A New Model Matcher for the IMAGINE 11
Object Recognition System

Josef Hebenstreit

MSc Information Technology: Knowledge Based Systems
Department of Artificial Intelligence
University of Edinburgh
1994

Abstract

The new model matcher discussed here counters the combinatorial explosion
in searching the whole interpretation tree by using a best first search strategy
and exploiting constraints to prune the search tree. Several heuristics have been
investigated to guide the search. Parameter for constraint evaluation are related
to parameter expressing performance of the algorithm. The matching algorithm
has been tested on two objects with different degree of difficulty. In addition the

relationship between heuristic evaluation and performance has been investigated.

Acknowledgements

I would first of all like to thank my first supervisor, Dr R. B. Fisher, for
his guidance during the course of the research reported here. Special thanks for
my second supervisor, Andrew Fitzgibbon, for the excellent support during my
project. Without his help and knowledge the project wouldn’t have been finished

in time.

Table of Contents

1. Introduction
1.1 Problems with the current Model Matcher
1.2 Results with the New Model Matcher
1.3 Structureof thethesis
2. Background
2.1 Short Survey of Object Recognition
211 Motivation. L
2.1.2 Goal of object recognition
2.2 Overviewover IMAGINEIL
2.3 Existing Model Matcher in IMAGINEIT
2.4 Other Model Matchers
3. New Matching Algorithm
3.1 Principles e
3.1.1 Motivation for the New Algorithm
3.1.2 Interpretation Tree for the New Algorithm
3.2 Algorithm and Data Structure
3.3 Implementation Details

4. Experiments
4.1 Introduction e
42 Method
43 Results. e

il

15

18
18
18
20
25
34

5. Conclusion 56

51 Summary e e e e e e 56
52 Future Work 57
Appendices

A. Program code for New Model Matcher 60

iii

3-4

3-5

3-6

3-7

List of Figures

Interpretation Tree o v i i i i e e e 9
Binary-angle constraint o o 12
New Interpretation Tree 21
Sample Interpretation Tree of Order 4. 24
Open node expansion v v v v v v i i 28
Leaf node evaluation 29
First step in exploring the search space 33
Second step in exploring the search space 33
Third step in exploring the search space 34
Fourth step in exploring the search space 35
Overlap-function 46
Incluston-function 47
Model of the Widget Object 51
Range Image of the Widget Object 52
Model of Renault Part oiuiee... 53
Data of Renault Part v v v it it it i e e 54
Surface description of Renault Part (Data) 55

v

List of Tables

2-1 Constraints o v i e e e e e e e e e e e e e e e e

3-1 Number of nodes for each level

Chapter 1

Introduction

1.1 Problems with the current Model Matcher

The current model matcher in IMAGINE II employs the standard interpretation
tree search and explores the tree in depth-first order using backtracking. Con-
straints are used to prune parts of the search tree and thus to avoid exhaustive
search of the whole interpretation tree. Pruning is a standard technique to cope

with search complexity.

Although the performance of the standard interpretation tree search has been
improved by taking advantage of data and model ordering there are fundamental

problems that the search method can’t cope with. The main problems are:

1. non-exhaustive interpretation tree exploration
2. non-directed interpretation tree exploration

3. redundant search

The first case occurs when a partially consistent path includes the correct
hypotheses. If all paths containing the true match are partially consistent but not
globally consistent then the algorithm can never find the correct hypotheses and

simply fails.

The second case points to the problem that only locally best candidates are
explored first that is the current model matcher doesn’t take advantage of the
possibility that the globally most plausible data model pairing could be explored

first. This is clearly a disadvantage of the current algorithm and one would like to

have an algorithm which is able to exploit a global ordering of the pairings rather

than a local one.

An additional problem strongly related to the second case is the search method
itself and the way the geometric consistency test works. The exploration of the
tree is fixed and determined by depth-first search. There is no way to collect
evidence for more promising candidates while exploring the interpretation tree.
The consistency test applied to each node is only a pass or fail test which means
that candidates which are not promising are completely ignored and there is no

way to return to them in a later stage of the tree search.

The third case is a deficiency introduced by the wildcard model feature. Wild
cards are introduced to cope with spurious data. This causes redundant search by
exploring all possible combinations of wildcards and data features. Although the

redundant search effort can be minimized it can’t be completely avoided.

1.2 Results with the New Model Matcher

The new algorithm originated in discusssion with R.B. Fisher and A. Fitzgibbon
has been implemented and tested on several objects. In addition an SMS model

for a new test object has been built and tested as well.

Several criteria have been used to measure the performance. Parameters ex-
tracted from the total heuristic function were related to parameters expressing the
performance. The experiment was done on the new test object, the “Widget Part”
and the “Renault Part”. As a result the Widget Part could be recognized in only
one raytracing operation whereas the Renault Part, known as the most complex
object in vision literature, failed to find the correct hypotheses. The reason for

the failure is based on bad heuristic estimates and not the algorithm in principle.

1.3 Structure of the thesis

The background chapter starts with motivation for object recognition, gives psy-
chological and biological evidence about the importance of shape-based object
recognition, states the goal of object recognition and introduces IMAGINE II. It
continues with the current model matcher in IMAGINE II, analyses the standard
interpretation tree, explains the pruning technique, states the interpretation tree
search algorithm with wildcard and finally gives a short survey of other model

matchers.

In chapter three the new algorithm is discussed in detail. It starts with the
new interpretation tree, states and proves complexity measures, illustrates it on the
basis of a simple example and introduces the basic principle of best-first search.
It emphasizes the importance of heuristic evaluation, outlines the main points
of the new algorithm, explains each point, especially the important issue of node
expansion, presents the best-first search algorithm and gives a simple but complete

example showing how the algorithm works.

In chapter four the total heuristic function is explained in detail. It starts
with the geometric consistency function, explains its components, analyses each
component in detail, gives geometric interpretations of each geometric consistency
evaluation function and states the total heuristic functions used in the experiment.
It explains each parameter and ranges of the parameter and the method used to
accomplish the experiment. Finally the results of the experiment with two objects

are reported.

Chapter five summarizes the key results, discusses the problems involved and

gives suggestions for future work.

Chapter 2

Background

2.1 Short Survey of Object Recognition

2.1.1 Motivation

Although we hurnansf beingGtake vision for granted we can hardly imagine how
difficult it is to build a vision system of comparable performance to that of humans
or animals. Biological vision has taken several hundred million of years to evolve
to the stage seen today. Why is one interested to mimic biclogical vision? Well,
the answer is easy. As a long term goal one would like intelligent autonomous
robots that do all the jobs we like them to do and vision plays therein a crucial
role. Of course there is strong economical and military interest in the exploitation
of a successful vision system. There would then be a huge number of applications

that are within reach of current technology and knowledge.

Object recognition is one of the most important aspects of visual perception.
To get an idea why it is difficult let’s look at an simple example. Suppose you
have a cartoon line drawing. Young children have no difficulty recognizing it but
there isn’t any existing computer recognition scheme which could do it. We often
recognize objects (a car, a familiar face, a printed character) visually on the basis
of its characteristic shape, but there are also other ways to recognize objects. The
recognition of trees is more based on texture properties, branching pattern and
colour than on precise shape. Also certain animals can be recognized mainly on
the basis of texture and colour pattern (e.g a giraffe or a tiger). The relative
location of other objects can be used to recognize objects e.g an unusually shaped

door knob can be recognized on the basis of its location relative to the door (

Global matching techniques use global features or parameters, such as area,
volume, perimeter, higher order moments, spatial frequency description, distance
measure etc, that clearly depend on the entire object, in order to find a comparison
between model and image. The set of global parameters for both the model and
the image data can be represented as a vector of parameters. Matching proceeds
by comparing the image vector with a set of model vectors and selecting the best
matching model. The pose of the object in the image can sometimes be calculated
from the parameters of the best match. There are several drawbacks with this
approach. First, the global properties may depend on the illumination condition,
surface reflectance properties of the object, the position, strength and distribution
of the light sources , the orientation of the surface patch reflecting the light to
the image point (of course, this not a problem for range images and is mentioned
here only for completeness). Second, the global matching approach can’t deal
with occlusion and spurious data and is therfore unable to distinguish between

overlapping objects. For further discussion see citation list on page 24 in [?].

An interesting 3D global matching algorithm is the iterated closest point match-
ing technique. It tries to match a set of data points against a set of model points
by minimizing the distance between them. It iteratively solves the global mini-
mization problem, estimates the pose of the object and moves towards the object
until a steady state within some error is reached. One advantage of this method
is that there are no restrictions in the shape of the objects to be matched, it is
applicable to polyhedra as well as free formed objects. The main disadvantage
is the high matching complexity and occlusion. It can’t exploit local features in

order to confine the search space.

Local feature based matching or simply feature matching is dominant in most
real vision systems because it copes with the problem of occlusion and spurious
data. One example using feature matching is the interpretation tree search which
has already been discussed in the previous section. There are several variations
of it. One uses the ordering of data features to minimize the search. One can or-
der the data feature by saliency by taking the largest feature first, such as surface
patches with the largest area [Grimson & Lozano-Perez S%yache & Faugeras 86).
One can also start with a data feature and then use proximity or connectivity to

select the next one [Ayache & Faugeras 86]. One can also order the model feature

16

in some way to reduce the tree search. If data features are ordered according
to connectivity one can apply the same connectivity ordering to model features
[Ayache & Faugeras 86]. Another very effective way to reduce the search effort is
the exploitation of the visibility constraint. Each pose has only a limited number
of model features which are visible. Model features that are not visible from a

certain pose can simpl/e/be ignored.

Alignment or hypothesize-and-test techniques are another variation on the in-
terpretation tree approach. The key idea is that only a minimum number of
data-model pairings sufficient to calculate a complete transformation are used.
The transformation is used to align the model with the data and the alignment in
turn is used to predict model features that might be evident in the data and to
test for possible matches. Thus additional matches are used to get a better pose

estimation. For further discussion of the alignment method.

—— —

The local feature focus (LFF) method develoved by Bolles and collaborators
utilizes focal features to guide the search. It first tries to match a model focus
feature against image data and for each successful match it tries to find nearby
features in the image. Then, an association graph is constructed and the maximal
clique is computed. The maximal clique represents maximal clusters of mutually
consistent assignments of data and model features. From the maximal clique the
pose of the object model can be estimated and verified on the image data. Al-
though LFF can reduce the search expense drastically there must be focal features

visible in the image for the method to work.

1y

Chapter 3

New Matching Algorithm

3.1 Principles

This section starts with the traditional interpretation tree and gives reason for the
introduction of the new algorithm. It then introduces the new interpretation tree,
analyses its complexity and gives an informal description of the algorithm. In the
next section a detailed description of the new algorithm is given including a short
description of the data structures used. In the last section the data structures and

the implementation of the algorithm are covered in detail.

3.1.1 Motivation for the New Algorithm

In order to appreciate the underlying ideas of the new algorithm one should first
start with the current model matcher and point out the weak points of the algo-

rithm employed.

The current model matcher in IMAGINE II employs the classical interpretation
tree search and explores the tree in depth-first order using backtracking. Regarded
as a black box the matcher essentially gets a set of pairings of data and model
surface patches with the corresponding plausibility values from the invocation
module. Thus each pairing is assigned a plausibility measure telling how probable
it is that the pairing is part of the hypothesis. The invocation module not only
reduces the number of possible data-model pairings drastically but also evaluates
the pairings remaining. Thus the invocation process is the first and an important
part of the overall model matching process. As it has been already discussed in

Chapter 2 the matcher generates a set of possible hypotheses which are verified

18

in the geometric reasoning module to get a unique interpretation of the data in

question.

The current interpretation tree search algorithm in IMAGINE II basically uses

three ordering principles in order to reduce the search complexity:
1. viewpoint-centered models
2. data-patch size
3. model-patch ordering according to the invocation plausibilities

The division of the complete body-centered model of the object in| a set of view-
groups containing the so called viewpoint-centered models allows matching of each
of tlﬁs)ggroups against the whole set of data surface patches. Obviously the view-
groups contain only a subset of all model surface patches of the body-centered
model and by assigning a separate interpretation tree to each viewgroup the en-
tire search space can be significantly reduced compared with the interpretation

tree using the body-centered model.

The interpretation tree search needs some ordering (either arbitrary or system-
atic) for the data patches to be matched. The input to the model-matcher is a
sparse matrix of possible data-model pairings and invocation plausibility values.
The algorithm clusters the pairings according to the set of data surface patches,
where each cluster containgpairings with the same data patch in. The clusters are
sorted in descending order according to the size or area of the data-surface patch
involved. Each clusteI}\/ corresponds)(to a certain depth-level in the interpretation
tree and the cluster with the largest data-patch is examined first. The reason for
this ordering is the fact that large data-patches are providing more constraints

and should thus be explored first.

There is also an ordering inherent in the clusters itself. The data-model pair-
ings in each cluster are sorted in descending order according to the invocation
plausibilities. So the most plausible pairing within a cluster is examined first. It
should be pointed out here that the ordering of pairings within a cluster is local

with respect to invocation plausibility.

19

L

>(

The current model matcher doesn’t take advantage of the possibility that the
most plausible data-model pairing could be explored first. This is a key disadvan-
tage in the current algorithm and one would like to have an algorithm which is
able to exploit a global ordering of the pairings. In the next section this idea is

refined and embedded in the new algorithm.

3.1.2 Interpretation Tree for the New Algorithm

The key motivation for the new algorithm is to use a best-first strategy rather
than a depth-first one in order to reduce search complexity. Global ordering of
data-model pairings should also be exploited in the new algorithm. The new
interpretation tree presented here and the corresponding algorithm discussed in
detail later on in this chapter originated in discussion with R.B Fisher and A.

Fitzgibbon.

The new interpretation tree consists of nodes representing model-data pairing
with their asso#iated invocation plausibility values. Each node has also an index to
the corresponding data-model pairing but this is not relevant for the algorithm and
will be neglected here. Each node has children with invocation plausibilities sorted
in descending order from left to right. The invocation plausibility of the parent
node is greater or equal than the values of the children. Suppose an arbitrary
element selected from the ordered list of invocation plausibilities is the current
parent node. The children of this node from the left to the right are then the rest
of the invocation list starting with the element immediate right to the node in
the list representing the parent node till to the end of the list. The level and the
position within the level of the interpretation tree determine the position of the
parent node in the list. The term level or equivalently depth of a tree is simply

the number of branches along the way from the root node to the node in question.

The new interpretation tree is a directed acyclic graph with the special prop-
erty that no child node has two different parents. In contrast to the traditional
interpretation tree, here each node has varying number of branches depending on

the location in the tree.

The interpretation tree starts with the root node, which is only a dummy node,

and expands to all children sq,---,s,. The node s, itself expands to s, -, s, and

20

v,

node s; expands to ss,- - -, s, and so on. All children of s; and s,, etc, also expand
in the same way. This process of expansion the tree continues until the leaf-node
Sn, Which has the smallest plausibility value, has been reached in which case no

further expansion is possible (see Figure 3-1).

s('4'). . s(n)

Figure 3—1: New Interpretation Tree

The structure of the interpretation tree is a left-hanging tree with the longest
path to the left and the shortest path to the right whereas path here is meant to
be the way from the root node to the leaf node. An important observation is that
paths with the same path-length have invocation plausibility values assigned which
are decreasing from left to right. The idea behind this is that paths with higher
invocation plausibility values should be favoured. A second important observa-
tion is that longer paths are more concentrated to the left of the interpretation
tree. Here again longer path are favoured and should be explored first. A third
important observation is that each sequence of invocation plausibility values cor-
responding to the path from the root node to an arbitrary node is monotonically

decreasing. A chosen path has a unique sequence of invocation plausibility values

21

e

or indices to their list and therefore no other permutation of the sequence need
to be considered as can be seen in Figure 3-1. The fourth observation is that
the rightmost possible child of a parent is always a leaf node, a fact which is an

important consequence of the algorithm as will be seen later on.

The complete interpretation tree can be build up recursively. Suppose one
would like to build up an interpretation tree of order n (n is the length of the list
of invocation plausibility values or the longest path in the tree or the number of
children or branches from the root node). Then the smallest recursive structure
is the root node and the rightmost child n of it. This constitutes the smallest unit
which is used in the next stage. The unit is copied downwards such that the root
is aligned with the (n — 1)-th child of the root which is the sibling immediate to
the left of the n-th node of the root. This constitute the second smallest unit.
Then this unit is copied downwards such that the root of this unit is aligned with
the (n —2)-th child of the root node. After (n —1) copy operation or recursion the
complete interpretation tree of order n is built. This structural principle should

be kept in mind if one would like to build a complete interpretation tree.

Having discussed this property of the interpretation tree we are able to analyse
its complexity. The first complexity measure is the number of nodes in the tree.
In order to calculate it one hage to consider the number of different sets for level
one, for level two, etc, up to level n and simply sum it up. Table 3-1 treats the
general case and will be justified by a generalisation of a simple example which

follows later on (n is the order of the interpretation tree).

The number of nodes in a complete interpretation tree of order n is:

i n on
k=0 k
The second complexity measure of interest is the number of leaf nodes in a
complete interpretation tree. Using the above formula as the induction hypothesis
one can argue that the number of leaf nodes at level n is simply the difference of

the number of nodes at level n and the number of nodes at level n — 1. Thus the

following statement is valid:
The number of leaf nodes in an interpretation tree of order n is:

211 o 271.—1 — 2n-—1 N (2 _ 1) — 2n—-1

22

L

level in the tree | number of different sets with level elements

n
0
>0
n
1
K
n
2

Table 3—1: Number of nodes for each level

Now we want to justify the above formulae by analysing a simple interpretation

tree of order 4 (see Figure 3-2).

To start with we consider each level of the tree and calculate the number of

combinations with level elements. The table below summarizes the results.

level in the tree combinations of level elements

0 {s[0]}

! {s[1]} {s[2]} {s(3]} {s[4]}

2 {s[1], s[2]} {s[2], s[3]} {s[3], s[4]}
{s[1], s3]} {s[2], (4]}
{s[1], s[4]}

3 {s[1], s[2], s(3]} {s[1], (3], s[4]} {s[2], (3], s[4]}
{s[1], s[2], s[4]}

4 {s[1], s[2], s[3], s[4]}

Counting the above elements and summing it up gives the number of nodes in

23

s[3] .

s(4] s[4 s[4]

s[i] = (d(k), m(1), Plaus(k,]) }
s[4] Vi, j: i<jsslil> sl

Figure 3-2: Sample Interpretation Tree of Order 4

a complete interpretation tree of order 4:

n
k

=24

4
>
k=0

The same result can be obtained by considering the expansion of the tree from
level 3 to level 4. Each node gets an additional leaf node (in our case s[4]) which

simply doubles the total amount of nodes in the tree.

The observation made in the above example can be used to conduct an induc-
tion proof for the general case. The induction hypothesis for the trivial case of
the first level is two. The induction step is a multiplication factor of two_that is
the total number of nodes in the next level is the double of the current one. Thus
applying the induction step to an arbitrary level leads finally to the general result
already stated. This argument also implicitly proofs the number of leaf nodes in

the complete tree.

3.2 Algorithm and Data Structure

Having discussed the new interpretation tree in detail one may ask how this struc-
ture relates to the new algorithm. The structuring principle is only a consequence
of the algorithm and doesn’t say anything about the dynamic behaviour of the
algorithm. Below a detailed discussion of the algorithm is given and the dynamic
behaviour of the algorithm is explained on the basis of a simple example followed
by a short discussion of the data structure used by the algorithm. To begin with

the basic principles of best-first search are represented and explained.

As you already know one would like to avoid depth-first as well as breath-
first search because they explore the search space systematic but in a brute force
way until a solution or hypothesis is found. In the worst case they explore an
exponentially sized search space and this results in an exponentially sized time
complexity. By incorporating knowledge about the search space one is able to
direct the search towards the correct solution. This knowledge also called heuristic

is an important feature of each informed search algorithm.

The approach taken in the new algorithm is the use of a best-first strategy to
guide the search. The search is explicitly guided by an estimate which tells the
node in question how good it is on some global scale, which can then be used to
order the next nodes to be explored. If any other node anywhere in the tree has
a better estimate then that node should be expanded next. Thus best-first search

employs four important steps.
1. select the best candidate
2. expand the tree
3. estimate the goodness of the expanded nodes

4. order the nodes according to the estimates

The estimation step is crucial for the algorithm to work properly. As men-

tioned above the heuristic employed is a knowledge about the search space and

25

is expressed as a single number which can then be used by the algorithm. The
heuristic evaluation function, which return a number, consist of two parts namely
the actual estimate of the previously combined pairings and the heuristic estimate

of the value of the new addition. Expressed mathematically one have:

f(n) = g(n) * h(n)

where f(n) is the total heuristic estimate, g(n) is the actual estimate, h(n) is
simply the heuristic estimate and the special character “x” is an arbitrary operator

combining the two estimates in some specific way.

The selection step and order step are related in a sense that one selects the best
candidate from an ordered set of nodes. The ordered set could be implemented
as a sorted list or as a priority queue. A sorted list is not absolutely necessary
because one only want to know what the best element in the list is. Therefore
a priority queue is a satisfactory solution. The best candidate is meant to be
a candidate with the best total heuristic estimate expressed as f(n) which is as

already mentioned a single number.

The expansion step is a defined strategy to expand the best node either to
all other nodes connected to it or to select only few nearby nodes depending on
the strategy used. These expanded nodes are estimated by a heuristic evaluation
function and then inserted in the priority queue. The priority queue uses only the
total heuristic estimates of the nodes to be inserted and the nodes already in the

queue to establish its internal order.

Having explained the basic principle of best-first search we are able to discuss
the basic ideas of the new algorithm. Each node in the tree has a number indicating
which invocation plausibility value is assigned to it. It is essentially an index to
an array of invocation plausibility values which can be seen as a sort of cache.
Number or index “1” correspond to the highest invocation plausibility value and

-~

index “n” to the lowest one. The ascending order of indices thus correspond to

the descending order of invocation plausibility values.

Each node in the tree keeps record of the path explored so far, and is imple-
mented as a parent pointer for efficiency reasons, and an index to indicate which

child to expand next. But this is only implementation detail and is not significant

26

for the understanding of the algorithm. What is really important is the fact that

each node stores two kinds of information:

1. total heuristic estimate of the current node

2. actual estimate of the parent node

The total heuristic estimate is a measurement of how plausible the path from
the root node to the current node is to be the correct hypothesis. As mentioned
above the total heuristic estimate consists of an actual estimate and a heuristic
term. The actual estimate of the parent node is calculated by a geometric con-
sistency evaluation of the set of model-data pairs matched on the path from the
root node to the parent node. It is important to emphasize that this evaluation
doesn’t work like a function returning a value indicating pass or fail. It rather
returns a value saying how plausible the path is to be geometrically consistent.
This is a significant improvement compared to the current model matcher which
uses a threshold function (avoiding thresholds is a good thing because one gets rid

of parameters which the system performance depend on).

In expanding a node one has to consider two important cases:

1. open node (not a leaf node)

2. leaf node (node from which no expansion is possible)

If an open node with index k is to be expanded then the first descendent is its
child with index k41 and the second descendent is the child £+ 1 generated from
its parent node. Thus the second descendent is the next s)bling to the right (see

Figure 3-3).

Before node k is expanded it has the total heuristic estimate f({s1,...,sk})
and the actual estimate g({s1,...,s:}) of its parent node. After expansion the
first descendent is assigned the actual estimate g({s1,...,..., i, sx}) of the node
currently being expanded (i.e. the parent of the first descendent) and the total
heuristic estimate f({si,...,5k,8k+1}) . The second descendent is assigned the

actual estimate g({s1,...,s;}) delivered by the node currently being expanded and

27

level j-1

level j
i+1 k n i+1 k k+1 n
node to }e expanded second descendent
f({s1,...s(k)}) f({s(1),...s(k+1)})
level j+1 g((s(1),....s)}) kil @ g((s(),.s])
/
first descendent
f({s(1),....s(k),s(k+1)})
g({s(1),....s(),s(k)})
Figure 3-3: Open node expansion
the total heuristic estimate f({s1,...,8k+1}). In both cases the actual estimate

must be known first in order to calculate the total heuristic estimate.

However, if one has reached a leaf node special treatment is necessary. The
leaf node is marked as a special node saying that this node has been evaluated
by the geometric consistency function and both the field with the total heuristic
estimate and the field with the actual estimate gets the actual estimate of this node
assigned. In other words, the node is geometric consistency evaluated. Although
no further expansion from the parent node of the leaf node is possible a new
element is generated and both fields the total heuristic estimate and the actual
estimate are assigned the actual estimate of the parent node. In addition this
node is marked as a special node indicating that this node has been evaluated by
the geometric consistency function. Thus one node, the leaf node, comes from
the prioriy queue and two nodes with geometric consistency evaluation go in the

priority queue.

To summarize: before the leaf node is evaluated it has the total heuristic
estimate f({s1,...,8,}) and the actual estimate g({s1,..., s:}) of its parent node.
After evaluation the leaf node is assigned the actual estimate g({s1,...,s,}) and
the total heuristic estimate is assigned the same value g({s1,...,sa}). It is denoted

as a special node and goes in the priority queue. For the parent node a new element

28

is created. It is assigned the actual estimate g({s1,...,s;}) of the parent node and
the total heuristic estimate is assigned the same value g({s1,...,si}). As above it

is denoted as a special node and goes in the priority queue. See Figure 3—4.

<« second queue-element
g({s(1),-..s()))
g({s(1)....s()})

level j-1

level j
i+l n i+l n
node to be evaluated first queue-element
f({s(D...s(m}) g({s(),...sm)})
g({s(1),....sM]) g({s(D),...sm))
Before evaluation After evaluation

Figure 3—4: Leaf node evaluation

It is important to emphasize that the queue contains nodes ranked by both total
heuristic estimate and the actual estimate (or the geometric consistency estimate)
and both are equally treated in the internal orderings procedure of the priority
queue. As is already known the rightmost possible child of each node is the leaf
node. Each leaf node in the tree has an index n according to our convention. An
important observation is that all children must have been evaluated before the
parent node goes in the priority queue with its actual evaluation. Thus the parent
node ¢ in Figure 3-4 is geometric consistency evaluated and goes in the priority
queue if and only if all (n — ¢) children of the parent node have been evaluated or

equivalently the leaf node of the parent node has been evaluated.

The algorithm uses three types of priority queues:
1. heuristic queue

2. geometric consistency queue

3. raytracing queue

There is a time ordering in the way these priority queues are filled. The algo-

rithm gets the input from the invocation module, processes the data and fills the

29

heuristic priority queue. In the heuristic queue, a mixed set of elements both with
geometric consistency and total heuristic evaluation is kept. Candidate hypotheses
to be verified or raytraced are stored in a geometric consistency queue. If the best
element of the heuristic queue (which is the top element of that queue) has been
geometric consistency evaluated then it is taken off that queue and inserted in the
geometric consistency queue. Because the geomertic consistency queue is also a
priority queue the raytracer is able to select the best element from a set of poss-
sible candidates or hypotheses. After a while the raytracer takes the top element
of the geometric consistency queue and starts the verification step by estimating
the pose of the object and applying the raytracing function. The output of the

raytracer is stored in a raytracing queue and to enable further refined analyses.

The question when one would like to take off the element from the geometric
consistency queue is an important one. A simple minded solution like asking for
a certain queue length is problematic because this threshold is most likely to be

object dependent. In general, one would like to avoid such thresholds.

A better way to solve the problem is to start the raytracer as a function of the
the number of node expansions made and the length of the geometric consistency
queue. Although this is a possible solution a far better one exists. By introducing
parallel processes one resolves all problems in one stroke. There are at least two
processes working in parallel. One process is operating on the heuristic priority
queue and the other one on the geometric consistency queue. Because both pro-
cesses are working in parallel no queue length nee<£to be examined. While there
are elements in the geometric consistency queue the raytracer takes the best can-
didate and analyses it. During the analysis the geometric consistency queue may
be filled or not. After analysis, the next candidate from the geometric consistency

queue is selected until no one is left.

Having discussed the underlying principle of the algorithm we are able to
present the pseudo-code description of the best-first search algorithm:

Initialize heuristic queue;

Initialize geometric consistency queue;
assign first element {s(1)} to best;
while heuristic queue not empty

{

while best not geometric consistency evaluated

30

if best not a leaf node
generate and evaluate first descendent
insert in heuristic queue
generate and evaluate second descendent
insert in heuristic queue
else
update best
insert in heuristic queue
create element for parent node of best
update element
insert element in heuristic queue
get new best candidate from top of heuristic queue
X
move best to geometric consistency queue
get new best candidate from top of heuristic queue

}

search failed
// Raytracer

while verification not satisfactory

{
remove best element from geometric consistency queue
apply raytracer to this element and assign plausibility
insert element in raytracing queue

3

Before we move to implementation details a simple example is given to demon-
strate the algorithm followed by a short description of the data structure used by

the algorithm. More details to the data structure are given in the next section.

Suppose we have to consider four pairings denoted by s;, s, s3 and s4 in de-
scending order of invocation plausibility values. As you already know the search
space has a complexity of O(2*) and is depicted in Figure 3-2. Assume the correct
hypotheses is the set of pairings {s1, s2, 83, s4}. The algorithm starts with the first
element s; and generates the first descendent s, on level 2 and the second descen-
dent s; on level 1. Both descendents go in the priority queue and are ordered in
such a way that the top element has the highest total heuristic estimate. Figure

3-5 illustrate the current state.

Suppose the top element is s; on level 2 which has the total heuristic estimate

31

of f(s1,s2). Then the algorithm proceeds by removing this node from the priority
queue and expanding its descendents. The first descendent is node s3 on level 3
and the second descendent is node s3 on level 2. Once again both nodes go in the
priority queue and the whole set stored in the queue is reordered such that the

element on top of the priority queue has the highest total heuristic estimate.

Suppose the top element is s3 on level 3 which has the total heuristic estimate
f(s1,82,53). Once again this node is taken off the priority queue and the algorithm
generates the first descendent sy on level 4 and the second descendent s4 on level
3. Both elements are inserted in the priority queue and the algorithm maintaining
the priority queue ensures that the element on top of the queue has the highest

total heuristic estimate.

Suppose the top element is ss on level 4 with the total heuristic estimate
f(s1, 82,383, 84). The algorithm takes this element off the queue and tries to expand
it. Because s4 is a leaf node no further expansion is possible. Here we have the
special case that node {s, ss, s3,54} need to be geometric consistency evaluated.
Thus the total heuristic estimate f(si,s2,33,54) gets replaced by the actual or
geometric consistency estimate g(s1, s2,93,54) and is marked as a special node
and is inserted in the priority queue. A second node the parent node {s, s3,s3} of
the previous node {sy, s2, 83,54} with the path {s, 52,53} need to be considered.
As explain{cl above a new element is created. This element gets the value for
the actual estimate from the child and leaf node s4. Because there is no further
descendent to be considered the total heuristic estimate is the same as the actual
or geometric consistency estimate of this node. Thus both fields of this element
gets the value g(s1, s2,53). In addition it is marked as a special node or element

and is inserted in the priority queue.

Assume that node s4 with path {s1, s2, 83,54} has the highest total heuristic es-
timate. Thus the value of the total heuristic estimate of this node is g(s1, s2, s3, 84).
The algorithm recognizes that an element with geometric consistency evaluation
is on top of the queue by means of a flag set in the data structure of this element
during the evaluation process. The algorithm continues by taking this element off
the heuristic queue and inserting it in the geometric consistency queue. In our
case node {s1, 2, 53,54} with total heuristic estimate g(s1, 2, s3, 54) is inserted in

that queue. Thus the algorithm is repeating the process of node expansion and

32

S[1]

node to be expanded

s[2]

\

first descendent

\

second descendent

Heuristic Queue :

actual estimate

g(s1)
0

total heuristic estimate
f(s1,52)
f(s2)

Figure 3—5: First step in exploring the search space

first descendent

actual estimate

g(s1,s2)

g(s1)
0

Heuristic Queue :
total heuristic estimate
f(s1,52,s3)
f(s1,s3)
f(s2)

Figure 3—-6: Second step in exploring the search space

each time a node with geometric consistency evaluation is on top of the queue

the element is removed from the heuristic queue and inserted in the geometric

consistency queue.

The most important data structure in the algorithm is the priority queue that
maintains the best candidate with the highest total heuristic estimate. A simple
minded realization of the priority queue as a linear sorted list is not appropriate

because the queue might become quite large and thus queue insertion times would

be significant.

A more efficient implementation is the use of a heap data structure and will

33

Heuristic Queue :
actual estimate total heuristic estimate
g(s1,52,s3) f(s1,s2,53,54)
s[3] «— second descendent g(s1,s2) f(s1,s2,54)
\ s[4] g(sl) f(s1,s3)
node to be expanded 0 f(s2)

= first descendent
s[4}

Figure 3—7: Third step in exploring the search space

be discussed in detail in the next section. There is a second data structure that
maintains the interpretation tree. The two data structures are maintained sepa-
rately. Only a node pointer in the queue element of the priority queue points to
the second data structure. One doesn’t want to store the invocation plausibility
values in the node data structure because storage is wasted. Instead “Caching”
is used. Only an index to the array of invocation plausibility values is employed.
The interpretation tree itself is represented as a set of linked list of parent pointer
and the queue element in the priority queue has only a pointer to a specific node
in the tree. The path is extracted by following the parent pointer. For more detail

see the next section.

3.3 Implementation Details

The algorithm for the new model matcher has been implemented in C 4+ +. C + +
is a high level language supporting object-oriented programming. It has been
chosen as a implementataion language because the current software of IMAGINE
ITitself is written in C++. Apart from this constraint the use of an object oriented

language has several advantages. It enables and support_s

34

actual estimate

g(s1,52,53,54)

Heuristic Queue :

total heuristic estimate

g(s1,s2,53,54)

s[3] g(s1,52,53) g(s1,s2,53)
\ s[4] g(s1,s2) f(s1,s2,54)
new element with GC-eval. g(sl) f(s1,s3)
g(s1,52,53)
0 f(s2)

™ new element with GC-eval.
s[4] g(s1,s2,53,54)

Figure 3—-8: Fourth step in exploring the search space
1. abstraction
2. type-hierarchy
3. data-encapsulation
4. code-reuseability

5. parallelism

Va
The whole algorithm can be broken down inLrelatively independent parts. Each

part can be thought of as an instantiation of an object of a certain type. A class
definition in C + + is a type definition. A big advantage of C + + is that one can
define a mhentance tree very easily. The only difficult part is the decomposition

of the problem 1nLthe right set of classes which are interrelated.

The whole algorithm can be represented as a set of classes. Each class is
accessable from the outside world through a class member function which is in
the public part of the class declaration. The private class declaration allows only
access within that class. Similary the pr otected. class declaration allows only access

within the class hierarchy. For the algouthm followmg classes are of interest:

35

1. class tree

2. class PrioQueue

3. class Queue_element
4. class heap

5. struct PathNode

6. struct Pair

The best way to explain the implementation of the algorithm for the new model
matcher is to start with its data structures. The most important data structure
in the new algorithm is the priority queue. It is very important that the time
complexity of the algorithm maintaining the queue is as low as possible. Sorting
a linked list or array of elements is not satisfactory because sorting an arbitrary
sequence of numbers needs O(n - log n) time. Inserting an element in a sorted list
takes O(n) time. Because one incrementally insertSelements in the queue a sorted
list can always be obtained in O(n) time. This is not very efficient. There are ways

to get around this problem but before that we must specify the problem precisely.

a
What criterignsfor the implementation of the priority queue need to be met?

1. queue length N
2. insert element
3. remove element with highest estimate

4. remove element with lowest estimate

One would like to remove the element with the lowest estimate in order to
insert a new element in a completely filled queue. Thus the best candidate to
eliminate is the element with the lowest estimate. It is obvious that one can only
maintain a queue of a certain length but the point is to find the minimal length for
the vision task to be solved. There is a strong relationship between performance

and queue length.

36

An eflicient implementation of the priority queue is possible using the heap data
structure. In the standard algorithm found in the literature the remove operation
(remove element with highest estimate) takes O(1) and the insert operation takes
only O(log n) time. Although efficient it doesn’t fulfill all of the criteria mentioned
above. In our case an additional problem need to be solved: the element with the

lowest estimate need to be removed in the case when the priority queue is full.

The solution employed in the algorithm uses two communicating heap data
structures. One keeps track of the maximum element and the other keeps track
of the minimum element. To update the priority queue both data structures need
to be maintained in parallel. While a bit more difficult it keeps the advantage of
the heap data structure and satisfies all criteria stated above. As a matter of fact,

the insert and remove operation takes only O(logn) time.

Rkkkkkdokk ok kokkkdokkk CLlaSs tree kkkkskkkokkkskskskskokd ok d ko kokok kK ok sk ko k

class tree {

ChunkingVector<PlacedSurfacePair> S;

const Assembly * assembly;

int LAMBDA;

PrioQueue<Queue_element> heuristic_queue;
PrioQueue<Queue_element> geometric_consistency_queue;
Queue_element best_queue_el;

Queue_element next_queue_ell;

Queue_element next_queue_el2;

float geometric_consistency_evaluation(PathNodePtr);

float heuristic_evaluation(PathNodePtr,float);

float accumulate_evaluations(PathNodePtr node, GeometricEvaluator *);

void create_pathnode(PathNodePtr&);

void print_prio_queue(char *, char *, PrioQueue<Queue_element> &);

void extract_relevant_placed_surfaces(PairVector& invoke_pairs);
public:

tree(const Assembly*, PairVector& invoke_pairs);

“tree(){};

void generate_descendents();

void tree_expansion();

void print_path(PathNodePtr);

void print_queue_element(char*, Queue_element&);

void print_heuristic_queue();

void print_geometric_consistency_queue();

37

skokok ok kkokokokskokokkskokkkokokkkok class PrioQueue sokskskokskoksksksokokskokok ook dokokkokok kok ok
#define PRIO_QUEUE_SIZE 131072

template<class T : NodelIndex>
class PrioQueue {

int heapsize_max;

int heapsize_min;

T * a;

T % b;

heap<T> h;

void insert_support(T&,int);
public:

PrioQueue();

“PrioQueue() {};

T remove();

T find_max();

void insert(T);

int queuesize();

T * queue_max();

friend void printout(char *, char *, PrioQueue &, int);

};
Foksokokdokkkokkookkddkok Rk ok k% class Queue_element kskkskskokskokskokoskokskok skokok dokok sk skok skok sk ok ok 4

class Queue_element : public NodeIndex{
void clear();

public:
int select;
float estimate;
float heuristic_estimate;
float actual_estimate;

PathNodePtr path;

Queue_element () : NodeIndex() { clear(); };
Queue_element (float est);

};

inline int operator<(const Queue_element x, const Queue_element y)

{

return x.estimate < y.estimate;

¥

inline int operator>(const Queue_element x, const Queue_element y)

{

return x.estimate > y.estimate;

38

3k sk s sk sk ke ok skok skokokokokkkokskkokok ok kkkk class heap 3k s 3 3 ok ok ok s 3k 3k 2k ke ok o ke 3 e 3k e ok 3k 3 ok o ok e sk ok sk ok ok

struct BaseHeap {
int parent(int i) { return i/2; }
int left(int i) { return 2*i; }
int right(int i) { return 2*i+1;}
s

struct NodeIndex{
int partnerlIndex;
NodeIndex();
};

template<class T : NodeIndex>
class heap : public BaseHeap {
int heapsize;
int sel;
T % c;
T % d;

void swap(T *, T *);
void heapify(int);
public:
heap(){};
“heap(){};
void heapify_sel(int, int, int, T *, T *);
// parameter: sel, index, heapsize, heap_array_a, heap_arr:
T heap_extract(int, int&, T *, T *);
// parameter: sel, heapsize, heap_array_a, heap_array_b
void heap_insert(int, T, int, T *, T *);
// parameter: sel, key, index, heap_array_a, heap_array_b

};

Rk dokkokkokokokokkokkokkokokokkk Struct PathNode kkkskskskskskokskokokkokkokskskokokkk ok kokk

typedef struct PathNode *PathNodePtr;
typedef struct Pair #*PairPtr;
struct PlacedSurfacePair;

struct PathNode{
PathNodePtr parent;
PlacedSurfacePair * s;
int me;

39

int child_index;
PathNode();
int print() const;
int length() const;
s

typedef struct SurfacePair * SurfacePair_P;
typedef struct SurfacePair ** SurfacePair_PvP;
typedef struct AssemblyPair * AssemblyPair_P;
typedef struct AssemblyPair ** AssemblyPair_PvP;

sk skok ek ok okokok ok skokokkokokokkokokokskok SETUCT Padl dkokokokokokok ok skok skookook ok ook sk ok ok ok ok e sk ok ok o ok ok ek skeoke sk sk ok ok

struct Pair {
enum Type {NONE, SURFACE, ASSEMBLY} type;
float invoked_plausibility;

Pair(Type t, float p):type(t),invoked_plausibility(p) {}
virtual int print() const;

public:
static Pair * fread(File&);
};

struct SurfacePair : public Pair {
int modelindex;
Surface * model;
DataSurface * data;

SurfacePair(Surface * m, int i, DataSurface * d, float plaus):
Pair (SURFACE, plaus),
model(m) ,modelindex(i),data(d) {}

int print() const;

static ChunkingVector<Surface*> all_surfaces;
static Surface * surface(int index) { return all_surfaces[index]; }
static int numsurfaces() { return all_surfaces.last(); }

s
struct AssemblyPair : public Pair {
ViewGroup* model;

RichContext* data;

AssemblyPair(ViewGroup * m, RichContext * d, float plaus):
Pair (ASSEMBLY, plaus),

40

model (m) ,data(d) {}
int print() conmnst;
};

AssemblyPair * isAssemblyPair(Pair * p);
SurfacePair * isSurfacePair(Pair * p);

struct PairVector : ExpandingScalarVec<Pair*> {

int load(const char *);
int save(const char *) const;

};

3 ok 3k ok ok ok ok ok ok ok ok ok ke 3k ok sk sk ok ok ok 3k 5k 3k ok ok sk ok ok ok ok ok ok sk sk sk sk ok sk sk sk 3 sk s ok ok ok sk vk sk sk ok 3k sk e ok sk ok ok sk ok ok ok sk 3k ok ok ok ok ok ok

41

Chapter 4

Experiments

4.1 Introduction

The new matching algorithm is tested on real data. One test-object is Widget
the other one is the so called Renault part. The second test-object is significantly
more complex than the first one and is a big challenge for the new algorithm.
The goal of the experiment is to determine the influence of parameters to the
overall performance of the algorithm. Both parameters and performance have to
be defined first. Which parameters are used and how to measure the performance
of the algorithm will be explained in this section. An assumption made is that the

algorithm can find the correct hypothesis.

Because the algorithm is a best first search algorithm the performance is clearly
strongly related to the total heuristic estimate. The definition of the heuristic
function is critical and must be set up very carefully. The range of the parameters
used in the heuristic function must also be taken in account when considering the
performance of the algorithm. The total heuristic function f(s,) consists of two

parts:
1. geometric consistency or actual estimate g(sp—1)
2. heuristic estimate h(s,)

In the current implementation the total heuristic function uses an additive operator
to combine the geometric consistency function and the heuristic function. Thus

the total heuristic function is:
F({s1,---582}) = g({s15-- -y 8n-1}) + R(ss)

42

In the experiment two variants of total heuristic functions have been used. In
order to describe it the geometric consistency function ha,yé to be explained first.

The geometric consistency function is a function of three components:

9(Pi) = 9(gang(Pi); dist(Pi)s Gproi (i)

whereg#p; is the path of the current node 7. The three components are con-
sistency functions for the binary angle, distance and projection constraints. Each
consistency function computes the estimate of each pair of surface pairs and com-

bines it according to the following formula:

H H (84, 8;5)
Tt 1>t
wheres& s; is the surface pair of node j and s; is the surface pair of node 1
and 7(s;,s;) is the geometric consistency estimate of the pair of surface pairs.
For each pair of surface pairs the consistency function uses the corresponding
geometric consistency evaluation function. The angle consistency function uses
the angle consistency evaluation function, the distance consistency function the
distance consistency evaluation function and the projection consistency function
the projection consistency evaluation function. In the following each of these

evaluation functions will be considered separately.

Each evaluation function is a binary consistency test applied to planar and
biquadratic surfaces. In the current implementation the geometric consistency
test for biquadratic surfaces is simply a dummy test. It always returns one. Any
pair of surface pairs containing nonplanar data surface patches is regarded to be

consistent.

The input to the geometric consistency evaluation function, considered as a
black box, is a pair of surface pairs. The function uses the model and data interval
table to calculate an estimate of the plausibility of the consistency of the pair of
surface pairs. The model interval table is calculated after the model has been built
and is available for future recognition tasks. The data interval table is calculated

after the range image has been a%l\uired and is delivered by the segmentation modul.

The angle consistency evaluation function compa.reanodel and data angle in-

tervals and returns an estimate how good that comparison was by using a gaussian

43

function. It retrieve the data and model interval from the precalculated data and

model interval table and calls the function eval gaussian() (see program code).

float eval_gaussian(double dmin, double dmax, double mmin, double mmax)
{

double data_mean = (dmax + dmin)*0.5;

double data_width = dmax - dmin;

double model_mean = (mmax + mmin)*0.5;

double sigma = 3*data_width; // 3 is fudge factor
double x = (data_mean - model_mean)/sigma;
double f = exp(~-x*x);
return f;
}

The angle consistency test employs a gaussian function in order to calculate
an estimate of the plausibility of consistent surface pairs. The function simply
calculates the mean value of the data and model interval and the difference of the
two values is normalized by the standard deviation of the gaussian function. The
standard deviation determinedthe width of the gaussian curve and for constant
mean values of data and model angles it determines the probability to accept a
pair of surface pairs. The larger sigma the broader the gaussian curve and the
higher the probability to accept a pair and vice versa. Low sigma means therefore
more discriminate. The standard deviation is determined by the data interval and
a fudge factor which must be verified or adapted through experimentation. In
our case a fudge factor of 3 has been chosen. The larger the fudge factor or data
interval the larger the standard deviation and the broader the gaussian curve and
vice versa. A broader gaussian curve means less discriminate and less reluctant
to possible matches. This factor is one of many parameter{which determine the
overall performance of the algorithm and should be kept in mind. There are two
other cases where the behaviour of the gaussian function evaluation with respect
to varying parameters can be studied. In the first one the mean of the data and
model interval as well as the fudge factor are kept constant. Increasing the data
interval increases also the standard deviation of the gaussian function and the final
estimate and vice versa. In the second case the data interval and the fudge factor
are kept constant. Increasing the difference between mean of data interval and
mean of model interval decreases the consistency estimate of the surface pair in

question.

44

The distance consistency evaluation function compares maximal and minimal
distances of model and data surface patches and uses as criterion either overlap-
ping or insertion to calculate an estimate. The function retrieves the model and
data intervals from the interval tables previously calculated and calls the function

eval_interval_overlap (see program code).

float eval_interval_overlap(double dmin, double dmax, double mmin, doubl

{

double x;
double f;
double sigma = 3; // fudge-factor; have to be determined experiment

if (dmax > mmin && dmin < mmax)
f=1;
else if (dmax < mmin)
{ x = (mmin-dmax)/sigma;
f = exp(-x*x);
}

else if (dmin > mmax)
{ x = (dmin-mmax)/sigma;
f = exp(-x*x);

};

return f;

It should be emphasized that an important design decision must be made here.
When do we take a function based on overlapping and when a function based on

insertionLFor overlapping three cases need to be considered.

1. data interval is left of the model interval
2. data interval is overlapping (classical case)

3. data interval is right of the model interval

All three cases can occur due to occlusion, noise and segmentation error. For

an example see Figure 4-1.

A overlap-function which only accepts the case where the two intervals are

strictly overlapping rejects the other two cases. Thus the threshold function isn’t

45

Model-surface Pair

estimate
m{max)
|
E length
m{min) m(min) m(max)
Data-surface Pair estimate

d(max)

occlusion - d(min) d(max)
segmentation error

Figure 4-1: Overlap-function

appropriate. Smoothing the left and right edges of the estimation function (see
Figure 4-1 right) avoids the threshold effect and includes the other two cases to

some extent with decreasing plausibility values.

For insertion two main cases need to be considered:

1. data interval within model interval

2. data interval enclosing model interval

As above thistwo cases can occur due to occlusion and segmentation error. For
an example see Figure 4-2. The two parallel planes are larger after segmentation

and therefore the data interval encloses the model interval.

If one tries to smooth the right and left edge of the threshold estimation func-
tion then one could include cases where the data interval can overlap either the
right or left end of the model interval with decreasing plausibility values. This is

reasonable to counteract the effects of occlusion and segmentation error.

For both cases the overlap and insertion function there is a tradeoff between
discrimination and avoiding occclusion and segmentation error. In the experiment

the overlap-function has been chosen for both the distance and the projection

46

e) estimate
'

AT __

pallel model planes

2
2
g

d(max) m(min) m(max)
E ’i estimate
é Id(min)| i 1
parallel data planes

larger surface patches

Figure 4-2: Inclusion-function

consistency evaluation function. The experience with the current model matcher

has been taken to justify the decision.

Now we are in position to state the total heuristic functions. As mentioned

L above there are two functions. The first one is:

flsn) = {o1-log(gang(si-1)) + az - 10g(gaist(si-1)) + a3 - 10g(gpro;(si-1)) +

1
ag - g(sic1) + b b (7 - log(sn) + b1 1% — Rnaz)} 5 (4.1)
and the second one is:
f(sn) = {gang(si—l)al : gdi:;t(si—l)o{2 : gproj(si—-l)a3 : g(si—l)a4 +
1 1
(A - P2 —po o)) 2 4,
hmaz . hmin (’Y lOg(Sn) + ﬂl n hmtn)} 2 (2)
with the following constants:
hma:c = 7 1Og(Smaz) + ,31 : /\ﬁ2 (43)
|i hmin = 7 log(smin) + ﬂl (44)

F In the formulae 4.1 and 4.2 the logarithmic function is limited to a negative

constant ¢ to avoid shooting off to minus infinity for very small argument values.

47

Formula 4.1 is normalized to a range of negative constant ¢ to zero. Formula 4.2
is normalized to a range of zero to one. It is important that both the geometric
consistency and the heuristic term have the same range in order to avoid that
either geometric consistency or heuristic evaluated nodes are favourized in the
priority queue. The normalization parameters Ao, and hpn;, is the maximum

respective minimum value of the unnormalixed heuristic term whereas s,,4, and

Smin 18 the maximal respective minimal value of the invocation plausibili{y values. €

The longest path or equally the number of invocation plausibility values is denoted
with A. Notice the actual or geometric consistency estimate ¢g(s;—1) of the parent
node in both formulae. Notice also that the start value in formula 4.1 is log(g(s1))

and in formula 4.2 g(s,).

The parameters of the total heuristic estimate are:

a o a3 ag b Py
Parameters which measure the performance of the overall algorithm are:

1. number of node expansion

2. number of geometric consistency evaluation

3. number of raytrace operation

4. number of elements inserted in the priority queue

5. minimal, maximal and average throughput of the priority queue
6. maximal, minimal and average priority queue length

7. maximal and average path length

8. path length distribution

9. priority queue length distribution

10. differential path length distribution

48

11. differential queue length distribution

12. lowest and highest position of correct hypotheses in priority queue

13. position distribution of the correct hypotheses in priority queue

14. differential of position distribution of the correct hypotheses in priority queue

For the experiment the first three have been chosen because they are related
to the time and space complexity of the algorithm. The fourth point is a value
which is not independent and is calculated by adding the values of the first two

points.

4.2 Method

The criterion to terminate the algorithm is that the node on top of the priority
queue is geometric consistency evaluated and is the correct hypotheses. Who
determines the correct hypotheses? It is the responsibility of the raytracer to find
acceptable hypotheses. It does this by first estimating the pose and then comparing
data and model matches after projection of the oriented model on the range image.
To summarize the raytracer gets as input a geometric consistency evaluated node
and calculates an estimate of the probability that the current hypothesis is the

correct one.

In the experiment a dummy raytracer has been used instead of a real one. This
is not a disadvantage with respect to analysing the behaviour of the algorithm. All
the parameters stated above can be analysed independently. The only necessity is
that a human determine the correct data model pairings which are then used in

the program as a knowledge to filter out the correct hypotheses.

The range of parameters in formulae 4.1 and 4.2 are:

49

parameters | ranges
a 0...1
o 0...1
Qs 0...1
oy 0...1
b1 0.1...5
B2 0.1...5
~ 0.1...5

with the assumption for formula 4.1:

o t+aytazt+ag=1

4.3 Results

The first experiment was done with the Widget object. The model of the Widget
object can be seen in Figure 4-3 and the data can be seen from the range image in
Figure 4-4/and 4-7.\The input to the model matcher are the invocation plausibility)
values supplied by the invocation modul. Fourteen data model surface pairs are |
the input to the algorithm. Thus the maximal pathlength of the search is fourteen.

The two heuristic function 4.1 and 4.2 have been used to test the performance.

Notation:
NE . .. Number of node expansion
GV . .. Number of geometric consistency evaluation
RT . . . Number of raytracing operation
Lg . . . Length of priority queue after solution found

The results for the total heuristic function 4.1 are:

50

Figure 4-3: Model of the Widget Object

o oy a3 ag P P2 v |NE GV RT Lg
L1l Lo 1 1|8 11 7 40
1 1 2 (111 13 8 54
1 1 05|111 13 8 54
1 2 1 (111 13 8 54
1 05 1397 45 30 191
2 2 118 11 7 40
05 2 1 |111 13 8 54

The results for the total heuristic function 4.2 are:

51

Figure 4—-4: Range Image of the Widget Object

Q1 Qg QO3 Q4 ﬂl ,32 v NE GV RT LQ

1 1 1 1 1 1 1|47 4 1 25
1 1 2|8 8 3 43
1 1 05| 47 4 1 25
1 2 11581 4 127
1 05 1213 16 7 138
2 1 1|47 4 1 25
06 1 1 (8 8 3 43

The second experiment was done with the Renault part. The model of the
Renault part can be seen in Figure 4-5 and the object can be seen in the range
image in Figure 4-6. The model has been aquired from the range data of the object.
The Renault Part is considerable more complex than the Widget object and the
invocation hypotheses list comprises hundred data model surface pairings. In the
actual run of the program the algorithm couldn’t find a solution. The problem
has been simplified by excluding biquadratic model surfaces from the invocation

list. The invocation list has been reduced from hundred to 42. Despite the changes

52

made the algorithm failed to find the correct hypotheses. The reason for the failure

is founded in bad heuristic estimates and not the algorithm itself.

Figure 4—5: Model of Renault Part

53

Figure 4-6: Data of Renault Part

o4

—

p—

Descriptions File: ../ren315/data.des

1 2 3 5 6 11 12
2 58
3 57 1
5 0 58 57
6 58 1 1 58
1 6 63 63 6 64
12 5 63 62 5 64 2
14 58 0 1 58 1 63 63

39

Plane D=467.741
Plane D=936.998
Plane D=938.655
Biquad(24,84304)
Plane D=462.414
Plane D=937.013
Biquad(-27,-12)
Biquad(-57,0)
Biquad(-27,-12)
Biquad(634,-40)
Plane D=388.29
Plane D=395.647
Biquad(105,-69)
Plane D=959.394
Biquad(28,-303)
Biquad(62,-75)
Biquad(13,19)

OONOOO &WN =

2968
1564
559
973
1084
565
400
326
526
304
641
607
383
206
245
195
215

[-0.01 0.85 -0.53]
[0.00 0.01 -1.00]
[-0.00 0.01 -1.00]
[0.54 -0.19 0.08]
[-0.01 0.85 -0.53]
[-0.01 -0.01 -1.00]
[0.03 0.05 0.91]
[-0.45 0.65 -1.43]
[-0.17 -0.43 -0.33]
[-0.01 0.01 -0.20]
[-0.01 0.90 -0.44]
[-0.04 0.89 -0.45]
[0.01 -0.00 1.49]
[-0.00 0.00 -1.00)
[0.47 0.38 -1.17]
[-0.50 0.78 -0.42]
[0.42 -0.07 0.63]

Chapter 5

Conclusion

5.1 Summary

The new algorithm has been successfully implemented and incorporated into the
IMAGINE II environment. The Widget object has been used to analyse the per-
formance of the algorithm. One assumption made in this experiment was that
the correct solution can be found. Two heuristic functions have been designed
and used to compare the performance of the algorithm. One key result is that
the heuristic function which uses parameters in the exponential domain works
better that the one in the logarithmic domain. It only needs one raytrace opera-
tion to find the solution. It is also interesting to observe that the candidate with
the minimal number of raytraces is also the one which has the minimal number of
node expansion, geometric consistency evaluations and the minimal priority queue
length. Further investigation of the influence of the alpha parameters oy, as, a3, ay
with respect to the performance of the algorithm was not done because the solu-
tion was already found in the first raytrace operation. The next natural step was

to use a more complex object to investigate the performance of the algorithm.

In the second experiment the Renault part, known as one of the most complex
parts in the vision literature, has been used. There were hundred data surface
pairs that the model matcher has had to deal with. As a result the new model
matcher hasn’t found the solution at all. In order to reduce the complexity of the
matching task all biquadratic model surface pairings have been removed from the
input file. This reduced the complexity to 42 data model pairs. As a result the
algorithm couldn’t find the solution either. Analyses of the explored search tree

showed that the algorithm explored first the tree in breadth-first order and then

56

dove deep in the search tree before coming back to do some search on this level
and dove again deep in the search tree. During that time he hasn’t generated the
node in the tree with the correct solution. The algorithm explored the tree like a

fork. It also reaches the maximal possible depth of the search tree.

5.2 Future Work

As stated several times the critical point in best-first search is the heuristic function
to direct the search. As the Renault part has nicely demonstrated an inadequate
heuristic function can lead to the problem of combinatorial explosion. An impor-
tant point is what strategy ought to be chosen to cope with the search complexity.
Additional constraints could help to prune the interpretation tree more efficiently.
One possibility is to eliminate duplicates of data and model pairings along the path
of the node in question. The idea is e.g. that two data patches which matches
the same model patch must have about the same curvature and area as the model
patch to get an invocation plausibility. It is therefore wasted search effort to inves-
tigate both patches at the same path. Imagine two data planes separated a certain
distance from each other lying about in the model plane. The first data plane sup-
ply a constraint and the addition of the second one doesn’t give an additional
constraint and can simply be ignored. If the first plane seems to be inconsistent

then there is still a way to match the second one.

In designing the heuristic function it has been observed that a statistical bal-
ance of f and g values in the priority queue is significant. If g values are dominant
than they are located on top of the queue and therefore blocking the algorithm
from exploring further open nodes. If on the other hand the f values are dominant
than they are located on top of the queue and are explored as long as there are
no open nodes left therefore ignoring the leaf nodes of the tree completely. The
normalization step in designing the heuristic function prevents the dominance of

either of the terms in the priority queue.

A simple measurement can be used to measure the frequency of f and g values
in the priority queue. For a given queue length one counts from the top the

number of g or f values as a function of the the relative distance from the top.

o7

Differentiating the distribution of g or f values with respect to the relative queue

position supplies the frequency of g or f nodes in the priority queue.

In the discussion of the experiments a large list of parameters measuring the
performance of the algorithm has been given. The different ways performance can

be analysed can help to extract the important parameters and ranges.

The new model matcher hasn’t incorporated the pose estimation constraint.
Future implementation of the algorithm should incorporate it, with an expected

improvement in performance.

Including biquadratic surfaces in the constraint evaluation process is an im-

portant step towards a general model matcher.

To justify the new algorithm a comparison with the current standard interpre-
tation tree search is necessary. Comparison of run time with different objects is

one possibility, but depends on both implementations being optimally coded.

58

Bibliography

[Ayache & Faugeras 86)

[Fisher 89]

[Fisher et al. 93]

[Grimson & Lozano-Perez 87]

[Grimson 90]

N. Ayache and O.D. Faugeras. Hyper: A new ap-
proach for the recognition and positioning of two-
dimensional objects. In IEEFE Trans. Patt. Anal.
and Mach. Intell., pages 44-54, 1986.

R. B. Fisher. From Surfaces to Objects: Com-
puter Vision and Three Dimensional Scene Anal-

ysis. John Wiley and Sons, Chichester, 1989.

R. B. Fisher, A. W. Fitzgibbon, M. Waite,
E. Trucco, and M. J. L. Orr. Recognition of Com-
plex 3-D Objects from Range Data. DAI Research

Paper, Dept Artificial Intelligence, University of
Edinburgh, September 1993.

Grimson and Lozano-Perez. Localizing overlapping
parts by searching the interpretation tree. In IEEE
Trans. Patt. Anal. and Mach. Intell., pages 469-
482, 1987.

W. Eric L. Grimson. Object Recognition by Com-
puter: The Role of Constraints. MIT Press, Cam-
bridge, Massachusetts, 1990.

39

Appendix A

Program code for New Model Matcher

h File:

% Author: HEBENSTREIT

% Updated: SEPTEMBER 12 1994
% Purpose: NEW MODEL MATCHER

#include "libgr/geometry.hxx"
#include "libu2/ChunkingVector.h"
#include "PlacedSurfacePair.h"
#include 'queue_element.h"
#include "prio_queue.h"

// Here’s the class to build up the Interpretation Tree

struct PairVector;
struct GeometricEvaluator;

class tree {
ChunkingVector<PlacedSurfacePair> S;
const Assembly * assembly;
int LAMBDA;
PrioQueue<Queue_element> heuristic_queue;
PrioQueue<Queue_element> geometric_consistency_queue;
Queue_element best_queue_el;
Queue_element next_queue_ell;
Queue_element next_queue_el2;
int counti;
int count2;
int count3;
float h_max;
float h_min;
float betal;
float betal;
float gamma;

60

void init_par_heurist_eval();

float geometric_consistency_evaluation(PathNodePtr);

float heuristic_evaluation(PathNodePtr,float);

float accumulate_evaluations(PathNodePtr node, GeometricEvaluator *);

int ray_trac_sim(Queue_element&);

void create_pathnode(PathNodePtr&);

void print_prio_queue(char *, char *, PrioQueue<Queue_element> &);

void extract_relevant_placed_surfaces(PairVector& invoke_pairs);
public:

tree(const Assembly*, PairVector& invoke_pairs);

“tree(){};

int num_node_exp() { counti+=2; };

int num_gv() { count2++; };

int num_raytrace() { count3++; };

int read_num_node_exp() { return countl; };

int read_num_gv() { return count2; };

int read_num_raytrace() { return count3; };

void generate_descendents();
void tree_expansion();
void print_path(PathNodePtr);
void print_queue_element(char*, Queue_element&);
void print_heuristic_queue();
void print_geometric_consistency_queue();
};
#pragma ident "AZUAMA ALY YEL"

//

// Robot Vision Group

// Dept. of Artificial Intelligence
// University of Edinburgh

//

// Author: Josef Hebenstreit
// Date: Summer 94
// Description:

//

#include <stream.h>
#include <iomanip.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>

#include "libu/messages.hxx"
#include "tree.h"
#include "PathNode.h"

//

tree::tree(const Assembly * a, PairVector& invoke_pairs)

{

61

};

countl = 1; // Only for statistics !

// counter: number of node expansion
count2 = 0; // Only for statistics !

// counter: number of geometric evaluation
count3 = 0; // Only for statistics !

// counter: number of ray-trace operations

assembly = a;
extract_relevant_placed_surfaces(invoke_pairs);

init_par_heurist_eval(); // initialize parameter for heuristic evaluation
::info("LAMBDA = Yd \n",LAMBDA); // test

// make seed for random number generation dependent from time
srand(time(0));

// create root node
PathNodePtr root = new PathNode;
root->child_index = 1;

// create first descendents
PathNodePtr first = new PathNode;

// initialize first descendents
first->parent = root;
first->me = 1;
first->s = &S[1];
first->child_index = 2;

// set child index of root node
root->child_index += 1;

Queue_element key;

// £ill queue-element for first descendents
key.select = 0; // indicate that estimate = heuristic_estimate
key.estimate = S[first->me].invoked_plausibility;
key.heuristic_estimate = key.estimate;
key.path = first;

// insert first descendents in queue
heuristic_queue.insert(key) ;

print_queue_element("first element:",key);

extern float clog(float);

void tree::init_par_heurist_eval()

{

betal
beta2

1;
1;

62

gamma = 1;

h_max = betal * pow(LAMBDA,beta2)\
+ gamma*clog(S[1].invoked_plausibility);
h_min = betal + gamma*clog(S[LAMBDA].invoked_plausibility);

r:

float tree::heuristic_evaluation(PathNodePtr path, float actual_estimate)

{
float h;

h = (actual_estimate + (betal*pow(path.length(),beta2) \
+ gamma*clog(S[path->me].invoked_plausibility) - h_min)

return h;

};

void tree::tree_expansion()
{

int correct_hyp;

do {

//

while (heuristic_queue.find_max().select == 0)

{

generate_descendents();

ray_trac_sim(heuristic_queue.find_max());

if (heuristic_queue.queuesize() == 32000) // test
{
printf("generate descendents stop \n");
printf("node-exp = %d \n",read_num_node_exp());
printf("geometric-consist-eval = Jd \n",read_num_gv());
printf("heuristic-queue-length = %d \n",heuristic_queue.queuesi

// print_heuristic_queue();
//print_geometric_consistency_queue();
exit(1);
};

};

correct_hyp = ray_trac_sim(heuristic_queue.find_max());
if (correct_hyp == 0)
{ num_raytrace();
geometric_consistency_queue.insert(heuristic_queue.remove());

};

} while ((heuristic_queue.queuesize() !'= 0) && (correct_hyp == 0));

::info("\n Solution Path: \n");
// heuristic_queue.find_max() .path->print();

63

exit(1);
};
// dummy raytracer widget

int tree::ray_trac_sim(Queue_element& gv)

{
PathNodePtr current_node = gv.path;
if ((current_node->length() == 3) &% (current_node->me == 5))
{ current_node = current_node->parent;
if (current_node->me == 2)
{ current_node = current_node->parent;
if ((current_node->me == 1) && (current_node->parent->parent == 0
{
::info(" ray-trac stop \n");
::info("node-exp = %d \n",read_num_node_exp());
::info("geometric-consist-eval = %d \n",read_num_gv());
::info("raytrace = Y%d \n",read_num_raytrace());
::info("heuristic-queue-length = %d \n",heuristic_queue.queue
::info("geometric_consistency_queue-length = %d \n",geometric
// print_heuristic_queue();
// print_geometric_consistency_queue();
exit(1);
return 1;
3
};
};
return O;
};
// dummy raytracer renault part
/*
int tree::ray_trac_sim(Queue_element& gv)
{

PathNodePtr current_node = gv.path;
if ((current_node->length() == 4) && (current_node->me == 14))
{ current_node = current_node->parent;

if (current_node->me == 8)
{ current_node = current_node->parent;
if (current_node->me == 7)

{ current_node = current_node->parent;
if ((current_node->me == 1) &% \
(current_node->parent->parent == 0))
{
::info(" ray-trac stop \n");
::info("node-exp = %d \n",read_num_node_exp());
::info("geometric-consist-eval = /id \n",read_num_gv());
::info("raytrace = %d \n",read_num_raytrace());

64

::info("heuristic-queue-length = %d \n",heuristic_queue.

::info("geometric_consistency_queue-length = ¥%d \n",geom
// print_heuristic_queue();
/! print_geometric_consistency_queue();
exit(1);
return 1;
};
};
};
};
return O;
};
*/

void tree::generate_descendents()
{
// remove path with best heuristic estimate
best_queue_el = heuristic_queue.remove();
//print_queue_element (‘'remove element:" ,best_queue_el);

// 3 3k o 3k ok 3 ok s ok o sk 3 ok ke sk sk ok ok 3k 3k ok o ok s ok s ke o ok sk s ok ok sk sk s ok sk 3k ok ok ok ok ok sk sk ok ok ok 3k sk ok ok sk k sk sk ok ok ok 3k sk koK ok ok ok k

// insert first queue-element in queue
// with heuristic estimate
PathNodePtr path = best_queue_el.path;

// Important: Geometric Consistency Evaluation here !!
if (path->parent->parent != 0)
next_queue_ell.actual_estimate = geometric_consistency_evalua

else

next_queue_ell.actual_estimate = best_queue_el.estimate;

if (path->child_index <= LAMBDA)
{

// statistic: count node expansion (notice:
// per expansion 2 nodes)

num_node_exp() ;

next_queue_ell.select = O;

create_pathnode(path);

next_queue_ell.path = path;

// heuristic evaluation of the path
next_queue_ell.estimate = heuristic_evaluation(path,next_queue

else
{ // leaf-node reached;
next_queue_ell.select = 1;
next_queue_ell.estimate = next_queue_ell.actual_estimate;
next_queue_eli.path = path;
// statistic: count nodes with geometric
// consistency evaluation
num_gv();
+;

// Insert element in Heuristic-Queue

65

p

heuristic_queue.insert(next_queue_ell);
print_queue_element("first descendent:",next_queue_ell);

/] Fskksskokodokskok ok skokok ook skodeokokok ok skok s okok ook sk ook kok ok ok sk kol s o ko s ke ke ok sk ok ok sk ok ok ok sk ok ok sk ok ok
// insert second queue-element in queue
// with heuristic estimate
path = best_queue_el.path->parent;
if (path->child_index <= LAMBDA)
{
next_queue_el2.select = 0;
create_pathnode(path);
next_queue_el2.path = path;
next_queue_el2.actual_estimate =
if (path->parent->parent == 0)
next_queue_el2.estimate = S
else

best_queue_el.actual_estimate
[path->me] . invoked_plausibilit

// heuristic evaluation of the path
next_queue_el2.estimate = heuristic_evaluation(path,next_g
// Insert element in Heuristic-Queue
heuristic_queue.insert(next_queue_el2);

rint_queue_element("second descendent:",next_queue_el2);
}
else if (path->parent != 0)
{ // parent of best-queue-element has no

// further children to be explored !!
next_queue_el2.select = 1;
next_queue_el2.path = path;
next_queue_el2.actual_estimate = best_queue_el.actual_estimate
next_queue_el2.estimate = next_queue_el2.actual_estimate;
// Insert element in Heuristic-Queue
heuristic_queue.insert(next_queue_el2);

rint_queue_element("second descendent:",next_queue_el2);
P q q

};

/*
vo

{

// statistic: count nodes with geometric
// consistency evaluation
num_gv();

};

// print_queue_element("second descendent:",next_queue_el2);
//print_heuristic_queue();

id tree::print_path(PathNodePtr p)

cout << '"path:\n";
while (p != 0)

66

{
cout << "S[" << p->me << "], " << "child_index = " << p->child_index <<
P = p->parent;

cout << '\n";
};
*/

void tree::print_path(PathNodePtr p)
{

int s[LAMBDA+1];

int n = 1;

int count = 0;

if (p==0) return;

while (p->parent != 0)

{
s[n++] = p->me;
p = p->parent;
count++;
};
for (int i=count; i>0; i--)
if (i>1)
cout << "S[" << s[i] << "]" << "y
else

cout << "S[" << s[i] << "J\n";
};

void tree::print_queue_element(char* s, Queue_element& q)

{
cout << s << "\n";
cout << "estimate = " << q.estimate << ", "
<< "actual_estimate = " << g.actual_estimate << ", "
<< "select = " << g.select << "\n";
print_path(q.path);
¥;

void tree::print_heuristic_queue()

{

print_prio_queue("Heuristic-queue: ", "H", heuristic_queue);

};

void tree::print_geometric_consistency_queue()
{
print_prio_queue("Geometric-Consistency-Queue: ", "GC", geometric_consistenc

};

void tree::create_pathnode(PathNodePtrZ path)

67

// create path-node
PathNodePtr new_path = new PathNode;
new_path->parent = path;
new_path->me = path->child_index;
new_path->s = &S[new_path->me];
new_path->child_index = new_path->me + 1;
path->child_index += 1;
path = new_path;
}

void tree::print_prio_queue(char * strl, char * str2, PrioQueue<Queue_element>
{

Queue_element * c = q.queue_max(); // import Max-Queue

int queuesize = q.queuesize(); // import Queuesize

PathNodePtr p;

cout << stri << "\n"; // print header
cout.setf(ios::left,ios::adjustfield); // adjust output
for (int i=1; i <= queuesize; i++)
{

cout << str2 << "[" << i << "] : path: ";

p = cl[i].path;
while (p != 0)
{
cout << "S[" << p->me << "]";
P = p—>parent;

if (p != 0)
cout << " -=> ",
};
cout << "\n";
cout << "\t"
<< "estimate = " << setw(10) << setprecision(b)
<< c¢[i] .estimate << ", "
<< "actual_estimate = " << setw(10) << c[i].actual_estimate << ", "
<< "gelect = " << c[i].select << "\n";
cout << '"\n";
};
};
// prio_queue.h

#ifndef __prio_queue_h_
#define __prio_queue_h_

#include "heap.h"
#pragma interface

#define PRIO_QUEUE_SIZE 131072

68

template<class T : NodeIndex>
class PrioQueue {

int heapsize_max;

int heapsize_min;

T * a;

T * b;

heap<T> h;

void insert_support(T&,int);
public:

PrioQueue();

“PrioQueue() {};

T remove();

T find_max();

void insert(T);

int queuesize();

T * queue_max();

friend void printout(char *, char *, PrioQueue &, int);

1
#include "prio_queuse.impl.h"

#endif
// prio_queue.impl.h

#ifndef __prio_queue_impl_h_
#define __prio_queue_impl_h_

#pragma interface
// Member-function implementation for class Prio-queue

template<class T : NodeIndex>

void PrioQueue<T>::insert_support(T& key,int index)

{
heapsize_min++;
key.partnerIndex = heapsize_min;
h.heap_insert(1,key,index,a,b);
key.partnerIndex = b[heapsize_min].partnerIndex;
h.heap_insert(0,key,heapsize_min,b,a);

};

template<class T : Nodelndex>
PrioQueue<T>: :PrioQueue()
{
heapsize_max = 0;
heapsize_min = 0;

new T[PRIO_QUEUE_SIZE+1];
new T[PRID_QUEUE_SIZE+1];

a
b
};

69

template<class T : NodeIndex>
T PrioQueue<T>: :remove()

{
T max = h.heap_extract(l,heapsize_max,a,b);
int index = max.partnerIndex;
heapsize_min--;
if (index <= heapsize_min)
h.heap_insert(0,b[heapsize_min+1],index,b,a);
return max;
};

template<class T : NodeIndex>
T PrioQueue<T>::find_max()
{

return af[1];

};

template<class T : NodeIndex>
void PrioQueue<T>::insert(T key)
{ if (heapsize_max == PRIO_QUEUE_SIZE)
{
T min = h.heap_extract(0,heapsize_min,b,a);
int index = min.partnerIndex;
insert_support(key,index);

heapsize_max++;
insert_support(key,heapsize_max);

template<class T : Nodelndex>
int PrioQueue<T>::queuesize()

{

return heapsize_max;

};

template<class T : NodeIndex>
T* PrioQueue<T>::queue_max()

{

return a;
};
#endif

70

#ifndef __queue_element__h_
#define __queue_element__h_
// queue_element.h

#pragma interface

#include "heap.h"
//#include "PathNode.h"

typedef struct PathNode #*PathNodePtr;

class Queue_element : public NodeIndexq{
void clear();

public:
int select;
float estimate;
float heuristic_estimate;
float actual_estimate;

PathNodePtr path;

Queue_element () : NodeIndex() { clear(); };
Queue_element(float est);

};

inline int operator<(const Queue_element x, const Queue_element y)

{

return x.estimate < y.estimate;

}

inline int operator>(const Queue_element x, const Queue_element y)

{

return x.estimate > y.estimate;

}
#endif
1/ queue_element.cc

#include <iostream.h>
#include <iomanip.h>

// Stuff for PrioQueue OF Queue_elements.

#include "prio_queue.h"
#include "local.h"

// Constructor implementation for class Queue_element

void Queue_element::clear()

{
select = 0;
estimate = 0;
heuristic_estimate = 0;

actual_estimate = O;

71

path = 0;

Queue_element: :Queue_element (float e) : NodeIndex()
{

clear();

estimate = e;

}
instantiate_PrioQueue(Queue_element);

void printout(char * str, char * s, PrioQueue<Queue_element> & q, int sel)
{ // sel=1 -> max-queue; sel=0 ->min-queue
Queue_element * c;
int heapsize;
if (sel == 1)

{ c=q.58;
heapsize = q.heapsize_max;
}
else
{ ¢ =aq.b;

heapsize = q.heapsize_min;
};
cout << str << "\n";
cout.setf(ios::left,ios::adjustfield);
for (int i=1; i <= heapsize; i++)
cout << s << n[n << 1 << n:] . "

<< "estimate = " << setw(10) << setprecision(5)
<< c[i].estimate << ", "
<< "actual_estimate = " << setw(10) << c[i].actual_estimate << "
<< "select = " << c[i].select << "\n";
cout << "\n";
};
// heap.h

#ifndef __heap_h
#define __heap_h
#pragma interface

struct BaseHeap {

int parent(int i) { return i/2; }
int left(int i) { return 2*i; }
int right(int i) { return 2*i+1;}
};

struct NodelIndex{
int partnerIndex;
NodeIndex();
};

72

template<class T : NodeIndex>
class heap : public BaseHeap {
int heapsize;
int sel;
T * c;
T * d;

void swap(T *, T *);
void heapify(int);
public:
heap () {};
“heap(){};
void heapify_sel(int, int, int, T *, T *);
// parameter: sel, index, heapsize, heap_array_a, heap_array_b
T heap_extract(int, int&, T *, T *);
// parameter: sel, heapsize, heap_array_a, heap_array_b
void heap_insert(int, T, int, T *, T #*);
// parameter: sel, key, index, heap_array_a, heap_array_b

};

#include "heap.impl.h"
#endif __heap_h
// heap.impl.h

#pragma interface

// Member-function implementation for class heap
template<class T>
void heap<T>::swap(T *px, T *py)

{
T temp;
temp = *px;
*px = *py;
*py = temp;
};

template<class T>
void heap<T>::heapify(int i)
{

int extremum;

int comp;

int 1 = left(i);

int r = right(i);

if (sel == 1)
comp = c[1] > c[i]; // comparsion for max-prioqueue

else
comp = c[1] < c[i]; // comparsion for min-prioqueue

if ((1 <= heapsize) && comp)
extremum = 1;

73

else
extremum = i;

if (sel == 1)

comp = c[r] > c[extremum]; // comparsion for max-prioqueue
else

comp = c[r] < clextremum]; // comparsion for min-prioqueue

if ((r <= heapsize) && comp)
extremum = r;
if (extremum != i)
{

swap(&c[i], &clextremum]);

d[c[i] .partnerIndex] .partnerIndex = i; // let node of other array poin
d[c[extremum] .partnerIndex] .partnerIndex = extremum;
// let node of other array point to thi

heapify(extremum) ;
};
};

template<class T>
void heap<T>::heapify_sel(int choose, int index, int heapsizel, T * heap_array_
{

if (choose == 1)

{ heapsize = heapsizel; // parameter for max-queue
sel = 1;
}
else
{ heapsize = heapsizel; // parameter for min-queue
sel = 0;
};
¢ = heap_array_a;
d = heap_array_b;

heapify(index);
};

template<class T>
T heap<T>::heap_extract(int choose, int& heapsize_ext, T * heap_array_a, T * he
{

¢ = heap_array.a;

d = heap_array_b;

T extremum = c[1];
c[1] = c[heapsize_ext];

d[c[1] .partnerIndex] .partnerIndex = 1;
// let partnernode of other array point to this node

heapsize_ext--;
heapsize = heapsize_ext;
sel = choose;
heapify(1);

return extremum;

};

template<class T>

void heap<T>::heap_insert(int sel, T key, int leafindex, T * heap_array_a, T *

{
int comp;
c = heap_array.a;
d = heap_array_b;
int i = leafindex;
if (sel == 1)
comp = c[parent(i)] < key; // comparsion for max-prioqueue
else
comp = c[parent(i)] > key; // comparsion for min-prioqueue
while ((i > 1) && comp)
{
cli] = clparent(i)];
d[c[i] .partnerIndex] .partnerIndex = i;
// let partnernode of other array point to this node
i = parent(i);
if (sel == 1)
comp = c[parent(i)] < key; // comparsion for max-prioqueue
else
comp = c[parent(i)] > key; // comparsion for min-prioqueue
};
c[i] = key;
d[c[i] .partnerIndex] .partnerIndex = i;
// let partnernode of other array point to this node
y;
// PathNode.h

//#ifndef PathNode_h_
//#define PathNode_h_

typedef struct PathNode *PathNodePtr;

typedef struct Pair *PairPtr;
struct PlacedSurfacePair;

o}

struct PathNode{
PathNodePtr parent;
PlacedSurfacePair * s;

int me;
int child_index;
PathNode();

int print() const;
int length() const;
};

//#endif PathNode_h_
// PathNode.cc

#include "libu/messages.hxx"
#include "PathNode.h"

PathNode: :PathNode()

parent = 0;
child_index = O;
me = 0;

int PathNode: :print() const
{
const PathNode * node = this;
while (node->me)
{
::1info("%d", node->me);
node = node->parent;
if (node->me)
:iinfo(":");
}
}

int PathNode::length() const
{
int 1 = 0;
const PathNode * path = this;
while(path->me) {
path = path->parent;
1++;
X

return 1;

struct ViewGroup;

76

struct DataSurface;
struct Surface;
struct File;

struct Feature;
struct RichContext;
struct Context;

#include "libu/Type.h"
#include "libu2/ExpandingScalarVec.h"
#include "libu2/ChunkingVector.h"

typedef struct SurfacePair * SurfacePair_P;
typedef struct SurfacePair ** SurfacePair_PvP;
typedef struct AssemblyPair * AssemblyPair_P;
typedef struct AssemblyPair ** AssemblyPair_PvP;

struct Pair {
enum Type {NONE, SURFACE, ASSEMBLY} type;
float invoked_plausibility;

Pair(Type t, float p):type(t),invoked_plausibility(p) {}
virtual int print() const;

public:
static Pair * fread(File&);

};

struct SurfacePair : public Pair {
int modelindex;
Surface * model;
DataSurface * data;

SurfacePair(Surface * m, int i, DataSurface * d, float plaus):
Pair (SURFACE, plaus),
model(m),modelindex(i),data(d) {}

int print() const;

static ChunkingVector<Surface*> all_surfaces;
static Surface * surface(int index) { return all_surfaces[index]; }
static int numsurfaces() { return all_surfaces.last(); }

};

struct AssemblyPair : public Pair {
ViewGroup* model;
RichContext* data;

AssemblyPair(ViewGroup * m, RichContext * d, float plaus):
Pair (ASSEMBLY, plaus),
model{(m) ,data(d) {}

-3
|

int print() const;
+;

AssemblyPair * isAssemblyPair(Pair * p);
SurfacePair * isSurfacePair(Pair * p);

struct PairVector : ExpandingScalarVec<Pairx*> {
int load(const char *);
int save(const char *) const;

};

#pragma ident "UZUUMY AI% UEL"

//

// Robot Vision Group

// Dept. of Artificial Intelligence
// University of Edinburgh

//

// Author: Andrew Fitzgibbon

// Date:

// Description:

//

#include <stdio.h>
#include <string.h>

#include "libu/messages.hxx"
#include "libu/genutils.hxx"
#include "libu2/File.h"

#include "libsms/model.hxx"
#include "libsms/viewgroup.hxx"
#include "libdata/Surface.h"
#include "libdata/ContextImage.h"
#include "Pairs.h"

static char * assembly_token = "AsmHyp";
static char * surface_token = "Surfhyp";
extern ContextImage data;
int Pair::print() const
{

return info("Uninitialized pair\n");
X

int SurfacePair::print() const

{
return info("[Surface %d, %s, %7.4f1\n", data->get_id(), model->get_name(), i

¥

int AssemblyPair::print() const

78

{
return info("[Assembly %d, %s, 47.4f1\n", data->get_id(), model->get_name(),
}

ChunkingVector<Surface*> SurfacePair::all_surfaces;

Pair * Pair::fread(File& fp)

{
char buffer[200];
if (fscanf(fp," %s", buffer) != 1)
return O;
int asmhyp = strcmp(buffer, assembly_token) == 0;
if ('asmhyp &% (strcmp(buffer, surface_token) != 0)) {
fp.error("Unknown MiniHypothesis type %s\n", buffer);
return O;
}
double plaus = O;
int dataid = 0;
if (fscanf(fp, " plaus }1f context %d isls", &plaus, &dataid,buffer) != 3) {
fp.error("Expected plaus N context N is STR\n");
return 0;
}
Object * model = mb->objects.find(buffer);
if ('model) {
fp.error("Unknown object [%s]\n", buffer);
return O;
}
Context * ¢ = &data.all_contexts[dataid];
if (asmhyp)
return new AssemblyPair((ViewGroup#*)model, (RichContext#*)c, plaus);
else {
Surface * surface = (Surface*)model;
// check if this surface has been seen before...
int index = -1;
ScanVector (SurfacePair::all_surfaces, s)
if (*#s == surface) {
index = s_index;
break;
}
if (index == -1)

index = SurfacePair::all_surfaces.add(surface);

info(2,"Surface %s, index %d\n", surface->get_name(), index);

79

return new SurfacePair(surface,
index,
((SimpleContext#*)c)->get_surface(),
plaus);
}
}

int PairVector::load(const char * stem)

{
File fp(local_strcat(stem,'".hyps"), "r'");

info("Loading invoke pairs ... ");
resize(1000);
int i = 0;
while ((*this)[i++] = Pair::fread(fp))
if (1 >= n)
resize(n+1000) ;
resize(i-1);

info("got %d.\n", i-1);
return 1;

80

