Recognition of Ugaritic Characters

from Clay Tablet Images

Delyth Mair Jones

MSc Information Technology: Knowledge Based Systems
Department of Artificial Intelligence
University of Edinburgh

1995

Abstract

Ugaritic tablets excavated in Syria reveal important facts about Biblical peopls.
Many thousand clay tablets with this form of cuneiform script have been discov-
ered and more are still being unearthed. Reading these tablets is a massive task
and some form of automation is desired. This project is concerned with imple-
menting a character recognition of the Ugarit script. This has been implemented
by developing code from a previous MSc project [Anthoni 94] to obtain input for

a neural network. A background and backdrop elimination process was created.

Acknowledgements

Thanks to my supervisor Bob Fisher for all his help and advice and to Steven
Beard, especially for his assistance with Matlab. I would also like to thank David
Eggert for helping with knotty bits of code, and Maurizio Pilu for providing the

network simulator. Finally, thanks to Iain for his support and encouragement.

Table of Contents

1. Introduction

1.1 AImS . . . o e e e e e e e
1.2 Overviewof workdone
1.3 Overview of what was achieved
1.4 Overviewofthesis.,

2. Background

2.1 History e
2.2 Cuneiform and the Tablets
221 Slides e e
2.2.2 Suitability for classification using an ANN
223 ANNs e
224 Anthoni'swork 00,

3. Preprocessing

3.1 Re-Scanning
3.2 Elimination of Backdrop and Background
3.2.1 Identifying Backdrop

3.2.2 Identifying regions on tablet that don’t contain wedges .

3.23 Experiments: o oo
3.3 Character Segmentation
3.4 Alternative Pre-Processing Techniques

4. Alterations to Anthoni’s Code
4.1 Basic Outline of Anthoni’s Program and Template Matching Tech-

. Correlation Maps

. Data Collection

6.0.1 Data Collection Function

. Neural Networks

7.1 Brief Introduction oo
7.2 Back Propagation
7.3 Radial Basis Functions(RBFs)
7.4 Assessmento
7.5 Implementation 0.
76 Results. e

. Implementation and Results

. Conclusions and Future Work

9.1 Summary of Main Results .

9.2 Limitations and Extensions

......................

......................

i

26

29
29

31
31
33
35
36
36
36

38

List of Figures

The Aﬁphabet of the Ugarits. Taken from Thomas Anthoni’s dissertation. 4

A Cuneiform Tablet: Image ul69 copyright NNWyatt 5
Identifying 2 types of background 11
Identifying the backdrop (black region) 12
Comparison of projection contour for handwritten characters to

those of the cuneiformtext, 16
Plot of standard deviation of intensity of pixels along columns . .. 17
Results of applying variousmasks 17
The nine templatesusedo 20
The nine subtemplatesused 21
Correlation values above a 0.4 threshold across the small image . . 26
|
The sigmoid function 33
Overlay of the wedge locations marked on image ul69 39
Overlay of the wedge locations marked on image u658 40
Results of the shrinking routine applied tomodel3 44

v

Chapter 1

Introduction

1.1 Aims

The aim of this project was to extend work done by Anthoni [Anthoni 94] on the
recognition of Ugaritic script on images of cuneiform writing on clay tablets. Last
year, a template matching scheme was used to find the locations and types of
wedges. It was the aim of this project to improve on the matching by reducing the
false matches in the background and then implement a character recognition task

with the use of an artificial network, having adapted Anthoni’s results suitably.

1.2 Overview of work done

program to identify background

investigation of other useful preprocessing techniques

adapting code - to cope with the full images, produce the correlation maps,

and to run efficiently

feasibility study, implementing a rather limited neural network.

1.3 Overview of what was achieved

Improved the background identification and accomplished promising character

recognition by a trained neural network.

1.4 Overview of thesis

The remainder of the thesis is organised as follows:

e Chapter 2 Describes motivation for wanting to read ancient Ugaritic scripts.
Background information about the Ugaritic language and the characters.
A brief outline of the work done by Anthoni. Overview of the work accom-
plished by other people using artificial neural networks and possible relevance

to the current study.
o Chapter 3 Background Identification and other pre-processing performed.

e Chapter 4 Description of the programs used and the many changes necessary

to Anthoni’s code.

e Chapter 5 Study of the output from last year - principally the information

held in the correlation maps for the templates.
o Chapter 6 How the data was collected.
o Chapter 7 Assessing which type of net to use.

o Chapter 8 Implementation of the recognition task using the neural network

simulator.

e Chapter 9 Results, Conclusions and further extensions.

Chapter 2

Background

2.1 History

In 1929, cuneiform tablets in an unknown script were discovered in northern Syria
at a rich archaeological site known as Ras Shamra. Many artifacts have been
unearthed here but are of secondary importance due to the literacy of the civil-
isation.One can find out a lot more about a people by reading what they wrote
than by raking through their garbage. Thousands of tablets have been discovered
at this site and many are still unread. The Ugarit language was deciphered fully
just a few years after the first find and translated tablets contain poetic literature
(myths and epics), school texts and administrative literature. Some of the texts
are represented in four languages - Sumerian, Akkadian, and Hurrian as well as
Ugaritic; indicating a highly sophisticated community. The Ugaritic culture had
a great influence on the biblical tradition; most famously when Moses brings the
Ten Commandments down from the mountain to find the Israelites worshipping
a golden calf. This calf is the son of the Ugaritic god Baal, and the story illus-
trates the struggle between monotheism and the older polytheistic culture. The
Canaanite sacred culture included transvestism and ritual bestiality, and it seems
that the Biblical prescriptions against these practices are a counter-reaction to
the Ugaritic religion. These kinds of details are very useful to scholars trying to
flesh out the histories of the biblical peoples. In another vein, the structure of
the language itself is of great interest to linguists.Ugarit appears to be the oldest
written language to have an alphabet - which has come down to us through the

Phoenicians, Greeks, and Romans.

LIGYIEETPWHEHTRY
EARELJELES I IL

) I

=

Figure 2-1: The Alphabet of the Ugarits. Taken from Thomas Anthoni’s

dissertation.

2.2 Cuneiform and the Tablets

Figure 2-2: A Cuneiform Tablet: Image ul69 copyright N.Wyatt

Translating the tablets is a laborious task. Cuneiform characters are wedges
formed using a stylus on soft clay and character size varies from 1mm to more
than lcm. This variation in size can be seen in Figure 2-2. The tablet size also
varies, from just 3cm by 4cm up to 0.7m by 1.2m. Many tablets are not flat but
have curved surfaces and the text is often written on them in several columns
separated by two vertical lines. Words are often, but not always, separated by

small vertical wedges.

Cuneiform (from Latin meaning ‘wedge-shaped’) is composed of a series of
short, straight, wedge-shaped strokes gouged into soft clay using a stylus resem-
bling a rather small flat headed screw-driver. The earliest texts found reveal that
symbols were intially written from top to bottom; later, they turned onto their
sides and were written from left to right. Five basic orientations are applied:

one horizontal, two diagonals, a hook and a vertical stroke.

T (A Y

horizontal down-diagonal up-diagonal
(rare)

The up-diagonal stroke seems to have been used very rarely, and isn’t considered
further here. These components occur in two different sizes - a small hook often
being indistinguishable from a short diagonal. This is quite significant to the
present project. The diagonal strokes are never used as individual characters, but
the other types are - as can be seen in Figure 2-1. The tablets are in variable
condition - due to lying about since the fourteenth century BCE and surviving

fires as well as the climate.

Restricted access to these tablets is another reason for the slow translation.
This is partly due to poor communications with the Syrian authorities. But pho-
tographs are being taken of many tablets so translation is commonly done through

studying slides.

This led to the idea of automating some of the transliteration (locating alpha-
betical characters on the tablets). Anthoni [Anthoni 94] started work on the first
stage of the project. He was interested in automating the process of identifying

the wedge strokes on the tablets.

2.2.1 Slides

The slides were made available to us through the kindness of Dr. Nick Wyatt from
the New College in Edinburgh who holds the copyright. Sadly, the slides taken are

of variable quality, as are the tablets, due to the lack of regulation in conditions.
An attempt has been made to illuminate the slides from the upper left corner as
this is the standard lighting with which to identify wedges by eye. Hundreds of
slides are available - the later ones are of better quality due to controlling the

lighting and using a large lens (50mm) so most of the tablet is in good focus.

2.2.2 Suitability for classification using an ANN

If all wedge strokes could be identified automatically then recognising the different
characters is feasible with the use of a trained Artificial Neural Network. Due
to variations in the script, classical classification techniques are unlikely to be
successful (see section 3.3). The Ugaritic language is a suitable candidate for this
method of classification: there are only six wedge types to identify. The alphabet
size is 30 characters - which is quite sensible in terms of how many outputs the net
could have. The characters are quite distinct from one another - though they suffer
slight variations due to different scribes, as for any handwritten script. Further
classification into words might be possible due to the small vocabulary in use (a few
thousand words) and with information about frequency of characters and words
as biases. So complete automation from tablet image to literal translation might
be possible. Much effort has been put into automated character recognition, but
no other attempt has been made at trying to automate the reading of cuneiform

script.

2.2.3 ANNs

NETtalk [Rosenfeld & Sejnowski 88] is an example of a successful neural net ap-
plication. Its task was to learn to pronounce English words, i.e. how to map input
text to phonemes. The net was presented with seven characters at a time - a cen-
tral character and three on either side for context. The training data was gathered
by scanning this window over text and using an English/phoneme dictionary to
present the correct phoneme. The Nettalk network consists of 203 input units, 120
hidden units and 26 output units. All layers are fully connected without shortcut

connections.

Handwritten postal codes are recognised by neural networks used by the US
mail to reasonable accuracy [Touretsky 89]. Other character recognition tasks
have been implemented on Korean and Japanese characters with reasonable suc-
cess [Fukushima & Miyake 82]. However, the approach used is unfortunately not
applicable to cuneiform script. A more useful approach is found in the work that
has been done using radial basis functions to recognise faces [Howell & Buxton 95];
the dimensionality of the data (images of faces) was reduced to make it suitable
for a network but with the aim of not losing valuable information. This task is
similar in the large quantity of information available about each character and the
need to reduce the number of inputs with as little loss of important information

as possible.

2.2.4 Anthoni’s work

Anthoni’s work resulted in identification of wedge types on his images. This was
done by first identifying the backdrop, then matching wedge type templates using
a standard correlation method. There were three bounds for each template - the
correlation had to be over a certain limit, the standard deviation in the template
window had to be above a certain threshold, and the correlation with a subsection
of the template had to be over a certain value. Further to this, a filtering routine
was implemented with the aim of discerning whether the wedges identified were
feasible with regard to identified near neighbours - unlikely neighbours were over-
thrown by the wedge with the highest correlation value. Some false matches were
still present in the output. These were spurious wedges detected in the tablet
background (any area where no wedge is present) and misclassification of some
wedges. For this project it was decided that the spurious wedge detection could
be improved upon by detecting the tablet background (see Section3.2). The prob-
lems arising from misclassification might be bearable if frequency of characters is
used at a later stage. But this depends on the extent of misclassification, which

can be determined by looking at the correlation maps (see Chapter 4).

The original plan was to take his wedge findings and use them to train a
neural net to classify all characters : character segmentation being carried out
by identifying clusters of wegdes. But this proved overly optimistic. Anthoni’s
program had 81 independent degrees of freedom which had to be manually adjusted

for each different image. It failed the consistency test of being applied to a fresh
scan of the same slide. This was clearly unsatisfactory, so an alternative approach

based on the correlation maps was embarked upon.

Chapter 3

Preprocessing

This chapter describes various pre-processing techniques applied to the images.
The improved backdrop identification and the background identification are pre-

sented. A preliminary study into actual character segmentation is also described.

3.1 Re-Scanning

The slides provided by Dr Nick Wyatt were rescanned in colour - last year, the
scans were in greylevels. This was done in the hope of finding some colour de-
pendencies for wedge locations. The scanner used was a Photoshop scanmaker
plugin with 1005 dots per inch resolution. The colour maps were then studied
using the image processing tool, xv. The idea was to search for prominences of
single colours or lack of them in the background, but this proved fruitless. The
only colour prominences were in the blue waveband and seemed to emphasise soot
(some tablets are considered to have survived fires), or possibly mildew. So this
approach was rejected in favour of the greyscale images, and the convenience of

using the greyscale templates from last year.

10

3.2 Elimination of Backdrop and Background

More careful removal of the background than that performed last year was consid-
ered necessary due to spurious wedges being detected. Two kinds of background

detection are necessary :
e backdrop

e spaces between wedges on the tablet

backdrop

background (in-between wedg

Figure 3—1: Identifying 2 types of background

3.2.1 Identifying Backdrop

Basically, an area is regarded as backdrop if the standard deviation within a win-
dow is lower than a certain threshold; it works due to lack of surface texture. The

formula to calculate the standard deviation is :

> /Ei(dc—J)Z
D

d; is the intensity of the 7, grey-level pixel,

where

d is the mean of the intensities within a pixel window

and D is the size of the window in pixels

1l

The backdrop is detected in two stages:
1. This is the initial pass through the image with a 12x12 window to identify
possible backdrop regions. If the standard deviation is below the threshold then
the upper left pixel is marked as possible backdrop. This was tested by varying
the window size and the standard deviation threshold. The problem with using
this stage alone is that it identifies backdrop areas within the tablet. This could
be escaped by tweaking the threshold but then it would need to be different for

each image.

2. This stage looks for areas that are not in the main backdrop but have been
marked as possible backdrop. This is done in two passes. The first is from the top
left pixel to the bottom right: if a pixel is marked as possible backdrop then the
program checks to see if it is to the right or below a pixel previously checked to be
backdrop. Clearly, it is necessary to mark the first row and first column pixels as
backdrop for this algorithm to work, but this is fine because the tablets are always
centred in the frame. The second pass is from the lower right corner to the upper
left corner. If a pixel is marked as possible backdrop then it is checked that it is

to the left or above a pixel already marked as backdrop.

Figure 3—2: Identifying the backdrop (black region)

12

3.2.2 Identifying regions on tablet that don’t contain wedges

The surfaces of the tablets can be very messy (due to watermarks and other
staining), resulting in very noisy greyscale images. Such noise can give rise to
spurious matches. This problem is solved by identifying those areas of the image
which don’t contain any wedges and marking them as background, effectively
removing them from the image. The method is essentially the same as that used

in 3.2.1, but with a smaller window size (9x9 pixels). See. pages 48-20.

3.2.3 Experiments:

The threshold was varied to see how this affected the identification of background
areas: the results were acceptable over a satisfactory large range of threshold val-
ues - within 10% of the thresholds finally chosen. Some images have blotches on
the images in the backdrop background - it looks like one slide has been defaced
somewhat. The regions within the wedges tend to be flat and smooth: this is a fea-
ture of the way the stylus was pressed into the clay. The background-identification
algorithm (Section 3.2.2) will often mark these regions as background. There is a
simple way to deal with this, though: any regions of background below a certain
size which are entirely enclosed by foreground are re-marked as solely being fore-
ground. It turns out that the location of the edges of the foreground regions is
relatively insensitive to the choice of threshold: a poorly chosen threshold mainly
just introduces more of the small enclosed background regions discussed above.
Since these regions are then dealt with, it is not necessary to fine-tune the thresh-

old for each individual tablet.

3.3 Character Segmentation

Being able to partition the lines or words into individual characters would cut
down the number of errors introduced into the system vastly. The lack of atten-
tion paid to character segmentation in automatic reading of machine and hand-
printed text leads to it being one of the major contributors to errors in the results

[Casey & Nagy 82].

13

There are three stages when the data is in binary form:

e distinction: to recognize multiple from single characters

e segmentation: to identify the ‘breaking place’

e re-classification: to decide if the new partitioned patterns are acceptable

A common and reasonably successful step towards identifying positions of ma-
chine typeset is to create profiles of characters from a smoothed vertical projection

by summing vertical bins of pixels. See Figure 3-3 .

Clearly, something a bit different is needed in this case due to having grey-level
images. The standard deviation seems to contain a lot of information. Preliminary
studies in Matlab (see Figure 3-4) reveal that measuring the standard deviation
over a certain number of rows might reveal character locations. This can be seen in
Figure 3-4. Notice how the peaks of the standard deviation have similar values for
all characters whilst the simple contour plot peaks vary considerably. However,
even the basic background removal reveals some character outlines. But some
merge into one another. One can try to improve on this by first eroding the image
to remove parts that are linking two separate characters or words together, and
then dilating to make up for the erosion. This method doesn’t seem to work very
well but may be better than fixing thresholds or some other technique such as
identifying large variations in deviations along the column of a few rows of the

images. [Lu 95]

3.4 Alternative Pre-Processing Techniques

Masking techniques are often used to reduce the noise in an image. Anthoni’s
project did not consider this approach but merely attempted to binarise the images

with two thresholds. This was unsuccessful.

A few masks were applied to the unprocessed image. These aim to remove

both additive noise (the Gaussian mask) and impulse or ’salt and pepper’ noise.

14

o Median-mask

- meant to eliminate pixel values which are unrepresentative of their sur-

roundings.

e 3x3 Gaussian mask

- an attempt at removing random-speckles

e Conservative smoothing

- designed to remove isolated pixels of exceptionally low or high pixel inten-

sity.

e Edge-mask
- an attempt to smooth noise without losing the wedges. The wedges have

a high contrast over them.

As can be seen from Figure 3-5, conservative smoothing loses the least detail of the
wedge itself. As it was intended to use the templates from last year this smoothing

option was considered to be the best smoothing to implement.

15

. Or)tULLV |

250 1 1 1 " L
100 200 300 400 500 600

plat of conlour against position

1001+ b
i /\\'\\ MM\L -
200 300

n 1 - e
400 500 600

inveriad image

20 40 60 100 120 140 160 180 200

plot of contour against position
7000 T T T T T T T T T T
6000 B
5000 -
4000 - 4
3000 ! L o + L

' 1 ' 1 1
0 20 40 60 80 100 120 140 160 180 200

Figure 3-3: Comparison of projection contour for handwritten characters to

those of the cuneiform text

16

contour plot (as for previous figure)
7000 T T T T

6000} 1

4000 1

1 '
0 50 100 150 200 250

standard deviation of intensity along comuns

T T T T T T T T

I :

20 40 60 80 100 120 140 160 180 200

10 L L L s 1 2)
0

Figure 3—4: Plot of standard deviation of intensity of pixels along columns

original image median mask gaussian mask

conservative edge mask
smoothing

Figure 3—5: Results of applying various masks

17

Chapter 4

Alterations to Anthoni’s Code

The purpose of this chapter is to describe the performance of Anthoni’s code and
the changes necessary due to flaws. The structure of the final program is then
described - the output of which was decided upon after studying the correlation
maps in detail (see Chapter 4).

4.1 Basic Outline of Anthoni’s Program and

Template Matching Technique

The program performs template matching of wedges using a standard correlation
method with the added extras of subtemplate matching, a standard deviation
match and a special filtering routine that is only applicable to the Ugaritic char-
acters. Anthoni’s nine templates were created by adapting samples of wedges by

hand (using an editor).

First, samples were selected from the images and then noise was identified by
eye and removed. It was suggested last year that nine template models would be

insufficient for a large system that would need to identify scripts by many different

hands.

The templates seem to be good enough for the few images that we have: al-
though not all wedges are identified, the number of wedges missed is not signifi-
cantly high. However, these templates are clearly too crude to deal with a more

general case involving many more images.

19

The size of any particular wedge varies over a tablet, so Anthoni introduced
a shrinking routine which shrinks the templates down to present two extra tem-
plates for matching (one 70%, the other 50% of the original). The model base is 9
templates and corresponding subtemplates. These are expanded to 27 templates
and subtemplates by performing shrinkings on the original templates and subtem-
plates (see Chapter8). The whole image is then correlated with the templates

using the correlation coefficient, p :

ODM
oD OM

p= —1<p<+1

op,m is the covariance of the data (index D) and model pixels (index M). op

and o)y are the standard deviations of data and model pixels, respectively.

7o = s 3 (=) - (i —)

1

where d; and m; are the data and model pixel intensity values, respectively.

The mean of the model and data pixel values 7 and d are:

2 d;
D

SV
i

o Ximy
="M

The standard deviations are :

N T T
M D

In the above, M is the number of model pixels and D is the number of data pixels

considered. The templates are passed over the images pixel by pixel and the
correlation value for any one match is stored in a 2D output array at the position
of the upper left hand corner of the template sized window. Some areas of the
templates are just background (obviously the wedges aren’t rectangular but the
templates are) but these are not considered by the correlation matching. This is
due to the fact that the actual background surrounding the wedges is always very
noisy and could not be modelled. Any point in the output array with a correlation

of over 0.4 is put on a structured list of possible wedge matches with the number

20

model6

model5

Figure 4-1: The nine templates used

of the template matched available also. A similar subtemplate correlation match
is then performed on any promising areas. The subtemplate is just a part of the
template that is unique to that template (see Figure 4-1 and 4-2). This cuts down
the list of good matches. Then, any areas on the list must pass three bounds
specific to each of the 27 templates. A filtering routine is then implemented
that is specific to the likelihood of overlapping wedges of certain types in the
Ugaritic character set. Distances of allowed overlaps were found empirically from
the images. Finally, the list of suitable matches is overlayed on top of the original
image with the type of wedge identified by different shapes e.g.+4 for a horizontal

wedge.

There is also a background identification algorithm whereby any regions found

21

submodel5

submodel9

Figure 4—2: The nine subtemplates used

to have a standard deviation below a certain threshold are identified as background
and put on a list. This list then has to be checked before any template matching
is performed to see if that region is considered to be background. This is quite
time-consuming and won'’t be considered further as it only identifies regions that
are backdrop and isn’t entirely successful at that. But the basic idea was re-

implemented this year (see Chapter 3).

4.2 Adaptions to Anthoni’s Code

As mentioned previously, it was hoped that the results from Anthoni’s work could
be used with minimal modifications for input to a neural net. It was intended that
the output of wedge locations and identification of wedge type could be classed as

characters by choosing clusters of outputs within some neighbourhood. It had been

22

suggested that a suitable approach to this would be to threshold the correlation
maps then scale down the data before presenting it to a net. To do this the code
had to be modified to produce arrays of the actual correlation values as output,

rather than the overlay of wedge locations.

It was stated by Anthoni (page 64) that the images were too large to be pro-
cessed with the memory available in the computer. Further, they were all shrunk
down (no statement of to what extent) in order to avoid this happening. So this
had to be kept in mind as the images had been re-scanned this year (the images
from last year could not be found). The code was designed to run on Sun4s so this
was adhered to. But when alterations were made and the code re-compiled it was
realised that the code would only run with the optimisation option -O2 switched

on. This was probably indicating some stack corruption (according to Eggert).

Also, the ‘problem that the computer memory (was) insufficient’ was found
to be due to the complete lack of memory allocated for any arrays. Every array
had to be kept on the stack and this led to insufficient memory for any image of

reasonable size.

The corruption was identified by stepping through with the debugger mxgdb.
All the templates were being declared as being 100x100 arrays but then were
statically declared as various sizes - maximum dimension of 40rows by 42 columns.
This then led to sigbus errors without the optimisation as the code was losing track
of where it was in an array due to thinking there was a 100x100 array present when

there wasn’t.

It ran when the optimisation was switched on because the local stack had a
27x3 array of bounds on it and this was somehow interfering (when the array was
not declared then the code didn’t run). This bug was rectified by changing the
templates to all be 40x42 arrays and statically declared as such. All template
array elements corresponding to irrelevant background were assigned the value -1.
These are then ignored by the main code, which does not attempt any correlation

matching with these parts of the templates.

The program was meant to be able to deal with images that would have the
rows of writing not running horizontally or taken at different distances from the

tablets by using shrinking and rotating functions taken from HIPS routines. But

23

it was eventually realised that the algorithms for these routines are flawed. The
conditions for entering these routines is that the image be larger than 70x100pixels
in size. When they are entered they are exited if the first few matches attempted
at the centre of the image have correlations of above 0.4. This condition almost
always holds. When it doesn’t, the code just keeps running as there is no escape

clause for when the templates don’t match.

In short, the generalisability to different images claimed is not in fact present.
The shrinking of the images to approximately the right size for the templates has

to be done before entering the program.

The 81 bounds mentioned in Chapter 3 are 3 thresholds for each of the 27
templates derived. If a measurement can’t pass all these bounds then the match

is rejected as insufficient.

No indication is given of how these were obtained, nor are any confidence
intervals stated. These magic numbers do not work for any of the re-scanned
images. Only one image was available from last year - so no test can be carried
out to determine whether the bounds given worked for all the images used then,

or if they had to be re-set for each image.

Obviously this is not general enough for a commercial system. 81 degrees of

freedom are far too many.
The three thresholds applied are:

e correlation coefficient of data to template

- the value of a correlation match with a template,

e standard deviation

- the standard deviation within that window size

e correlation coefficient of data to subtemplate
- the level of correlation match with a small portion of the template that is

specific only to that template.

Clearly the first threshold rules out anything that doesn’t match to being a
wedge. The second rules out some matches in the background, and the third is an

attempt to match the right type of wedge with a template.

24

There is no intuitive way to set these bounds and it was decided that some other
goodness-of-match criterion was needed. This would need to be more robust. It
was decided to look at maps of the correlation values across the image (see Chapter

5)

4.3 Structure of the Code

The correlation maps were checked to see if templates representing the same wedge
gave peaks in similar places. The framework was then altered so that it only
handled one wedge type at a time. This change was made so that the program
would use less memory space and run more quickly. The code takes a very long
time to run. This is mainly due to the fact that, when memory is allocated, a
full image requires about 1.8 Mbytes and twenty-seven arrays of the same size are
allocated into memory. With nohup set and in the background, the program takes
about three days to run on a Sun5 (depending on its other processes, of course).
The remedy was to look at correlation matches for only one of the six types at
a time. This drastically reduced the running time - the modified program takes

about an hour and a half to complete.

Implementing the above changes entailed re-structuring the code significantly.
A static structure was created to associate the template numbers with the correct
wedge types. Identification of location of wedges is performed for each of the
six wedge types in turn. The program performs the matching for the templates
specified for each wedge. Values that aren’t local maxima within a 5x5 array are
rejected. The next step is to scale down the values of the different wedge matches
by finding the maxima matches for each wedge-type over the whole image and
scaling downto be in the same range as each other. Having done this, the best
match within an 11x11 window is selected . A separate program identifies regions
of backdrop and background and outputs a binary image indicating the possible
wedge locations. The main program refers to this file and only tries to match a

template to a region that is marked as a possible wedge location.

25

Chapter 5

Correlation Maps

In this chapter, the correlation maps are studied to find the most suitable form of
input for a neural network.

These were studied to see if there was enough information about wedges types and
locations in them without the filtering routines used by Anthoni. Filtering mainly
reduces matches in the background, but there are alternative ways to achieve this
(see Chapter 3). Correlations for some wedge types seemed to be quite similar
and the maxima were found in the same places so it was decided to just compare
these and take the maximum. This produces six correlation maps (one for each
distinct wedge type). These were combined by thresholding at 0.4 (the value used
by Anthoni as his initial threshold) and just taking the maximum at any point.
This processing has been carried out on a small section of tablet ul69 and the

results are shown in the figures.

The results obtained were quite satisfactory. In some cases, wedges can give
spurious fits. For example, a horizontal wedge can sometimes produce a high
correlation with a hook template - though not quite as high as the match to a
horizontal template. This is because of the way the stylus is pushed into the clay,
making roughly triangular ridges at the edges of some wedges. This phenomenon
was investigated to see if there was any close match between wedge types and

these “ghost” fits, but the effect turned out not to be very strong.

This processing was done in Matlab. Functions were written to load in the

correlation maps and calculate the local maxima within 5x5 and 7x7 window

25

with model1 with model2 with model3

20 20
40 40
60 60
20 40 20 40
with modal5 with modei6
¥
20 20
40| % 40
£ 3 s
60 60
20 40 20 40
with model7 with model8 with model9
#
20 20 _
40 40 i
60 60
20 40 20 40

test image

Figure 6-1: Correlation values above a 0.4 threshold across the small image

sizes. Also, it was necessary to shift the values along by a few pixels. This was
due to the correlation values being initially written to the upper left-hand corners
of the regions being matched with the templates - but this corner is not actually a
part of the wedge. Anthoni chose to mark wedge locations at the highest point of
the wedge so he shifted all these values along by an appropriate number of pixels
before implementing his filtering technique. This shifting was later altered so that
the location would be marked at the centr of the wedge.

These correlation maps contained excessive information which would have
greatly slowed down training. The amount of information presented to the net
was reduced by using local maxima maps instead. These are maps which only
show locations of the local maxima of the goodness-of-match criterion for a given
wedge. With this reduced data set, training could be completed in a reasonable
time (a few hundred cycles).

26

The final input to the net consists of two arrays - one containing the location
and wedge type of the best match within an 11x11 window, the other containing

the actual correlation values at these local maxima.

It can be seen that the correlation values over an image span different ranges
for each wedge type. These were scaled such that the global maximum was equal to
2, in order to prevent a single wedge type dominating disproportionately. (It can
be inferred from last year’s data that this problem was recognised then, but was

dealt with by having different bounds for each character. This led to generalisation

problems.)
with modalt with model2 with model3
20
40
60
20 40
with model4 with model5 with modelé
20
40
60
20 40
with model8 with model9
20
40
60
20 40 20 40 20 40

Figure 6-2: Correlation values over image: local maxima within a 5x5 window

27

combination surface piot of maximum correlation to all models

Figure 6-3: Heights correspond to different models with modell being the lowest

28

Chapter 6

Data Collection

As discussed in chapters 5 and 6, the code from last year was changed significantly.

The new outputs are:
e types map
e values map
e all six local-maxima maps

The test and training data was collected from these files. This was done inside
the ‘Matlab’ package using functions which were written for the task. As collecting
the values for all characters is a slow process, it was desirable to automate the
procedure as much as possible. This involved writing two programs: one to load

in the data files and the other to process the data.

6.0.1 Data Collection Function

1. Picking out characters From the full tablet image, pick four points to
roughly frame the character.

2. Framing characters The image zooms in on the area identified in step 1.
Click on four positions to frame the character carefully.

The image is written to a pgm file for future reference. The data is scaled down
to a 10x10 array. This has to be done so the inputs to the net are all the same

size. All the scaled data is written to files with filenames identifying the particular

29

character. So many files are generated containing the scaled data for all the
characters. The next step was to decide on the training data: two-thirds of the
data was used for training but only for the character types that had a reasonable
representation. This is rather limited due to the sparseness of the data set, so only
a few characters are represented. The program corrupt.c is used to organise the
data into a suitable format for input, with one vector representing all values and
a long binary string identifying the character type. This program also generates
some corrupted data, as the real data is insufficient for adequate training. For
simplicity, a very simple-minded algorithm is employed. Eight corrupted data sets
are manufactured by shifting the wedge by one pixel in each of the eight directions

(up, down, left, right and diagonals).

The corrupted files are then joined together (UNIX cat) in an arbitrary order
to form a single long input file with which to train the net. SNNS has a useful
feature which allows the order of the patterns in the input file to be shifted easily.

30

Chapter 7

Neural Networks

Artificial neural networks have been applied successfully to many classification
tasks. However, no work seems to have been carried out in the field of cuneiform
text. But work done in other fields might throw some light on the path to be
followed. Here, two possible networks are discussed and assessed for suitability as

the classifier for this task.

7.1 Brief Introduction

When one has some example input-output pairs for some data set, how does one
go about estimating a function to represent the likely output from the input? This
is a common problem in many fields. Let the output y be a function of the inputs
X:

y = f(z)

If we have no a priori knowledge of the form of the function, neural nets can be

used to learn what the function is by training on example data.

The idea of using artificial neural networks originates from a paper written in
1943 ([McCulloch & Pits 43] re-printed in [Anderson & Rosenfeld 88]) introduc-
ing a perceptron unit as a crude model of a neuron in an attempt to describe

nervous activity.

31

The figure below is that of a simple perceptron

ke

bl
M

¥ e o 000 0o

The unit has n inputs z; ...z,. Each input, z; is modified by multiplying with its
corresponding weight w;
The inputs are fed into thresholding element that computes the weighted sum of
its inputs. response, y,

n

y = h(})_ wiz; — threshold)

=1

The threshold is usually replaced by an extra weight, wg, and it is suppose that

there is an extra input of zo =1

All the values for the weights have to be learnt from sample data. Need some
method is required to get the response of the net to be as close as possible to the
output associated with a set of inputs, the desired output.

Windroff-Hoff Update is the most commonly used form of weight update for feed-
forward networks. This nudges the weights a little for each input/output pattern
in turn, rather than nudging the weights for one input/output pair until the desired

output is reached and then going on to the next pair. The basic algorithm is:

e initialise the weights randomly

introduce a pattern

calculate the response

adjust the weights according to:

wi(new) = w;(old) + nzi(d — y)

where

n is a some small constant, usually known as the learning rate

32

d is the desired output for the particular pattern,
z; is the :** input,
w; is the 7*h weight,

and y is the actual output.
e then move on to the next pattern.

Stop the process when all the patterns have been learned. The Perceptron Con-
vergence Theorem states that the learning algorithm must terminate and find a

suitable weight vector, if there is a suitable weight vector to be found at all.

This net has only a single output. If more than one output is required then
superpose the required number of nets ; all with the same set of inputs but each
with its own output. One layer perceptrons aren’t all that useful - what they
can learn is limited to very simple functions. However, multiple layer perceptrons
can learn any linearly separable function . The multi-layer perceptron is the most
widely known type of neural network for supervised learning. They have feed-
forward connections with adaptable weights; hence the term “feed-forward net-
works”. These have been used widely since the discovery of the back-propagation

training algorithm in the mid 1980’s.

7.2 Back Propagation

Finding the right set of weights for a feed-forward network is difficult; the output is
not a well-behaved differentiable function of the weights, so small weight changes

could change the output considerably.

Ideally, the output would be a continuous differentiable function of the weights.
The threshold function can be replaced with a function that is continuous and dif-
ferentiable everywhere so that the effect of making a small change to the weights
can be calculated. The sigmoid (or Fermi) function is usually used for this pur-

pose. g(z) = 1/(1 + €P?) where D is an arbitrary constant (see Figure 7-1).

33

sigmoid{xm /(1 +exp(~x})

X 4

o.8f

(¥4 4

oef

05}

041

0.3

0.2r

[R] 4

Figure 7-1: The sigmoid function

This transforms the problem into a non-linear optimisation problem. The
back-propagation algorithm is basically a method of gradient descent in the weight
space. Consider a plot of some error function,such as E below, against the weights

in the network; this would have as many dimensions as there were weights.

1
E=33 (d—ay)’
7
where

d; are the desired outputs

a; are the actual outputs

In a backpropagation algorithm, the weights w;; are updated according to the

prescription:

SE

6w;j

w;;j(new) = w;j(old) — n

where 7 is a small constant parameter.

34

7.3 Radial Basis Functions(RBF's)

The RBF consists of a two layer fully connected feed forward network.

The RBF architecture

Each hidden node is parametrised by two quantities:

1. a centre in input space corresponding to the vector defined by the weights
between the node and the input nodes and

2. a width.

These are fixed by a clustering algorithm or maximising the likelihood of the
parameter with respect to the training data.

The output layer computes a linear combination of the activations of the basis
functions, parameterised by the weights between hidden and output layers. The
level of activation at a node is a function of the distance between the input vector
to the node and the centre of the basis function; the activation h decreases as the

the distance increases, where

|z — ¢;]?

hi(z) = g()

re

where g is a function with a maximum at a distance of zero, usually a Gaussian,

c; is the centre of the j**node.

35

The main advantage of the RBF over a network emplying back-propagation is
that activation is related to relative proximity of the test data to the training data,
giving a direct measure of confidence in the output of the network for a particular

pattern. It is, however, more time-consuming to implement.

7.4 Assessment

It may be inaccurate to characterise any net as “robust”, due to difficulties in
determining how well a given net generalises [Freeman & Saad 95]. The likely
performance of a net can only really be gauged by assessing its past reliability in
a range of applications. By this criterion, the back-propagation algorithm is the

safest choice: though unsophisticated, it is a reliable workhorse.

7.5 Implementation

Having decided upon the back-propagation algorithm, a suitable network simu-
lator had to be found. The inputs involved in this project were too large for

the departmental simulator (RBP), but the Stuttgart NNS was able to cope with

them.

7.6 Results

First Data Set:

As much data as possible was collected from the results for image u169, regardless
of whether or not it looked reasonable. This was done because even results that
seem poor in terms of precise wedge locations or even the number of wedges in
a character might be valid if the results are consistent for that character. The
net trained to small error value (0.02) after 200 cycles. All the training data was
correctly classified on testing the net to values in the range 0.98-;1 with all other

possibilities having very low weighting (less than 0.1).

36

However, the performance was less promising on the test data. The net iden-
tified some letters correctly, but erroneously classified many as ugarit 'm’s - or,
if not classified as 'm’s, the weighting for 'm’ as a possible classification was still

quite high (0.2). Overall performance was 40% correct classification.

This was probably due to over training on ’'m’s. There were far more 'm’s
in the training set than any other character . This was due to the corruption
technique used (Chapter 6) producing more corruptions when more wedges are
identified in a result. More care was required in collecting the training data, and
it was important to ensure that approximately the same number of samples were

presented for the training of each character.

Second Data Set:
Data was selected which satisfied the criteria outlined above. Some data was
ignored: this corresponded to characters near the edges of the tablet, which didn’t
seem at all clearly defined. Their presence in the first data set was due to their

having been identified in the transliteration by Nick Wyatt.

This reduced the number of characters available for training significantly. Now,
only six characters are represented. Training was similar to that of the first set but
more cycles were needed. The test results were that many characters were being
classified as characters that hadn’t even been presented to the net as training
data. The source of this mistake was obvious. Having a possible 30 outputs when
there are really only six characters being trained introduces too much freedom.
The number of outputs was reduced to six, to represent the six characters. The
number of hidden units was also lowered to comply with the second rule of thumb

(Chapter 8).

This took many more (300) cycles to train the net. The outcome is considerably
better than for when the training set was random - clearly choosing the training

set carefully is important.

37

Chapter 8

Implementation and Results

The input to the net is shown in the full overlays displayed in Figures 8-1 and
8-2. These just show the wedge locations found, but the input also contained the

actual values of the correlations.

The SNNS has a ‘BigNet’ tool to create networks. This was used to create
the feed-forward network. A fully connected network was used. The number of

hidden units was chosen on the basis of two rules of thumb:

o The number of hidden units should be of the order of half the total number

of inputs and outputs.

e The number of hidden units should be less than the number of examples

available for training.

Both were adhered to for all attempts at training on different data sets. The

format for the files is simply as follows:

[**
SNNS pattern definition file V0.0
generated at 12:00

No. of patterns : 2691

No. of input units : 100
No. of output units : 30

38

1.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0:00 0.00 0.00 0.00 1.700 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.61 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100000000000000000000000CG0O0O0COOCOOQ
*%kx [

Note that the input and output are on separate lines.

The back propagation option was selected. As recommended in the manual,
the weights were randomised for the initialisation and the topological order update
mode was employed. The order of patterns presented to the net at any one cycle
was shuffled by using the shuffle option. Due to the sparseness of data, no separate
validation set was used. To prevent overtraining, validation should be carried out
every few cycles. This would give two error curves, one for the training set and

one for the validation set.

Another utility available with the SNNS is graph plotting the overall error of
output at every cycle. When running, this shows that the error for the training
set just keeps falling, but the error for the validation will optimise and then start
increasing again as the net overtrains. The number of cycles at which the error is
lowest is the point at which the net generalises best. Due to lack of data, a few
cycles were iterated and then a sample of the test data was used to validate the

training. The net was then re-trained to the desired number of cycles.

39

100

200

300

400

S00¢

Figure 7-1: Overlay of the wedge locations marked on image u169

| Mgt —

""—aﬂ.

100

200

300

400

500

600

100 200 300

Figure 7-2: Overlay of the wedge locations

41

400 500

marked on image u658

Chapter 9

Conclusions and Future Work

In this chapter, the main results are summarised and promising avenues for future

development are identified.

9.1 Summary of Main Results

A character recognition of the Ugaritic characters has been implemented using a
feed-forward network trained by the back-propagation algorithm. This was trained
on a portion of correlation peaks with Anthoni’s templates from just one image due
to lack of time. The method of backdrop detection was improved and a method of
identifying the background areas on the tablet was also implemented. The number
of spurious wedges detected has thus been reduced. The results of the character
recognition look promising in that the correct classification for a character is within
the top three classified by the net. But this is only for the few characters for which

there was enough data available for training to be implemented.

Major revisions were made to Anthoni’s code so that it would run quickly and
not run out of memory for large images. The need for 81 independent parameters

was eliminated.

42

9.2 Limitations and Extensions

The character segmentation was performed manually, though a brief study of
automatic character segmentation was carried out. Automating the character seg-
mentation would be necessary for a full OCR system. This might be implemented
through the use of bounds on standard deviation contours (as was considered here)
combined with the application of a clustering algorithm to the wedge locations

identified.

The model base consistes of only nine templates, and would be insufficient to
cope reliably with the many variations of wedges due to different scribes. It would
either have to be extended by sampling wedges from many scripts, or possibly by

introducing the use of splines.

It was noticed, very late on, that the shrinking and rotation routines from
Anthoni’s work are flawed. Correcting this flaw would be necessary for any future
work as the shrinking is used to create the three different sizes of each model which
are then used for matching wedges in the images. This would probably improve

the results of classification.

The data set collected is very limited: expanding the data set for training in
terms of the number of patterns for each character (as well as training all characters

of the alphabet) would clearly be necessary for a more comprehensive system.

As the above system doesn’t always classify the characters correctly, the top few
winners should probably be noted and further classified on the basis of character
frequency - possibly using another network. Studies on character frequency have
been carried out by Lloyd [Anthoni 94]. Furthermore, as the Ugarit dictionary
has only about 2500 words, some likelihood of association of characters could be

utilised. This approach is similar to that in NETtalk (as discussed in Section 2.2).

The data was scaled down significantly from roughly 50x50 arrays to 10x10
arrays per character. Due to the lack of patterns used for training, it has been
assumed that the classification would improve with more data and that the in-

formation contained within the 10x10 arrays is sufficient. Possibly, some attempt

43

should be made to clarify this by also implementing a larger network on the com-

plete data set.

If the improvements mentioned above were made, and a network trained suf-
ficiently to be generalisable to most scripts, then a real-time OCR system for the
recognition of Ugaritic script from images might be a possibility. If the characters,
or maybe just the words, could be segmented then the correlation matching for a
few characters at a time could be carried out quite quickly. This could then simply
be input into a trained network to obtain the classification. But this is still a long

way off.

44

model3 = template6

template7

template8

Figure 9-1: Results of the shrinking routine applied to model 3

45

[Anderson & Rosenfeld 88]

[Anthoni 94]

[Casey & Nagy 82]

[Freeman & Saad 95]

[Fukushima & Miyake 82]

[Howell & Buxton 95}

[Lu 95]

Bibliography

J.A. Anderson and E. Rosenfeld. Neurocomputing:
Foundations of Research. MIT Press, 1988.

T. Anthoni. Recognition and location of ugaritic char-
acter stylus strokes from clay tblet images. Unpub-
lished M.Sc. thesis, Dept. of A.l.,University of Edin-
burgh, 1994.

R.G. Casey and G. Nagy. Recursive segmentation and
classification of composite character patterns. Proc

6th Int Conf on Pattern Recognition, 1982.

J. Freeman and D. Saad. Learning and generalisation
in radial basis function networks. Neural Computa-

tion, 1995.

K Fukushima and Miyake. Neocognitron: A new al-
gorithm for pattern recognition tolerant of of defor-
mations and shifts in position. Pattern Recognition,

15, 1982.

J Howell and H Buxton. Invariance in radial basis
function neural networks in human face recognition.

Technical report, University of Sussex, 1995.

Y. Lu. Machine printed character segmentation - an

overview. Pattern Recognition, 28(1), 1995.

46

[McCulloch & Pits 43]

[Rosenfeld & Sejnowski 88]

[Touretsky 89)

W.S. McCulloch and W. Pits. A logical calculus of
idea immanent in the nervous system. Bulletin of

Mathematical Biophysics, 5, 1943.

C.R. Rosenfeld and T.J. Sejnowski. Neurocomputing.
MIT press, 1988.

D.S. Touretsky. Advances in Neural Information Pro-

cessing Systems. Morgan Kauffman, 1989.

47

Results of the Background Identification

of Chapter3

Figure 0-1: Backdrop and Background Markings for Original Image u663

The region along the left-hand side has not been identified as background due to

the slide being slightly misplaced when scanning.

48

Figure 0-1: Backdrop and Background Markings for Original Image u663

49

Figure 0-1: Backdrop and Background Markings for Original Image u663

The regions in the backdrop that have not been identified as such are where

the slide itself was slightly defaced.

50

