Pmn)

p is the average point which is computed by averaging each coordinate sep-

arately :

Hoo= (/Ll,,“"b ch af"n)

M1+ P
9

n+"'+ mn
= £ —

m m

M is a matrix m x n

Pir — M1 0 Pian T Ha

M= [15]
Pmi— M1 Pmn — fin

According to Turk and Pentland :

C=1yvM 0,07

n=1



The matrix C is the covariance matrix
An entry u; in that matrix is :
wi=Y M oop®p l=1.--,

U = AAT

®; is the difference of the actual image I';28 and the average image ¥ and A =

[(I)la (I)Zv e 1(I)m]
Their purpose was to :

... find the principal components of the distribution of faces, or the eigenvectors
of the covariance matriz of a sel of [ace images treating an tmage as a point (or

vector) in a very high dimensional space.

... The eigenvectors are ordered each one accounting for a different amount of the

variation along the image faces [13].

While it took so much time for an extravagantly memory consuming preprocessing
with the pca program which is available in the Edinburgh Artificial Intelligence
Departmental Machines, it took less than half an hour to obtain the same results
with a matlab program that was written according to the Turk and Pentland paper
specifications. The program initially reads the file containing the grouped features

as a matrix of 223x360, 223 image samples of 360 pixels each (i.e.12x30).

The calculation of an average feature is done which is actually the mean of that
matrix. This result is put into another matrix which is subtracted from the original

one.
So :
A=matrix that contains the image samples

m=number of image samples

S = T

B = 25T
C=S5-8B
L=CTxC



[V, D} = eig(L) [V, D] contains the eigenvectors and the eigenvalues
M=C-V
T = normalised M

n_ M
XR="M

I = 60 bigger eigenvectors of X
K =351 x C find the sum of the inner product of I and C

The matrix C is used as an input argument to the functions that perform the

eigenvector and the eigenvalue calculations.

When this is done, the matrix X' R contains all the normalised orthogonal eigen-
vectors. The ones that have got the biggest eigenvalues are kept in the I matrix
which is used in the image reconstruction. If the entire number of eigenvectors is
used, then the reconstruction is a perfect copy of the actual image. If a smaller
number of these eigenvectors are used then the resulting reconstruction is not a
perfect copy, but instead is a more abstract representation, not of the specific im-
age it was extracted from. According to Turk and Pentland [13], the number of

the best eigenvectors A ! used is determined by :

/\k = % E{W(u{@n)z

ufuy, =

ifl==~Fk

Ootherwise

where vy, is the k-th eigenvector.
The average face/feature 4 was determined by :

1M
U= M Zn:l Fn

Each processed face differed {rom the original one by :

b, =T, -0

1) represents the eigenvalues whose number subsequently decides how many eigen-

vectors will be used



A new face image I' was determined by :
wy, = ’I,Ll{(].—\1 - \If)
where U is the matrix containing the average features

This method of deciding the best eigenvectors has been followed in this case as
well. The first 60 eigenvectors were considered the optimum number to be used,

since they are enough to specify a facial feature.

When the eigenvector matrix is ready, the algorithm continues by creating another
matrix, which is actually the inner product of the eigenmatrix and the matrix that
has the result from the subtracted average features. The outcome of this operation
is a set of scalar values, which are used as input to the net. The inner product
was used as such because it conveys unique information about each vector and
subsequently, this reduces the probability that the net will misclassify an input

pattern that is generated with this technique.

In order to verify that the number of selected eigenvectors was the optimum a
reconstruction of the processed images is necessary. So by finding the inner prod-
ucts of the eigen matrix and the matrix that contains the scalar values, which
we shall call alpha, and adding each time the corresponding entry in the matrix
with the average feature calculations, the resulting reconstruction when projected
shows that indeed the number of eigenvectors selected as well as the rest of the

processing was correct.

It is the matrix holding the set of the alpha values that will eventually be fed to
the net, after preparing the file for this purpose by defining a specific number of
entries in each line (the optimum was 20) ? and by adding at the end of the defined
pattern the binary output the net has to learn to associate when a similar imput
pattern is fed to it. For the lelt eye this output was 1000, for the right eye 0100,
for the nose 0010, for the mouth 0001 and for the non-examples was 0000. This
representation with that particular configuration was thought to be easier to learn

for the neural net.

2If a line in the file the net had to read was longer than that the rbp program was

giving error messages

Q]
(V4]



At the end of this chapter follows a set of examples for each of the facial char-
acteristics , illustrating the actual image, the error which is the difference of the
actual image and the reconstructed one and finally the reconstructed image figure
3-5 figure 3-6 figure 3-7. The eigenfeature is also illustrated, which is actually

the image of the biggest eigenvector.

The image samples shown were randomly selected. The reconstructed images
do not have a big difference from the actual ones as it can be seen from the
reconstructions. In this way it was clear that the number of eigenvectors used was
optimum and therefore the noise introduced because of the reduction of the data

dimensionality was not affecting negatively the operation of the net.

3.4 Fourier Transform Method I

The two dimensional Fourier Transformation (ft) is a 2D transformation that
analyses the spatial frequencies in an image. High frequencies are due to areas

where intensities change a lot while low frequencies are due to areas of low contrast.

This technique was used in two forms, the first was with all the frequencies and

the calculation of the phase angles in radians.

The two dimensional fourier transform was done on the input file. It was done
individually on each 360 long pattern and the resulting complex number matrix

was kept for further processing.

A Fourier transform is defined as :

Ff(x) = F(u) = 2, [(w)ewp[—j2rua]de

where j = /=1

The Fourier transform of a real function is generally complex :
F(u) = R(u) + jI(u)

F(1) = A

IF(u)]| = [B*(u) + I*(u)]2

$(u) = tan~ [F9]



When the two dimensional fourier transform was done the data went through
the final processing : the calculation of the phase angles in radians. This was

accomplished using the ¢(u) the phase angles.
The frequency factor is represented by u.

Verifying that the {t results were the correct ones was done by projecting the
inverse ft of the image and comparing the results with the actual input pattern.

The inverse Fourier transform is defined as :
F1F(u) = f(z) = [22, F(u)exp[j2rua]du

The matrix containing the phase angles in radians was then prepared for the
net, following the same standards as in the previously mentioned preprocessing
technique, ie 20 entries per input line and addition of the binary output at the end
of the pattern for the net. Examples of how the two dimensional fourier transform
of the facial features follow. Note that no errors occured between the actual and

the reconstructed image, since no reduction in the data dimensionality took place.

Examples follow at the end of this chapter for each of the facial characteristics,
illustrating in order the ft of the feature, the inverse ft and the fourier transform
plot in figures 3-8 3-9 3-10 3-11 3-12. The ft plots show that the ft of each feature
is clearly different and that the net has more chances to learn the patterns faster

without getting confused as to which is which.

3.5 Fourier Transform Method II

As it was earlier mentioned the ft technique was used twice, but with a different
number of frequencies each time. While in method 1 360 phase angles were used,
in this case only 57 out of 512 were used, since here the extracted images were

16x32 ie 512 pixels in each picture.

Again the input file was read by the program and the ft was applied to it. Then
a spatial filter was applied on the resulting matrix in an effort to determine the
optimum number of frequencies to be used so as to conclude with a meaningful
representation to the net. Figures 3-13 3-14 3-15 3-16 and 3-17 show clearly the

reason why 57 frequencies were selected. Less than that resulted in a representation
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with too much noise, the featres were too abstract and therefore not appropriate

for the training of the neural net.

The algorithm that was thresholding the {requencies is as follows:

1. Read in the pattern

o

. Find the inverse [ourier transform for it
3. Threshold the {requencies that are bigger than 500

3
4. Project the outcome

As soon as the number of frequencies was decided, the resulting ‘mask’, was kept
for further use. That mask was a 360 vector long that had zeroes and ones. At the
positions where the value was 0, the frequency of the input pattern was determined
as being below the value used for filtering, and therefore, was rejected. In the cases
where there was 1, the frequencies were accepted as valid and they were kept in

to a special file that would eventually be fed to the net.

The resulting ft matrix was a complex one; as it was mentioned above the multi-
layer perceptron does not accept complex values as inputs, that is why that matrix

had to be presented in another way to the net.

The real part was separated from the imaginary part and the each one was kept
in separate matrices. This, however meant that the number of inputs to the net
had to double, since there were now two matrices that had 57x223 dimensions,
(where 223 the number of input patterns, and 57 the number of ft output complex

matrix).
So in this case the net had 114 inputs ie 57x2.

Again, in this case reconstruction of the initial images was attempted so as to
ensure the success of this last preprocessing technique. By projecting the inverse

ft of the filtered data, we made sure that this technique had indeed been successful.

The thresholding value for the mask creation was 500. This value was carefully
selected in order to convey all the meaningful information for the net without

distorting the facial features beyond recognition.

As it can be seen from the plot in figure 3-5 that shows the frequencies in the

mask, those smaller than 500 were not important.
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The error plots show the difference of the recontructed image from the actual

image.

In the section that follows all the preprocessing results are explicitely stated giving

the exact nature of the whole procedure. At this point the net training takes place.



3.6 Summary

In this chapter, we discussed in detail the mechanics of the three preprocessing
that were used to produce the data files to be fed to the untrained net. We also
illustrated the extracted features, the features generated by the preprocessing and

the reconstructed ones.

From the preprocessing results we concluded that the techniques used gave pat-
terns that were not very much different from the actual ones, thus increasing the
probabilities that the nets will successfully recognise the patterns they will be

tested with.
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REPROCESSING STA
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for the net
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Figure 3—-3: Graphical Preprocessing Overview
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Figure 3—4: The role of the net conceptually
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Figure 3—5: Normalised (12x30) left eye, right eye , nose and mouth
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Figure 3-6: Reconstructed left eye, right eye, nose and mouth
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Figure 3-7: The Best Average EigenFeature, A normalised non example 12x30,

and its reconstruction
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Figure 3-8: fourier Transform of a left eye, its inverse, and the ft plot
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Figure 3-9:

x10
fourier Transform of a right eye, its inverse, and the ft plot
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Figure 3-10: fourier Transform of a nose, its inverse, and the ft plot
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Figure 3—-11: fourier Transform of a mouth, its inverse, and the ft plot
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Figure 3-12: Fourier Transflorm of a non example, its inverse, and the ft plot
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Figure 3-13: The Image ol the Mask,The Frequency histogram and the plot

indicating why this {requency was selected
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Figure 3-14: Normalised 16x32 left eye, right eye, nose and mouth




Figure 3-15: Masked left eye, right eye, nose and mouth
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Figure 3—16: Error for the ft -II left eye, right eye, nose and mouth

47

20



4r 4
ar \ J
2r J
ir ~— : .
1]
0 L .
A ..
o= 1

2F X ~
3k .
-4 .
5 L 1 1 1 | 1 1

-40 -30 20 -10 0 10 40
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Chapter 4

Neural Net

4.1 Topology, Learning Methods and Training

As has already been mentioned the pattern length determines exclusively the num-
ber of input units to the net. The output units are mostly up to the user. For
the scope of this project the output units for the three net configurations were
four, one for the left eye, one for the right eye, one for the nose and one for the
mouth. When the net was outputting 0 probabilities in all four cases during the
final pattern recognition, this meant that the input pattern belonged to the group

of non examples.

There are three net configurations each one pertinent to a preprocessing tech-
nique. The net is a multilayer perceptron [11] and it was trained with recurrent
back propagation [11] [15]. The reason for this single training method was that
more emphasis was placed on the preprocessing techniques than the neural net

configurations and training methods.

Throughout the net training various factors were tested, ie the number of hidden
units, the number of connected units and various possible configurations, the 7
and 7 2 values, the momentum, the learning rule, the sharpness, the thresholding
function, the seed, the tolerance and in general an effort was made to test as many
as possible conigurations in order to find the one that would enable the net to

learn as fast as possible.

The results that follow show more explicitly the effect of alterating the net param-
eters. All the changes were done methodically, meaning that not more than one

configuration values were changed prior to testing, and that various combinations
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were attempted of these values based on the results given during the training of

the net with the previous configuration.

In some cases where the net was showing an almost steady undesirable behaviour,
random changes were attempted, so as to observe the outcome. In some cases
this bore success, because of the decreased training time and the learning of the

patterns.

From the experiments performed with the net configurations, it became evident
that what really affected considerably the speed of the training was the number
of units in the second level, and the tolerance. If the number of units in the
second level was too small or too big, the net had very big difficulties in learning,
even the 40 from the 223 training samples. When the tolerance was increased,
then the speed of learning was increased as well, but the error per unit was quite
big for some tolerance values. For this reason, it was decided that the tolerance
throughout all the tests, be kept at 0.1 level. The purpose of the net was not only
to be able to recognise a facial feature, but also to be able to distinguish it among

other facial features with a small error rate.

This tactic was rewarded when after a lot of experimentations and considerable
training the net was able to give very big probabilities overall, and make very
few mistakes in classification. As it was estimated, only 2-4% of the classification
of patterns the net had not been trained on produced erroneous results. This
estimation was based on the thresholded best windows where the classification
errors occured in the cases of the left and right eyes. This was a phenomenon
observed for all three nets; they were misclassifying left for right eyes and vica

versa. These classification errors were not too many.

This was attributed to the careful selection of the components of the net config-
uration, to the preprocessing techniques as well as the monitoring of the image

capturing.

The major parts of these procedures, were automated in order to exclude the
possibility of a human error in the training data, and the verification procedure.
The training of the net was always done in the background, because of the long

hours it required.



All three final net configurations, have learned the input patterns 100% correctly,

with very small errors per unit.

4.2 Net Configurations

The best results were obtained in the case of the {t phase angles net. It’s configu-

ration was :

360 20 4
7

0 0.4
0.1
0.01 0.1
0.3

¢ " w 3

o

as
ir or

w b

H H > p

n £ £fft

This was given as input to the rbp program.m 360 20 4 makes a net with 360
units in the first layer 20 in the second and 4 in the third; s 7 sets the initial
seed to 7; k 0 0.4 initialises the weights with values from 0 to 0.4; ¢ 0.1 sets the
tolerance to 0.1; e 0.01 0.1 n of the first layer is 0.01 2 (second layer) 0.1; a
0.3 sets the momentum to 0.3; A as the thresholding function sigmoid; f ir or the
output must be in real format; f w b keeps the weights in binary format to save

space; n f fft the input file called fTt.

The input to this net consisted of 360 long vectors. When the net training was
over, another test was made in order to observe which and how many patterns
the net had learned correctly. The file containing the original input patterns was
again fed to the net, only that in this case, the binary output at the end of each
pattern was replaced by the letter p, which stated to the net that was expected

to assign a probability to it. The output of this procedure was a five column file,
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where each column representied each feature accordingly : left eye, right eye, nose,
mouth, and the probability of having made an error during the recognition. If
this error was smaller than 0.050 then the net was also commenting the learned

pattern as ok, meaning that it had learned it adequately.

This specific configuration assigned the biggest probabilities overall and made the
fewest errors in the classification of unlearned patterns. This is attributed to the
fact that all the frequencies were used as input to the net and not selected parts

of it or reduced dimensionality data were given as input.

The second hest net configuration was the alpha net. This also gave very good
results, and clusters with big probabilities. In this case the erroneous classification
was bigger than that of the ft phase angles and the net wrongly classified left eyes

for right eyes and vice versa.

The input to this net consisted ol 60 long vectors, formed by sixty alpha values

that corrseponded to the GO best eigenvectors.

60 15 4
05
0.1
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0.5

¢ w B
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n f alphas

As it is shown by figure 4-1, if less than 60 eigenvectors were used, the error
between the reconstructed image and the actual image increased rapidly. That

error was calclulated by:
image error(M,K)

a; = calculate i-th projection ol the k-th imagei=1,---, M

M

New Image = Y iZ, a;u; + A
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Figure 4-1: Error plot indicating the best eigenvectors

A=average tmage, u; = the i-th eigenvector
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Finally the third net configuration that gave results that were less accurate than

the previous two, was the ft reduced frequencies technique.

The input ot this net consisted of 114 long vectors that were produced by the com-
bination of the thresholded real and imaginary parts of the fast fourrier transform

matrix of the actual normalised input pattern.

Although the net was fully trained, and the error per unit was not much bigger
compared to the others, the net assigned lower probabilities overall than the pre-
viously described configurations. An important issue was that the net took almost

4 times longer to train than the other two did.

The configuration of the net was :

m 114 87 4
s 7

0 0.4
0.1
0.01 0.1

o+ w

[v]
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4.3 Testing

Various components were tested in the net configuration. The two most important
features that immediately allected the net performance were the number of units
in the second layer of the net as well as the learning method. The latter was

affecting significantly the net’s speed of learning the input patterns.

The seed for the random weights was changed with test values ranging from 7 to
4 until the best seed was decided. Then three seed numbers were tested together

so as to decide upon the efficiency of them. The best value was found to be 7.

The best initial weights were obtained when the initial random weight option in
the rbp program was set within the range of 0 to 4. We concluded there after

testing other ranges e.g from 0 to 0.5, from -4 to +4, from 0 to 9, from 0 to 1 or
0 0.5.

The activation function was changed as well. The kinds of thresholding functions
tested were mainly the sigmoid and the radial ones since past experience has
indicated that for this kind of problem they give the best results. The sigmoid

thresholding function gave the hest results.

The tolerance was kept at all times the same 0.1, because we wanted the net to
learn the patterns as best as possible. When it was changed to 0.2, then for the

same number of learned patterns the error per unit was bigger.

The a value (the momentum) was changed from 0.1 to 0.2, 0.3, 0.4, 0.5, 0.9, but the
best value was the 0.5 one. When the alpha value was changed alone in the current
net configuration no big differences were observed. When it was changed along
with the rest the resulting balance of the proportions, it was proven a decisive

component for the speedy learning of the net.
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The 7 values were also adjusted accordingly. Different 7 values were tried for the
two layers such as 0.1 for the second and 0.01 for the first. This technique was

proved to be successful, instead of having the same n value for both layers.

The quick propagation algorithm was not proved effective enough although various
tests were performed with different net configurations. The delta-bar-delta rule

was not very successful either.

Instead a gradual pruning of the number of units in the second layer was done and
this seemed to be quite eflective since we concluded with a net configuration that

was eventually a winner.

4.4 Net Results

All three nets were tested with images they had not encounter before. All the
net configurations were fully trained i.e. they had all learned the input patterns

during training 100% correctly. with a very small error rate per unit.

As it was earlier mentioned the three nets were also tested in the patterns they
were trained on. In all the cases no erroneous classification occurred and all of
the patterns were confirmed as learned as it can be seen from the following net

outputs for all the configurations.

This applies for all three net configurations. The following tables, show the training

resuts for each net configuration.
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Iterations | % of learned patterns | Number of patterns | Error/Unit
1000 52.47% 117 right 106 wrong | 0.08995
2000 55.61% 124 right 99 wrong | 0.08796
3000 78.92% 176 right 4 wrong 0.06076
4000 20.63% 46 right 177 wrong | 0.21674
5000 40.36% 90 right 133 wrong | 0.06839
6000 79.37% 177 right 46 wrong | 0.06353
7000 79.37% 77 right 46 wrong 0.05890
8000 40.36% 90 right 133 wrong | 0.14423
9000 78.92% 176 right 47 wrong | 0.05847
10000 76.68% 171 right 52 wrong | 0.06689
11000 94.17% 210 right 13 wrong | 0.00805
12000 98.65% 220 right 3 wrong 0.00334
13000 99.55% 222 right 1 wrong 0.00183
14000 99.55% 222 right 1 wrong 0.00121
14111 100.00% 223 right 0 wrong 0.00117

Table 4-1: The rbp output of the trained 60 — 15 — 4 net
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Iterations | % of learned patterns | Number of patterns | Error/Unit
100 83.86% 187 right 36 wrong | 0.02382
200 90.58% 202 right 21 wrong | 0.01634
300 91.93% 205 right 18 wrong | 0.01338
400 92.38% 206 right 17 wrong | 0.01031
500 95.96% 214 right 9 wrong | 0.00578
600 95.52% 213 right 10 wrong | 0.00558
700 95.96% 214 right 9 wrong | 0.00465
800 95.96% 214 right 9 wrong | 0.00406
900 96.86% 216 right 7 wrong 0.00360
1000 97.76% 218 right 5 wrong 0.00296
1100 97.76% 218 right 5 wrong | 0.00269
1200 97.76% 218 right 5 wrong 0.00247
1300 98.65% 220 right 3 wrong | 0.00220
1400 98.65% 220 right 3 wrong | 0.00200
1500 99.10% 221 right 2 wrong | 0.00170
1600 98.65% 220 right 3 wrong | 0.00150
1700 98.65% 220 right 3 wrong 0.00142
1783 100.00% 223 right 0 wrong 0.00126

Table 4-2: The rbp output of the trained 360 — 20 — 4 net
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Iterations | % of learned patterns | Number of patterns | Error/Unit
100 83.86% 170 right 53 wrong | 0.02456
200 90.58% 190 right 23 wrong | 0.02323
300 91.93% 200 right 18 wrong | 0.01967
400 92.38% 205 right 18 wrong | 0.01759
500 95.96% 212 right 11 wrong | 0.01563
600 95.52% 213 right 10 wrong | 0.01309
700 95.96% 914 right 10 wrong | 0.05234
800 95.96% 215 right 9 wrong | 0.00507
900 96.86% 216 right 7 wrong | 0.00465
1000 97.76% 217 right 6 wrong 0.00396
1100 97.76% 218 right 5 wrong | 0.00269
1200 97.76% 218 right 5 wrong 0.00247
1300 98.65% 219 right 4 wrong 0.00230
1400 98.65% 220 right 3 wrong | 0.00220
1500 99.10% 221 right 2 wrong | 0.00200
1600 98.65% 220 right 3 wrong 0.00198
1700 98.65% 219 right 4 wrong | 0.00150
1800 99.65% 222 right 0 wrong 0.00130
1900 100.00% 222 right 0 wrong 0.00121

Table 4-3: The rbp output of the trained 114 — 87 — 4 net

The first set of figures 4-2 illustrates the behaviour of the three nets during train-
ing, by comparing in a single graph the percentage of patterns learned, the number
of iterations for these patterns and the tolerance. Also each net performance is
shown individually. The second set of figures 4~3 4-4 shows the the performances
of the three nets after training, when they were asked to recognise the patterns
they were trained on. The figures refer to the probability distribution assigned by
the net, having in mind that all the patterns were correctly identified. The first

49 are left eyes, the next 47 are right eyes, the next 46 were noses, the next 49

were mouths and the rest of them non-examples.




It has to be noted that all the nets successfully recognised the patterns they were

trained on, and learned them all 100%.

The following table shows the percentages of the probabilities assigned by the

various net configurations after training:

Probabilities
Net Type over 0.9% over 0.8% | over 0.6% | less than 0.6%
eigen 30% 40% 50% 50%
phase angles | 20% 35% 40% 60%
fit 11 15% 27% 60% 40%

Table 4-4: Probability distribulions each net assigned to the test images
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Performances of the three nets during training

Performance of the eigen net during training
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Figure 4-2: Comparative ihree nets resuts,eigen net, phase angles net and fft

reduced {requencies net, during training

60



-~

=

Number of Patterns

Number of Pattermns

180

160

140

120

—_
(=]
(=]

[o =]
(=3

[=2]
o

40

20

Histogram of the probability distribution assigned by the net after training

T

[ ]

! 1 1 1 ] 1

9

1
091 082 093 094 095 096 097

Nammn o Deabakilitina anaicand b dhon wad

Histogram of the probability distribution assigned by the net after training

098 09

1

180

160

140

120

—_
[=]
(=]

[+=
(=2

<D
[=]

40

20

T 1 T H 1 T T T T

1 L e

k? ] 1 1 ] 1
01 02 03 04 05 06 07 08 09
Range of Probabilities assigned by the net

Probs of wrong classification assigned by the net after training on the learnt pa

o
-
[=2]

o
-
S

o
no

o
P

0.08

o
(=2
[=2)

Probabilities of erroneous classification
o
f=3
s

T T T T T { T ¥

0.02H
0 M[\ laM a .AAN\A/A\AA\AAA A MMJ\/AMMA
0 20 40 60 80 100 120 140 160
Probs of wrong classification assigned by the net after training on the learnt pa
0.1 4 T T T T T T T t
0.12r

(=]
—

0.08

o
(=2
N

Probabilities of erroneous dassification
f=]
o
oy

0.02

AJ MMl | s

0 20 40 60 80 100 120 140 160

Number of Pattems

Figure 4—3: Probabilities of correct classification of learned patterns after train-

ing and Probabilities of erroneous classification for the same patterns for the Alpha

Net, and the Phase Angles Net

61



e

]

180

160

140

120

Number of Patterns
o =
S I=3

(=23
(=3

P
=]

20

Histogram of the probability distribution assigned by the net after training

T T T T T T

T

_—!

0.1

1 1 ] 1 1
02 03 04 05 06 07
Range of Probabiities assigned by the net

0.8

08

0.14

0.12

0.1

0.08

0.06

0.04

Probabilities of erroneous classification

0.02

Probs of wrong classification assigned by the net after training on the learnt pa

il

Mot

60

80 100
Number of Pattems

120

140

Figure 4—4: Probabilities of correct classification of learned patterns after train-

ing and Probabilities of erroneous classification for the same patterns for the FFT

Reduced Frequencies Net

62

160



From all the tables we can conclude that :

— All three nets learned 100% of the patterns

— The error per unit was small
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Chapter 5

Results

5.1 Postprocessing and verification procedure

When the net was fully trained and the weights file complete, a verification pro-
cedure took place during which, a matlab program scanned a face the net had not
been trained with and extracted windows. That program saved all the extracted
windows with dimensions 12x30 or 16x32 accordingly in a big file, as well as the
coordinates of the top left corner of each window in a separate file. That second
file was later used for drawing up the best windows and projecting them on the

normalised facial picture.

The file that was holding the extracted windows was then processed by each of
the three previously mentioned techniques; eigenvectors, fft ft angle data and {Tt ft
reduced frequencies. The processing was done in stages. Matlab could not read big
files, therefore it was read and processed consequtive parts of the extracted output.
The results of this processing were kept in another file. Another matlab program
was reading in the latter and was delimiting the pattern lengths with the letter
‘p’, something that was vital to the net. In this way the net was informed that
it was fed with patterns that it was expected to recognise. The pattern lengths
depended on the processing technique, ie 60 for the eigenvectors, 360 for the fft ft
angle data and 114 for the fft ft reduced frequencies. When about 1000 extracted
images were processed in this way, the entire procedure had to terminate. The
coordinates of the last extracted window were increased by one and were used
again as a starting point for a new set of extractions. This was done manually,
since matlab was unable to run for long periods of time unattended since it was

reducing dangerously the 40Mb swap space of the Sun IPX SPARC model used
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to a few IKbs. The entire identification procedure for each face was taking a little

less than 5 days to complete.

The trained net was then fed with these patterns and it was expected to identify

each pattern as either left eye, right eye, nose, mouth, or nothing.

The result of this identification procedure was held in a file as well, since it was

necessary for feedback.

The coordinates file that was created during the scanning of the normalised image
along with the probabilities given by the net, was giving eventually information
about each window and the probabilities assigned by the net. The probabilities file
was laid out in four columns. The position of each column represented respectively

a feature. The features had been coded as :

1. left eye 1
2. right eye 2
3. nose 3

4. mouth 4

In the case somebody wanted to identify what probabilities had been assigned by

the net to each feature, s/he just had to look at this file.

From the coordinates file and the above mentioned file, another matlab program
derived the top left corner window coordinates along with the probabilites ass-
signed for each window. With this information, the program was projecting the

exact position of the identified window on the actual image.

The probabilities assigned by the second net configuration, the one corresponding
to the eigenvectors’ technique, were quite big. For this reason a filtering was
done on the initially produced probabilities; probabilities over 0.9, were selected
and were kept along with the coordinates of the windows they corresponded to
in a file called best window. It was this file that was eventually projected on
the actual image, in order to show the successes and/or failures of the net. For
practical reasons, instead of the top left corner, the center of the chosen window
was projected; in this way the outside viewer can have a better understanding

about the success or failure of the net.
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