When the best windows are identified, another matlab program derived the cluster
of the best of them and designs a 10x10 cross highlighting thus the best of the
best and proving that altough the net has misclassified left eyes for right eyes and
visa versa, it can definitely identify the clustered features with a 95 -99 % success

percentage (see figures in Appendix A).

Note that the entire verification procedure was done on faces that the net had not

encountered before.

A way to have a more general idea about how the net behaved throughout the
whole procedure was to project all the probabilities on the actual image (see figures

in Appendix A).

In the regions where the net had identified as nothing the probability distribution
was quite smooth. Very small probabilities and zeroes were assigned to those
windows that had been identified as nothing, while the windows situated around

and on the feature had been assigned quite big probabilites.

In the case of the eigenvectors, the net seemed to be absolutely certain of its

decisions since the majority of the assigned probilities was 0.9 and above.

In the case of the phase angle data, although the net had a smaller percentage of
erroneous classification, it seemed to be ‘less sure’. This means that the proba-
bilites it assigned were not as absolute as in the eigenvectors’ case. While in the
previously mentioned case the majority of the probabilites was over 0.9, here it

was ranging from 0.7 to 0.8.

In the last case, that of the ft reduced frequencies, the net still had successes, but
the erroneous classification rate was the biggest. The probabilites in this case were
ranging from 0.6 to 1.000. The following graph 5~2 represents schematically the

postprocessing methodology.

66

When the best windows for each picture in each case were identified, another
matlab program selected the best of these clusters. When they were identified,
a 10x10 cross was plotted at the centre of the elite window these best clusters
predefined. In this way, it is proven that although the net has misclassified left
for right eyes and visa versa, it is nevertheless, capable of correctly identifying the
majority of the preprocessed input patterns. Figure 5-3 shows schematically how

the cross was plotted.

More specifically the matlab program that was plotting the cross was doing the

following :

Read in the normalised image

— Load the file containing the probabilities and the top left corner coor-

dinates of the best windows
— Find the minimum and the maximum value coordinate for x and y

— For each facial feature ! find the biggest probabilities and locate the

best cluster
— Locate the centre of this cluster and plot a 10x10 cross centered there

— Show the face with the plotted crosses

!The features were coded from 1 to 5, 1 for left eye, 2 for right eye, 3 for the nose,
4 for the mouth and 5 for nothing, a fact that made this operation feasible since the

program knew which coordinates correspond to each feature

67

5.2 Comparison

The results of the three nets are illustrated in the Appendix A that follows at the
end of the thesis.The first three sets of four images each were generated by the
eigenvector alpha values technique, the next three by the fourier transform and
phase radians and rest by the fourier transform reduced frequencies. For each case
there are four image sets. The first set shows the best of the best probabilities with
the plotted cross upon the normalised face, the second set shows the normalised
face with all the crosses plotted combined, the second the thresholded probabilities
2 the third the raw probabilities unthresholded, and finally the forth shows the
actual normalised face. This is shown for all three cases, so as to allow for a

constructive comparison of the three net results.

From these results, it is quite clear that the nets had a very big success percentage,

and that the applied preprocessing techniques were well selected.

2The image intensity is modified so as to underline the difference between the nor-

malised face and the best probabilities, it has actually been multiplied with 1.5

68

FOR EACH INPUT

POSTPROCESSING

FCAN NORMALISED IMAG
256X256

i
hold top left coordinates too

R A WINDOWS

filel = extracted windows
file2 = top left coordinates

process filel hold file2

pare fi
for the net

INPUT THE FILE TO THE NET

- —
FILE HOLDING THE
TOP LEFT COORDINATE
OF THE INPUT PATTERN / WINDOW,
THE CODED FEATURE NUMBER
AND THE PROBABILITY
ASSIGNED BY THE NET

Figure 5-1: Graphical Postprocessing Overview Part-I

69

THRESHOLD PROBABILITIES
TO SELECT BEST WINDOW

frequencies
> 0.8 > 0.6

eigenvectors Iphase angles fft reduced

> 0.9

CS| CS! S

windc;w file windgw file windq‘w file
normalised
image
project on the actual image the
windows identified as best by the net
PROJECT ALL
PROBABILITIES
SELECT BEST OF THE BEST
AND PLOT A CROSS IN
THE CENTRE

preseﬁt results

Figure 5-2: Graphical Pogt%rocessing Overview Part-II

read best windows file read in image

find min value coordinate
and max value coordinate

locate clusters that referr to
the same feature

select the best of them

plot the cross on actual image

Figure 5-3: How the Cross is plotted

Appendix A

Net Results

In this Appendix the project results are included explicitely for each net configu-

ration.

100

150

200

2508

150 200 250 o 50 100

Figure A-1: Best Probabilities by the alpha net

]

—

100

150 200 250 50 100

Figure A—2: Best of the Best by the alpha net

150

150

R

0 10 150 200 250 50 100 150 200

Figure A-3: Best Probabilities, Best of the Best, Raw Probabilities, Normalised
Image by the alpha net

=1

(1]

EES—

= S .

e

e S Y

—_————

150 200 250 80 100

Figure A—-4: Best Probabilities by the ft phase angles net

150

BRRE T, LSS P

e .

e 0

p—

—

100

150 200 20) 100

Figure A—5: Best of the Best by the it phase angles net

——

150

——

—

0 150 200 250

Figure A—6: Best Probabilities, Best of the Best, Raw Probabilities, Normalised
Image by the ft phase angles method

-1
oo

R

p—

150

250

50 100 150

100 150 200 250 100 150

Figure A—T: Best probabilities by the ft reduced frequencies net

]

100 150 200 250 50

100 150

Figure A-8: Best of the Best by the ft reduced frequencies net

(o]
<o

1000

150 %

2508

50 0 150 200 250 %0 100 150 20

Figure A—9: Best Probabilities, Best of the Best, Raw Probabilities, Normalised

Image by the ft reduced frequencies net

Y

pr——

180 200 250

Figure A—-10: Best Probabilities by the alpha net

150

200

——tt

100

150 200 250 50 100

Figure A-11: Best of the Best by the alpha net

33

150

200

I A

- 1t

0 100 50 200 250 ' 100 150 20

Figure A—12: Best Probabilities, Best of the Best, Raw Probabilities, Normalised
Image by the alpha net

150 200 250

Figure A—13: Best Probabilities by the ft phase angles net

-

I

50 200 250

Figure A—14: Best of the Best by the ft phase angles net

oo
(@]

e

P

—

50 0 15 20 250 0 10

150 200

Figure A-15: Best Probabilities, Best of the Best, Raw Probabilities, Normalised
Image by the ft phase angles method

87

—

100 150 200 250 5

100 150

Figure A—16: Best probabilities by the ft reduced frequencies net

100

2508

150

100 150 200 250 5 100 150

Figure A-17: Best of the Best by the ft reduced frequencies net

89

200

50

100 150 200 250
Figure A—18: Best Probabilities, Best of the Best, Raw Probabilities, Normalised

Image by the ft reduced frequencies net

90

Appendix B

Matlab Programs

In this Appendix all the Matlab programs used for the preprocessing, the post-

processing and the verification are included.

This program is doing the eigenvectors alpha values analysis and is generating the

data file for the net training.

load -ascii faces;
m=223; % 223 samples
A=faces’;

S=A/1000;
B=sum(S’)/m;
NUMEIG=60;

C=zeros(360,m) ;
for i=1:1:m,
c(:,i)=s(:,i)-B’;

end;

L=C’*C;
(V,D]=eig(L);

M=C*V;

% calc. average feature

% subtract average from features

% eigen vectors

for i=1:1:m T(:,i)=norm(M(:,i),2); end;

91

for i=1:1:m XR(:,1i)=M(:,1i)./T(:,1); end;

for i=1:1:NUMEIG,

I(:,i)=XR(:,224-1i); Jieigenvector images
end;

colormap(gray(255))
imagesc(reshape(A(:,1),12,30))
figure(2)

colormap(gray(255))
imagesc(reshape(I(:,1),12,30))

count=0;

for n=1:1:NUMEIG
for 1=1:1:m
product=sum(I(:,n).*C(:,1));

count=count+1;

K(n,i)=product;
end;

end;

% reconstruct the images

for j=1:1:m

suma=B’;

for n=1:1:NUMEIG
suma=suma+K(n,j) .*I(:,n);

end;

R(:,j)=suma;

end;

figure(3)

colormap(gray(255))
imagesc(reshape(R(:,1),12,30))

92

for opa=1:1:m
RE(:,opa)=abs(imagesc(reshape(A(:,opa),12,30)-reshape(R(:,opa),12,30;

end; % find the error for all the projections

colormap(gray)
figure(5)
plot(sort(abs(RE(:))))

metritis=0;

fid = fopen(’alphaface.txt’,’w’);
fprintf (fid,’* faces\n’);

for i=1:1:m

for n=1:1:NUMEIG
fprintf(fid,’%8.4f’ ,K(n,i));
metritis=metritis+i;

if metritis==20
fprintf(fid,’\n’)

metritis=0

end;

while n==NUMEIG

if i <= 48

fprintf(fid,” 1 0 0 O\n’)
break

elseif i <= 90
fprintf(fid,” 0 1 0 0\n’)
break

elseif i <= 136
fprintf(fid,” 0 0 1 0\n’)

93

break

elseif i <= 176
fprintf(fid,’ 0 0 0 1\n’)
break

elseif i <= 223
fprintf(£fid,’ 0 0 0 O\n’)
break

end;

end;

end;

end;

end;

end;

end;

fclose(fid);

This program is doing the fast fourrier transform phase angles preprocessing and

generates the data file for the net training.

load -ascii pros % 360 net inputs 12x30
X=pros’;

[a,m]=size(pros)

for lo=1:1:m

K(:,lo)=fft2(X(:,10));

end;

for oco=1:1:m

RR(:,00)=angle(K(:,00)); % prepare the phase angle matrix

end;

metritis=0;

94

fid = fopen(’prosfft’,’w’);

for k=1:1:m

for n=1:1:360

if metritis==20
fprintf(fid,’\n’);

metritis=0;

end;

fprintf(fid,’%8.4f ’,RR(n,k));
metritis=metritis+i1;

if metritis==20
fprintf(fid,’\n’);

metritis=0;

end;
while n==360
if i <= 48

fprintf(fid,’ 1 0 0 O\n’)
break

elseif i <= 90
fprintf(fid,’ 0 1 0 O\n’)
break

elseif i <= 136
fprintf(fid,” 0 0 1 0\n’)
break

elseif i <= 176
fprintf(fid,’ 0 0 0 1\n’)
break

elseif i <= 223
fprintf(fid,” 0 0 0 O\n’)
break

end;

end;

95

end;
end;
end;
end;

fclose(fid);

This program is doing the fast fourrier transform reduced frequencies analysis and

generates the data file for the fft-1I reduced frequencies net.

load -ascii train
X=train’; /) images are 16%32

[a,m]=size(train)

for lo=1:1:m
K(:,lo)=Ffft2(X(:,10));
end; % fft analysis of the data

colormap(gray(255))
imagesc(reshape(K(:,1),16,32))
title(’fft of a left eye’)

print -dps lefft

figure(2)

colormap(gray(255))
imagesc(reshape(K(:,1),16,32))
title(’Inverse fft of a left eye’)

figure(3)

colormap(gray(255))
plot(reshape(K(:,1),16,32))
title(’fft plot of a left eye’)
print -dps fftleplot

96

colormap(gray(255))
im=reshape(X(:,1),16,32);
figure(5) ;imagesc(im);
FF=fft2(im);

colormap([.2 .5 0 ; gray(254) 1)
figure(4);

am=(abs ((FF))>500) .*FF; Y threshold the frequencies that are > 500
imagesc(abs(log(am+1)))
figure(6);imagesc(ifft2((am)))

figure(7);

hist(abs(FF(:)))

figure(8);plot(sort(abs(FF(:))))
figure(9);plot(sort(log(1+abs(FF(:))))) % indicate why selecting 500

as=abs((K(:,1))) > 500; % select a mask

% save the mask
fid=fopen(’sotiras’,’w’);
for ii=1:1:512
fprintf(fid,’%d ’,as(ii,1));
end;

fclose(fid);
for rr=1:1:m
EE(:,rr)=as.*K(:,rr);

end; % put in a matrix all the selected frequencies

figure(10)
title(’Inverse left eye fft with selected frequencies’)

97

imagesc(reshape(ifft2(EE(:,1)),16,32))

WW=real (EE)/10000;
JJ=imag(EE)/10000; 7/ so as to have proper floating point values

fid=fopen(’datakia’,’w’);

for dd=1:1:m
fprintf(fid,’%8.4f ’,WW(:,dd));
fprintf(fid,’\n’);
fprintf(fid,’%8.4f ’,JJ(:,dd));
fprintf(fid,’\n’);

end;

fclose(fid);

load -ascii datakia;

for dd=1:1:512

if nnz(datakia(:,dd))==
datakia(:,[dd])=[];
end;

end;

filo=datakia’;
kolon=430;
metritis=0;count=0;

fid=fopen(’data’,’w’);

for dd=1:1:kolon

for nn=1:1:57

fprintf(fid,’’8.4f ’,filo(nn,dd));
metritis=metritis+i;
count=count+1;

if metritis==19

98

fprintf(fid,’\n’);
metritis=0;

end;

while count==114

if dd <= 96

fprintf(fid,” 1 0 0 O\n’);
count=0;

break

elseif dd <=146
fprintf(fid,’ 0 1 0 O\n’);
count=0;

break

elseif dd <= 238
fprintf(fid,’ 0 0 1 0\n’);
count=0;

break

elseif dd <= 330
fprintf(fid,’ 0 0 0 1\n’);
count=0;

break

elseif dd <= 430
fprintf(fid,’ 0 0 0 O0\n’);
count=0;

break

end;

end;

end;

end;

end;

end;

end;

fclose(fid);

This program is doing the postprocessing for the alpha net

99

function facet (SW)

[u,m]=size(SW);

A=SW;

S=A/1000;

B=sum(S’)/m; % calc. average feature

NUMEIG=60;

C=zeros(360,m);

for i=1:1:m,

c(:,1i)=8(:,i)-B’; % subtract average from features
end;

L=C’*C;

[v,D]=eig(L); % eigen vectors

M=CV;

for i=1:1:m T(:,i)=norm(M(:,1),2); end;
for i=1:1:m XR(:,1)=M(:,1)./T(:,1); end;
for i=1:1:NUMEIG,

I(:,i)=XR(:,227-i); Jeigenvector images

end;

count=0;

for n=1:1:NUMEIG

for i=1:1:m
product=sum(I(:,n).*C(:,1));
count=count+1;
K(n,i)=product;

end;

end;

% produce the pattern file for the net

metr=0;

100

count=0;

fid=fopen(’datapl’,’w’);

fprintf(fid,’ p\n’);

for n=1:1:m

for k=1:1:NUMEIG
if count==20
fprintf (£fid,’\n’);

count=0;

end;

if metr==60
fprintf (fid,’ p\n’);

metr=0;

end;

fprintf(fid,’%8.4f ’,K(k,n));

count=count+1;

metr=metr+i;

end;

end;

fprintf(fid,’ p\n’);

metr=0;

count=0;

fclose(fid);

!rbp epall >> filel

clear
clear
clear
clear
clear

clear

101

clear M;
clear I;
clear XR:
clear K;

clear D;

This program is doing the post processing for the fft-I method

function fftfft (SW)
G=SW;
QQ=zeros(360,226) ;
RR=zeros(360,226);

for lo=1:1:226
QQ(:,lo)=fft2(G(:,10));

end;

for 00=1:1:226
RR(:,00)=angle(QQ(:,00));

end;

metr=0;

count=0;

fid=fopen(’datap’,’w’);

fprintf(fid,’ p\n’);

for n=1:1:226

for k=1:1:360

if count==20
fprintf (fid,’\n’);
count=0;

end;

if metr==360
fprintf(fid,’ p\n’);

102

metr=0;

end;

fprintf (fid, ’%8.4f ’,RR(k,n));
count=count+1;

metr=metr+1;

end;

end;

fprintf (fid,’ p\n’);

metr=0;
count=0;

fclose(fid);

irbp epal >> file

clear SW;
clear (QQ;
clear RR

clear G;
This program is doing the post processing for the fft-II method

function(G)
QQ=zeros(512,226);
RR=zeros(512,226);

for lo=1:1:226
QQ(:,lo)=fft2(G(:,10));

end;

load -ascii sotiras % load the stored mask

as=sotiras;

for rr=1:1:m

103

EE(:,rr)=as.*QQ(:,rr);

end; % put in a matrix all the selected frequencies

WW=real (EE)/10000;
JJ=imag(EE)/10000; % so as to have proper floating point values

fid=fopen(’data’,’w’)

for dd=1:1:m
fprintf(fid,’%8.4f ’,WW(:,dd));
fprintf (fid,’\n’);
fprintf(fid,’%8.4f ’,JJ(:,dd));
fprintf(fid,’\n’);

end;

fclose(fid);

load -ascii data;

for dd=1:1:512

if nnz(data(:,dd))==
data(:, [dd1)=[];
end;

end; % create the masked data

filo=data’;

kolon=430;
metritis=0;count=0;
fid=fopen(’datapi’,’w’);
fprintf(£fid, ’p\n’);

for dd=1:1:kolon

for nn=1:1:57

if count=114
fprintf(£fid,’p\n’);

count=0;

104

end;
fprintf (fid, ’%8.4f ’,filo(nn,dd));
metritis=metritis+i;

count=count+1;

if metritis==19
fprintf(fid,’\n’);
metritis=0;

end;

end;

end;

fclose(fid);

clear QQ;

clear RR;

clear G;

clear as;

clear am;

Irbp epali >> filei
'rm datapi

'rm data
This program is doing the verification through matlab for the first two nets.

load -ascii ’pici15’; % load the actual image
DD=pic15;
[r,w]l=size(DD);

SW=zeros(360,226);

fd=fopen(’synt’,’w’); % open a file that holds the coordinates as
% well

col=1;

105

metrao=0;

for p=1:1:(r-30)
for s=1:1:(w-12)
PP=p+29;

ss=s+11;

if metrao==226

metrao=0;

facet (SW) ;

fftfft(SW) % cp the fft angle data file
% its output will be again datap
SW=zeros(360,226) ;

end;

SW(:,col)=reshape(DD(p:pp,s:ss),360,1); % prints the windows
col=col+l;

if col==226

col=1;

end;

fprintf (£d,’%d %d\n’,p,s); % holds the coords of the top left co:
metrao =metrao+1;

end; % of the extracted window

end;
lcompress filel
lcompress file

lcompress synt

fclose(fd);

!rm datap

106

'rm datapl
!rm datafl

quit
This program is doing the verification for the fft-II net

load -ascii ’picl5’; % load the actual image
DD=pic15;
[r,w]l=size(DD);

G=zeros(512,226);

fd=fopen(’synt’,’w’); % open a file that holds the coordinates as
% well

col=1;

metrao=0;

for p=1:1:(r-32)
for s=1:1:(w-16)
pp=p+31;

ss=s+15;

if metrao==226
metrao=0;
ffttwo(G)
G=zeros(512,226);

end;

G(:,col)=reshape(DD(p:pp,s:ss),360,1); % prints the windows

col=col+l;

if col==226

col=1;

end;

fprintf(£fd,’%d %d\n’,p,s); % holds the coords of the top left co:

metrao =metrao+i;

107

end; % of the extracted window

end;

lcompress filei

!compress synt

fclose(fd);

quit

This program is thresholding the best probabilities

s=fopen(’net_outcome#’,’r’);
A=fscanf(s,’%f %f Wf %f’,[4,infl);

status=fclose(s);

[a,b]=size(A);

s=fopen(’coords’,’'r’);
X=fscanf(s,’%d %d ’,[2,inf]);
status=fclose(s);

[c,d]=size(X);

fid=fopen(’best_wind#’,’w’);

for i=1:1:0b

best=max(A(:,1)); % find the biggest probability of the 4

if best > 0.9 % it becomes 0.8 in the fft reduced frequencies case
fprintf(fid,’%d %d %d %8.4f\n’,X(:,i),best);

end;

end;

end;

fclose(fid);

108

This program projects the selected probabilities on the normalised image

s=fopen(’pic19’,’r’);
Z=fscanf(s,’%d ’,[256,256]);

status=fclose(s);

[a,b]l=size(Z);

B=zeros(256,256) ;
C=zeros(256,256);
D=zeros(256,256) ;
E=zeros(256,256);

s=fopen(’best_wind’,’r’);
A=fscanf(s,’%d %d %d %f’,[4,inf]l);

status=fclose(s);

[c,d]=size(A);
for i=1:1:d
if A(3,1i)== h if it is left eye
C(A(1,i)+6,A(2,1)+15)=A(4,1);
elseif A(3,i)== % if it is right eye
B(A(1,i)+6,A(2,1)+15)=A(4,1);
elseif A(3,i)==3 Y, if it is a nose
D(A(1,1)+6,A(2,1)+15)=A(4,1);
elseif A(3,1)== % if it is a mouth
E(A(1,1)+6,A(2,1)+15)=A(4,1);
end;

end;

B=B*255;
C=C*255;

109

D=D*255;
E=E*255;

colormap(gray(256)) ;
title(’Centres of windows identified by the net as facial features’)

imagesc(1.5%Z+B+C+D+E) ;
This program plots the cross from the best probabilities

s=fopen(’pic19’,’r’);
Z=fscanf(s,’%d ’,[256,256]);

status=fclose(s);

load -ascii best_wind;
X=best_wind;
[a,b]l=size(X);

r=10; s=10;

for i=1:1:b

maxev=-1;

minx = min(min(X(:,1)));
maxx = max(max(X(:,1)));
miny = min(min(X(:,2)));
maxy = max(max(X(:,2)));
for x=minx:1:maxx

for y=miny:1:maxy

sum=0;

for j=1:1:a

110

if X(j,3)==1
if x <= X(j,1)
if X(j,1) < x+4r
if y<= X(j,2)
if X(j,2) < y+s
sum=sum + X(j,4);
end;
end;
end;
end;
end;

end;

if sum > maxev

maxev=sum;
savex=x;
savey=y;

end;

end;

end;

for x=1:1:r-1
Z((savex+x+6),savey+(s/2)+15)=255;

end;
for y=1:1:s-1
Z(savex+(r/2)+6, (savey+y)+15)=255;

end;

end;

end;

111

end;

figure(3);
colormap(gray(256)) ;
image(2)

112

Chapter 6

Conclusions

All three net configurations were successful in recognising the features and iden-
tifying their relevant positions on the facial image. The erroneous classifications
occured only in the case of the left and the right eyes; the net was getting slightly
confused as to which eye was which, a fact that was expected, since the eyes are
quite similar. In the nose and the mouth cases the net did not misclassify anything
at all. This is quite logical since these two features are very different from each
other and the centre of the extracted windows was also important in stressing out

this difference.

The preprocessing and postprocessing techniques were essential to this success
sinc e, there was an effort to maintain all the meaningful information to the net,
while keeping the number of the input units as small as possible. This was at-
tempted because a relatively simple net configuration can be handled better than
a complex one. The results are more straightforward, the net configuration can
be easily modified without disturbing the entire recognition mechanism, and the
net training although still time consuming has a better success percentage. An
important thing was that the preprocessing eliminated irrelevancies - like intensity

gradients and shadows.

The three preprocessing techniques had something in common ; they all tried
to maintain identical important information for each feature, i.e. the shape, the
grayscale, the size. These important components were not isolated, because a

detailed representation has usually more chances to succeed in the long run.

113

This was proven without any doubt in this project, since the nets recognised
and correctly identified the position of each feature. Special consideration was
placed on the configuration itself; it is well known that the right one can have
impressive results. This is mainly the reason, so many configurations were tested
repeatedly, with different combinations of seed, sharpenss, number of units in the
second level, fully or partly connected, along with different learning rules (quick

back propagation and the delta-bar-delta).

6.1 Further Work

Given more time, further testing should be done in order to obtain more informa-
tion about the net behaviour. Unfortunately, due to the fact that there were three
nets that had to be tested, it was impossible to do more experiments. Another
important factor, was that matlab was rapidly consuming big amounts of swap
space, thus causing a lot of difficulties for other users. It would also be interesting
to find out more eficient search strategies that could reduce the postprocessing
time. The classification could speed up by parallelism, concentrating on likely
positions. Although the postprocessing was so slow the learning speed was not a
problem. Ideally this project could continue by recognising individual faces, not
as features, but classifying the scanned face as ‘known’ i.e. as a person with a
name the net can distinguish among other faces. According to the author’s opin-
ion, more emphasis should be placed in the future in the experimentation and
testing of various net categories as well as different kinds of learning ie supervised
or unsupervised. Artificial Neural Nets have been proven quite successful where
the traditional vision techniques were definitely unsuccessful. In the cases they
were successful the entire recognition procedure was extremely difficult to auto-
mate or if they were eventually automated they were eventually automated they

were memory and cpu time consuming.

In an era where speed and accuracy are essential, old recognition techniques
will eventually become obsolete. Neural Nets, have too many advantages to be
ignored even by those still dedicated to the old ways. As a concept, they are
ideal, what better than to imitate a tested way to recognise and identify objects;

that of the human being. Our memory capacity seems unlimited, we are able to

114

accomplish things under the most difficult conditions and that is all due to the
human nervous system. If a more accurate representation is achieved, neural nets
will be an immense success. They represent an intelligent way to discover things

as oppossed to other methods.

In order to come to that point eventually, a close examination of the mam-
malian nervous system has to be attempted. If scientists know something more

than its basic structure, they wil be able to come up with a more accurate model.

This will give the neural net scientists the opportunity to create an even better

model, or even to improve the existing ones.

115

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

I. Craw and P. Cameron, Face Recognition by Computer. Proc. British Ma-

chine Vision Conference, 1992.

C. Ramsay, K. Sutherland, D. Renshaw and P. Denyer, A Comparison of
Vector Quantization Codebook Generation Algorithms Applied to Automatic

Face Recognition. Proc. British Machine Vision Conference, 1992.

A. Bennett and I. Craw, Finding Image Features Using Deformable Templates
and Detailed Prior Statistical Knowledge. Proc. British Machine Vision Con-
ference, Glasgow, 1991.

V. Govindaraju, S. Srihari and D. Sher, A Computational Model For Face
Location. Proc. 3rd International Conference on Computer Vision, Japan,

1990.

E. Rolls, The Processing of Face Information in the Primate Temporal Lobe, in
V. Bruce and M. Burton (eds), Processing Images of Faces, Ablex Publishing,
1992, pp41-68.

F. Fallside and L.-W. Chan, Connectionist Models and Geometric Reasoning,
in Woodwark (ed), Geometric Reasoning, Clarendon Press, Oxford, 1989, 65-
79.

K. Fukushima, Cognitron: A Self-Organizing Multi-layered Neural Network,
Biological Cybernetics 20, 121-136, 1975.

K. Fukushima, NeoCognitron: A Self-Organizing Neural Network Model for a

Mechanism of Pattern Recognition Unaffected by a Shift in Position, Biolog-
ical Cybernetics 36, 193-202, 1980.

J. Stonham, Practical face recognition and verification in WISARD, in El-
lis, Jeeves, Sumby and Young (Eds), Aspects of face processing, Dordrect:
Martinus Nijhoff, 1986.

116

[25] MSc thesis, Inger Solheim, 1991, Backpropagation Neural Nets for Facial

Recognition.

[26] Gonzalez and Wintz, eds Addison Wesley Publishing Co., Advanced Book
Program, World Science Division Reading, Massachusetts 1983 Digital Image

Processing

[27] New York Chichester Wiley, 1973, Duda and Hart,Pattern Classification and

Scene Analysis

[28] J.A. Scott Kelso, eds Haskins Laboratories and the University of Connecticat,
1987 Concepts and Issues in Human Motor Behaviour : Coming to Grips with
the Jargon

118

