Quasi-Invariant
Iconic Object Recognition

James E. Jennens

MSc Information Technology: Knowledge Based Systems
Department of Artificial Intelligence
University of Edinburgh
1994

Abstract

This dissertation documents work towards a model of the iconic image matching
system. It is hypothesized that iconic matching is one of two main visual recogni-
tion systems employed by human beings. It is the process of matching the image
on the retina against a stored model image. To accomplish this various processes
are employed: a multi-scale representation to facilitate size constancy; multiple
representations (intensity, edge and corner images); a saccading process to direct
the point of fixation towards interesting locations and a matching system. The
system, so far, has only been tested on a small database of artificially generated

test images but it should be possible to extend this in future.

Acknowledgements

I would first of all like to thank my supervisor, Dr Fisher, for his patient and
careful guidance during the course of the research reported here. I would also like
to express my gratitude to my secondary supervisor, Dibio Borges and to Andrew

FitzGibbon for his advice and help.

Table of Contents

. Introduction

. Background

. System Description

3.1
3.2
3.3

Overview v i e e e e e
Representation

Control Sequence

. System Modules

4.1 Coordinate Transformations
4.2 Edge Detection
4.3 Corner Detection
4.4 Extraction of Extrinsic Interest Points
4.5 Updating the Saccade List
46 Matching
47 Rescaling
4.8 Stable Feature Frame
. Results
51 Datal e e
52 Data2 e e
53 Datad i§siwesi@sEes
54 Datad e e
5.5 Saccading
56 Discussion i e e

6. Further work and conclusions

Appendices

A. The Models

B. Program Code

i

34

40

41

2-1

3-1

3-2

3-3

3-5

4-1

4-2

4-3

4-5

4-6

5-1

5-2

List of Figures

Are global or local feature processed first? 6
Data collection and pre-processing 9
The matchingsystem o 10
ROspace i i i e 11

The three resolutions of the T figure (see Appendix A) in RO form 12

The sequence of control in the matching system 13

Original 1J image before foveation with corresponding RO image

after foveation 15
Image of square transformed back into IJ space 15

RO image of the “T” (see Appendix A) before and after edge detection 16

Detection of COMErS v v v v v it e e e e e e e e e e 18
Prediciting where corners liein IJ space 20
Scale Estimation« i i i i e e e e e e e e e e e e 23
Data and Model 1. o o i i e e e e 26
Dataand model 2 e e e e e 27
Dataand Model 3. e e e e e 28
Data and Model 4 i i e e e e e e e e 29
The four models i i e e e e e e e 40

List of Tables

5-1 Match values returned when observing data figure 1
5-2 Match values returned when observing data figure2
5-3 Match values returned when observing data figured

5-4 Match values returned when observing data figure 4

26

27

28

29

Chapter 1

Introduction

It is hypothesized that human beings employ two visual recognition systems [Farah 84].
One of them uses geometrical descriptions of objects and a matching system based
on geometrical reasoning to deduce rotation, translation and possible occlusion of

any object it attempts to match.

The second method is thought to be an iconic pattern matching system. This
involves the recognition of an object by its image rather than by its features and
the spatial relationship between them. This is an area of vision which has not
been extensively investigated. There are a number of difficult problems involved
with visual recognition of this sort. How do we recognize objects under different
contrasts and illumination? How do we cope with rotational and translational
differences? How can we recognize objects over a large range of distances from
the viewer? All of these affect the size, shape or appearance of the object to some

degree and make iconic matching a difficult task.

This project is concerned with the iconic matching aspect of vision. The object
is to build a system from a large number of fairly simple modules and to tie
these together to provide the input and support functions for a neural net based
indexing and matching system. The input to the network would be provided by the
supporting functions and include intensity, colour, edge, corner, texture, motion,

and surface orientations.

The processes needed to accomplish this should include:

e a foveation process to give images with high detail at the point of interest
and progressively lower resolution towards the periphery and a multi-scale

representation to facilitate size constancy

e intensity and colour correction routines to deal with changes in illumination

intensity and wavelength
e feature detection processes to produce edge/corner/blob images

e an interest operator to determine regions of interest in the visual field which
bear closer examination and a saccade process to shift the position of gaze

onto these objects
e a figure / ground mechanism to segment the object from its surroundings

e a stable feature frame to act as a short term visual store to build up a
representation of the world in de-foveated form and to aid in the recognition

process

The work done so far on this project has not included the neural net based
matcher because of the time involved in acquiring good training data and the
training of the net. The matching has instead been done with a correlation type
process. The lightness/colour constancy has not been modelled either restricting
the matcher to operating in fixed lighting conditions. Other components have
been implemented with varying degrees of success. This project takes the form of
a preliminary investigation of the iconic matching process and will hopefully lead

to extensive future work in this area.

The system, at present, is capable of recognizing and distinguishing between
simple images. It has been tested on artificial images but should hopefully be able
to be extended to deal with images of real objects grabbed by a video camera.
The images are loaded in, a saccade process indicates useful areas of the image to
examine and the images are matched. The result of this is a probability score for
each model. These probability scores are used to rescale the data to give a better
fit with the model and could be used in some kind of figure / ground process but

are not at present. The image recognized is written to the stable feature frame.

|)

Chapter 2

Background

Most theories of visual perception agree that perception involves the computation
of three dimensional form derived from the two dimensional retinal image. Iconic
vision is an early stage in the visual system whereby objects are first located and

then recognized by matching the retinal images against a stored database of icons.

To achieve this, it is theorized that the brain has to carry out a number of
different processes. The visual system seems to be organized in a fairly modular
way and these processes operate, for the most part, independently. One advantage
of modularity is apparent in the evolution of the vision system: different modules
could be damaged or altered without destroying the whole system. Physiological
and neurological studies have demonstrated that a number of patients, after having
suffered brain damage of one sort or another, have selectively lost different aspects
of vision [Farah 90] [Heywood et al. 87]. These, and other studies, have provided
considerable evidence for the initial independence of perception of colour, shape,
motion and depth. The separation of these properties not only makes sense on
an evolutionary scale but also facilitates the recognition of objects independent of
colour, distance or motion enabling us to recognize a person at ten or a hundred
metres whether running or standing still. [Zeki 79] has demonstrated that the
visual cortex of the monkey seems to be organized into areas concerned primarily
with the perception of orientation, colour and motion. All the evidence leads us

to believe that the human visual system is also modular.

Foveation

The image received by the brain is in foveal form. The receptors in the eye are
much more densely packed in the centre of the retina (the fovea) than they are
towards the periphery. Detailed, high resolution information is only available at
the position of gaze. Away from this point only low resolution, large scale changes

in intensity or colour are perceived.

Boundary Extraction

One purpose of the visual system is to translate images on the retina into a coherent
description of the environment. One of the earliest stages in the process will be the
extraction of significant data within that image. Significant areas of an image are
areas which contain the most information. These include edges, blobs and corners:
areas of large intensity or colour discontinuities. These areas will almost always
define the distinct regions in an image as different objects rarely reflect light in
the same way. These components when combined together at different scales make
up what has come to be known as the primal sketch which when combined with
other information using stereopsis, shape from shading etc. go to make up the 2%d

sketch. This provides information concerning surface orientation and depth.

Interest Operators

The human eye is attracted by various things in its field of view. Areas of high
contrast, moving objects and areas of vertical symmetry seem to be places of in-
terest. The ability of being able to quickly focus attention on moving objects has
obvious advantages to any animal at risk of being attacked. Areas of high con-
trast serve to define boundaries and would therefore also be useful in recognizing
objects. The area over which the focus of attention operates is known to vary
[Eriksen & Murphy 87]. If the area of attention is small then fine detail can be
construed; when the size of the area is larger only coarser resolution information

is available.

Colour Constancy

When we view the world we see surfaces and objects in a range of colours. All
objects in the world absorb and reflect light of various wavelengths in various com-
binations. Black objects absorb light of all wavelengths, a white object reflects
light of all wavelengths, colours are produced by objects absorbing and reflecting
unequal ranges of frequencies. One might imagine that the human brain encodes
information about colour on the basis of the wavelengths of the light incident on
the retina. However, the perception of colour and lightness is far from straight-
forward. We can see white objects as such even when poorly illuminated and
black ones as black even when under a bright light. An object’s colour seems to
be the same when illuminated under sunlight as it is indoors where it is illumi-
nated by proportionally more low frequency light. Somehow our brains are able
to ignore the particular effects of the ambient lighting and perceive the real colour
and lightness of objects we observe. These processes are known as colour con-
stancy and lightness constancy. Zeki [Zeki 80] has demonstrated experimentally
that some cells in the V4 region show colour constancy. A good demonstration of
this effect was provided by Land [Land 59] in his famous two colour slide experi-
ments. Land and McCann went on to devise a theory to explain this phenomenon
[Land & McCann 71] [Land 86] in which reflectance maps are computed within
independent channels but comparison of the model with colour change observed

by humans has not been encouraging [Brainard & Wandell 86].

Figure / Ground Separation

Figure / ground separation is the term given to the brain’s ability to filter out
the background information present in an image and to concentrate selectively on
certain specific parts of the image. This is certainly related to visual attention.
It will depend on which scale an image is being observed whether a high or low
resolution figure will be seen. For instance when we look at a tree in a forest we
may choose to focus attention on the tree, one of its leaves or the whole coppice in
which it stands. An example of this was demonstrated by Navon [Navon 77] when
he was advancing the Gestalt approach of recognizing the whole before the parts.

His experiments involved having various people look at large letters made up from

smaller ones. Subjects were briefy shown images of the kind shown in Figure 2-1

and asked to report what they had seen.

I 7 J 7]

e e G Qe S G Gy ey ey
Commt G G e e ey e ey ey

Figure 2-1: Are global or local feature processed first?

Navon’s results indicated that the global feature is always recognized first and
that some subjects failed to notice that small letters were present at all. However,
later studies [Kinchla & Wolf 79] demonstrated that this depends on the size of
the whole. Their results indicate that when the large letter exceeds 8 degrees of
visual angle the smaller letters are perceived first. Their conclusions indicated
that there is an optimal size of feature which will be processed first. Regardless
of which feature is processed first, we seem unable to be simultaneously aware of
both: we can either attend to the local features (the small J’s) or the global one

(the large H).

Stable Feature Frame

The image of the world that the human brain interprets appears to be stable. The
world, as we perceive it when looking around, does not appear to rush past in a
blur as it does when moving a video camera around in the same fashion. It is
thought that the brain keeps a mental map of the surrounding area to facilitate
this apparent stability. This map is known as the stable feature frame. Awareness

of our surroundings is built up gradually. The receptors in the human eye are much

more densely packed towards the centre of the retina and only objects projected
onto this area will be seen at maximum resolution. Outside of this area we can still
see objects but often not in sufficient detail to recognize them. We have to saccade
to the area in question first. As objects and features in the world are recognized
they are stored in the stable feature frame and sometimes suggest other areas of
the image to examine. For instance, if something in the world has been recognized
as an eye then a label indicating this will be present in the stable feature frame.
This might lead us to examine the image for the presence of other facial features

or to zoom out to recognize a complete face.

There are various theories which attempt to explain aspects of the human
visual system. This project is an attempt to tie some of these theories together
and to try to simulate the iconic matching aspect of the visual system. It will
use an interest operator for gaze determination. A stable feature frame will be
employed to store recognized objects. A multi-scale representation of the data will
be used to facilitate multi-scale recognition and a foveation routine will be used

to sample the data.

Chapter 3

System Description

3.1 Overview

This system attempts to recognize objects by matching data images to stored
images in a model base. It can be roughly divided into two sections. The first
deals with the collection and pre-processing of input data. A diagram of this is
shown in Figure 3-1. The second is concerned with the matching of the data and

visual awareness.

The input to the system is a 5122 image of the world. The system should
saccade around this image to identify objects located within it. At each saccade
the system obtains a foveal representation in RO form (see Section 3.2). This is a
circular window centred on the foveation point of radius 128 pixels. This window
is then converted into RO form. Having the input data in this form makes it easy
to hold information on several scales. Each ring is twice the size of the previous
one. The outer rings hold low resolution data, the inner rings hold the higher

resolutions.

The image of the world can have red, green, blue and intensity components and
the foveated image will reflect this. The foveated image is a stack of image planes
all registered on the same point in the world. The various planes are red, green,
blue, intensity, edge, corner, blob and label. The system extracts the edge, corner
and blob images from the RO representation of the intensity and colour data. The
label image is built as recognition of the object takes place: it records positions
of sub-features. Lightness and colour constancy are needed to recognize objects
in varied lighting conditions. This could be modelled with a retinex algorithm or

normalization. The time based collection processes multiple images sampled over

WORLD
SACCADE
VIEW
FOVEATED
/ - \
COLOUR TIME BASED LIGHTNESS
CONSTANCY COLLECTION| CONSTANCY
R/G/B FOV CORNER EDGE
IMAGE IMAGE IMAGE
217D SHADING
SKETCH IMAGE
TEXTURE
IMAGE
IMAGE
STACK

Figure 3—1: Data collection and pre-processing

a period of time. These could be used to compute optical flow and be useful for
figure/ground segmentation. The current view image stack is constructed from

these various planes and is then passed on to the matching system (Figure 3-2).

r ™ e 2
EXTRINSIC ATTENDED
I T IMAGE
_ POINTS) L y
— N r N
STABLE
DEFOVEATE FEATURE
IMAGE - J _FRAME
DATABASE r— \ e ~
INDEXING DYNAMIC INTRINSIC
AND RESCALING INTEREST
| MATCHING) | POINTS
SCALE
EXTRACTION!
-/

Figure 3—-2: The matching system

The image stack is examined for interest points which are extracted and added
to the saccade list. Models of objects are stored as image stacks containing the
same data planes as the current view image stack. The model is stored at the
middle resolution and is registered on a corner of the object. The three scales of
data in the current view stack are matched in turn against each model. The model
giving the best match score is selected and the data is rescaled according to the
match values for the three scales. The rescaled data is then matched again against
the model base. The matching process utilizes a weighted mask with pixel weights
proportional to the response of the matcher to suppress unwanted data. This loop
continues until convergence at which point the recognized object is written to the
stable feature frame. Prior to the next saccade the label plane is examined for
intrinsic interest points (labels which suggest other areas of interest) which are

then added to the saccade list for further examination.

10

3.2 Representation

The system deals with data in RO form. The image taken has 32 evenly spaced
sectors and 7 rings with exponentially increasing radius. The radius of each ring
increases by a factor of two. This enables a multi-scale representation to be stored
in one array. The radius of the outer ring is 128 pixels. This value was chosen as

being the largest practical value to move around in the world image 5122 pixels.

2 3
1 4 Inner ng
8 5
1{2|3|4|5(6|7](8] OuterRing
! 6
R-Theta mapped onto 1J space R-Theta

Figure 3—-3: RO space

Figure 3-3 shows how RO is represented. The array shown in the diagram is
smaller than that used in the system but the principle is the same. The circular
object on the left shows the area covered in IJ space by the RO representation
on the right. To enable a multi-scale representation to be held we do not use
all of the rows in the array. If we wanted to hold three sacles of information in
the situation shown in Figure 3-3 we would have the top three rows represent
the highest resolution, the middle three rows represent the middle resolution, and
the lower three represent the coarsest resolution. However, if me use the outer

three rings for the coarsest resolution this will give us a circle with a hole in the

11

middle when mapped back into 1J space. To get around this the upper rings are
averaged to contain the same value based upon their areas when mapped into IJ
space. At the middle level of resolution ring 1 will contain a weighted average
of 75% ring 1 and 25% ring O reflecting their relative contributions to the total
area under rings 0 and 1. In a similar fashion at the coarsest resolution ring 2
will contain an intensity value representing 75% ring 2 and 25% of the weighted
average of rings 0 and 1 as shown in Figure 3-4. The data in the middle and coarse
resolution images (the bottom two) should have their first two and first three rows
respectively, identical. Rounding errors in the averaging process have caused the

slight differences that can be seen.

Figure 3—4: The three resolutions of the T figure (see Appendix A) in RO form

The image stack is made up of several planes of RO data stored in HIPS files,

as are the models, and the stable feature frame.

The stable feature frame is an image stack with the same dimensions as the
view of the world (512x512). Into it is written objects that the system thinks it
has recognized. The data in the stable feature frame represents the systems best

estimate of the object in question at a given time. These estimates can be revised

12

and the data overwritten if a conflict arises. The most probable data (that with

the best match score) is stored.

3.3 Control Sequence

The sequence of control in the system is illustrated in Figure 3-5:

CURRENT WORKING
IMAGE [IMAGE
STACK STACK
CURRENT EXTRACT UPDATE
SACCADE INTEREST MATCH MASK
LIST REGIONS

UPDATE RESCALE WRITE
SACCADE DATA DATA TO
LIST SFF

Figure 3—5: The sequence of control in the matching system

The system first saccades to a given location and updates the saccade list to
include any areas of interest. The models are registered on the corners of objects
so the current view has to be registered at a corner for a correct match to take
place. An attempt is made to match anything under the fovea against objects
stored in the database. The matcher compares the data at three scales to each of
the models and produces three match scores for each model. These match scores
are used to rescale the data to give a better fit with the model. The rescaled data
is then passed back to the matcher. Upon convergence the recognized object is

written to the stable feature frame.

13

Chapter 4

System Modules

4.1 Coordinate Transformations

Transformations from one representation to the other are performed by the ij2rt
and rt2ij routines. These routines make use of pre-loaded mapping tables which
indicate the positions and weights of pixels in one coordinate system which make

up a pixel in the other. The tables are of the form:

PEo Pio PP} PY; W1 PF? PYT W2 —1000 — 1000 — 1.0

This shows which 1J pixels at which weights contribute to the RO pixel. The
1J table is similar but the opposite way round. The -1000 -1000 -1.0 on the end

signifies end of line.
119320.172322 2 2 0.483429 21 0.189781 1 1 0.154468 -1000 -1000 -1.0

The example above (taken from one of the mapping files) shows that the pixel
at ring 1 sector 19 is made from pixels (3,2), (2,2), (2,1) and (1,1),weighted as
shown, in 1J space relative to the current point of foveation. An example IJ and

its foveated RO representation are shown in Figure 4-1.

The rt2ij procedure transforms the RO image back into IJ space for use in
updating the Stable Feature Frame. The result of applying the rt2ij transform is

shown in Figure 4-2.

14

Figure 4-1: Original 1J image before foveation with corresponding RO image

after foveation

Figure 4-2: Image of square transformed back into IJ space

15

4.2 Edge Detection

Edge detection is achieved using a Robert’s Cross operator (see, for example

[Ballard & Brown 82]) of the type shown below:

1 1
-1 -1

The mask is passed over the intensity image in RO form to give a image repre-
senting edge magnitude. Because this is an RO representation the left side of the
array is connected to the right side so the operator is moved all the way across the
array and “wraps around” when it gets to the far side. When dealing with colour
images this module should process the red, green and blue planes of the current
view image stack. This would allow edges to be detected between regions with the

same intensity but different colour. An example image is shown in Figure 4-3.

Figure 4-3: RO image of the “T” (see Appendix A) before and after edge

detection

16

4.3 Corner Detection

Corners are detected using a Moravec corner detecting template [Moravec 77].
This operates over a three by three region. It’s value is the result of squaring the
results of subtracting the middle pixel from the two adjacent pixels in each of the
four directions and summing them. The minimum value from the four directions

is taken.

Cey = muin[(Pry — Pz—l.y)2 + (Pry — Px+1.y)2
(Pry = Peoty=1)* + (Pry = Poy1441)’
(Pry = Peciy1)? + (Pry ~ Poy14-1)°
(Pry = Pry-1)’ + (Pry — Peyin)]

This could not be performed directly on the RO representation because the spa-
tial distortions which result from the transformation to RO space. Instead, the
algorithm cheats by taking a square sub-window from the 1J world view centred
on the current foveation point. The Moravec operator is passed over this image to
give a corner image. Each corner point is then examined to determine whether it
is of a sufficient scale to appear in the RO array. This is accomplished by reducing
the resolution at each corner by 3 times the ring number in which it would appear
in the RO representationand repeating the Moravec operation at this point at the
new resolution. An IJ corner image is created with a corner being represented as
a circle whose radius is proportional to the scale in which it was detected. This is
then transformed into RO by the standard routine (see Figure 4-4). This figure
shows the original “T” (the model is registered at the join between the horizontal
and vertical bars on the left side); the result of passing the Moravec operator over
this image (with the corners slightly enhanced for display); the 1J image formed

after resolution checking and the resultant RO image.

4

Figure 4-4: Detection of corners

18

4.4 Extraction of Extrinsic Interest Points

Extrinsic interest points are points in the current field of view which attract the
eye’s attention. At the moment only the corner image is used to provide interest
points. This is accomplished by taking the eight connected local maxima from the
RO corner image. Most pixels in RO space cover many pixels in 1J space and so an
accurate determination of the IJ position is difficult to obtain when saccading to
the outer rings. At the moment the system records the corner to be at the centre of
the RO pixel when transformed back into 1J coordinates. These coordinate points
are deemed to be of interest and are added to the saccade list. Nearer corners are

given a higher priority in the saccade list. Priority is determined by the formula
P =2000-(R+1)%200+C

where P is the priority, R is the ring number that the corner appears in and C
is the strength of the corner. This formula was used to ensure nearer corners
were processed before distant ones even if the corner overlapped four pixels (and
therefore would have a recorded strength of a quarter of the amount it should).
Figure 4-5 shows the predicted corner positions for the “T” figure; the result of
the local maxima operation; and the result of mapping the local maxima back into
1J space. The two corners at the bottom have been merged into one and an extra
one has been detected at the top. The extra corner has been formed from the
overlapping regions of two corners producing a local maxima between them. The
local maxima procedure detects this and registers it as a corner. This does not
affect the matching process because the matcher uses the raw corner data (before

the maximua operation).

19

Figure 4-5: Prediciting where corners lie in 1J space

4.5 Updating the Saccade List

The saccade list has to be updated to record interest points in the image which bear
closer examination. This is done by examining the corner image and extracting the
positions of potential corner locations. The saccade list is an ordered list containing
the IJ coordinate to saccade to and the priority of this saccade. The priority is
determined by the strength of the corner, as determined by the Moravec operator
[Moravec 77] and the distance from the current point of foveation. This priority
was originally going to be determined by the formula Q%ﬂ. This would be
fine but a separate record of strength of corners needs to be kept for this. Instead
the formula shown in section 4.4 is used. Currently, corners in the corner image
are represented as circular blobs which cover more than one pixel which makes
it difficult to extract the strength of the corner. The corners are represented in
this way to enable the dynamic rescaling procedure to effectively work with them.
Unfortunately this makes it difficult to determine the strength of the corners as
they are spread over several pixels. It also merges distant corners causing them to

be recorded on the saccade list as one, but this is perfectly acceptable as it should

20

not be possible to discern accurate corner locations when not examining an area
in close proximity to them. Another advantage to having the corners spread over
several pixels is the possibility of giving a more accurate estimation of their actual
location. Instead of recording the corner location as being in the centre of the RO
pixel with the largest response, the centre of the corner biob could be determined

to give sub-pixel (RO) accuracy.

4.6 Matching

Matching is performed by taking the absolute value of subtracting the current
data at each scale from each model on a pixel by pixel basis which gives three

match values for every model item.

My =3 lmi; — dyj

Standard correlation was not used because normalizing the image gave poor
results. Normalization was originally used as a substitute for colour constancy but
results were poor and this was abandonded. When an image with low contrast is
normalized it pulls the data to opposite ends of the spectrum giving a very noisy

image, making matching very difficult..

Only the pixels under the model are used during matching and the background
is ignored. Previously, a figure/ground system was employed to mask out irrelevant
background pixels. Unfortunately this did not work very well. The data was
originally matched over figure and background against the model but this gave
incorrect results as the background was more important than the figure in the

matching process.

The above formula is used for every plane in the data stack (currently intensity,
edge and corner). The match score for the whole image stack is the evenly weighted
combination of the three scores. The model which gives the best score is assumed
to be the object which is currently being observed. The contribution of each plane
to the final match score for the image stack is determined by a weight. Each plane

of data can be weighted differently to allow for the relative importance of different

21

features. Rescaling of the data is achieved by taking the relevant rows of data (ie

rows 1-5 for the middle resolution).

A problem is encountered when looking at the middle or coarse resolution
data. The higher resolution data in the rings above the current scale (ring 0
for the middle scale, 0 and 1 for the coarse scale) cannot simply be discarded.
Therefore for input to the matcher the topmost ring at any scale should be a
weighted average based on the area of each pixel in IJ space of itself and any
rings above it as explained in section 3.2. This works very well for intensity and
colour data, reducing the resolution in the correct manner. However, a problem
is encountered with the corner data. Corners at the finest scale cover the entire
inner ring and at the moment no indication is stored concerning whether the corner
will be visible at lower resolution. When moving to a lower resolution: corners
tend to disappear. For corner images the top row is copied into the next one
to preserve corner information. This is not a very good solution as some corners
should disappear from view at lower resolutions simply because they are fine detail.
Some record of corner scale should be kept to alleviate this problem or ideally a

better corner detector, preferably in RO space.

4.7 Rescaling

The dynamic rescaling routine attempts to resize the data to get a better fit with
the model. It takes the match scores for the three scales of data and uses them to
estimate the correct scale. A linear relationship between scale and match score is
assumed and providing that the middle scale gives the best match score the data

is rescaled according to the following formula:

if(c>a)N=X—2—(ab-—__—a)
. , a—c
zf(a>c)N=)t-—2—(b_—c)

N * 100 represents the percentage change to the current scale. If the middle

scale’s score is not the highest a new scale and value has to be estimated and

22

—
]
L

b/\c

Match Score

X-1 XY X+1 Scale

Figure 4-6: Scale Estimation

the system will rescale the data towards the nearest scale using the newly created
extra scale as a or ¢ in the formula. A record is kept of the scale of the data to

update the stable feature frame.

Problems were encountered with rescaling regarding the corner image. The
corners were represented as single pixels in RO space after having been detected
in IJ space and mapped into RO. If the corner lay near a pixel boundary in RO
this would cause problems with matching and rescaling. The data might be only
a few percent bigger than the model, for instance, and the corners in the data and
the model would be recorded as being in two separate regions. The corners were
changed so that they were plotted as circles in 1J space before transformation into

RO. This caused a blurring of the corner image which helps rescaling. (see 4-5).

4.8 Stable Feature Frame

All data in Stable Feature Frame is stored in defoveated form - it reflects the
geometry of the world. The Stable Feature Frame has been implemented as an
image stack. The raw data held in the current view image stack is written to
the Stable Feature Frame after it has been recognized. It makes use of the mask
plane of the image stack to keep a record of the resolution of data written to it.

Higher resolution data overwrites lower resolution data. The mask plane is a 5122

23

plane into which is written the ring number (which indicates resolution) of any
data written to the rest of the Stable Feature Frame. Before any further data is
written, a check is made to ensure that the ring number of the new data is equal
to or lower than that of previous data. The label image keeps a record of what
object has been recognized and at which scale. New data should only overwrite
old data if a more probable match has been found. This hasn’t been implemented

yet.

24

Chapter 5

Results

The results presented here were obtained by presenting the system with four data
items, one at a time and observing the output of the system. The tests involved
positioning the fovea on the registered corner of the data and allowing the sys-
tem to iterate through the matching sequence until convergence. The tables in
sections 1-4 show the iteration number, the match values against each of the four
models and the scale of the data (1.0 represents the size of the original data).
These experiments are designed to test whether the matching system is capable
of identifying the four objects. Section 5 gives an example of the corner finding

procedure using the saccade list. Section 6 discusses the results obtained.

Iteration | Scale Modell | Model2 | Model3 | Model{ | Scale
1 reduced | 0.84 0.78 0.80 0.54 1.00
1 normal | 0.93 0.85 0.88 0.56 1.00
1 enlarged | 0.88 0.85 0.85 0.55 1.00
2 reduced | 0.86 0.80 0.81 0.54 0.71
2 normal | 0.92 0.87 0.87 0.56 0.71
2 enlarged | 0.83 0.82 0.81 0.55 0.71
3 reduced | 0.85 0.79 0.81 0.54 0.88
3 normal | 0.93 0.86 0.88 0.56 0.88
3 enlarged | 0.85 0.84 0.83 0.55 0.88
4 reduced | 0.85 0.79 0.81 0.54 0.85
4 normal | 0.93 0.87 0.87 0.56 0.85
4 enlarged | 0.85 0.84 0.83 0.55 0.85

Table 5—1: Match values returned when observing data figure 1

5.1 Datal

Figure 5-1 shows images of the data for this test and model number 1 respectively.
The model is registered at the upper left side corner. The model is 40 by 40 pixels.
The data is 25% bigger than the model.

Figure 5-1: Data and Model 1

26

Iteration | Scale Modell | Model2 | Model? | Model{ | Scale
1 reduced | 0.81 0.87 0.81 0.53 1.00
1 normal | 0.86 0.93 0.84 0.54 1.00
1 enlarged | 0.83 0.90 0.82 0.{)} 1.00
2 reduced | 0.82 0.88 0.81 0.53 0.72
2 normal | 0.86 0.94 0.84 0.54 0.72
2 enlarged | 0.78 0.86 0.79 0.53 0.72
3 reduced | 0.82 0.88 0.81 0.53 0.86
3 normal | 0.86 0.94 0.84 0.54 0.86
3 enlarged | 0.80 0.88 0.81 0.53 0.86

Table 5-2: Match values returned when observing data figure 2

5.2 Data 2

Figure 5-2 shows images of the data for this test and model number 2 respectively.
The model is registered at the upper left side corner. The model is 40 by 40 pixels.
The data is 25% bigger than the model.

Figure 5-2: Data and model 2

27

Iteration | Scale Modell | Model2 | Model3 | Model{ | Scale
1 reduced | 0.77 0.76 0.86 0.52 1.00
1 normal | 0.82 0.81 0.97 0.54 1.00
1 enlarged | 0.72 0.76 0.82 0.51 1.00
2 reduced | 0.75 0.76 0.85 0.52 1.18
2 normal | 0.82 0.81 0.97 0.54 1.18
2 enlarged | 0.73 0.76 0.84 0.52 1.18
3 reduced | 0.74 0.76 0.84 0.52 1.22
3 normal | 0.81 0.81 0.96 0.54 1.22
3 enlarged | 0.73 0.77 0.84 0.52 1.22

Table 5-3: Match values returned when observing data figure 3

5.3 Data 3

Figure 5-3 shows images of the data for this test and model number 3 respectively.
The model is registered at the upper left corner. The model is contained in a 40

by 40 pixel box. The data is 12]% smaller than the model.

Figure 5-3: Data and Model 3

28

Scale

Iteration | Scale Modell | Model2 | Model3 | Model4

1 reduced | 0.70 0.65 0.69 0.71 1.00
1 normal | 0.68 0.64 0.73 0.83 1.00
1 enlarged | 0.62 0.63 0.68 0.76 1.00
2 reduced | 0.72 0.67 0.72 0.75 0.67
2 normal | 0.69 0.68 0.75 0.85 0.67
2 enlarged | 0.62 0.65 0.67 0.70 0.67
3 reduced { 0.71 0.66 0.70 0.73 0.86
3 normal | 0.68 0.66 0.74 0.84 0.86
3 enlarged | 0.62 0.64 0.67 0.73 0.86
4 reduced | 0.71 0.66 0.71 0.73 0.84
4 normal | 0.68 0.66 0.74 0.84 0.84
4 enlarged | 0.62 0.64 0.67 0.73 0.84

Table 5—4: Match values returned when observing data figure 4

5.4 Data 4

Figure 5-4 shows images of the data for this test and model number 4 respectively.
The model is registered at the left side corner between the horizontal and vertical

bars of the “T”. The model is 50 pixels tall and 40 pixels wide. The data is 33%

bigger than the model.

T

Figure 5—4: Data and Model 4

29

5.5 Saccading

In this test the system is directed to start examining the scene at (280,280). The
corner that the model is registered on is the upper left corner of the square. This
1s at position (256,256); the system should guide the fixation point towards this

location. The saccade list is updated after each saccade to produce an ordered list

of points to examine.

Saccade 1 (280,280)

Position (265,262) is selected as the best corner to go for.

Saccade 2 (265,262)

priority 1042 1 265 j 262
priority 1042 1 298 j 265
priority 1041 1 265 j 298
priority 1040 1 295 j 298
priority 1031 i 259 j 291

priority 1263 1 260 j 252
priority 1263 i1 254 j 261
priority 1217 i 264 j 251
priority 1042 1 265 j 262
priority 1042 1 298 j 265
priority 1041 i 265 j 298
priority 1040 1 295 j 298
priority 1031 i 259 j 291
priority 1012 1 244 j 251
priority 833 1 252 j 307
priority 829 1 295 j 299
priority 827 i 312 j 258

30

The system has now moved closer to the corner and is able to give a more

accurate estimate (260,252).

Saccade 3 (260,252)

priority 1485 i 255 j 252
priority 1485 i 260 j 257
priority 1485 i 255 j 254
priority 1418 1 255) 250
priority 1263 i 254 j 261
priority 1263 i 260 j 252
priority 1217 1 264 j 251
priority 1042 1 298 j 265
priority 1042 1 265 j 262
priority 1041 i 265 j 298
priority 1040 i 295 j 298
priority 1031 1 259 j 291
priority 1012 1 244 j 251
priority 835 1 307 j 256
priority 835 1 256 j 299
priority 833 i 252 j 307
priority 829 i 295 j 299
priority 827 1 312 j 258
priority 820 1 290 j 289

The estimate is further refined to (255,252).

Saccade 3 (260,252)

priority 1485 i 255 j 252
priority 1485 1 255 j 254
priority 1485 i 260 j 257
priority 1485 i 255 j 257
priority 1485 1 252 j 256

31

priority 1452 1 250 j 254
priority 1418 i 255 j 250
priority 1263 1 260 j 252
priority 1263 1 254 j 261
priority 1220 1 260 j 262
priority 1217 1 264 j 251
priority 1042 1 298 j 265
priority 1042 1 265 j 262
priority 1041 1 265 j 298
priority 1040 i 295 j 298
priority 1031 1 259 j 291
priority 1012 1 244 j 251
priority 839 1 302 j 256
priority 835 1 256 j 299
priority 835 i 259 j 299
priority 835 i 307 j 256
priority 833 1 252 j 307
priority 829 i 295 j 299
priority 827 1 312 j 258
priority 820 i 290 j 289
priority 814 i 285 j 289
priority 809 i 242 j 297

The system has again estimated (255,252) due to a slight bug in the algorithm

(it doesn’t remove saccade positions when saccading to them).

5.6 Discussion

Matching

The matching system works reasonably well when the gaze position is fixated
on the position where the model is registered. It is, however, very sensitive to

postional change. The match values for incorrect matches (other models) seem

32

quite high but this is because of the relatively few pixels being matched and
the fact that all of the models are located in the same place. This means that
regardless of which image we are looking at a good proportion of the pixels will
match perfectly. However, the system is able to discriminate between the four

models.

Evaluation of Saccade List

Apart from the bug which doesn’t remove positions saccaded to, another problem
is apparent. The saccade list dramatically expands with each iteration. This is
because it is identifying the same corners at different positions. It needs some sort
of threshold to prevent it from making too many corner estimates. Perhaps only
identifying a point as being interesting if there is no nearby point already flagged
as interesting or deleting the old point if the current estimate is thought to be
more accurate. The other problem is even after saccading to (255,254), the best
estimate after saccade 3, the matching system still does not recognize the image it
is looking at. This is a problem with the matching system. A more sophisticated

matching system could be used to correct for this.

33

Chapter 6

Further work and conclusions

The code for this project has only been partially implemented. The system is
still quite a long way from being fully operational but the parts of the system
that have been implemented show some promise. As can be seen from the results
in the previous chapter, the system is capable of recognizing and distinguishing
between a few simple images. With more time, it would be interesting to extend

the system somewhat. There are numerous things that need to be done.

Program Code

The code has been developed in parallel with the design of the system to some
extent which made planning in advance somewhat difficult. This has resulted in

a poorly structured implementation. This needs to be re-written.

Fovea

The size of the fovea used was 7 rings of 32 sectors. This gave very coarse resolu-
tion: probably insufficient to recognize images of real objects. The log 2 increase
in ring diameter is probably too big. It would be interesting to compare perfor-
mance with different foveas. It is not certain that the decision to hold the internal
representation in RO form is correct. It produced several problems with corner
detection that were not really resolved. It would make locating rotated images
very much easier as this could be done by simply moving the sector origin around

the circle but it is not biologically plausible.

34

Corner Detection

The corner detection is not entirely satisfactory. The system cannot adjust the
resolution of corner images correctly. Information needs to be kept about the
scale of each corner detected to see at which resolution it will be visible in. At
the moment corners detected at the highest resolution are assumed to be visible
at lower resolution. This will not always be the case. The image should also be
examined at multiple scales for corners so that blurred corners would be recognized.
Currently, the system detects corners at the highest resolution and then checks
these to determine whether they would be visible at lower resolutions. Corners
were detected this way to speed up the corner detection process: the whole image
is only checked once. This hasn’t affected any results obtained so far because only
sharp corners are present in the test data but would cause problems with images

of real objects.

Input Data

Currently, only binary and grey scale images have been tested. Most of the code
exists for dealing with full colour images but they have not been tested at this
point. In addition, only very simple, artificial test images have been used. Images
of real objects would be more challenging. The blob image was not implemented;
it would detect small patches of colour or intensity discontinuity. This would be

easy to implement and would prove useful with images of real objects.

Matching and Masking

A neural net based matching system would be preferable to the pseudo-correlation
now employed. The fovea is masked against each model when matched at present.
It would be better to have a mask develop as recognition of an object proceeds.
This could be more readily accomplished with a network implementation. The
current implementation gives fairly good match scores to almost any input. This
is in large part due to the very small number of pixels being matched but a differ-
ent classification system could improve upon this. The system is very sensitive to

incorrect positioning. Even when only a distance of a couple of pixels away from

35

the correct location (data and model registered at the same place) the matching
system sometimes makes incorrect identifications. A matching system with a de-
gree of positional invariance is needed. The matching process should also inhibit

less likely matches with each iteration through the loop.

Interest Points

The saccade list needs work. Problems with corner detection made choosing pri-
ority values difficult. The algorithm used to select interest points does not work
very well. It needs to be a bit more intelligent about which things are the same
corners. It tends to give several (slightly different) co-ordinate positions which all
correspond to the same corner. The saccade list does not guide the system to a
point where it can make a correct match. It also does not make use of the at-
tended image. The attended image should keep a record of areas that have already
been examined. The system should not saccade back to these areas under normal

circumstances.

Stable Feature Frame

The stable feature frame has not been fully implemented at present. It should
be able to resolve conflicting identifications of objects and remove them from its
memory. This has not been implemented. The label image has not been fully
implemented either. This would be used to suggest intrinsic interest points. For
instance, if an eye has been found, this suggests areas to look for a nose. Future
work should use the labels to override the attended image, if necessary) to re-

examine areas if it has reason to believe it has better information now.

Testing

In conclusion, this project has not been a complete success. However, it has
exposed a number of problems which do not seem insurmountable. This sort of
system, although quite difficult to assemble, looks like it could have a reasonable
chance of performing acceptably with a few modifications. I have not tested it as

thoroughly as I would have liked but from the testing already done it is quite clear

36

that work remains to be done before further testing would be of very much use.
The matching system is too sensitive to positional change and identifies objects
incorrectly or as being at a different scale when being very close to having the data
registered at the same point as the model. This is disappointing, I had expected

better, but a more sophisticated matching system could take care of this.

37

[Ballard & Brown 82]

[Brainard & Wandell 86]

[Eriksen & Murphy 87]

[Farah 84]

[Farah 90]

[Heywood et al. 87)

[Kinchla & Wolf 79]

Bibliography

D.H. Ballard and C.M. Brown. Computer Vision.
Prentice-Hall, New Jersey, 1982.

D.H. Brainard and B.A. Wandell. Analysis of the retinex
theory of colour vision. Journal of the Optical Society

of America, 3:1651-1656, 1986.

C.W. Eriksen and T.D. Murphy. Movement of atten-
tional focus across the visual field: A critical look at
the evidence. Perception and Psychophysics, 42:299-
305, 1987.

M. Farah. The neurological basis of mental imagery: A

componential analysis. Cognition, 18:241-269, 1984.

M. Farah. Visual agnosia disorders of object recognition
and what they tell us about normal vision. MIT Press,

Cambridge, Mass., 1990.

C.A. Heywood, B. Wilson, and Cowey A. A case
study of cortical colour “blindness” with relatively in-

tact achromatopic discrimination. Journal of Neurology,

Neurosurgery and Psychiatry, 50:22-29, 1987.

R.A. Kinchla and J.M. Wolf. The order of visual
processing: “top-down”, “bottom-up” or “middle-out”.

Perception and Psychophysics, 25:225-231, 1979.

38

[Land & McCann 71}

[Land 59]

[Land 86]

[Moravec 77)

[Navon 77]

[Zeki 79]

[Zeki 80]

E.H. Land and J.J. McCann. Lightness and retinex the-
ory. Journal of the Optical Society of America, 61:1-11,
1971.

E.H. Land. Experiments in colour vision. Scientific

American, 200:84-99, May 1959.

E.H. Land. Recent advance in retinex theory. Vision

Research, 26:7-21, 1986.

H.P. Moravec. Towards automatic visual obstacle avoid-

ance. In Proceedings of the IJCAI, page 584, 1977.

D. Navon. Forest before trees: The precedence of global

features in visual perception. Cognitive Psychology,

9:353-383, 1977.

S.M. Zeki. Uniformity and diversity of structure and
function in rhesus monkey prestriate visual cortex.

Journal of Physiology, 277:273-290, 1979.

S.M. Zeki. The representation of colours in the cerebral

cortex. Nature, 284:412-418, 1980.

39

Appendix A

The Models

Modedl 1

Model 3

Figure A—1: The four models

40

#include
#include
#include
#include
#include
#include
#include
#include

Appendix B

Program Code

<math.h>
<stdio.h>
<malloc.h>
<hipl_format.h>
<fcntl.h>
<errno.h>
<stdlib.h>
<memory.h>

char Progname[]='"proj";

#define MAXENTRY 100000
#define MAXSECTORS 32
#define MAXRINGS 8
#define MAXPIXELS 512
#define MAXFOVSIZE 257
#define NUMSCALES 3
#define NUMMATCHCATS 8
#define NUMMODELS 4
#define REDWEIGHT 1.
#define GREENWEIGHT 1.
#define BLUEWEIGHT 1.
#define INTENSITYWEIGHT 1.
#define EDGEWEIGHT 1.
#define CORNERWEIGHT 1.
#define BLOBWEIGHT 1.
#define LABELWEIGHT 1.
#define M_PI 3.14159265358979323846

extern int errno;

struct entryij {

short

i,j;

double percent;
struct entryij *next;

41

} entIJ[MAXENTRY];

struct entryrt {

short

r,theta;

double percent;
struct entryrt *next;
} entRT[MAXENTRY];

struct hips_file {
struct header* hd;
unsigned char* image;

};

struct cstruct {

struct
struct

};

hips_file
hips_file

struct image_stack

struct
struct
struct
struct
struct
struct
struct
struct
struct

hips_file
hips_file
hips_file
hips_file
hips_file
hips_file
hips_file
hips_file
hips_file

float scale;
float labelinfo[256];

};

struct point {

int x;
int y;
};

struct sacp {
int x;
int y;
int pri;
struct sacp* next;

};

struct sacpstack {
int length;
struct sacp* current;
struct sacp* base;

};

cimagel;
cimage?2;

red;
green;
blue;
intensity;
edge;
corner;
mask;
label;
blob;

42

struct hips_file get_image2(char* hips_file_in);
struct hips_file ij2rt(struct point sp, struct hips_file hfile_in,
int NumRings, int NumSectors);
struct hips_file rt2ij(struct point sp, struct hips_file image_rt, int ysize,
int xsize, int NumPixels, int NumRings);
struct hips_file rcross(struct hips_file hfile);
struct hips_file constancy(struct hips_file hfile);
struct hips_file create_hips(int,int);
struct hips_file median(struct hips_file hfile);
struct hips_file subtract(struct hips_file, struct hips_file);
struct hips_file moravec(struct hips_file hfile);
struct hips_file create_cv_mask(int x,int y);
struct hips_file corner3(struct hips_file hfile,char* 0file);
struct hips_file rescalei(struct hips_file hfi,float scale_val);
struct hips_file clip(struct hips_file hf,struct point p,int size);
struct hips_file reduce(struct hips_file hfile,int scale);
struct hips_file expand(struct hips_file hfile,int scale);
struct hips_file cornerij(struct hips_file hf,struct hips_file mask,
int NumRings, int NumSectors);
struct hips_file localmax(struct hips_file hfile);
struct hips_file corner(struct hips_file hf,struct point saccade_point,
int NumPixels, int NumRings,int NumSectors);
struct cstruct cornerij2(struct hips_file hfile,int NumRings,
int NumSectors);
struct hips_file putcircle(struct hips_file c1,int il,int ji1,int scale,
int dataout);

struct image_stack rescaleN(struct image_stack current,float* score,
struct image_stack orig);
struct image_stack init_is();
struct image_stack create_sff_stack(int x, int y);
struct image_stack isrt2ij(struct image_stack rt,struct point centre,
int NumPixels, int NumRings);
struct hips_file updatemask(float match_score[NUMMODELS] [NUMSCALES],
struct hips_file match_mask,
struct image_stack models [NUMMODELS]) ;
struct image_stack rescale(struct image_stack current,float* scores) ;

struct sacp* newsacp();

void load_models(struct image_stack models[NUMMODELS],int NumPixels,
int NumRings, int NumSectors);

void mkfilenames(char* 0fileRT, char* 0fileIJ, int NumRings, int NumSectors,
int NumPixels, char* fstub);

void unalloc(struct hips_file hf);

void unallocim(struct image_stack im);

void load_map_file(char* table_file_rt, char* table_file_ij, int* NumRings,

int* NumSectors, int* NumPixels);

void write_file(struct hips_file hfile, char* file_name);

void write_to_sff(struct hips_file sff, struct hips_file h,struct point P);

void error_msg(char *RoutineName, char *Message);

void run_xv(char* filename);

void dump_ims(struct image_stack ims,char* fstub);

43

void update_sff(struct image_stack sff, struct image_stack view,
struct point p, int NumPixels);

void itoa(int n, char s([]);

void reverse(char s[]);

void printsaclist(struct sacpstack stk);

struct sacpstack sortstack(struct sacpstack stk);

struct sacpstack initsacpstack();

struct sacpstack pop(struct sacpstack stk,struct sacp* entry);

int max3(float a,float b, float c);
int match(struct image_stack models [NUMMODELS],struct image_stack cv,
float score[NUMMODELS] [NUMSCALES],struct hips_file match_mask);
double matchi(struct hips_file Data, struct hips_file Model,int scale,
struct hips_file mask,struct hips_file int_mask, charx);
double match2(struct hips_file Data, struct hips_file Model,int scale,
struct hips_file match_mask,struct hips_file int_mask,
char* ftype);
struct sacpstack updatesaclist(struct sacpstack stk,struct image_stack ims,
struct point sp);

struct entryij *head_rt[MAXRINGS] [MAXSECTORS];
struct entryrt *head_ij[MAXFOVSIZE] [MAXFOVSIZE];

void main()
{
int SFFx=512,SFFy=512;
char name({80] ,hin[80] ,hout[80];
int 1,j;
int NumRows,NumCols,NumRings,NumSectors,NumPixels;
struct hips_file hfile_in,hfile_ij,hfile_rc,hfile_norm,cv_mask,
hfile_ij_rc,hfile_mf,hfile_corner,hfile_corner2,
hfile_ijc,hfile_ijc2,hfile_mrvc,hfile_ijmrvc,
hfcorner3,hfijc3,hftest,hfcorner4,hfijc4,hfclip,
hfreduce,hfexpand,hfcijl,hfcij,match_mask;
struct image_stack stable_ff;
struct image_stack input_image,original_view;
struct image_stack current_view,current_view_new;
struct image_stack current_view_new_ij,current_view_ij;
struct point saccade_point;
struct point centre,sff_point;
struct sacpstack saccadelist;

int best;

int update;

int com;

char fname[80];

short loop=1;

char 0fileRT[80],0fileIJ[80];

int v1i,v2,v3;

struct image_stack models[NUMMODELS];
float match_score [NUMMODELS] [NUMSCALES] ;

printf("Loading mapping files..\n");
current_view=init_is();

stable_ff=create_sff_stack(SFFx,SFFy);
input_image.intensity=get_image2("in1");
saccadelist=initsacpstack();

saccade_point.x=256;

saccade_point.y=256;
mkfilenames(0fileRT,0filelJt,7,32,128,"tab");
load_map_file(OfileRT,OfileIJ,&NumRings,&NumSectors,&NumPixels);

match_mask=create_hips(NumSectors,NumRings) ;
for(i=0;i<NumSectors*NumRings;i++)
{
match_mask.image[i]=255;

}

centre.x=NumPixels;
centre.y=NumPixels;

printf("Loading models..\n");
load_models(models,NumPixels,NumRings,NumSectors) ;

sff_point.x=saccade_point.x-centre.x;
sff_point.y=saccade_point.y-centre.y;
original_view=init_is();

while(1)
{
while(loop)
{
printf("\ni-saccade 2-xv 3-stop 5-new >");
scanf ("%d",&com) ;
switch(com)
{
case 1:/* Saccade */
scanf ("%d",&saccade_point.x);
scanf ("/d",&saccade_point.y);
sff_point.x=saccade_point.x-centre.x;
sff_point.y=saccade_point.y-centre.y;
loop=0;
break;
case 2:/% run xv */
scanf("%s" ,fname);
run_xv(fname);
loop=1;

45

break;

case 3:/*quit*/
exit(0);

case 5:/* load new world viewx/
scanf ("%s",fname) ;
unalloc(input_image.intensity);
input_image.intensity=get_image2(fname);
unallocim(stable_ff);
stable_ff=create_sff_stack(SFFx,SFFy);
saccadelist=initsacpstack();
run_xv(fname) ;
loop=1;
break;

case 6:/* allow matcher to perform another iteration*/
loop=0;
break;

case 7:/* load new table files */
scanf("%d %d %d",&NumRings,&NumSectors,&NumPixels);
printf("Loading mapping files..\n");
mkfilenames (0fileRT,0filelJ,NumRings,NumSectors,NumPixels,

"tab");
load_map_file(0fileRT,0filelJ,&NumRings,
gNumSectors,&NumPixels);

centre.x=NumPixels;
centre.y=NumPixels;
load_models(models,NumPixels,NumRings,NumSectors);

loop=1;
break;

default:
loop=1;
}

)
loop=1;

if (com!=6)
{ /* get original view of world*/
unallocim(original_view);
original_view=init_is();
original_view.intensity=ij2rt(saccade_point,
input_image.intensity,
NumRings,NumSectors) ;

original_view.edge=rcross(original_view.intensity);

original_view.corner=corner(input_image.intensity,saccade_point,
NumPixels,NumRings,NumSectors);

current_view=init_is();

46

current_view.intensity=ij2rt(saccade_point,
input_image.intensity,
NumRings,NumSectors) ;

current_view.edge=rcross(current_view.intensity);

current_view.corner=corner(input_image.intensity,saccade_point,
NumPixels,NumRings,NumSectors);

current_view=current_view_new;

}
dump_ims(current_view,"viewrt");

current_view_ij=init_is();

current_view_ij=isrt2ij(current_view,centre,
NumPixels,NumRings) ;

dump_ims(current_view_ij,"viewij");

saccadelist=updatesaclist(saccadelist,current_view,saccade_point);
saccadelist=sortstack(saccadelist);
printsaclist(saccadelist);

best=match(models,current_view,match_score,match_mask);
printf("Best match=/d\n",best);

for(j=0; j<NUMSCALES; j++)

{
printf("id ",j);
if (j==0) printf("reduced ");
if (j==1) printf("normal ");
if (j==2) printf("enlarged ");
for(i=0;i<NUMMODELS;i++)

printf("%1.2f " ,match_score[i][j]);

printf("%1.2f",current_view.scale);
printf("\n");

}

/*match_mask=updatemask(match_score,match_mask,models) ;*/
/*urite_file(match_mask,"mmrt") ;*/

current_view_new=init_is();
current_view_new=rescaleN(current_view,match_score[best],
original_view);

update=0; /* has matcher converged 7 */

if (fabs(1-(current_view_new.scale/current_view.scale))<.02)
update=1;

47

printf("cvnew scale %f old scale %f\n",
current_view_new.scale,current_view.scale);

if (update)
{ /* if converged update SFF */
printf("Scale ------- > %f\n",current_view_new.scale);
original_view.scale=current_view_new.scale;
update_sff(stable_ff,original_view,sff_point,NumPixels);
dump_ims(stable_ff,"sff");
unallocim(current_view_new);
unallocim(original _view);
loop=1;
}
unallocim(current_view);
unallocim(current_view_ij);

}

struct hips_file updatemask(float match_score[NUMMODELS] [NUMSCALES],
struct hips_file match_mask,
struct image_stack models [NUMMODELS])
{ /% update f/g mask based on match scores - not used */
struct hips_file newmask;
double fit,weight,total=0.;
int max,i,j,k;
float threshold=0.;
int cols=match_mask.hd->cols;
int rows=match_mask.hd->rowvs;
int np=rows*cols;
char* rtn_name='"updatemask";

unalloc(match_mask) ;
newmask=create_hips(cols,rows);

for (i=0:;i<NUMMODELS;i++)
{
max=max3(match_score(i] [0] ,match_scorel[i] [1] ,match_score[i] [2]);
fit=match_score[i] [max];
if (fit>threshold) total+=fit;

for (k=0;k<NUMMODELS;k++)

max=max3(match_score[k] [0] ,match_score(k] [1] ,match_score(k][2]);
fit=match_score[k] [max];
weight=fit/total;
if (fit>threshold)
for(j=0;j<rows;j++)

48

for(i=0;i<cols;i++)

{
if (models[k].intensity.image[i+j*cols])
newmask.image[i+j*cols]+=weight*255;
}
}
return(newmask) ;

struct sacp* newsacp(int x, int y, int pri)
{ /% alloc mem for saccade list element */
struct sacp* sp;
char* rtn_name='"newsacp";

if (!(sp=malloc(sizeof(struct sacp))))
error_msg(rtn_name,"Not again? Ran out of memory!!'");

sp->x=x;

Sp->y=y;

Sp->pri=pri;

sp->next=(struct sacp*)NULL;

return sp;

¥

struct sacpstack initsacpstack()
{ /* initalize saccade list */
struct sacpstack stk;

stk.length=0;
stk.current=(struct sacp*)NULL;
stk.base=(struct sacp*)NULL;

return stk;

}

void printsaclist(struct sacpstack stk)
{ /* display saccade list */
struct sacp* ptr;

ptr=stk.base;

while (ptr != (struct sacp*)NULL)
{
printf ("priority ’d ild j ‘Ad\n",ptr->pri,ptr->x,ptr->y);
ptr=ptr->next;
}
}

struct sacpstack updatesaclist(struct sacpstack stk,struct image_stack ims,
struct point sp)
{ /% add pos’ns of corners to saccade list */

49

int i,j,x,y,pri;

float theta,r;

int threshold=50;

int cols=ims.corner.hd->cols;
int rows=ims.corner.hd->rows;
struct hips_file lmax,lmij;
struct point p;

p.x=128;p.y=128;
lmax=localmax(ims.corner);
/*write_file(lmax,"LMAX") ;*/
lmij=rt2ij(p,1lmax,257,257,128,rows);
/*vrite_file(1lmij,“LMIJ");=*/

for(j=0;j<rows;j++)
for(i=0;i<cols;i++)
{
if(lmax.image[i+j*cols]>threshold)
{ /% calc. centre or RT pixel */
if (1)
theta=2*M_PI*i/cols+M_PI/cols;
else
theta=M_PI/cols;
r=pow(2,j+1)-0.5%pow(2,j);
x=-r*cos(theta);
y=-r*sin(theta);
if (sqrt(x*x+y*y) >3)
{
X+=Sp.X;
y*+=sp.y;
pri=(2000-(j+1)*200)+
ims.corner.image[i+j*cols]/(j+1);
if (stk.length)
{
stk.current->next=newsacp(x,y,pri);
stk.current=stk.current->next;

else

{
stk.base=newsacp(x,y,pri);
stk.current=stk.base;

}
stk.length++;

}
unalloc(lmax);
return stk;

struct sacpstack sortstack(struct sacpstack stk)

{ /* sort saccade list into priority order */

static int sacpcompare(struct sacp* i,struct sacp* j)
{
return(i->pri - j->pri);

}

struct sacp *sacparray,entry;
char* rtn_name='sortstack";
int i,exists=0,length=0;

if (!(sacparray=malloc(sizeof(struct sacp)*stk.length)))
error_msg(rtn_name,"Not again? Ran out of memory!!");

while (stk.base != (struct sacp*)NULL)
{
stk=pop(stk,&entry);
exists=0;
for(i=0;i<length;i++)
if ((entry.x!=sacparray(i].x ||
entry.y!=sacparray[i].y) && !exists)
exists=0; else exists=l;
if ('exists) sacparray[length++]=entry;

}

qsort(sacparray,length,sizeof (struct sacp),sacpcompare);

for (i=length-1;i>=0;i--)
{
if (stk.length)
{
stk.current->next=
newsacp(sacparray[i] .x,sacparray[i] .y,sacparray[i].pri);
stk.current=stk.current->next;

else

{
stk.base=newsacp(sacparray[i] .x,sacparray[i].y,sacparray[i].pri);
stk.current=stk.base;

}
stk.length++;

}

free(sacparray);
return(stk);

}

struct sacpstack pop(struct sacpstack stk,struct sacp* sptr)
{ /% remove element from list */
*sptr=*stk.base;

51

free(stk.base);
stk.basge=sptr->next;
stk.length--;

return stk;

}

struct hips_file corner(struct hips_file hf,struct point saccade_point,
int NumPixels,int NumRings,int NumSectors)
{ /* get corner image */
struct hips_file hfclip;
struct point centre;
struct cstruct corners;

centre.x=NumPixels;
centre.y=NumPixels;

hfclip=clip(hf,saccade_point,NumPixels);
corners=cornerij2(hfclip,NumRings,NumSectors) ;

unalloc(hfclip);
unalloc (corners.cimage2);

return corners.cimagel;

void mkfilenames(char* 0fileRT, char* 0fileIJ, int NumRings, int NumSectors,
int NumPixels, char* fstub)
{ /* create filename for table files give num rings, sectors, pixels */
char tmp[S];

strcpy(0fileRT,fstub);
strcpy(0filelJ,fstub);
strcat (0fileRT,"RT");
strcat(0fileIJ,"IJ");
itoa(NumRings,tmp) ;
strcat(0fileRT,tmp);
strcat(0filelJ,tmp);
itoa(NumSectors,tmp);
strcat(0fileRT,tmp) ;
strcat(0filelJ,tmp);
itoa(NumPixels,tmp);
strcat(0fileRT,tmp);
strcat(0filelJ,tmp);

void unalloc(struct hips_file hf)
{ /* free mem for hips files */
free(hf.hd);
free(hf.image) ;

52

}

void unallocim(struct image_stack im)

{ /* free mem for image stack */
if (im.red.image) unalloc(im.red);
if (im.green.image) unalloc(im.green);
if (im.blue.image) unalloc(im.blue);
if (im.intensity.image) unalloc(im.intensity);
if (im.edge.image) unalloc(im.edge);
if (im.corner.image) unalloc(im.corner);
if (im.label.image) unalloc(im.label);
if (im.blob.image) unalloc(im.blob);
if (im.mask.image) unalloc(im.mask);

¥

void itoa(int n, char s[])
{
int i,sign;
if ((sign =n) <0)
n=-n;
i=0;
do {
s[i++] = n ¥ 10 +'0°’;
} while ((n/=10)>0);
if (sign <0)
sli++] =2-7;
s[il="\0’;
reverse(s);

}

void reverse(char s[])

{

int ¢,1,j;

for (i=0,j=strlen(s)-1;i<j;i++,j--) {
c=s[i];
s[i]=s[jl;
s(jl=c;
}
}

void dump_ims(struct image_stack ims,char* fstub)
{ /* vrite image stack to disk */
char fname[40];

strcpy(fname,fstub);
strcat(fname,".r");

if (ims.red.image!=NULL) write_file(ims.red,fname);

else printf("}s - red image null.\n",fname);
strcpy(fname,fstub);
strcat(fname,".g");

33

if (ims.green.image!=NULL) write_.file(ims.green,fname);
else printf("Js - green image null.\n", fname);
strcpy(fname,fstub);

strcat(fname,".b");

if (ims.blue.image!=NULL) write_file(ims.blue,fname);
else printf("¥s - blue image null.\n",fname);
strcpy(fname,fstub);

strcat(fname,".i");

if (ims.intensity.image!=NULL) write_file(ims.intensity,fname);
else printf(")s - intensity image null.\n",fname);
strcpy(fname,fstub);

strcat(fname,".e");

if (ims.edge.image!=NULL) write_file(ims.edge,fname);
else printf("/s - edge image null.\n",fname);
strcpy(fname,fstub);

strcat(fname,".co");

if (ims.corner.image!=NULL) write_file(ims.corner,fname);
else printf(")s - corner image null.\n",fname);
strepy(fname,fstub);

strcat(fname,".bl");

if (ims.blob.image!=NULL) write_file(ims.blob,fname);
else printf("%s - blob image null.\n",fname);
strcpy(fname,fstub);

strcat(fname,".1");

if (ims.label.image!=NULL) write_file(ims.label,fname);
else printf("}s - label image null.\n",fname);
strcpy(fname,fstub);

strcat(fname,".m");

if (ims.mask.image!=NULL) write_file(ims.mask,fname);
else printf("}s - mask image null.\n",fname);

}

struct image_stack create_sff_stack(int x, int y)
{ /* create sff */

char* rtn_name='create_sff_stack";

struct image_stack ims;

int i;

ims=init_is();

ims.red=create_hips(x,y);
ims.green=create_hips(x,y);
ims.blue=create_hips(x,y);
ims.intensity=create_hips(x,y);
ims.edge=create_hips(x,y);
ims.corner=create_hips(x,y);
ims.mask=create_hips(x,y);
ims.label=create_hips(x,y);
ims.blob=create_hips(x,y);
for(i=0;i<x*y;i++) /* mask image id’s resolution of data written to sff */

ims.mask.image[i]=255;
return ims;

94

void load_models(struct image_stack models[NUMMODELS],int NumPixels,

int NumRings, int NumSectors)

{ /# load IJ images of models and save RT images */
void deresmodel(struct hips_file model,int corner)

{

int i;

if (corner)
for(i=0;i<model .hd->cols;i++)

{

}

else

model.image[i+model.hd->cols]l=model.image[i];
model . image[i]=0;

for(i=0;i<model.hd->cols;i++)

{

model.image[i+model.hd->cols]*=.75;
model.image[i+model.hd->cols]+=.25*model.image[i];
model.image[i]=0;

}
}

/* Need to change for colour (edges&corners etc)*/
char fstub[100],fname[100];
char tmp[10];

int i,j;

struct point centre;
struct hips_file hftemp;

centre.x=NumPixels;
centre.y=NumPixels;

for(i=0;i<NUMMODELS;i++)

{

models[i]=init_is();

strcpy(fstub, "model");

models[i]l=init_is();

itoa(i+1,tmp);

strcat(fstub,tmp);

strcpy(fname,fstub);

strcat(fname,".i");

hftemp=get_image2(fname) ;

models[i] .intensity=ij2rt(centre,hftemp,
NumRings,NumSectors) ;

models[i] .edge=rcross(models[i].intensity);

models[i] .corner=corner(hftemp,centre,NumPixels,NumRings,

NumSectors);
deresmodel(models[i] . intensity,0);
deresmodel(models([i].edge,0);
deresmodel (models[i] .corner,1);
strcpy(fstub,"modelrt");

39

itoa(i+1,tmp);

strcat(fstub,tmp);
strcpy(fname,fstub) ;
strcat(fname,".i");
write_file(models[i].intensity,fname);
strcpy(fname,fstub);
strcat(fname,".e");
write_file(models({i].edge,fname);
strcpy(fname,fstub) ;
strcat(fname,".co");
write_file(models[i].corner,fname);
unalloc(hftemp) ;

struct hips_file create_hips(int x, int y)

{ /* alloc mem for hips file header and image array x*y */
struct hips_file hf;
char* rtn_name='create_hips";

if (!(hf.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

/* output r-theta array */
if ((hf.image=(unsigned char *)calloc(y*x,1))
<=(unsigned char *)0)
error_msg(rtn_name,"SYSTEM OVERLOAD! Ran out of memory!!");

init_header(hf.hd,"","",1,"",y,x,8,0,0,"","");
return hf;

struct hips_file create_cv_mask(int NumRings, int NumSectors)
{ /* Make current view mask for updating SFF */

char* rtn_name='"create_cv_mask";

struct hips_file cv_mask;

int i,j;

cv_mask=create_hips(NumSectors,NumRings);

for(j=0;j<NumRings;j++)

{
for(i=0;i<NumSectors;i++)
{
cv_mask.image[i+j*NumSectors]=j+1;
}
}

return cv_mask; /* an RT image with the rows numbered 1-NumRings */

56

void update_sff(struct image_stack sff, struct image_stack viewrt,
struct point p,int NumPixels)
{ /* write data to sff if higher resl’n than existing data */
/* should only update if more probable than existing data */
/* but doesn’t */
int i,i2,j,j2,cols=sff.mask.hd->cols,rows=sff.mask.hd->rows,ok=1;
struct image_stack view;
int freeslot;
struct point centre;

centre.x=NumPixels;
centre.y=NumPixels;

freeslot=1;
while (sff.labelinfo[freeslot]>-99)
freeslot++;

viewrt.mask=create_cv_mask(viewrt.intensity.hd->rows,
viewrt.intensity.hd->cols);

view=isrt2ij(viewrt,centre,NumPixels,vievrt.intensity.hd->rows);

if (ok)
{
sff.labelinfo[freeslot]=view.scale;
for(j=p.y,j2=0;j<p.y+view.mask.hd->rows && j+p.y < rows;
jH+,j2++)
for(i=p.x,i2=0;i<p.x+view.mask.hd->cols && i+p.x < cols;
i++,i2++)
{
if (view.intensity.image[j2*view.mask.hd->cols+i2]>0 &&
view.mask.image[j2*view.mask.hd->cols+i2] <
sff.mask.image[j*cols+i])
{
if (view.red.image!=NULL)
sff.red.image[j*cols+i]=
view.red.image[j2*view.red.hd->cols+i2];
if (view.green.image!=NULL)
sff.green.image[j*cols+i]=
view.green.image[j2*view.green.hd->cols+i2];
if (view.blue.image!=NULL)
sff.blue.image[j*cols+i]=
view.blue.image[j2*view.blue.hd->cols+i2];
if (view.intensity.image!=NULL)
sff.intensity.image[j*cols+i]=
view.intensity.image[j2*viewv.intensity.hd->cols+i2];

57

if (view.edge.image!=NULL)
sff.edge.image[j*cols+i]=
view.edge.image[j2*view.edge.hd->cols+i2];
if (view.corner.image!=NULL)
sff.corner.image[j*cols+i]=
view.corner.image[j2*view.corner.hd->cols+i2];
sff .mask.image[j*cols+i] =
view.mask.image[j2*view.mask.hd->cols+i2];
sff.label.image[j*cols+il=freeslot;

}
else

printf("SFF not updated - more probable object already present!\n");
unalloc(viewrt.mask);
unallocim(view);

}

struct image_stack isrt2ij(struct image_stack rt,struct point centre, int NumPi
{ /* return 1J image stack when given RT im. stack */

struct image_stack ij;

ij=init_is();

if(rt.red.image!=NULL)
ij.red=rt2ij(centre,rt.red,2*NumPixels+1,2*NumPixels+1, NumPixels,
NumRings) ;
if(rt.green.image!=NULL)
ij.green=rt2ij(centre,rt.green,2*NumPixels+1,2«NumPixels+1, NumPixels,
NumRings) ;
if (rt.blue. image!=NULL)
ij.blue=rt2ij(centre,rt.blue,2*NumPixels+1,2*NumPixels+1, NumPixels,
NumRings);
if(rt.intensity.image!=NULL)
ij.intensity=rt2ij(centre,rt.intensity,2*NumPixels+1,2*NumPixels+1,
NumPixels,NumRings) ;
if(rt.edge.image!=NULL)
ij.edge=rt2ij(centre,rt.edge,2*NumPixels+1,2*NumPixels+1,
NumPixels,NumRings) ;
if(rt.corner.image!=NULL)
ij.corner=rt2ij(centre,rt.corner,2*NumPixels+1,2*NumPixels+1,
NumPixels,NumRings);
if(rt.blob.image!=NULL)
ij.blob=rt2ij(centre,rt.blob,2*NumPixels+1,2*NumPixels+1,
NumPixels,NumRings) ;
if (rt.mask.image!=NULL)
ij.mask=rt2ij(centre,rt.mask,2*NumPixels+1,2*NumPixels+1,
NumPixels,NumRings) ;
if(rt.label.image!=NULL)
ij.1abel=rt2ij(centre,rt.label,2*NumPixels+1,2*NumPixels+1,
NumPixels,NumRings);

58

}

return ij;

struct image_stack init_is()
{ /* initalize image stack */

}

struct
int i;

nullis.
nullis.
nullis.
nullis.
nullis.
nullis.

nullis

nullis.

nullis
for(i=

null
nullis

image_stack nullis;

red.image=NULL;
green.image=NULL;
blue.image=NULL;
intensity.image=NULL;
edge.image=NULL;
corner.image=NULL;
.blob.image=NULL;
label.image=NULL;
.mask.image=NULL;
0;1<256;i++)
is.labelinfo[i]=-99;
.scale=1;

return nullis;

void run_xv(char* filename)

{

}

char xv_path[100]="xv ";
char* bg="g&";
strcat(xv_path,filename);
strcat(xv_path,bg);

system(xv_path) ;

void load_map_file(char* table_file_rt, char* table_file_ij, int* NumRings,

int* NumSectors, int* NumPixels)

{ /* load table files */

double xr,xs,xp,percent;
int r,theta,i,j,numentry=0;
FILE *fp;

/* load mapping file */
fp = fopen(table_file_rt,"rb");
if (fp == NULL)
{printf ("WARNING! open failed on mapping file: %s\n",table_file_rt);
exit (0);}
fscanf (fp,"/1f 1f %1f",&xr, &xs, &xp);
*NumRings = (int) xr;
*NumSectors = (int) xs;
*NumPixels = (int) xp;
for (r=0; r<*NumRings; r++)
for (theta=0; theta<*NumSectors; theta++)

39

head_rt[r] [theta] = (struct entryij *) -1;
fscanf(fp,"/d %d",&r,&theta);

vhile (r '= -1000)

{
fscanf(fp,"/d /d %1f",&i,&j,&percent);
vhile (percent >= 0)

{
entIJ[numentry].i = i;
entIJ[numentryl.j = j;
entIJ[numentry] .percent= percent;
entIJ(numentry] .next = head_rt[r][theta];
head_rt[r][theta] = &entIJ[numentry];
numentry++;
if (numentry >= MAXENTRY)
{
printf("Out of entry space\n");
exit(0);
}
fscanf(fp,"/d %d %A1f",&i,&j,&percent);
}

fscanf (fp,"%d %d",&r,&theta);
}
fclose(fp);
printf ("RT mapping file loaded\n");

/* load IJ mapping file */
numentry=0;

fp = fopen(table_file_ij,"rb");
if (fp == NULL)
{printf ("WARNING! open failed on mapping file: %s\n",table_file_ij);
exit(0);}
fscanf(fp,"%1f %1f %1f",&xr, &xs, &xp);

for (j=0; j<(2 * *NumPixels+1); j++)
for (i=0; i<(2 * *NumPixels+1); i+=1)
head_ij[jl1[i] = (struct entryrt *) -1i;
fscanf(fp,"%d %d",&i,&j);

while (i != -1000)
{
fscanf (fp,"d %d %1f",&r,&theta,&percent);
while (percent >= 0)
{
entRT [numentry] .r = r;
entRT [numentry] .theta = theta;
entRT [numentry] .percent= percent;
entRT[numentry] .next=head_ij[*NumPixels+j] [*NumPixels+i];
head_ij [*NumPixels+j] [*NumPixels+i] = &entRT[numentry];
numentry++;

60

if (numentry >= MAXENTRY)

{
printf("Out of entry space\n");
exit(0);
}
fscanf(fp,"%d %d %1f",&r,&theta,&percent);
}
fscanf (fp,"/d %d",&i,&j);
}
fclose(fp);

fprintf(stderr,"IJ mapping file loaded\n");

struct hips_file get_image2(char* hips_file_in)
{ /* load hips image into hips_file data struct and return it */
int fhi;
long picsize;
struct hips_file hfile;
char* rtn_name='"get_image2";

if (!(hfile.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((fhi=open(hips_file_in,0_RDONLY,0))<0)
{
fprintf(stderr,"get_image2: couldn’t open file ¥s\n",
hips_file_in);
exit(1);
}

fread_header(fhi,hfile.hd);
if (hfile.hd-)pixel_format = PFBYTE)

{
fprintf(stderr,'get_image2: frame must be in byte format\n");
exit(1);
}
if (hfile.hd->num_frame != 1)
{
printf ("Number of images must be 1\n");
exit(0);
}

picsize=hfile.hd->cols * hfile.hd->rows;

if ((hfile.image=(unsigned char *)calloc(picsize,1))
<=(unsigned char *)0)
{
fprintf(stderr,"Can’t allocate input array\n");
exit(1);

61

pread(fhi,hfile.image,picsize);

/* close input file */
close(fhi);
return hfile;

}

void write_file(struct hips_file hfile, char* hips_file_out)
{ /* write hips_file to disk */

long picsize = hfile.hd->cols * hfile.hd->rows;

int fho;

char command[100];

strcpy(command, "chmod ugo+rw-x ");
strcat(command,hips_file_out);

fho = open(hips_file_out, (O_WRONLY | O_CREAT));
if (fho<0)
{
printf ("\nERROR %d\n",errno);
exit(1);
}
furite_header(fho,hfile.hd);
write(fho,hfile.image,picsize);
close(fho);
system(command) ;
printf("Wrote %s\n",hips_file_out);

}

struct hips_file ij2rt(struct point sp, struct hips_file hfile,
int NumRings, int NumSectors)
{ /* return RT hips file when given IJ */
int di,dj,r,theta;
struct entryij *ptr;
double sum;
struct hips_file hfile_rt;
char* rtn_name="ij2rt";

if (!(hfile_rt.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

/* output r-theta array */
if ((hfile_rt.image=(unsigned char *)calloc(NumRings*NumSectors,1))
<=(unsigned char *)0)
{
fprintf(stderr,”Can’t allocate output array\n");
exit(1);

for (r=0; r<NumRings; r++)

{
for (theta=0; theta<NumSectors; theta++)
{
ptr = head_rt(r][theta];
sum = 0.0;
vhile (ptr != (struct entryij *) -1)
{
dj = ptr->j + sp.y;
if (dj < 0 || dj >= hfile.hd->rows) goto xxxi;
di = ptr->i + sp.x;
if (di < 0 || di >= hfile.hd->cols) goto xxxi;
sum += ptr->percent * *(hfile.image +
dj*hfile.hd->cols + di);
xxx1:
ptr = ptr->next;
}
if (sum < 0) sum = 0;
if (sum > 255) sum = 255;
*(hfile_rt.image + r*NumSectors + theta) =
(unsigned char) sum;
}
}
init_header(hfile_rt.hd,hfile.hd->orig_name,hfile.hd->seq_name,
hfile.hd->num_frame,hfile.hd->orig_date,NumRings,
NumSectors,hfile.hd->bits_per_pixel,
hfile.hd->bit_packing,hfile.hd->pixel_format,
hfile.hd->seq_history,hfile.hd->seq_desc);
return hfile_rt;
¥

struct hips_file rt2ij(struct point sp, struct hips_file hfile,
int ysize, int xsize, int NumPixels, int NumRings)
{ /* return 1J hips_file when given RT */

int r,theta,i,j,di,dj;

struct entryrt *ptr;

double sum,percent;

struct hips_file hfile_ij;

char* rtn_name="rt2ij";

/*int outer_ring = inner_ring+NumRings-NUMSCALES;*/

if (!(hfile_ij.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if (ysize < 1 || ysize > MAXPIXELS)

{
printf ("Number of rows must be 1-%d\n",MAXPIXELS);

exit (0);
}

63

if (xsize < 1 || xsize > MAXPIXELS)

{
printf("Number of columns must be 1-%d\n",MAXPIXELS);
exit(0);

}

/* foveate this pixel */
if (sp.x < 0 || sp.x >= xsize || sp.y < 0 || sp.y >= ysize)
{
printf("Foveated output must be in the range (0,0)-(%d,%d)\n",
ysize-1,xsize-1);
exit(0);
}

/* output ij array #*/
if ((hfile_ij.image=(unsigned char *)calloc(ysize*xsize,1))
<=(unsigned char *)0)

{
fprintf(stderr,"Can’t allocate output array\n'");
exit(1);
}
for (j = -NumPixels; j<=NumPixels; j++)
for (i = -NumPixels; i<=NumPixels; i++)
{
ptr = head_ij[NumPixels+j] [NumPixels+i];
sum = 0.0;
wvhile (ptr != (struct entryrt *) -1)
{
/* if (ptr->r >= inner_ring && ptr->r <= outer_ring)*/
sum += ptr->percent * *(hfile.image+ (ptr->r)*hfile.hd->cols
+ptr->theta);
ptr = ptr->next;
}
dj = j*sp.y;

di = i+sp.x;
if (di < 0 |l dj < 0 || di >= xsize || dj >= ysize) continue;
if (sum < 0) sum = O;
if (sum > 255) sum = 255;
*(hfile_ij.image + dj*xsize + di) = (unsigned char) sum;
}
init_header(hfile_ij.hd,hfile.hd->orig_name,hfile.hd->seq_name,
hfile.hd->num_frame,hfile.hd->orig_date,ysize,
xsize,hfile.hd->bits_per_pixel,
hfile.hd->bit_packing,hfile.hd->pixel_format,
hfile.hd->seq_history,hfile.hd->seq_desc);
return hfile_ij;

64

void error_msg(char *RoutineName, char *Message)
/* print error message and exit program */

{

fprintf(stderr, "ERROR in s : \n\t- %s\n", RoutineName, Message);

exit(-1);

}

struct hips_file rcross(struct hips_file hfile)
{ /* perform rcross operation */
struct hips_file hfile_out;
unsigned dataout;
int i,j;
char* rtn_name='"rcross";

if (!(hfile_out.hd=malloc(sizeof (struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((hfile_out.image=
(unsigned char *)calloc(hfile.hd->rows*hfile.hd->cols,1))

<=(unsigned char #*)0)

error_msg(rtn_name,"Can’

/* apply cross operator */
for (j=0; j<hfile.hd->rows; j++)
for (i=0; i<hfile.hd->cols; i++)

{

t allocate output array");

if (i'=hfile.hd->cols-1 && j'!'=hfile.hd->rows-1)

.image[i+j*hfile.hd->cols]-

image[i+1+(j+1)*hfile.hd->cols])+
image[i+1+j*hfile.hd->cols]-
image[i+(j+1)*hfile.hd->cols]))/2;

if (dataout > 255) dataout = 255;

else if (i==hfile.hd->cols-1 && j==hfile.hd->rows-1)

image[i+j*hfile.hd->cols]-
image[i-(hfile.hd->cols-1)+
j*hfile.hd->cols])+
image[i-(hfile.hd->cols-1)
+j*hfile.hd->cols]-
image[i+j*hfile.hd->cols]))/2;

if (dataout > 255) dataout = 255;

{
dataout=
(abs((unsigned)hfile
(unsigned)hfile.
abs((unsigned)hfile.
(unsigned)hfile.
}
{
dataout=
(abs((unsigned)hfile.
(unsigned)hfile.
abs((unsigned)hfile.
(unsigned)hfile.
}
else if (i==hfile.hd->cols-1)
{
dataout=

(abs((unsigned)hfile.

65

image[i+j*hfile.hd->cols]-

(unsigned)hfile.image[i-(hfile.hd->cols-1)
+(j+1)*hfile.hd~>cols])+
abs((unsigned)hfile.image[i-(hfile.hd->cols-1)
+j*hfile.hd->cols]-
(unsigned)hfile.image[i+(j+1)*hfile.hd->cols]))/2;
if (dataout > 255) dataout = 255;

3
else if (j==hfile.hd->rows-1)
{
dataout=
(abs((unsigned)hfile.image[i+j*hfile.hd->cols]-
(unsigned)hfile.image[i+1+j*hfile.hd->cols])+
abs((unsigned)hfile.image[i+1+j*hfile.hd->cols]-
(unsigned)hfile.image[i+j*hfile.hd->cols]))/2;
if (dataout > 255) dataout = 255;
}

/* put output pixel */
hfile_out.image[i+j*hfile.hd->cols]=dataout;
}
init_header(hfile_out.hd,hfile.hd->orig_name,hfile.hd->seq_name,
hfile.hd->num_frame,hfile.hd->orig_date,hfile.hd->rows,
hfile.hd->cols,hfile.hd->bits_per_pixel,
hfile.hd->bit_packing,hfile.hd->pixel_format,
hfile.hd->seq_history,hfile.hd->seq_desc);
return hfile_out;

struct hips_file moravec(struct hips_file hfile)
{ /% perform moravec operation and return moravec’d hips_file */

struct hips_file hfile_out;

int i,j,horiz,vert,diagl,diag2,rl,r2;
char* rtn_name="moravec";

int cols=hfile.hd->cols;

int rows=hfile.hd->rows;

int numpels=rows*cols;

float* dataout;

float range,low=999999.0,high=-99999.;

if ('(hfile_out.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((hfile_out.image=
(unsigned char *)calloc(rows*cols,1))
<=(unsigned char *)0)
error_msg(rtn_name,"Can’t allocate output array");

if ((dataouts
(float *)calloc(rows*cols,sizeof(float)))

66

<=(float *)0)
error_msg(rtn_name,"Can’t allocate dataout array");

/* apply moravec operator */

for (j=1; j<rows-1; j++)
for (i=1; i<cols-1; i++) /*cols +1 for horizontal wrap */
{

vert=diagi=diag2=horiz=0;

vert=((hfile.image[i/cols+(j-1)*cols] -
hfile.image[ilcols+j*cols]) *
(hfile.image[ilcols+(j-1)*cols] -
hfile.image[i’cols+j*cols]))+
(hfile.image[ilcols+j*cols] -
hfile.image[i%cols+(j+1)*cols]) *
(hfile.image[ilcols+j*cols] -
hfile.image[ilcols+(j+1)*cols]);
diagil=(hfile.image[(i-1)%cols+(j-1)*cols] -
hfile.image[ilicols+j*cols]) *
(hfile.image[(i-1)%cols+(j-1)*cols] -
hfile.image[ilcols+j*cols])+
((hfile.image[i%cols+j*cols] -
hfile.image[(i+1)/cols+(j+1)*cols])*
(hfile.image[i/cols+j*cols] -
hfile.image[(i+1)%cols+(j+1)*cols]));
diag2=(hfile.image[(i+1)%cols+(j-1)*cols] -

hfile.
(hfile.
hfile.
.image[i%cols+j*cols] -
hfile.
(hfile.
hfile.

(hfile

image[i%cols+j*cols]) *
image[(i+1)cols+(j-1)*cols] -
image[i%cols+j*cols])+

image[(i-1)%cols+(j+1)*cols]) *
image[ificols+j*cols] -
image[(i-1)%cols+(j+1)*cols]);

horiz=(hfile.image[ilcols+j*cols] -

hfile.
(hfile.
.image[(i+1)%cols+j*cols])+
(hfile.
hfile.
(hfile.
hfile.

hfile

image[(i+1)%cols+j*cols]) *
image[i’cols+j*cols] -

image[(i-1)%cols+j*cols] -
image[i/cols+j*cols]) *
image[(i-1)%cols+j*cols] -
image[ifcols+j*cols]);

if (vert<horiz) ril= vert; else ri=horiz;
if (diagi<diag2) r2 = diagl; else r2=diag2;

if (ri1<r2)

dataout[i/cols+j*cols]=r1;

else

dataout[i/cols+j*cols]=r2;

if (dataout[i’icols+j*cols]>low)
error_msg(rtn_name,"Dataout out of range.");

67

}
for (j=0; j<numpels; j++)
{
if (dataout[jl>high) high = dataout(j];
if (dataout[j]<low) low = dataout[j];
}
range=high-low;
for (j=0; j<numpels; j++)
{
hfile_out.image[j]=(unsigned) ((dataout[j]-low)*255/range);
}

init_header(hfile_out.hd,hfile.hd->orig_name,hfile.hd->seq_name,
hfile.hd->num_frame,hfile.hd->orig_date,hfile.hd->rows,
hfile.hd->cols,hfile.hd->bits_per_pixel,
hfile.hd->bit_packing,hfile.hd->pixel_format,
hfile.hd->seq_history,hfile.hd->seq_desc);

free(dataout);

return hfile_out;

struct hips_file localmax(struct hips_file hfile)
{ /* return 8-connected local max of hips file */

struct hips_file hfile_out;

int i,j;

char* rtn_name="localmax";

int cols=hfile.hd->cols;

int rows=hfile.hd->rows;

int numpels=rows*cols;

int a,b,c,d,e,f,g,h,k;

if (!(hfile_out.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((hfile_out.image=
(unsigned char *)calloc(rows*cols,1))
<=(unsigned char *)0)
error_msg(rtn_name,"Can’t allocate output array");

for (j=0; j<rows; j++)
for (i=0; i<cols; i++)
hfile_out.image[i+j*cols]=hfile.image[i+j*cols];

for (j=0; j<rows; j++)
for (i=1; i<cols+1l; i++) /*cols +1 for horizontal wrap */
{
a=b=c=d=e=f=g=h=k=0;
if (j>0 && j<rows-1)
{
=hfile_out.image[(i-1)%cols+(j-1)*cols];

68

}

else

b=hfile_out.
c=hfile_out.
d=hfile_out.
e=hfile_out.
f=hfile_out.
.image[(i-1)%cols+(j+1)*cols];
h=hfile_out.
k=hfile_out.

g=hfile_out

if (j==0)

{

1

else

d=hfile_out.
.image[i/cols+j*cols];
f=hfile_out.
.image[(i-1)%cols+(j+1)*cols];
h=hfile_out.
k=hfile_out.

e=hfile_out

g=hfile_out

if (j==rows-1)

{

}

if (e>a &% e>b &% e>c && e>d && o>f && e>g &&

a=hfile_out.
b=hfile_out.
c=hfile_out.
d=hfile_out.
e=hfile_out.
f=hfile_out.

image[ilcols+(j-1)*cols];
image[(i+1)Y%cols+(j-1)*cols];
image[(i-1)/cols+j*cols];
image[ilcols+j*cols];
image[(i+1)%cols+j*cols];

image[i%cols+(j+1)*cols];
image[(i+1)%cols+(j+1)*cols];

image[(i-1)cols+j*cols];
image[(i+1)%cols+j*cols];

image[illcols+(j+1)*cols];
image[(i+1)%cols+(j+1)*cols];

imaga[(i-1)%cols+(j-1)*cols];
image[ilcols+(j-1)*cols];
image[(i+1)Y%cols+(j-1)*cols];
image[(i-1)%cols+j*cols];
image[i%cols+j*cols];
image[(i+1)%cols+j*cols];

e>h && ed>k)

hfile_out.image[ilcols+j*cols]=e;
else
hfile_out.image[i%cols+j*cols]=0;

init_header(hfile_out.hd,hfile.hd->orig_name,hfile.hd->seq_name,
hfile.hd->num_frame,hfile.hd->orig_date,hfile.hd->rows,
hfile.hd->cols,hfile.hd->bits_per_pixel,
hfile.hd->bit_packing,hfile.hd->pixel_format,
hfile.hd->seq_history,hfile.hd->seq_desc);

return hfile_out;

double matchi(struct hips_file Data, struct hips_file Model,int scale,
struct hips_file match_mask,struct hips_file int_mask,
char* ftype)

69

{ /* match Data against Mask by totalling the abs of subtracting */
/* one image from the other (only pixels under model are matched)*/
/* returns sum of 1-abs((m(ij)-d(ij))/255) */

/* divided by number of pixels matched */

/* match 5 rows of data against middle 5 rows of model */
struct hips_file hfile_out;
int numpels=0;
int rows=Data.hd->rows, cols=Data.hd->cols;
char* rtn_name='"matchl";
int 1,j,k;
double dataout;
double result=0.;
int threshold=0;
unsigned char row([2][32];
struct hips_file adjusted,IJ;
char tmp[6],fname[30]="adjusted";
struct point p;

/* adjust image resolution */
adjusted=create_hips(cols,rows);
for(j=0;j<rows;j++)
for(i=0;i<cols;i++)
adjusted.image(i+j*cols]=Data.image[i+j*cols];

if (scale)
{
for (i=0;i<cols;i++)
{
adjusted.image[i+cols]*=.75;
adjusted.image[i+cols]+=.25*adjusted.image[i];
adjusted.image[i]=adjusted.image[i+cols];
)
}
if (scale==2)
{
for (i=cols;i<2*cols;i++)
{
adjusted.image[i+cols]*=.75;
adjusted.image[i+cols]+=.25%adjusted.image[i];
adjusted.image[i]=adjusted.image[i+cols];
adjusted.image[i-cols]=adjusted. image[i+cols];
}
}
strcat(fname,ftype);
itoa(scale,tmp);

strcat(fname,tmp);
write_file(adjusted,fname);
strcat(fname,".ij");
p.-x=128;p.y=128;
IJ=rt2ij(p,adjusted,256,256,128,7);
write_file(IJ,fname);

unalloc(1J);

70

if (Data.hd->rows != Model.hd->rows || Data.hd->cols!=Model.hd->cols)
error_msg(rtn_name,'"Match on unequal files");

/* scale O matches model against 1st 5§ rows of data */

for (j=scale,k=1;j<rows-(NUMSCALES-scale-1);j++,k++){

for (i=0;i<cols;i++)

/* only match if pixel is under intensity mask */

if (int_mask.image[i+k*cols] > 0)

{
dataout=abs(adjusted.image[i+j*cols]-Model.image[i+k*cols]);
if (dataout>0) dataout/=255.;
result+=(1-dataout)*match_mask.image[i+k*cols]/255.;
/*printf ("%0.2f ",1-dataout) ;*/
numpels++;

} /*else printf(" ")i*/

/* printf("\n");*/
}
printf("%d pixels matched\n",numpels);
if (result) result/=numpels;
printf ("%£f\n",result);
unalloc(adjusted);
return (result);

}

double match2(struct hips_file Data, struct hips_file Model,int scale,
struct hips_file match_mask,struct hips_file int_mask,
char* ftype)

{ /* match Data against Mask by totalling the abs of subtracting */
/* one image from the other (only pixels under model are matched)*/
/* returns sum of 1-abs((m(ij)-d(ij))/255) */

/* divided by number of pixels matched */
/* match function for corners (copies high res corners rather */
/* than averaging them to maintain corner strength in resolution */
/* changing procedure - not good */
/* match 5 rows of data against middle 5 rows of model */

struct hips_file hfile_out;

int numpels=0;

int rows=Data.hd->rows, cols=Data.hd->cols;

char* rtn_name="match2";

int i,j,k;

double dataout;

double result=0.;

int threshold=0;

unsigned char row[2][32];

struct hips_file adjusted,IlJ;

char tmp[6],fname[30]="adjusted";

struct point p;

adjusted=create_hips(cols,rows);
for(j=0;j<rows;j++)
for(i=0;i<cols;i++)
adjusted.image[i+j*cols]=Data.image[i+j*cols];
if (scale)

{
for (i=0;i<cols;i++)
{
adjusted.image[i+cols]=adjusted.image[i];
adjusted.image(i]l=0;
}
¥
if (scale==2)
{
for (i=cols;i<2%cols;i++)
{
adjusted.image[i+cols]= adjusted.image[i];
adjusted.image[i]=0;
}
}
strcat(fname,ftype);
itoa(scale,tmp);
strcat(fname,tmp) ;
write_file(adjusted,fname);
strcat(fname,".ij");
p.-x=128;p.y=128;
I1J=rt2ij(p,adjusted,256,256,128,7);
write_file(IJ,fname);
unalloc(IJ);
if (Data.hd->rows !'= Model.hd->rows || Data.hd->cols!=Model.hd->cols)
error_msg(rtn_name,"Match on unequal files");
/* scale O matches model against 1st 5 rows of data */
for (j=scale,k=1;j<rows-(NUMSCALES-scale-1);j++,k++){
for (i=0;i<cols;i++)
/* only match if pixel is under intensity mask */
if (int_mask.image[i+k*cols] > 0)

{
dataout=abs(adjusted.image[i+j*cols]-Model.image[i+k*cols]);
if (dataout>0) dataout/=255.;
result+=(1-dataout)*match_mask.image[i+k*cols]/255.;
/*printf("%0.2f ",1-dataout);*/
numpels++;

} /*else printf(" ") ix/

/*printf("\n");*/

printf("%d pixels matched\n",numpels);
if (result) result/=numpels;
printf ("} f\n",result);
unalloc(adjusted);

return (result);

int match(struct image_stack models [NUMMODELS],
struct image_stack cv, float score[NUMMODELS] [NUMSCALES],
struct hips_file match_mask)

{ /* match image stack against model stacks */

int i,j,max;

float wfac,maxscore=0.;
char ftype(10];

char tmp(5];

for(i=0;i<NUMMODELS;i++)
for(j=0; j<NUMSCALES; j++)

{

itoa(i,tmp);
score[i] [j]=0;
wfac=0;
if (cv.red.image)
{
score[i] [j]+=
REDWEIGHT*matchl(cv.red,models[i].red,j,
match_mask,models[i] .intensity,"");

wfac+=REDWEIGHT;

}
if (cv.green.image)
{
score[i] [j]l+=
GREENWEIGHT*matchi(cv.green,models[i].green,j,
match_mask,models[i].intensity,"");
wfac+=GREENWEIGHT;
}
if (cv.blue.image)
{
score[i] [j]+=
BLUEWEIGHT*matchl(cv.blue,models[i] .blue,j,
match_mask,models[i] .intensity,"");
wfac+=BLUEWEIGHT;
}
if (cv.intensity.image)
{
strcpy(ftype,tmp);
strcat(ftype,".1.");
printf("intensity \n");
score[i] [j]+=INTENSITYWEIGHT*
matchi(cv.intensity,models[i].intensity,]j,
match_mask,models[i] .intensity,ftype);
wfac+=INTENSITYWEIGHT;
}
if (cv.edge.image)
{
printf("edge \n");
score[i] [j]+=
EDGEWEIGHT*matchi(cv.edge,models[i].edge,j,
match_mask,models[i] .intensity,
" ell) ;
wfac+=EDGEWEIGHT;
}

73

¥

if (cv.corner.image)

{
printf("corner \n");
score(i] [j]+=
CORNERWEIGHT*match2(cv.corner,models[i] .corner,j,
match_mask,models[i].intensity,
"t .CO") ;
wfac+=CORNERWEIGHT;
}
if (cv.blob.image)
{
score[i] [j]1+=
BLOBWEIGHT#*matchi(cv.blob,models[i] .blob,j,
match_mask,models(i] .intensity,"");
wfac+=BLOBWEIGHT;
}
if (cv.label.image)
{
score[i] [j]+=
LABELWEIGHT*matchi(cv.label,models[i] .label,j,
match_mask,models([i].intensity,"");
wfac+=LABELWEIGHT;
}

score[i] [j]/=wfac;
if (score(i] [j]>maxscore)
{
max = i;
maxscore=score[i] [j];
}
printf("model %d scale %d score f ",i+1,j,scorel[i]l[j]);
if (j==0) printf("(object is distant)\n");
if (j==1) printf("(normal)\n");
if (j==2) printf("(object is nearby)\n");

return max;

}

struct hips_file rescalel(struct hips_file hf1,float scale_val)
{ /* rescale hips_file * 1+scale_val */

struct hips_file hfile_out;

int rows=hfl.hd->rows;

int cols=hfl.hd->cols;

char* rtn_name='"rescale";

int 1i,j,dataout;

/* +scale_val -> zoom in scale_val -scale_val -> zoom out */
/* scale_val =+1.0 -> zoom in to double size of image in x and y */

if (V(hfile_out.hd=malloc(sizeof (struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((hfile_out.image=

T4

(unsigned char *)calloc(hfl.hd->rows#*hf1.hd->cols,1))
<=(unsigned char *)0)
error_msg(rtn_name,"Can’t allocate output array");

if (scale_val > 0)
{
for (j=rows-1; j>0; j--)
for (i=0; i<cols; i++)
hfile_out.image[i+j*cols]=(1-scale_val)*hf1l.image[i+j*cols]+
scale_val*hfl.image[i+(j-1)*cols];

for (i=0;i<cols;i++)
hfile_out.image[i]=(1-scale_val)*hfl.image[i];

else
{
scale_val*=-1;
for (j=0; j<rows; j++)
for (i=0; i<cols; i++)

{
if (j==rows-1)
hfile_out.image[i+j*cols]=
(1-scale_val)*hf1l.image[i+j*cols];
else
hfile_out.image[i+j*cols]=
(1-scale_val)*hf1.image[i+j*cols]+
scale_val*hfl.image[i+(j+1)*cols];
}

}

init_header(hfile_out.hd,hf1.hd->orig_name,hfl.hd->seq_name,
hf1.hd->num_frame,hfl.hd->orig_date,hfl.hd->rows,
hf1.hd->cols,hfl1.hd->bits_per_pixel,
hf1.hd->bit_packing,hfl.hd->pixel_format,
hf1.hd->seq_history,hfl.hd->seq_desc);

return hfile_out;

}

struct hips_file rescale2(struct hips_file hf1,float scale_val)
{ /% rescale hips_file * 1+scale_val */
/* keeps top row when zooming out - doesn’t get rid of corners */
/* (horrible kludge)*/
struct hips_file hfile_out;
int rows=hf1l.hd->rows;
int cols=hfl.hd->cols;
char* rtn_name='rescale";
int i,j,dataout;

/* +scale_val -> zoom in scale_val -scale_val -> zoom out */
/* scale_val =+1.0 -> zoom in to double size of image in x and y */

if ('(hfile_out.hd=malloc(sizeof(struct header))))

75

error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((hfile_out.image=
(unsigned char *)calloc(hfl.hd->rows*hfi.hd->cols,1))
<=(unsigned char *)0)
error_msg(rtn_name,"Can’t allocate output array");

if (scale_val > 0)
{
for (j=rows-1; j>0; j--)
for (i=0; i<cols; i++)
hfile_out.image[i+j*cols]=(1-scale_val)*hfl.image[i+j*cols]+
scale_val*hfl.image[i+(j-1)*cols];

for (i=0;i<cols;i++)
hfile_out.image[i]=(1-scale_val)*hf1.image[i];

else
{
scale_valx=-1;
for (j=1; j<rows; j++)
for (i=0; i<cols; i++)

{
if (j==rows-1)
hfile_out.image[i+j*cols]=
(1-scale_val)+*hf1l.image[i+j*cols];
else
hfile_out.image[i+j*cols]=
(1-scale_val)*hfl.image[i+j*cols]+
scale_val*hfl.image[i+(j+1)*cols];
}

for (i=0;i<cols;i++)
hfile_out.image[i]=hf1.image[i]+scale_val*hfi.image[i+cols];

}

init_header(hfile_out.hd,hf1.hd->orig_name,hfl.hd->seq_name,
hfi.hd->num_frame,hfl.hd->orig_date,hfi.hd->rows,
hf1.hd->cols,hf1.hd->bits_per_pixel,
hf1.hd->bit_packing,hf1.hd->pixel_format,
hf1l.hd->seq_history,hf1.hd->seq_desc);

return hfile_out;

}

int max3(float a,float b, float c)
{ /*returns 0,1 or 2 if a,b or c respectively is largest */

int max;
if (a>b)
{
if(a>c)
max=0;
else

76

max=2;
}
else if (b>c)
max=1;
alse
max=2;

return max;

struct image_stack rescaleN(struct image_stack current,float* score,
struct image_stack orig)
/* rescale original view to most probable model/scale */
{
float jump=0.1;
int max,second;
struct image.stack im;
float rescale_val;
max=max3(score[0],score[1],score[2]);

printf("%f Uf if %d\n",score[0] ,score[1],score[2] ,max);
im=init_is();

if (max==1)
{
if (score[0]>scorel2])
{
second=0;
rescale_val=(score[0]-score[2])/(2*(score[1]-score[0]));
}
else
{
second=2;
rescale_val=(score[0]-score[2])/(2*(scorel1]-score[2]));
}
}
if (max==2)
rescale_val=-jump;
if (max==0)

rescale_val=jump;

rescale_val=(1+rescale_val)*current.scale-i;
printf ("Rescale val %f\n",rescale_val);

if (orig.red.image)
im.red=rescalel(orig.red,rescale_val);

if (orig.green.image)
im.green=rescalel(orig.green,rescale_val);

if (orig.blue.image)
im.blue=rescalei(orig.blue,rescale_val);

77

if (orig.intensity.image)
im.intensity=rescalel(orig.intensity,rescale_val);

if (orig.edge.image)
im.edge=rescalel(orig.edge,rescale_val);

if (orig.corner.image)
im.corner=rescalel(orig.corner,rescale_val);

if (orig.blob.image)
im.blob=rescalel(orig.blob,rescale_val);

if (orig.label.image)
im.label=rescalel(orig.label,rescale_val);

im.scale=(1+rescale_val);
return im;

struct hips_file clip(struct hips_file hf,struct point p,int size)
{ /* remove square region from hips centred on point p */

struct hips_file hfile_out;

int rows=size*x2;

int cols=sizex*2;

char* rtn_name='clip";

int i,j,i2,j2;

int left,top;

if ('(hfile_out.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,'"Not again? Ran out of memory'!");

if ((hfile_out.image=
(unsigned char *)calloc(rows*cols,1))
<=(unsigned char *)0)
error_msg(rtn_name,"Can’t allocate output array");

top=p.y-(size);
left=p.x-(size);
for(j=top,j2=0;j<top+cols;j++,j2++)
for(i=left,i2=0;i<left+rows;i++,i2++)
hfile_out.image[i2+j2*cols]=hf.image[i+j*hf.hd->rows];

init_header(hfile_out.hd,hf.hd->orig_name,hf.hd~>seq_name,
hf .hd->num_frame,hf.hd->orig_date,rows,
cols,hf.hd->bits_per_pixel,
hf .hd->bit_packing,hf.hd->pixel_format,
hf .hd->seq_history,hf .hd->seq_desc);

return hfile_out;

struct hips_file reduce(struct hips_file hfile,int scale)
{ /* reduce resolution of hips file by factor of scale */
/* average values under region (scale*scale) */

78

struct hips_file hfile_out;
int dataout;

int i,j,k1,k2;

char* rtn_name='"reduce";
int cols,rowvs;

if (scale>1)
{
rows=hfile.hd->rows/scale;
cols=hfile.hd->cols/scale;
if ('(hfile_out.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((hfile_out.image=
(unsigned char *)calloc(rows#*cols,1))
<=(unsigned char *)0)
error_msg(rtn_name,"Can’t allocate output array");

for (j=0; j+scale-i<hfile.hd->rows; j+=scale)
for (i=0; i+scale-1<hfile.hd->cols; i+=scale)
{
dataout=0;
for(k1=0;ki<scale;ki++)
for(k2=0;k2<scale ;k2++)
dataout+=hfile.image[i+k1+(j+k2)*hfile.hd->cols];

hfile_out.image[i/scale+j/scale*cols]=dataout/(scale*scale);

}

else
{
rows=hfile.hd->rows;
cols=hfile.hd->cols;
if (t(hfile_out.hd=malloc(sizeof(struct header))))
error_msg(rtn_name,"Not again? Ran out of memory!!");

if ((hfile_out.image=
(unsigned char *)calloc(rows*cols,1))
<=(unsigned char *)0)
error_msg(rtn_name,"Can’t allocate output array");
memcpy (hfile_out.image,hfile.image,rows*cols);

)

init_header(hfile_out.hd,hfile.hd->orig_name,hfile.hd->seq_name,
hfile.hd->num_frame,hfile.hd->orig_date,rows,
cols,hfile.hd->bits_per_pixel,
hfile.hd->bit_packing,hfile.hd->pixel_format,
hfile.hd->seq_history,hfile.hd->seq.desc);

return hfile_out;

79

struct cstruct cornerij2(struct hips_file hfile,int NumRings,
int NumSectors)
{ /* perform corner detection on IJ image */
struct cstruct corners;
struct hips_file hfile_rt,hf_mor,hfmor2,hfreduce,hfclip,cl,c2;
int i,j,i1,j1,m[9],a,r,t,horiz,scale,dataout,kl,k2,r1,r2,max;
float percent,total,maxnum;
int rows=hfile.hd->rows;
int cols=hfile.hd->cols;
float *mrvcdat,low=9999999,high=0,range;
char* rtn_name='"cornerij";
struct entryrt* ptr;
struct point p,centre;

centre.x=cols/2;centre.y=rows/2;
hf_mor=moravec(hfile); /* detect corners at highest resl’n */
write_file(hf_mor,"m");
if ((mrvcdat=
(float *)calloc(NumRings*NumSectors,sizeof(float)))
<=(float *)0)
error_msg(rtn_name,"Can’t allocate dataout array");

hfile_rt=create_hips(NumSectors,NumRings);
cl=create_hips(cols,rows);

for (j1=3*(NumRings-1); ji<rows-6+*(NumRings-1); ji++)
for (i1=3*(NumRings-1); ii<cols-6*(NumRings-1); il++)
{
if (hf_mor.image[il+j1*hf_mor.hd->cols]>50 &&
head_ij[j1][i1] !'=(struct entryrt *) -1)
{ /* corner detected at highest resl’'n so determine scale */
if (head_ij[j1][i1])->r <2)
scale=1; /* scale=1 if point in ring O or 1 */

else
scaleshead_ij[j1][i1]->r*3; /* scale = 3*ring number */
p-x=il;p.y=j1;

hfclip=clip(hfile,p,2*scale); /*clip local region around cornerx*/

if (scale>1)
{

hfreduce=reduce(hfclip,scale);/* reduce resl’n */
unalloc(hfclip);
}

else
hfreduce=hfclip;

hfmor2=moravec(hfreduce); /* perform moravec */
unalloc(hfreduce);

/*0 1 2 3

80

4 5 6 7
8 91011
12 13 14 15 =/

if (hfmor2.image[5]>hfmor2.image[6])
ri=hfmor2.image[5];
else
ri=hfmor2.image[6];
if (hfmor2.image[9]>hfmor2.image[10])
r2=hfmor2.image[9];
else
r2=hfmor2.image[10];
if (r2>ri)
dataout=r2;
else
dataout=rl; /* dataout = highest response 0f 5,6,9,10 */
/* which are possible corner locations */
/* original corner detected at centre */
/* between 5,6,9 and 10 */
unalloc(hfmor2);

if (dataout>0) /* write circle to IJ corner image */
{
ci=putcircle(ci,il,j1,scale,dataout);
ptr=head_ij[j1][i1];
do
{ /* not used */
r=ptr->r;
t=ptr->theta;
percent=ptr->percent;
if (percent*dataout>mrvcdat[t+r*NumSectors])
mrvcdat [t+r*NumSectors]=percent*dataout;
ptr=ptr->next;
}
vhile (ptr!=(struct entryrt *) -1);
}
}
}
/* fix inner ring */
max=0;total=0;maxnum=0;
for (j=0;j<NumSectors;j++) /* not used */
{
if (mrvecdat(j]>maxnum)
{
max=j;
maxnum=mrvcdat[j];
}
total+=mrvcdat[j];
mrvedat [j]1=0.;
}

mrvcdat [max]=total;

81

c2=ij2rt(centre,cl,NumRings,NumSectors); /* convert IJ corner image */
write_file(c2,"newc"); /* to RT */
write_file(cl,'"newcij");
for (j=0; j<NumRings*NumSectors; j++)
{/* not used */
if (mrvcdat[jl>high) high = mrvcdat(j];
if (mrvcdat[j]l<low) low = mrvecdat(j];
}
range=high-low;
for (j=0; j<NumRings*NumSectors; j++)
{
if (mrvcdat([j]>0)
hfile_rt.image[jl=(unsigned) ((mrvcdat[j]-low)*255/range);
}
unalloc(cl);
unalloc(hf _mor) ;
free(mrvcdat);
corners.cimagel=c2;
corners.cimage2=hfile_rt; /* not used - old corner image */
return corners;

}

struct hips_file putcircle(struct hips_file hf,int x,int y,int r,int dataout)
{ /* draw circle */
int i,j;
for (j=y-r;j<=y+r;j++)
for(i=x-sqrt(r*r-(j-y)*(j-y));i<=x+sqrt(r*r-(j-y)*(j-y));i++)
hf.image[i+j*hf.hd->cols]=dataout;
return hf;

3

82

