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Abstract

The aim of this project was to design and implement a non-invasive, automated
method for the examination and follow up of the arteriosclerotic changes due to
hypertension, with the help of digital image processing of the retinal vessels. This
would help a lot in evaluating the efficacy of various treatments on the regression
and reversion of arteriosclerotic lesions. We develop a method for segmenting
vessels from fundus images using ridge detection. An algorithm is devised and
implemented. Once the vessels are segmented we move on to measurements of
vessel width, thikness of the wall, length of the vessels and tortuosity index. All
our methods are automatic and do not depend on any image specific thresholds

or other parameters.



Acknowledgements

It is a lot of people I would like to thank because without them this project
would never have come to an end. I would first of all like to thank my super-
visor, Dr Fisher, for his good guidance throughout my research period. George
Kyriazopoulos M.D. who actually proposed this project, helped me a lot with the
medical side of the problem. Maurizio Pilu (PhD student) was my code angel when
I thought everything was going down the drain. I would also like to thank Andrew
Fitzgibbon and the rest of the Machine Vision Unit researchers that supported me
with code and advice. Douglas Howie from the Departmental lab was kind enough
to share with me some of his vast knowledge on film and photographic techniques.
Allan James Frame from University of Aberdeen pointed me towards some very
interesting papers. And, of course, thank God for Elena: if it hadn’t been for her,

I wouldn’t have been me....



Table of Contents

1. Introduction

1.1 Computers in Medicine . . . . . . . .. .. .. ...
1.2 Overview of the Project . . .. .. ... ... ... .. .......
1.2.1 Objectives . . . . . . o v i i e e e e e e
1.2.2 Achievements . . . ... .. .. ... .. .. ... ...,
1.23 Conclusion. . . . . v v v i i s e e e
1.3 A Guide to the Rest of the Thesis . . . . ... .. ... .......

2. Background

2.1 Medical Background . . ... ... ... ... ... .. ...,
211 Vessel Calibre . . . ... .. .. .. o o :
2.1.2 Heamodynamics. . . . . . . .. . it

2.2 Image Processing background . . . .. ... .. .. .. .......
2.2.1 Fundus Photography . . ... ... ... ... .........
2.2.2 Previous Work on Retinal Images . . . ... .. ... ....

2.3 Images UsedinthisStudy ... ... ... ... .. .. .......
23.1 Image Acquisition . . . . . . . . ... ... ... ...
2.3.2 Digitization . . .. .. ... L e
233 ImageFormats .. .. ... ..... .. ... .........
2.3.4 Software Implementation . . . . .. .. ... .........
2.3.5 Our Demonstration Image . . . . ... ... .........

2.4 Discussion . . . . . . . . e e e e e e e

3. Calibration
3.1 PapillaFitting. . . .. .. ... ...
3.2 Experimental Results . . . ... .. ... .. ... ..........
3.3 Discussion . . . . . ... e e

1i

10
10
11

12
13
13
14
14
15



4. Extraction of retinal vessels
4.1 [Initial Approaches . . .. .. ... .. ... ... ... ...,
41.1 Thresholding . .. ... ... .. ... ... ... .....
4.1.2 Edge Detecting operators . . . .. ... ...........
42 Ridge Detection . . . . . . . .. ...
421 Smoothing. .. .. ... ... .. ... .. ... ... ...
4.2.2 Non-maximal suppression . .. ... .............
4.2.3 Local and Contrast Thresholding . ... ... ........
4.2.4 Preparation for Tracking . . . . ... ... ... .......
43 Tracking . . . . . . . ..
4.4 Discussion . . . . . .. . e e e e e e

5. Measurements of Retinal Structures
5.1 Arteriolarlength . . ... ... ... ... ... ... .. ... ...
5.2 Estimation of Vessel Calibre and Wall . . . . . ... ... ......
5.2.1 Sub-pixel Precision . . . ... ... ... .. .........
5.3 Tortuosity . . . . . .. .. e e
5.4 Discussion . . . . . ... e

6. Conclusions
6.1 Summaryofgoals . .. .. ..... ... .. ... ... ..........
6.2 Summary of the work completed . . . . . ... ... .........
6.3 Evaluationof thework . . ... ... ... ... ...........
6.4 Futurework . . . ... ... ... ... ...
Appendices

Appendices

A. Experimental Results

iii

22
23
23
23
25
27
31

33
34
38

42
42
43
48
49
91

55
33
56
56
57

60

61



1-1

2-1

3-1

3-3

3-4

4-1

4-3

4-4

4-6

4-7

4-9

List of Figures

The human eye: A wealth of information . . . .. ... .......

The image used for demonstration of our methods throughout this
document is a 400x430 B/W fundus photograph with the papilla

centred . . . .. L e e e,

Contrast enhancement between two areas that the mask looks at . .
Papilla location with the first method proposed . ... ... . ...
Papilla location with the second method proposed . . . .. ... ..

Papilla location in a different image with the second method . . .

A histogram of our image . .. ... ... ... .. .. .......
An attempt to threshold . . . . .. .. ... ... ... ... ...
Results of Canny edge detector . . ... ... ............
A vessel profile before smoothing . . . .. ... ...........
Vessel of figure 4-4 after smoothing . . . . .. ... .. ... ....
The steps of our method for vessel extraction . ... ... .. ...
A typical vessel, forming clearly a valley of intensity values . . . . .

Vessel from Figure 4-7 smoothed. A ridge has now taken the place

ofthevalley . . . . .. .. .. ...

A horizontal vessel before smoothing . . . .. ... .........

4-10 The vessel from Figure 4-9, after smoothing . . .. ... ... ...

v

19

19

20

20

23

24

25

26

26

28

29

29

29



4-11 The Gaussian is not confused at vessel bifurcations . ... .. ... 30

4-12 Ridge directionmap . . . . . . . . . ... ... 32
4-13 Non-maximal Suppression . . . . . .. . ... ... ... ... 33
4-14 Our image thinned and ready for tracking . . ... ... ... ... 35

4-15 The final tracks are superimposed on the original grey level image. . 36

4-16 A magnified part of three tracked vessels . . . .. ... ... .... 37
4-17 Tracking results in a different image . . . . . . ... ... ... ... 37
4-18 Detail of an arteriovenous crossing. . . . . . . ... ... ... ... 38
4-19 A fraction of our test image . . . ... ... . ... ... ... ... 39
4-20 Different levels of smoothing on a vessel . . ... ... ....... 40
4-21 Linking by interpolation . . . ... ... ... ............ 41
5-1 Application of the width estimation method in a vessel profile . . . 43
5-2 The four local directions wetest for . . . . .. ... ... ...... 45
5-3 Superimposing the identified points on the original vessel . . . . . . 46
5-4 Detail of original vessel . . . . ... .. ... ... ... ... ..., 47

5-5 A part of the vasculature with the lumen defining points superimposed 47

5-6 A part of the vasculature with the wall defining points superimposed 47

5-7 A representation for our sub-pixel precision technique . . . . . . . . 49
5-8 Simulation of a vessel with a locally high curvature . ... .. ... 50
5-9 Simulation of a vessel with a locally low curvature . . . . . .. ... 50
5-10 The width of the lumen of a vessel along its length . . . ... ... 53
5-11 Some of the original tracks after the removal of the papilla region . 53
5-12 The vessel calibre estimated on the original image . . . . ... ... 54
5-13 The total width estimate for our demo image. . . . . ... .. ... 54
A-1 Non-maximal Suppression . . . . ... ... ............. 62



A-2 Cleaned image . . . . . . . . . o i i e e e 62

A-3 Dilated image . . . . . . . . .. 62
A-4 Erodedimage . . . . . . . . . . . ... 63
A-5 thinned image . . . . . . . . . . ... e 63
A-6 Before removal of small tracks . . . .. ... ... .. ........ 64
A-7 After removingsmall tracks . . . . ... ... ... L 64

vi



Chapter 1

Introduction

Doctors are perhaps the only people that share so deep a passion with vision
engineers for seeing what other people cannot normally see. For they know that
the information is there, waiting to be elicited by the interpretive eye. They, like
vision engineers, are faced on a daily basis with enormous loads of information,

sometimes rare or unique and completely cut out of context.

However, the interpretation of information and the evaluation of its worth in
a clinical environment can be of vital importance to human lives and welfare and
hence cannot be left a burden on the shoulders of a passionate or talented few. The
demands of health care increase day by day and the quest for positive and objective
medical assessment increases along them. Doctors need to make rapid decisions on
cases that are presented in front of them, often without the luxury of a literature

research or extended investigations. As pointed by Szolovits [Szolovits(ed) 82],

Continued training and recertification procedures encourage the physi-
cian to keep more of the relevant information to mind, but fundamen-
tal limitations of human memory and recall, coupled with the growth of
knowledge assure that most of what is known cannot be known by most

individuals

Since the advent of ancient Greek theatre, solutions to pressing situations have

been given by machines.



1.1 Computers in Medicine

Computers have entered the field of medicine a good time ago through the means
of their successful applications in office automation and information storage. It
is a common fact that no medical institution can operate without computerised
archives and special programs that assist the everyday conduct and work of all the
people that span health professions. But it is unfortunately this interpretation of
computers as surrogate memories and tireless secretaries that has shadowed the
endless possibilities of real help they could offer in the medical profession. For,
what is the essential difference between a pile of paperwork and a top of the range
machine, if the latter carries but unstructured bulks of information? All medium
sized hospitals can speak of tons of uncorrelated facts from patients records. To
the best of their expectations during the past few years these have given up their
place, but not necessarily their secrets to a handful of disks. A lot of established
techniques exist today for the retrieval of raw information in the form of databases
but reasonable recall of information, in a form close to the needs of the clinician
has yet to established. It is towards the diagnosis in the everyday medical practise
that technology should turn focus, where the low number of experts could carry
their expertise through well structured information processing systems (as opposed
to information storing) to reach more and more people in need. Technological
breakthroughs in the field of medicine are often so impressive that they make the
headlines and give perhaps the false idea that cutting edge technology will sooner
or later prevail over all health related problems of humanity. Of course, this is not
the case in the foreseeable future. We are still at a point where a certain mass of
techniques have been gathering and should soon be mature enough to constitute
a well researched body of expertise, aiding the doctor in his practise and allowing
him to really make the critical decisions. For there is no point in deciding when

relevant information is absent or obscured.

In this state of mind we embarked on a research project that produced the

document you now hold.



1.2 Overview of the Project

The aim of this project was to design and implement a non-invasive automated
method for the examination and follow up of the arteriosclerotic changes in blood
vessels due to hypertension, with the help of digital image processing of the retinal

vessels.

Hypertension usually brings to mind the cardiovascular system of blood cir-
culation, which has been designated as one of the most vulnerable parts of the
body of modern man. However, as it happens with biological data, information is
interwoven into the yet inexplicable correlations of the whole human system. It
should come as no surprise that doctors would look anywhere for vital information.

The human eye has long been known to be not only the mirror of soul but a clear
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Figure 1-1: The human eye: A wealth of information

indicator of the bodily health as well. The eye presents a wealth of information
and is still considered unexplored, despite the fact that techniques have developed
a long time ago for the mining of that information. It is neither our purpose nor
ambition to present here an extended treatise on the human eye and the possible
information it could provide in the diagnosis and prognosis of systemic diseases.
Nevertheless, we intend to present all relevant information that would facilitate

the reader in assessing the difficulties that arise in treating biological data with



computers and help him/her clarify the terminology that governs the issues in
question. The retina, which is the interior part at the back of our eye is the only
part of the body where arteries and veins can be studied in vivo. Also, it has been
established that changes in the retinal vessels reflect the rate of progression and
severity of systemic diseases. In particular, mild hypertension causes irregularities
in arterior calibre, tortuosity of the retinal arteries and changes at arteriovenous
crossings. Repeated ophthalmoscopic examination provides the opportunity to
observe the vascular effects of hypertension. Such ophthalmoscopic examination
can be performed by the digitization of an ocular fundus picture, isolation and
processing of the retinal vessels. The parameters which are of significant interest

to the medical experts include:
e Apparent length of a vessel, particularly until the next bifurcation
e Calibre of the blood column
e Thickness of the wall of the vessel

e Tortuosity of the vessels

1.2.1 Objectives

We concentrated on the segmentation of the vessels from their background with
a reasonable accuracy of placement. Our aim was not only to identify and iso-
late the vessels from the background but to do this in such a way that our later
measurements would be enhanced. We felt that if we could achieve a proper and
robust segmentation technique the rest of problems would benefit strongly. How-
ever, a set of methods and algorithms had to be devised and implemented in order

to carry on measurements since no satisfying established method existed.

1.2.2 Achievements

An algorithm was devised and implemented for the segmentation of retinal vessels
using ridge detection. The algorithm tracks the centerline of each vessel instead of

the edges, a thing very useful in the later stages. It can be summarised as follows:



the image is being smoothed and is then scanned pixel per pixel in a non-maximal
suppression scheme. We suppress pixels that are not local maxima or they are
not contrast maxima in a wider region orthogonal to the direction of the vessel
locally. This algorithm effectively gives out a skeleton of the vasculature system
which is then exploited for the specific measurements. The key idea is that vessels
present a ridge in cross-sectional profiles and therefore such a ridge can be detected
along the vessels as a whole as if there was three-dimensional information. Once
the vasculature was segmented we moved on to carrying typical measurements of
interest such as width of wall and calibre of the vessel. We also calculated length
and introduced a measure for tortuosity. All our measurements are calibrated by
means of the papilla which is considered of standard size. To achieve this, we
implemented a location technique for finding and measuring the papilla on fundus

images.

1.2.3 Conclusion

The results show that ridge detection is not only a viable technique but perhaps the
most recommended for our case. It leads to an ideal segmentation with respect to
our interests for diagnosing and monitoring hypertension. It is a simple technique,
not especially computationally expensive that could be developed in a run-time
application for use in the everyday practise. These ideas are further explored in

the last part of this thesis.

1.3 A Guide to the Rest of the Thesis

In Chapter 2 we provide the relevant background with respect to image processing

of retinal images as well as some medical insights for retinopathy in general.

Chapter 3 describes the algorithm for the automatic location of the papilla.

Two different approaches are presented and their results are illustrated on different

images.

Chapter 4 contains the heart of the method developed during this project which

is the tracking and subsequent automatic extraction of the vessels. Several different



approaches are presented and evaluated. The technique of ridge detection which
was finally employed is presented in detail and its algorithmic levels are explained.

The results of the method are illustrated on our test image.

The tracked vessels derived in the previous chapter are used in Chapter 5
for a demonstration of possible measurements that can be undertaken once the
vessels are segmented. The formulae for these measurements are presented and
their rationale is explained. As an example we calculate vessel calibre, wall width,

length and mean tortuosity index on our test image.

Finally, Chapter 6 contains a short summary of the work undertaken for this
project and an evaluation of the results. The thesis concludes with a short de-

scription of future work and extensions.



Chapter 2

Background

In recent years the eye has become the focus of medical attention for a number
of systemic diseases. It is no exaggeration to say that the recognition of malig-
nant hypertension, miliary tuberculosis, papilloedema due to increased intracranial
pressure, melanoma or even diabetes may be a matter of life and death. The eval-
uation of a patient’s condition by means of ophthalmoscopic examination requires
careful visual inspection by human experts who often consider fundus angiograms.
Because clinical examinations are subject to uncontrolled observer variation and
bias, assessments could be made more objective using automated digital image
processing. This study was motivated by research undertaken in the Medical Re-

nal Unit of the Royal Infirmary of Edinburgh with respect to hypertension.

2.1 Medical Background

Since the eye is considered an outgrowth of the brain it is reasonable to assume that
changes in the vasculature of the retina reflect changes in blood microcirculation
of the brain. Indeed, as early as 1939, Keith, Wagener and Barker have proposed
a classification of hypertension based on retinopathy which is still widely used

[Keith et al. 39]. Their classification was as follows (after [Wise et al. 71]):

Stage I : Slight narrowing of the retinal arteries. Most patients free of symptoms.



Stage II : More marked arteriolarsclerosis with widened arterial light reflex,
compression of veins at arterial crossings, general and focal arterial narrow-

ing.

Stage III: Retinal oedema, exudates and hemorrhages with diffusely and focally

narrowed arteries.

Stage IV : Papilloedema on top of symptoms of Stage III. Renal failure. Poor

prognosis.
According to Wise,

“difficulties in the interpretation of vascular narrowing and arterio-
larsclerosis have led many researchers to abandon the first two stages
of the Keith-Wagener classification. Stages III and IV are still widely
accepted as their characteristics are considered more tangible and ob-

server independent within the medical community.” [Wise et al. 71]
As today many cases reach the physician at an earlier stage than formerly,

“arteriolar changes alone may be the presenting feature without the

severer symptoms of a retinopathy such as exudates, haemorrages or

oedema.” [Stokoe 77]

Hypertension, even at an early stage, is known to manifest itself in the retina by
attenuation changes, focal narrowing and occlusion of retinal vessels. Automatic
quantification of these changes would be a great step not only in the direction of
diagnosis of hypertension, but also towards an optimised method for monitoring

the progress of subsequent treatment.

2.1.1 Vessel Calibre

The retinal vasculature can be considered a series of cylindrical pipes with respect
to blood circulation [Wise et al. 71]. It is not our purpose nor ambition to explain
the hydrodynamics of piping systems or blood vessels in particular. Still, we give
a brief outline of the ideas that govern the pressure calculation in the blood vessels

and justify our particular interest in the vessel calibre and its accurate calculation.



2.1.2 Heamodynamics

The simplest hydrodynamic system is a long straight pipe with a steady

flow through it. In such a pipe the head of the pressure (Ap) is directly pro-
portional to the length (L), the flow (F), the viscosity of the fluid (1) and inversely
to the fourth power of the radius (R). This is the law of Poiseuille:

It is therefore clear why the calibre of the vessel is important in any attempt to
recognise the presence or progress of systemic hypertension. By injecting dye into
retinal vessels and then studying the fluorescein angiograms it has been observed
[Wise et al. 71] that there are two distinct types of flow in the vessels. There is
“laminar” flow, where the flow can be regarded as a series of concentric laminae
moving faster at the axis than away from it. The shell of fluid in contact with
the wall is practically stationary. When two pipes with such flow join, dye from
one of them will not mix with the other and the two streams run side by side.
As the rate of flow through the pipes increases there comes a point where mixing
occurs and the regular lines of laminar flow are lost. The new type of flow is no
longer governed by Poiseuille’s law and is termed “turbulent”. The breakdown of
laminar flow depends upon the diameter of the tube (D), the mean velocity of the
flow ( V), the density (p), and the viscosity (u) of the fluid. The point of transition
from laminar to turbulent flow depends upon the value of the Reynolds number

(R.). The equation from which this is calculated is:

R. — YDo
€ u

It. should be noted that the critical value of the Reynolds number for any
fluid (including blood) to become turbulent is about 2000 [Wise et al. 71] and
narrowing of the vessels alone has not been accepted as a sole reason for turbulence.
Eddy formation along the walls is also mentioned as a possible culprit. However,
it is established that transition to turbulence in retinal vessels always occurs close

to bifurcations.



2.2 Image Processing background

2.2.1 Fundus Photography

Since the introduction of the fundus camera, many attempts have been made for
the quantification of various structures in the retina. Significant improvement was
brought by the development in 1961 of fluorescein fundus photography by Novotny
and Alvis. The principle of this method is straightforward. Sodium fluorescein dye
is injected into the circulation and photographed as it passes through the blood
vessels of the eye using a blue filter in the exciting light source and a green barrier
filter in front of the film [Vink 70]. For most purposes fluorescein pictures taken
at a rate of one or two frames per second give satisfactory data about the filling
and emptying of the vascular structures in the retina. However, the velocity of
blood flow in the arterioles can only be estimated by cine-photography at a rate
of 30 to 60 frames per second. An alternative approach is to film cine-angiograms
directly (for a recent application of video-angiography see [Jagoe et al. 93] and
[Jagoe et al. 90]). The dye is injected either intravenously, or into the anonymous
artery via the right brachial artery which can result to a certain inconvenience
of the patient. Furthermore, fluorescein sodium is not free of toxicity. Many pa-
tients develop a yellowish discolouration of the skin and a standard after-effect is
bright yellow urine that remains fluorescent for 24 - 36 hours after the examination
[Vink]. Other patients have reported a feeling of nausea and quite a few have ac-
tually vomited during the examination. Allergic shocks, usually by patients with
a history of asthma, are not rare [Wise]. In short, this method may cause incon-
venience to the patient and hinder the medical need for repetitive examinations
in monitoring certain types of retinopathy and treatment progress. On the other
hand, standard fundus photography utilises only mydriatic drops for the dilation
of the pupil. The forced dilation, which is also used in the fluorescein photography,
fades away soon after the examination and a few hours later the accommodation
of the eye is restored completely. It is the aim of this study to indicate that for
the purpose of monitoring hypertension all quantification information could be

extracted from plain fundus images.
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2.2.2 Previous Work on Retinal Images

The first step in performing measurements of blood vessels is to extract the
vessels from their background. Estimating the location of blood vessel bound-
aries within images of a living vascular network “has all the problems associated
with image segmentation of biological data and still remains a difficult problem”
[Miles & Nuttal 93]. This is largely because such images have low signal-to-noise
ratio and limited spatial resolution. Most segmentation methods for vessels are
considered to be successful if a continuous boundary is found, somewhere in the
vicinity of the true boundary, without much concern for boundary placement.
Many algorithms have been proposed for tracing vessels and they can be generally

classified in three basic categories:

e model fitting, which identifies edge points by optimising a function fitting

(e.g. a Gaussian) on the intensity profile of a vessel.

e optimal filtering, where gray level thresholds are specified based on the dis-
tribution of pixel properties (e.g. adaptive thresholding)

e sequential contour tracing, where active contour models (e.q. “snakes”) are
s g

used to perform a global region extraction

Recently, F.P. Miles and A.V. Nuttall [Miles & Nuttal 93] studying blood flow
in the cochlea of the ear, proposed an algorithm that estimates diameter and posi-
tion of vessels by minimising the mismatch between the measured intensity profile
and a finite set of intensity profile models, thus constructing a matched filter esti-
mator. A similar approach is adopted by Zhou et alin [Zhou et al. 94]. Here, the
centerline is tracked using an adaptive densitometric technique to improve com-
putational performance in regions where the vessel is relatively straight. Their
method calculates vessel calibre and wall location (but not vessel wall thickness)
as well as a curvature index defined as the ratio of the pixel length of the centerline
over the distance between two points. This algorithm fails at arteriovenous cross-
ings and no information is given on its behaviour in bifurcations. Initial centerline

point and direction are expected to be given by the end user.

Alternatively, T. MclInerney and D.Terzopoulos [McInerney & Terzopoulos 95]

have presented a topologically adaptable snakes model for angiogram segmenta-

11



tion. Their model benefits from reparametrization during the deformation process.
Still, it suffers from the problem of initialisation common to snake models. The
authors report that they had to perform the segmentation of the vascular network
one branch at a time freezing the snake manually once it began to flow into a

crossing branch.

2.3 Images Used in this Study

2.3.1 Image Acquisition

The images used for this study were provided in film by the Retinal Photography
team of the Eye Pavilion at the Royal Infirmary of Edinburgh.

The images were captured through the use of a KOWA Pro 1 fundus camera
that registers 50 degrees of the ocular fundus. The film used was black and white
negative ILFORD FP4 Plus of 125 ASA (22 DIN). A standard green filter was
used for red-free negatives. Red-free images are particularly important for size
estimation in a vascular network since the photo effect influences it. The film
was developed in Patterson Accuspeed Developer for 8 and a half minutes at 20

degrees centigrade.

The test image used throughout this document comes from a 32 year old white
male who is not diagnosed as hypertensive and does not undergo treatment for any
eye disease. The subject was brought to pupil dilation using Tropicamide 1% as
mydriatic drops for 20 minutes before the photographic session which lasted less
than 5 minutes. Taking into account the film processing time, the whole procedure

normally takes less than 40 minutes.

A set of colour images were also provided. These were shot on FUJI Velvia of
50 ASA (18 DIN). They were not utilised in this study for reasons explained in

the discussion paragraph.

12



2.3.2 Digitization

The images were digitized at the Multimedia Workshop of the Department of Com-
puter Science of the University of Edinburgh using ScanMaker 35t slide scanner by
Mikrotek connected to a Macintosh Performa. This scanner has a scanning area
of 36 mm (+/- 1.5 mm) x 36 mm and can output up to 1828 pixels per inch (i.e.
2592 pixels total) from the original film. It can reach a resolution of up to 3656
ppi (i.e. 5184 pixels total) with interpolation. For the purposes of this study no
interpolated digitization was used. The scanner allows for contrast, brightness and
resolution enhancement through the driving software. Digitization takes place in
one pass (three passes for colour film) and lasts about two minutes (eight minutes

for colour).

The software used for the scanning was Adobe Photoshop ver 3.0 and the

respective plug-in filter for this scanner.

2.3.3 Image Formats

Originally the images were saved in TIFF (Tagged Image File Format) as this is
easily carried over on all different platforms. During our study images were cap-
tured in Apple Macintosh and carried over to Unix workstations (both Sun Sparc
workstations and HPs) as well as MS-DOS based PCs without any problem. The
black and white images take something between 2 - 6 MB of diskspace depending
the resolution used, while coloured ones go above 10 MB. LZW compression for
TIFF images is not lossy with respect to information and reduces their size by
about one third. All the manipulation of the images by the test programmes cre-
ated was done on Sun workstations under Unix. To facilitate the manipulation of
the images they were turned from TIFF to HIPS format using the public domain
PBMUTILS utilities package enhanced by the Machine Vision Unit of the Depart-
ment for HIPS support. HIPS format is essentially a raw format with a simple
header structure. From that it was easy to convert the image files to plain intensity
value matrices that could be directly read into Matlab for further manipulation,

preserving the image dimensions.

13



2.3.4 Software Implementation

Throughout the project we used the Unix platform (X Windows) for developing
software to test the proposed algorithms. Routines were implemented in Mat-
lab 4.2 under Sun-0S54.0 and Sun-0S55.0 for Sparc 4/5 workstations. Coding for
certain processes (e.g. tracking) had been implemented in C/C++ and was com-
piled under the GNU C compiler (gec). Provision was taken so that the results of
the implementation did not depend on the computer languages or configurations.
System calls were virtually absent from the code to allow for easier portability.
We wish to stress that our aim has been from the beginning not to create market-
ready software but to test the validity of hypotheses and the plausibility of research
application. Hence, no attempt has been made to fully optimise the code imple-

mentation with respect to time, for example.

2.3.5 Our Demonstration Image

Our demonstration image (Figure 2-1) is a cropped image from a negative B/W
slide. It has been digitized at a resolution of 1828 ppi with 200% proportional

magnification during digitization.

Figure 2-1: The image used for demonstration of our methods throughout this

document is a 400x430 B/W fundus photograph with the papilla centred

14



This particular image has been selected both for its merits and its troubles.
There a lot of vessels present, the papilla is well defined but there is also a good
deal of unstructured noise (there is in fact a black spot in the bottom left side
caused by the film negative), the background is characteristically non-uniform and
some vessels seem to get absorbed inside the background intensity values. Also, the
vessels that come in different lengths, widths and strengths present an interesting
pattern of tortuosity, from relatively straight to sharp bending ones, as well as

bifurcation.

2.4 Discussion

We decided to concentrate on the black and white images as these had an accept-
able contrast with regards to vascular border definition, they were smaller and
easily manipulated and they served our original purpose of extracting the vessels
so as to perform the measurements of interest. On the other hand, colour images
proved defective when digitized. In particular, they had an abnormally uniform
value of the blue channel in the RGB digitization thus making it impossible to
use them for automatic separation of veins from arteries. We believe that a dif-
ferent photographic technique would register the three channels more accurately
and would allow for certain colour measurements. Details on such an extension
to our work are given in the final chapter of this thesis. Lastly, we would like to
note that the digitization step could have been rendered redundant by the use of a
digital fundus camera. Such a camera was not available at RIE at the time of this
study. In fact, at this time, the cost of a digital fundus camera is still prohibitive

for the everyday medical practise in small to medium medical centres.
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Chapter 3

Calibration

All absolute measurements undertaken in fundus images are prone to errors caused
by a number of reasons. Prominent among these reasons is the refraction of light
from the lens of the eye as well as the liquid that fills the area between the cornea
and the retina (vitreous humor). Other error inducing factors are visual impair-
ments of the eye, i.e whether the eye is emmetropic or not, as well as the sharpness
of the image. Most of these errors lead to uneven magnification of the retinal struc-
tures. At the time of this study the relevant literature is still unsettled on how
these errors should be calculated and accommodated. Littmann has presented a
method for calculating these errors in [Littmann 82] but his methods and formu-
lae have been critisized in [Bennet et al. 94] and [Baumbach et al. 89] and more
recently by Sanchez in [Sanchez A 95]. Such errors create problems not only when
monitoring the same eye over a period of time, but also in comparisons between
different subjects. To minimise the impact of such errors during our study, we cal-
ibrate all our measurements according to the size of the papilla which constitutes
a reference feature for our images. In order to identify the papilla we used a disk

fitting procedure that is explained below.
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3.1 Papilla Fitting

The papilla is known to be of relatively fixed size and it is reported as having
a diameter of 1.5 +/- 0.3 mm. Once the papilla is automatically located in the
image, a correspondence between pixel lengths and real world measurements is
established. This is reasonable since the retinal image is corrected from the lens of
the ophthalmoscope for any distortion caused by the curved surface of the retina.
The algorithm for the automatic location of the papilla relies on the assumptions

that the papilla:

o will lie somewhere in the central part of the image
e is well approximated by a disk

e will have a radius lying between 20 and 80 pixels

These assumptions are quite acceptable in the literature. An image with the
papilla centred is a basic image in opthalmoscopic examination [Williams 84]. Ad-
ditionally, in a 512 x 512 image a papilla with a radius between 20 and 80 pixels
occupies 0.47 - 7.6 % of the image, again within reason. The test image used
throughout this thesis for demonstrating the methods that were developed is a
400 x 430 image with a papilla of 63 pixels radius in the central region. This is
the value we reached after averaging eight different diameters that were counted

out explicitly for verification purposes.

For an estimation of the papilla centre we tested two different approaches. The
first one fully exploits the nature and geometry of our black and white images.
Since the papilla practically constitutes a hole in the posterior of the eye it was
deemed reasonable that it will have the highest reflection of the light shone through
the ophthalmoscope. As our greyscale image comes from a negative black and
white, it should be expected that the papilla will incorporate those pixels that
will have registered the lowest intensity value. Once the image was turned into an
intensity value matrix and was introduced in Matlab it was fairly straightforward

to track all those pixels that presented the lowest intensity value using a min
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command. These centrewere identified and their weighted centre of mass was
considered to approximate the true centre of the papilla. Weights were allocated
in favour of clustered points by means of a standard 3 x 3 neighbourhood weighting
system to accommodate for noise. That is, for every pixel that was considered we
registered its 3 x 3 neighbourhood. Now, for every pixel in that neighbourhood that
had a value equal to the lowest intensity value we added one to the multiplicative
factor. Note that the very pixel itself was not allowed to vote, hence giving it a
multiplicative factor of zero in case it was isolated practically eliminated it in such

a case. So now instead of taking

e =Y iy (%) and y. = 30, () we use:
ze = X0 (%K) and y. = T, (Lzk)

where n is the total number of identified pixels and k; ranges from 0 to 7. The
radius was then estimated in the same way as described below in the second

method.

In the second approach a square grid of size 200 x 200 pixels around the centre
of the image is considered. If we take the step of the grid being 20 pixels we can
identify the centres of the 100 subsquares. This procedure yields 100 candidate
points and each is tested for being the true centre of the papilla. In order to test
each candidate point we fit on it a square binary mask containing a disk with the
minimum radius (20 pixels) and expand the mask at reasonable steps (10 pixels)
until the disk reaches the maximum radius (80 pixels). At every step we register

the absolute difference:

Zana_a out—pizels Zaru_A in—pizels

OUTpizels INpizels

where “out-pixels” are the intensity values of the pixels on the original image
outside the circle, OUTpixels is the number of these pixels and respectively for
area A. (Figure 3-1) The theoretical grounds for doing this is that the contrast
between the inside and the outside of the disk should be maximum when the mask
overlaps the true centre of the papilla. Convolving this mask at the preselected
points yields an estimate of the centre of the papilla. Once the point with the
highest response with respect to contrast maximization is identified, we perform
a more accurate estimation of the radius by refining the increment step of the

tentative radii with the disk being fitted on the designated point. For this method
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Figure 3-1: Contrast enhancement between two areas that the mask looks at
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Figure 3—2: Papilla location with the first method proposed

to be effective, provision is taken in the construction of the mask so that the
number of pixels inside the disk is roughly the same, and hence comparable, with

those that lie outside.

3.2 Experimental Results

For our test image, both methods have been applied and the results can be viewed

in Figures 3-2 and 3-3 respectively.

Here we have used the results of the locating functions to overlay a circle, of
the estimated centre and radius on the original image. The first method takes a
few seconds to estimate the location of the centre and about 8 minutes to refine

the radius on a SPARC-5 workstation. It reported a radius of 66 pixels as an
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Figure 3-3: Papilla location with the second method proposed

so|
100f
1s0F
20041
250F/
2000
s0p"
ol
ol
s00)
550/

Figure 3—4: Papilla location in a different image with the second method

estimation. On the other hand, the second method takes a bit more than 5 minutes
to report an estimation of the centre and since it follows the same routine for
estimating the radius, another 8 minutes for that. The estimate it gave for our
demonstration image was 64 pixels, less than 2% deviation from the radius counted
explicitly. Additionally, the second method has been applied on an image with
different geometry (517 x 613) which fulfils the fitting assumptions mentioned

earlier. The results of this experiment can be viewed in Figure 3-4.

3.3 Discussion

Both methods for the automatic location of the centre of the papilla worked well.
The first method relies heavily on a priori knowledge of the nature of the image
and despite the weights used it is expected to suffer in extreme noise conditions

or in the presence of artifacts in the image due to the medical condition of the
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subject. However, it allows for an extremely fast implementation and behaves

robustly in “standard” noise conditions.

The second method presents a trade-off between speed and accuracy of estima-
tion for the centre of the papilla. The more refined the grid, the more candidate
points arise and hence the longer it takes for the location of the best approxi-
mation. However, this study is concerned with the development of a method to
be used in off-line processing of fundus images in order to assist in the diagnosis
of long term hypertension and therefore time (in the scale of seconds or a few
minutes) is not of critical importance. Essentially, this second method is a sort of
intelligent global optimisation using knowledge of the image as a shortcut. Instead
of that, any other global optimisation method could be used. However, some of
them, like “blind” template matching, would present problems of computational
efficiency. By “blind” template matching we mean convolving the whole image
with all possible disk sizes. Knowledge of the image is crucial in the speed of the

method.

What is of particular interest is the fact that with both methods the accuracy
in the estimation of the size of the radius is not influenced greatly by the accuracy
in the estimation of the centre of the papilla. This is due to the very nature of the
locating algorithm: since the algorithm looks for the maximum of contrast even if
one goes a few pixels off-centre, the correct radius is reported. If for some reason
we are interested in greater accuracy , for example we want to remove
the papilla before conducting our measurements, we could also refine the centre
estimation by repeating the process of testing different centres, confined this time
in a smaller area derived from the first estimation. Also, one should notice that
the vessel structure inside the papilla does not mislead the algorithm because their
overall intensity contribution is always small compared to the darker part of the

papilla.
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Chapter 4

Extraction of retinal vessels

In order to measure the retinal vessels we need to segment the vessels from the
rest of the image. This proved to be more difficult than it sounds, since in the case
of fundus photography it is uncommon for the background and the vessels to have
distinctly different ranges of intensity values. Furthermore, due to the nature of
our study no chemical contrast enhancer has been used,as in typical fluoroscein
angiograms, which would make the vessels stand out clearly from the background.

A variety of approaches have been considered, including the following:

e Thresholding the image with the use of a histogram
¢ Traditional edge-detection (e.g. Canny)

e Ridge point detection across the width of the vessels.

The first two proved inadequate for our problem for reasons that will be ex-
plained below. Ridge detection, on the other hand, gave very good results. This
technique and its algorithmic implementation constitute the main part of this

chapter.
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Figure 4-1: A histogram of our image

4.1 Initial Approaches

4.1.1 Thresholding

By looking at the histogram of our test image (Figure 4-1) it should come as no

surprise that standard thresholding techniques do not hold for our case.

The translucent nature of the vessels’ walls as well as the dispersion of the
light coming from the ophthalmoscope on the non-planar surface of the retina
make a good part of the vessels being digitized present intensity levels close or
identical to those of the background. Also the background is not of uniform
intensity, something that makes the segmentation of the image in foreground and
background practically impossible. All attempts on identifying a suitable threshold
value have led to unacceptable results similar to those that can be seen in Figure
4-2. Hence the thresholding approach was abandoned and focus was switched to

traditional edge detection.

4.1.2 Edge Detecting operators

The most prominent among edge detectors is undoubtedly the one presented by

Canny [Canny 86]. In short, there are four main phases in the Canny edge detector:

e Convolving the image with a Gaussian to reduce noise and remove small

features
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Figure 4-2: An attempt to threshold

o (Gradient estimation

e Non-maximal suppression, i.e. elimination of points that are not local max-

ima with respect to gradient magnitude

e Hysteresis tracking, which utilises a double threshold to further limit non-

edge points

There are a number of problems that arise with the use of the standard Canny
edge detector (SCED) in our case. First of all, the SCED detects edges and
therefore gives the outside walls of the vessels. This, however, could create serious
problems in exact measurements of vessel properties such as wall thickness and
vessel calibre. The third phase of the SCED, tracking, entails in practice the
problems of threshold setting outlined earlier in this section: Since tracking relies
on setting two threshold values for upper and lower threshold we finally end up

with fragmented vessels as can be seen in Figure 4-3.

Notice that not only quite a few of the vessels appear broken but, also, the
SCED has detected edges inside the vessels. This can be accounted for by the
difference between the intensity values of the vessel walls and the blood stream that
runs through them. This is an inherent characteristic of fundus images that was
utilised in the ridge detection approach that was finally employed. Interestingly,
the SCED does not merge vessels that are very close to one another, despite the use
of Gaussian smoothing. Lastly, it should be noted that the Canny edge detector

implementation used in our example is one that does not fail at junctions by false
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Figure 4-3: Results of Canny edge detector

suppression of points on the weaker edge that reaches the junction. This problem

has been treated in the manner explained in [Li et al. 89].

4.2 Ridge Detection

Ideally we would wish to obtain a single-pixel wide line running through the centre
of each vessel. This is the basis for tracking the vessels and simplify our measure-
ments. However, a cross-sectional intensity profile of a typical vessel (Figure 4-4)
indicates that vessels present two peaks separated by a valley. This is due to the
variation in intensity caused by the blood stream inside the vessel and the different

materials of the cell walls.

To overcome this a Gaussian smoothing is introduced (Figure 4-5). Once the
image is smoothed a directional map is being built by scanning the image and

registering the direction of the gradient at each point.

The image is scanned again and ridge points are identified by suppressing pixels

which do not satisfy the following criteria:

e Directional consistency with their neighbouring pixels

¢ Intensity maximization over their neighbouring pixels in the direction or-

thogonal to the local direction of the vessel
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e Contrast maximization in the direction orthogonal to the local direction of

the vessel

During the ridge point identification, the image is binarized and after that it
undergoes a filtering process to clean some noise by removing individual pixels.
Dilation and erosion cater for fragmented vessels. At this point thinning filters
prepare the image for tracking. The vessels are then tracked and a list containing
pixel co-ordinates is produced. A second filtering of vessels under a certain length

practically eliminates noise completely and concludes the segmentation.

This method has proven to be quite efficient and robust and was the one finally

employed. Its different algorithmic stages are illustrated in Figure 4-6

4.2.1 Smoothing

A cross-sectional profile of intensity along the length of a vessel indicates that
it would be quite difficult to locate points on the central line due to noise and
the variation in intensity the blood stream presents even within the same vessel

(Figure 4-7). To overcome this problem we introduce Gaussian smoothing.

As has been observed by [[Fishler & Wolf 83|] Gaussian smoothing may well
play the role of a distance transform when it comes to the detection of linear
structures. At this point, not only are we not concerned with the possible blurring
of edges but indeed we would like to eliminate or blur all structure or texture inside
the vessels. In picking an appropriate width for our filter we need only take into
account the possible diameters of our vessels. These are not expected to exceed
20 pixels and therefore, a Gaussian smoothing with Gaussian standard deviation
equal to 19 was thought appropriate. The results of this on the vessel whose profile
was illustrated in Figure 4~7 can be viewed in Figure 4-8 where clearly the valley

has been turned into a ridge and respective ridge points can now be detected.

Gaussian smoothing works very well across the entire image irrespective of
the direction of the vessels (see Figures 4-9 and 4-10) and does not fail at vessel

bifurcations. (Figure 4-11)
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Figure 4—6: The steps of our method for vessel extraction
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Figure 4-8: Vessel from Figure 4-7 smoothed. A ridge has now taken the place
of the valley

Figure 4-9: A horizontal vessel before smoothing
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Figure 4-10: The vessel from Figure 4-9, after smoothing

Figure 4-11: The Gaussian is not confused at vessel bifurcations
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4.2.2 Non-maximal suppression

In order to isolate ridge points we need to scan through the image and suppress
all points which do not qualify as such. The first criterion we should employ is
directional consistency. This means that for a point to be called a ridge point it
must have the same ridge direction with its immediate neighbours in the direction
that the vessel runs. We can control this by building and consulting a ridge

direction map of the image.

Since the direction of a vessel varies smoothly , we build our direction map by
convolving our smoothed image with four different ridge detection masks, one for
each main direction (0, 45, 90 and 135 degrees) and registering the response of
each pixel. The mask with the highest response corresponds to the direction of

the gradient at this particular pixel. The masks we used are shown below :

-1(2]-1
-1(2(-1
-1 (2|-1
-1{-1]| 2
-1} 2]-1
21-1)-1
-1 (-1(-1
2] 2] 2
-1|-1|-1
2(-1]-1
-1{ 2|-1
-1]-1] 2

Note how the coefficients of the masks add up to zero, minimising the direc-
tional response of near homogeneous regions. The directional map for our test
image can be viewed in Figure 4-12. Colour codes correspond to the four differ-
ent directions. We built our directional map with the value 63 corresponding to
0 degrees, 127 for 45 degrees, 191 for 90 degrees and 255 for 135 degrees. The
directional map presents a number of problems. Noise on the ridge causes misclas-

sification of directions. This leads to rejection of valid ridge points at later stages
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Figure 4-12: Ridge direction map

where directional consistency is tested for neighbouring points and therefore, to
fragmentation of vessels. Also, we noticed side bands appearing bilaterally to each
vessel. Since we are using ridge detectors this can be accounted for by the be-
haviour of our masks on the slopes of the ridges. As these areas have a response
close to zero for all directions, only the order in which the responses are checked
can influence the colour coding. Still, the vessels stand out clearly in this map

and the information obtained can be utilised for our non-maxima suppression.

4.2.3 Local and Contrast Thresholding

To further suppress false local maxima we need to look at the total intensity vari-
ation not only in the immediate neighbour of each pixel, but in the broader region
as well. This is because when detecting ridges we do not want to be misled by
local maxima due to noise. We do this by ensuring that, in a direction orthogonal
to the one registered in the direction map, our candidate ridge point has a higher

intensity value than its immediate left and right points.

Furthermore, we check that a point to be accepted must have an intensity value
higher by a set value (equal to 4 in our experiments) than points located at a set
distance to the left and to the right, again in a direction orthogonal to the vessel.
This set distance depends on the diameter of the vessels and during our study it
was determined to be 6 pixels. Points that do not qualify with respect to these

two test are eliminated. The results of this filtering can be viewed in Figure A-1
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Figure 4-13: Non-maximal Suppression

4.2.4 Preparation for Tracking

Despite the tests that has been done so far, many false maxima are still present in
our image mainly due to noise and small vessels. Additionally, since we are looking
at ridge points, noise on the ridge of a vessel can cause false registration of ridge
direction and lead to suppression of true ridge points and hence fragmentation
of vessels. Lastly, the centerline that has been detected for each vessel is not
necessarily one pixel wide (which we would like for the tracking algorithm to work
correctly). We now have to take our image through a set of relevant operators to

accommodate for these problems.

We first convolve the image with a cleaning filter which removes isolated ridge
points. Since at this stage we have a binary image this mask could be a 3x3
neighbourhood mask that sets to zero all those pixels which have no other active
pixel in their neighbourhood. Next comes a standard dilation convolution filter
which can again be implemented as a 3x3 mask that sets a pixel to 1 if at least
one other pixel in its neighbourhood is active. Last in this set of filters comes
an erosion filter. Once again this can be implemented as a 3x3 mask that sets a
pixel to zero if at least one of its neighbours is zero. This way fragmentation is
kept to a minimum. Our image is now ready for tracking save for the fact that
the tracker works best with thinned images. Thinning is in effect an iterative
convolution with different sets of masks which remove the middle pixel if they get
a perfect match. Many times these masks contain wild-cards, meaning that they

would accept fine a zero or a one in the place of the star. For our image we used

33



two HIPS commands, 1thin2 and 1thin1 which convolve the image with masks

like those we can see below:
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We first applied 1thin2 which performed 7 iterations and then 1thin1 which

performed only one.

4.3 Tracking

Now that the image is thinned we can begin tracking the centerlines of the ves-
sels. To do this in our study we employed a classic edge tracker proposed by
Beattie[Beattie 82] optimised for the treatment of bifurcations. This algorithm
scans the whole image and utilises a set of pixel co-ordinate stacks for tracking.

An active pixel in our image can fall in one of four categories. It can either be
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Figure 4-14: Our image thinned and ready for tracking

a starting point
e a midpoint
e an endpoint

e a start-point for a new track bifurcating from the one being followed

If the pixel scanned is a starting point it is marked as visited and its track is
followed. The same happens with midpoints. When a start-point of a new track
is met it is pushed onto a stack for later treatment and the algorithm follows the
original track. Once the endpoint is reached any start-points that have been met
during tracking are popped from the stack and their track is treated recursively.
Marking of visited points prevents infinite loops. When no more points can be
popped the algorithm continues the scanning of the image. The implementation
we used was optimised for short-length sharp changes of direction. These are not
confused for curves of the major tracks but are registered as bifurcations to small
arterioles or venules. This facilitates our interest in counting mean length to the
next bifurcation and prevents errors in the calculation of a vessel’s mean tortuosity

index.

This particular tracker produces a file in tracked edge format, that is after a

simple header it has a list of entries of the form:
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Figure 4-15: The final tracks are superimposed on the original grey level image.

nl xXxx yyy zzz

where nl can be either 0,1,2 or 3, zzz and yyy are the co-ordinates of the tracked
pixel and 22z is it’s intensity value. The first number, n1, denotes a starting point
of a new track if it is equal to 1 and a midpoint or endpoint if it is equal to 2.
The values of 0 and 3 are reserved to denote the start and end of the tracked
edge information respectively. The numbers that appear next to 0 in the place of
co-ordinates are the size of the image while those that appear next to 3 random

and can be ignored.

After the track list is complete we pass it through a special filter that eliminates
tracks of length smaller than a set number of pixels. In our study it was deemed
that tracks with total length under 10 pixels carry too little significant information.
You can view the results of our tracking superimposed on the original gray level
image in Figure 4-15. Here we have removed all tracks with lengths under 10
pixels, but still spurious tracks remain. Also, it is apparent that we have a problem
of fragmentation. Notice, however that the tracking algorithm detects well the
centerline of the vessel as can be seen in Figure 4-16 that shows a magnified part
of Figure 4-15. This is a strong indication that the ridge detection technique is
appropriate for our problem. Also, notice that the impression for the extent of

fragmentation given by the printed image in Figure 4-15 is false. Due to the fact
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Figure 4-16: A magnified part of three tracked vessels

Figure 4-17: Tracking results in a different image
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Figure 4-18: Detail of an arteriovenous crossing

that our tracks are one-pixel wide it is expected that halftone printers and raster
screens will not depict them completely in low resolutions. However, recombination
and retracking of the long vessels is necessary, as we point out in the discussion that
follows. An image of different geometry is presented in Figure 4-17 for comparison.

Notice how our method does not fail at arteriovenous crossings (Figure 4-18).

4.4 Discussion

During our study the method described above successfully extracted 80% or more
of the vessels present in a fundus image compared to those that can be seen with
the naked eye. If we restrict ourselves to large vessels the percentage of success is

well above 90%. However, a number of problems were identified:

e merging of nearby vessels with strong intensity variation

e fragmentation of tracked vessels

One particular case where merging occurs in our test image is shown in Figure
4-19. Here the right vessel has registered a very high intensity compared to the
one immediately to the left. As a result any attempt of Gaussian smoothing
appropriate for ridge detection will lead to the centerline of the left vessel being

suppressed.
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Figure 4-19: A fraction of our test image

In Figure 4-20 we can see the original intensity values of the region and three
different attempts to smooth it. The one used in the results of Figure 4-15 is the
one with width equal to 19. Clearly the left vessel does not have a ridge with
the assumptions set forward in our study since the candidate ridge point is not
intensity maximal compared to its immediate neighbours in a direction orthogonal
to the direction of the vessel. If we lower the Gaussian width, we still do not get a
detectable ridge point since now our candidate point does not present a contrast
maximum in a direction orthogonal to the direction of the vessel. Decreasing the
width further leads to noisy results which completely fall out of our ridge detection
technique as can be viewed in the & = 5 smoothing plot. It should be noted that
the intensity level of this vessel per se does not exclude it from being identified, as

the one on the far left of Figure 4-19 is, while having a similar intensity profile.

The fragmentation of vessels proved quite hard to avoid, the reason being that
the requirement of directional consistency on a pixel-thick line is prone to noise. It
is interesting that the set value which determined the distance over which a can-
didate point is checked for being a regional contrast maximum did not influence
greatly the fragmentation. The optimisation of our tracking algorithm has the
tracker stop at sharp changes of direction and register a new track for these. This
was thought appropriate for the later requirements of calculating mean length un-
til the next bifurcation and mean tortuosity index. Of course, the tracker cannot

unfragment vessels which have been falsely fragmented in previous steps. Still, we
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Figure 4—20: Different levels of smoothing on a vessel

think that an intelligent linking procedure should be developed for joining frag-
ments of long vessels and identify bifurcations. This would provide an overall view
of the vessels instead of the local view adopted in this study and could provide
the ability to perform global measurements of length and tortuosity. Several at-
tempts performed in the direction of track linking utilised algorithms that rely
on calculating mean positions in clusters of points and interpolate intermediate
points to perform joining. Results of such a technique are shown in Figure 4-21
superimposed on the original image and are of course rejected in our case as they

distort the accuracy of subsequent measurements.
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Figure 4-21: Linking by interpolation
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Chapter 5

Measurements of Retinal Structures

In this chapter we use the vessel extraction derived earlier in order to make es-
timates for sizes of retinal structures. We are mainly interested in the length of
vessels, the width of the vessel lumen (hereafter referred to as “vessel calibre”)
and the width of the wall of the vessel. We also introduce a measure of tortuosity

for the vessels and calculate all of the above for our demonstration image.

5.1 Arteriolar length

We estimate the length of a vessel by consulting the tracked file and counting the
pixels for each individual track. This approach is under the assumption that the
length of the centerline is a good approximation of the length of the vessel and
that our tracker stops at bifurcations and gives a new track for every sub-vessel.
We note that of medical interest in our case is not the total length of a vessel
but the length until the next bifurcation. This allows for monitoring hypertensive
retinopathy which makes vessels bifurcate earlier than they do in normatensive

persons [Stokoe 77].

The length of the tracks is reported as the tracks are met in the track file. A

typical output of our length counting program looks like this:

Track # 1 length 13
Track # 2 length 86
Track # 3 length 107
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Figure 5-1: Application of the width estimation method in a vessel profile

Track # 4 length 34
Track # 5 length 87
Track # 6 length 21
Track # 7 length 58
Track # 8 length 18
Track # 9 length 32

..............

Currently we have implemented a program that overlays the tracks on the
original greyscale image reporting at the same time their length on the screen.
Other configurations that would enhance the visualisation of such results, such
as colour-coding, are possible. This is a topic that will recur in the last chapter,

where the extensions to this work will be discussed.

5.2 Estimation of Vessel Calibre and Wall

Apart from the significance of the vessel calibre changes that lead to (and depend
on) pressure fluctuations, it is apparent that the width of the wall is an interesting
parameter in monitoring atherosclerotic changes that result from hypertension.
Since at this point we have identified the pixel co-ordinates of the points that
constitute the centerline at each vessel, we can use these to determine automat-
ically the width. We do this by first sampling the original image in a direction

orthogonal to the local direction of the vessel. Since the track is one-pixel wide,
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this direction can be derived by comparing the relative position of the scanned
point with respect to its neighbours. We also sample the same points from the
smoothed image. Sampling goes out a set number of pixels to the “left” and to
the “right” of the scanned pixel in a direction orthogonal to the local direction of
the vessel. This set number during our experiments has been determined to be
six pixels in the horizontal or vertical direction and five pixels in the two diagonal
directions (45 and 135 degrees) to accommodate for the rectangular shape of the
pixels. We subdivide our samples to “left” and “right” pixels and identify where
the difference between the original and the smoothed image becomes minimum
on each side. The rationale for doing this is that the points less affected by the
Gaussian smoothing (in the region sampled) will be the ones that lie closer to
the border of a blood vessel. Additionally we identify the two maxima to the left
and to the right of each point registered in the tracked file. These are taken to
correspond to the beginning of the lumen of the vessel in either side. Hence, cal-
culation of the width of the wall of the vessel has now been reduced to calculating
the difference between the pixel positions of the points that mark the walls of the
vessel and those that mark the beginning of the lumen. In Figure 5-1 we can see
the application of our method on a cross-sectional profile of a vessel that appears
in our test image. It may seem that the points identified, particularly in the outer
walls, as border points are not the ones where the smoothed image is close to the
original, but this is because our polts have been done with interpolated points,
while our values are discrete. For demonstrative reasons we have overlaid the de-
tected pixels on the original greyscale image corresponding to this particular vessel
(Figure 5-3). Figure 5-4 is a further magnification of this part of the image. We
also include two greyscale images of a wider area. Figure 5-5 depicts the result of
overlaying pixels identified as lumen borders inside the vessel. Figure 5-6 depicts
the same area but this time with the pixels that are estimated to correspond with
the wall of the vessels. Full scale overlaid images are to be found in Appendix
A. The algorithm for estimating the vessel calibre and wall thickness is illustrated
below. Note that w is the size of the set value of pixels we sample. The directions

we refer to can be viewed in Figure 5-2 :

READ track_file
for every track

while this track is not ezhausted
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Figure 5—2: The four local directions we test for

move to the next point
register two points:
current point P(z,y)
nezxt point N(n,m)
if z=n then
direction to look at is 90 deg.
sample original tmage orthogonal to direction
sample smoothed image orthogonal to direction
end * if *
if y=m then
direction to look at is 0 deg.
sample original...
sample smoothed...
end *if *
f(r<n &y<m)OR (x>n &y>m)then
direction to look at is 45 deg.
sample original... *one sample less on each side *
sample smoothed... * one sample less on each side *
end * if *
f(z<n &y>m)OR (z>n &y <m) then
direction to look at is 185 deg.
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Figure 5-3: Superimposing the identified points on the original vessel

sample original... *one sample less on each side *
sample smoothed... *one sample less on each side *
end *if *
build subvectors of length “=1
*Store the ‘‘left’’ and the ‘‘right’’ pixels from the one
scanned. Note that the pixel scanned is not included in these
subvectors. Also, w must be odd.*
find the mazimum of each subvector and store the relevant pizels
calculate the respective differences
built the respective difference subvectors
find the minimum of each subvector and store the relevant pizels

end
END

Once the co-ordinates of those pixels are stored, the width of the vessel at every
point that has been recorded by the tracker can be estimated using, for example,
the Euclidean distance between the two external pixels that have been calculated
for this particular point. This way we can have a detailed width variation of each
particular vessel along its length as well as an average width of all the vessels
tracked. Also, we can easily estimate the wall width as the distance between the
pixel where the sample from the original has a maximum and the respective pixel

that was found to represent the wall on that side.
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Figure 5-4: Detail of original vessel

Figure 5-5: A part of the vasculature with the lumen defining points superim-

posed

Figure 5-6: A part of the vasculature with the wall defining points superimposed
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5.2.1 Sub-pixel Precision

It is possible to attain sub-pixel precision in calculating both the total width
and the wall width of a vessel. In order to achieve this instead of the absolute
point-to-point difference between the samples of the smoothed and the original
image we consider the standard difference and we look for zero-crossings in this
difference. A realistic example from our demonstration image might help to clarify

this estimation.

One cross-sectional profile of a vessel in our demonstration image has the fol-

lowing intensity values:

82 82 82 82 82 90 94
94 94 94 90 82 82

Their respective smoothed values are:

80.3714 81.5666 83.1959 85.2713 87.6213 89.8734 91.5490
92.2259 91.6854 89.9774 87.3967 84.3881 81.4207

which means that their difference vector is:

1.6286 0.4334 -1.1959 -3.2713 -5.6213 0.1266 2.4510
1.7741 2.3146 4.0226 2.6033 -2.3881 0.5793

Now we are looking for zero-crossings (i.e. pixels where the difference changes
sign) and we favour the furthest zero-crossings on each side. According to our
rule of sampling the seventh element of our vector corresponds to the ridge point
registered in the track file so we look to the “left” and to the “right” of it for
the pixels that will determine the vessel calibre and the total width of the vessel.
Incidentally, this is the profile of the vessel depicted in Figure 5-1 so it is a vertical
vessel and the terms left and right here have their usual meaning on the horizontal
field of view. However, this is just to facilitate our example and does not decrease
the generality of our method. The furthest zero-crossing to the left appears be-

tween the second and the third pixel which have registered difference of 0.4334
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Figure 5-7: A representation for our sub-pixel precision technique

and -1.2454 respectively. Since abs(—1.2454) 4 abs(0.4334) & 1.6 we can say that
the best approximation for the border of the vessel lies at the first quarter of the
second pixel. Hence, instead of considering the wall of the vessel to start 4 pixels
to the left of the ridge point, we take it to start at 4.734 pixels. A different way to
locate the zero-crossing with sub-pixel precession would be the following: Suppose
that the zero-crossing occurs between pixel x with value V, and x+1 with value
Vz+1. Then the zero-crossing is at = + IIT:IJIJ-IYI_I:‘u:nTI The other side is treated in a
similar manner. Of course, such an approach has no positive impact on our ability
to visualise the border on a computer screen but it helps us in the accuracy of our

measurements. Figure 5-7 presents a visualisation of our rationale for preserving

the analogy of each pixel’s “strength” with respect to the exact border.

5.3 Tortuosity

Zhou et al used as measure of tortuosity the ratio of centerline length between two
points in question to the distance between these points [Zhou et al. 94] . They do
not mention what metric was used for the derivation of the distance, but we may
safely assume that it was either Euclidean or the Manhattan metric. In either case,
such a measure is not robust as it is not able to discriminate clearly between the
cases of tortuosity depicted in Figures 5-8 and 5-9. In our opinion a measure of

tortuosity for retinal vessels should register a higher tortuosity index for the curve
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Figure 5-8: Simulation of a vessel with a locally high curvature

SN\ N

Figure 5-9: Simulation of a vessel with a locally low curvature

in Figure 5-8 as its medical impact is higher. A possible measure of tortuosity
in our case could be produced by averaging the change of angle calculated at
reasonable discrete steps along the length of the vessel. The change of angle is
independent of scale and does not cancel out along the length of the vessel. We
therefore introduce as mean tortuosity index of a track, 7}, a number derived in
the following manner: for each pixel indicated in the track list, P, we consider
two more pixels, P-s and P+s that lie a set number of pixels ahead and after P,
respectively. We then form the vectors (P-s,P) and (P,P+s) and we normalise
them by dividing each with its norm. Lastly, we form their dot product and take
the inverse cosine of this product. If we average these angles over the number
of points used along the vessel track we get the mean tortuosity index of the
respective track. This index is not reported when very few points are sampled
(e.g ten or less). In mathematical notation, the ideas expressed above can be

formulated as:

! * Zg;l:;ith-mp) arccos(UV(P,,_mp, Pn) o UV(P,,, Pn+stcp))

(t_length—2xstep)

where t_length stands for the length of the particular track and UV means unary

vector. A detailed presentation of our algorithm is the following:

READ track_file

for every track
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repeat
move at point P, “step” pizels along the track
if P + step lies outside the track
break
increase counter
register points for calculation:
P := (zp,yp)
P-step := (z1,y1)
P+step := (r3,y2)

calculate unary vectors:

V) = (zp—z1) (vp=w1)

(‘/11 2) [\/(z,,-:cl)’+(yp—y1 )2’ \/(x,,—::l)’+(yp—y1 )2
- (z2—zp) {y2—-vp)

(Ul, U2) . [\/(a:z—z‘p)2+(y2—yp)2’ \/(a:g—:cp)2+(yz—1/p)2

calculate the arccos(Vy * Uy + Vo * Us)
accumulate the results in a variable T
calculate T, of this track by dividing T with the counter

end
END

5.4 Discussion

With this kind of tortuosity measure we can also have an idea of variation of
tortuosity along a vessel. This could be used in the detection of abrupt changes
that could correspond to stenoses or the presence of retinal lesions. The format of

the results we get is:

step =
15

Track # 1 Average tortuosity N/A Very few points tested 1
Track # 2 Average tortuosity 0.1235 # points tested 56
Track # 3 Average tortuosity 0.2432 # points tested 77
Track # 4 Average tortuosity N/A Very few points tested 4
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Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track

Track

H O®# O #H B OH B OH R OH OB OH OB O OH O OB OH H OB OH OB OB OH O OB OH OB O OH W™ OB

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

tortuosity 0.0923 #
tortuosity N/A Very
tortuosity 0.1199 #
tortuosity N/A Very
tortuosity 0.1391 #
tortuosity N/A Very
tortuosity N/A Very
tortuosity N/A Very
tortuosity N/A Very
tortuosity N/A Very
tortuosity N/A Very
tortuosity 0.1755 #
tortuosity 0.0695 #
tortuosity N/A Very
tortuosity 0.0908 #
tortuosity 0.0423 #
tortuosity 0.1513 &
tortuosity 0.2910 #
1209 #

#

#

tortuosity 0.2372

tortuosity 0.
tortuosity 0.1170

tortuosity N/A Very
tortuosity 0.1393 #
tortuosity N/A Very
tortuosity N/A Very
tortuosity 0.3418 #
tortuosity N/A Very
tortuosity 0.3522 #
tortuosity N/A Very
tortuosity N/A Very
tortuosity N/A Very

32

points tested 57

few points tested
points tested 179
few points tested
points tested 127
few points tested
few points tested
few points tested
few points tested
few points tested
few points tested
points tested 102
points tested 57

few points tested
30

27

120
151
22

33

21

points tested

points tested
points tested
points tested
points tested
points tested
points tested
few points tested
points tested 24

few points tested
few points tested
points tested 92

few points tested
points tested 38

few points tested
few points tested

few points tested

i T = Y =
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Figure 5-10: The width of the lumen of a vessel along its length
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Figure 5—11: Some of the original tracks after the removal of the papilla region

Compare the results with the image in Figure 5-11. Here we have numbered
the tracks to indicate correspondence with results and we have removed the papilla
region because vessels twist and bend a lot on the verge of coming out of the optic
disk, hence we would have accepted false indications of tortuosity as true. Tracks
30 and 32 have a markedly higher index of tortuosity which is reasonable given

that their curves are more sharp than, say, track 16.

We can see that our aim to find a measure of tortuosity that will reflect the

extent and abruptness of twist and turn of the vessels has been met successfully.

On the other hand, the width estimating technique has not worked perfectly.

There is a great fluctuation of estimated width along the length of a vessel. We
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Figure 5-12: The vessel calibre estimated on the original image
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Figure 5-13: The total width estimate for our demo image

calculate this by considering the Euclidean distance of the points that are found
furthest on either side of the track point in a direction orthogonal to the vessel.
There are two sizes that we can calculate this way. One is the width of the vessel
and the other is the width of the lumen, in other words the vessel calibre. In Figure
5-10 we can see the trembling effect created by the diversions in the estimation of
the width.We close this chapter by introducing the results of our estimates on the
whole image both for the vessel calibre (Figure 5-12) and the total width (Figure
5-13).
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Chapter 6

Conclusions

6.1 Summary of goals

The main objective of this project was to devise and implement an algorithm for
the automatic extraction of retinal vessels in fundus images. This could be a first
step in a more general processing session where measurements of retinal charac-
teristics and comparisons to known values could be made. It was clear from the
beginning that later stages influence the method selected to perform the segmen-
tation as there is no guarantee that a method which segments the vessels from the
background however sophisticated and mathematically sound (e.g. Topologically
adaptive snakes [McInerney & Terzopoulos 95]), will allow for further processing
of the image features in the desired direction. Once the vessels were accessible
we were required to perform a number of measurements with respect to sizes of
different structures on the retina. As indicative of the problems that arise when
dealing with biological data we were asked to calculate length, width of vessels
and wall thickness. Furthermore, we were required to introduce a tortuosity index
measure that would give an idea about the correlation of systemic hypertension

with attenuation changes in retinal vessels.
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6.2 Summary of the work completed

During this project we developed and tested an algorithm for the extraction of
retinal vessels based on the technique of ridge detection. Qur technique exploits the
fact that vessels in fundus images have a ridge appearance with respect to intensity
values. These ridge points were detected by suppression of the non-qualifying
pixels across the image. The resulting image is cleaned from spurious noise, dilated
and eroded and is finally tracked where upon our tracker returns pixel co-ordinates
corresponding to the centerlines of the vessels. Once the centerlines are identified
we move on to determine size measurements such as length, width of the vessels
and their respective walls. We propose and implement as measure of tortuosity of
a vessel the average angle of turn, sampled at appropriate steps. All measurements
are calibrated for magnification errors with the help of the real world papilla size
which we consider a known invariant. The papilla is located automatically with a
disk fitting procedure that exploits very minimum assumptions. Throughout our

work there is no dependence on any kind of threshold or parameter fine tuning.

6.3 Evaluation of the work

Our algorithm for the automatic location of the papilla works well and is quite
robust in the sense that reasonable deviations from the true centre of the feature
do not make the program misquoted the radius. It downpresents a problem of
time, but this is an option into consideration when one has to pick a final imple-
mentation. Also, there is an apparent trade off between the time and the accuracy
of the estimate. If one had to re-implement it, we feel that the method would
benefit from a compiled computer language. The non-maximal suppression works
fine as well, bringing enough information to the next stages. Unfortunately, this
information is not utilised fully by the tracker which produces fragmented vessels.
Although our tracker identifies a good 80% of what can be seen with the human
eye (arteriovenule subdivisions up to the fourth level) we feel that it would benefit
greatly from a post-processing linking routine. Linking should be as “intelligent”

as possible and should keep the interpolation of points very restricted. Also, this
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way we could possibly look under a different, more global perspective to length
and tortuosity. The whole program would greatly benefit from extended testing as
time did not permit rigorous testing at this point. It is well known how biological

variation makes comparisons very difficult.

6.4 Future work

This project was meant to provide the software basis for an extended set of ex-
perimental measurements concerning a possible correlation of results that could
lead to conclusions on the relationship between retinal findings and hypertension.
In that sense, we feel that the ridge detection technique has proved ideal for our
purposes and could well be used in an extension of this work into an integrated
software tool in support of a physician’s practise. A point which someone should
definitely look into is the tracker, which should either be redesigned and tailored
to our needs or complemented with a powerful linking engine. Further extensions
would be to work with coloured images as well. Coloured images could be reduced
to gray scale for the purposes of segmentation and then one could go back to the
colour image without any registration problem. This way one could study standard

arteriovenous indices such as artery to vein ratio, or arteriovenous crossings.

If the techniques presented here prove to be robust and reliable under strong
experimentation as we feel confident they will, a further step would be to form a
sort of grading scale on the severity of hypertension. Ideally, classification in this
scale will be by the software itself either through the use of classic Al techniques,
e.g. through an Expert System, or through a Connectionist approach where a

Neural Network could be trained to recognise the hypertensive patient’s symptoms.

Lastly, we would wish to point out that the use of computer technology as a
diagnostic aide should not be seen isolated from the other uses of automation in
use today by many people in the medical community. Such software should most
probably be able to connect directly, or through a custom interface, to a patients’
database. Such a move would indicate excellent use of resources as well as foretell
the integrated role computers are going to play in medicine within the next few

years.
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Appendix A

Experimental Results

In the following pages we present every step of the method described above applied
on our test image for demonstration purposes. After smoothing and building the
directional map (Figure 4-12) we move on to suppressing non-ridge pixels. The
outcome of scanning the image through the three criteria presented earlier can be

seen in Figure A-1.

Next comes cleaning individual pixels which can be seen in Figure A-2 as well

as dilation (Figure A-3) and erosion (Figure A-4).

Figure A-5 depicts the results of the two thinning filters and figure A-6 the
results of the tracking algorithm. Lastly, all tracks with length smaller or equal

to 10 are removed. The final track file can be viewed in Figure A-7.

It should be noted that all track files have been turned to HIPS format using

tretob -h < file.trk > file.hips
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Figure A-1: Non-maximal Suppression

Figure A-3: Dilated image
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Figure A-4: Eroded image

Figure A-5: thinned image
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Figure A—6: Before removal of small tracks

Figure A-T: After removing small tracks
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