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Abstract

This dissertation describes research into the problem of automated change detection within
MRI brain scan imagery. The recent quality improvements of such data, coupled with faster
machinery and algorithms has led to the development of a realisable system. Problems overcome
include the synthesis of multi-modal (or multi-channel) data and point-wise image region match-
ing strategies. Matching involves computing directed line segments that point from local regions
in the source image to similar local regions in the target image. These mappings, if correct, will
then encode both the global mis-registration of the image, and the local structural changes. After
constraints, aimed at improving the initial matching, have been imposed, a least squares esti-
mate is made of the global transformation. This global transformation is then removed from the
match mappings, allowing analysis of the residual vectors which indicate local structural changes
between images. Pixel level quantisation often distorts data and hinders image matching. In
solution, a multi-variate sub-pixel matching algorithm is developed which aims to describe local
brain structure changes as quantified pixel movement vectors. Considerations are given to the
benefits post-operative match map improvement and analysis techniques. Results are shown
throughout demonstrating the performance of the techniques described.
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Chapter 1

Introduction

In 1990 Woodward [10] delivered his M.Sc. dissertation describing a method for detecting brain
structure changes over time by analysing MRI (Magnetic Resonance Imagery) data. The data
available at the time was poor, and much of Woodward’s work was hindered by unavailability

of good test data. Nevertheless, he developed a system the showed promise.

The availability of better data sets and faster machinery has prompted a re-apraisal of Wood-

ward’s work. This is the topic of this dissertation.

Woodward worked with two-dimensional MR imagery of 128 x 128 by eight bits per pixel.
Currently available imagery consists of 256 x 256 by sixteen bits per pixel, multi-channel serially
sectioned data. A full description of the data and file formats can be found in the files pointed to
by the Appendix. New image matching techniques which utilise the full duality of the bi-variate

data are developed.

This dissertation presents the development of Woodward’s initial findings into a change system

capable of run-times measured in minutes and not hours (as Woodward’s was).

The basic strategy is this: Two images are first taken and matched on a pointwise basis.

Image pixel values need not be scalar—vector quantities such as those from colour imagery,



or multi-modal CT imagery are shown to work better. Matching involves computing directed
line segments that point from local regions in the source image to similar local regions in the
target image. These mappings, if correct, will then encode both the global mis-registration of
the image, and the local structural changes. After constraints, aimed at improving the initial
matching, have been imposed, a least squares estimate is made of the global transformation.
This global transformation is then removed from the match mappings, allowing analysis of the

residual vectors which indicate local structural changes between images.

This dissertation is presented in four main parts. A thorough investigation of image region simi-
larity measures is conducted, followed by their application to image matching. Next, measures
aimed at improving the initial matching are considered, concluding with considerations for
change analysis. For a very brief introduction to the capabilities of the system developed here,

the reader is referred to Plates 1 and 2.



Chapter 2

Image Matching

The initial point to point image matching requires that, for each pixel in the initial image, a
corresponding location is found in the later image. Under the assumption that the structure,
magnification and rotation of any part of the image changes little from the initial to subsequent
images, a match for any pixel can be found by maximising the amount of similarity between the

pixel and it’s neighbours and a similarly defined region in the second image.

Clearly then, essential to the success of image region matching is the choice of similarity metric
(or image match evaluation function). This chapter presents a number of evaluation functions,
assesses their suitability for use with MRI brain scan data and presents empirical justification

for the conclusions reached.

2.1 Image Region Similarity Metrics

The MRI brain scan data consists of two data sets (pre-processed and smoothed to remove the
skull and other artifacts) for each scan. The first gives a measure of proton density (PD), and
the second is derived data known as T2. The T2 images highlight tissue structures of interest

to physicians and neurophysiologists for easier human interpretation.



A number of single channel image match evaluation functions have been considered, such as:

e square root of sum of squares of differences of pixel values over the matched region. This

is the Euclidean metric.

o sum of absolute differences of pixel values over the matched region. This is the Manhatten

metric.

o largest single absolute difference of pixel values over the matched region. This method is
especially sensitive to spot noise, and so it may be necessary to first pre-process the images

with a noise reducing filter.

e statistical cross-correlation of image regions [10].

Each of these evaluation functions are described in detail below, first in the context of single

channel matching, and then generalised to multi-channel matching.

2.2 Single Channel Image Matching

A single channel matching problem matches images whose pixels are scalar values. Any correla-

tion in the local structure of the two images should be found by the matching process.

Woodward [10] considered such a single channel matching problem in the pre-cursor to this
project. He used a local normalised correlation image match function (Equation (2.4)), but
did not present any alternatives. This is surprising since correlation is computationally more
complex than many of the alternatives, and his matching algorithm averaged eight hours to

arrive at an initial global image match for a relatively small pair of images ({10}, p. 70).

To a large extent, Woodward’s empirical evaluation was marred by poor test data. Between the
before and after images there had been such marked brain degradation that little correspon-
dence between the two images existed—even to the human observer. Faced with this problem,
Woodward had no choice but to create his own ‘after images’ by transforming the initial data
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by some known parameters. While this provides a good testbed for evaluation, it is difficuit to

emulate the types of distortion to be found in ‘real’ data.

The following sections present in detail a number of single channel image match evaluation

functions, and assess their suitability to region matching in MRI brain scan data.

2.2.1 Single Channel Euclidean Metric

Let {z;} be the values of pixels from a neighbourhood, and let {y;} be the values of pixels
from a corresponding neighbourhood from the second image. Then if samples are taken over a

neighbourhood of size N, define the Euclidean similarity metric as:

(2.1)

The best region match is given by choosing a neighbourhood {y;} that minimises e for a given

{:L','}.

2.2.2 Single Channel Manhatten Metric

As above, let {z;} and {y;} define neighbourhood samples of size N from two images, then the

Manhatten similarity metric is given by:

N
b= loi-ul (2:2)
i=1

The best region match is given by choosing a neighbourhood {y;} that minimises {; for a given

{.’L‘,’}.

11



2.2.3 Single Channel Largest Absolute Difference Metric

Again, let {z;} and {y;} define neighbourhood samples of size N from two images, then the

largest absolute difference metric is given by:

loo = max(| z; — g |) (2.3)

The best region match is given by choosing a neighbourhood {y;} that minimises l,, for a given

{1:,'}.

This method suffers from spot noise. For this reason it may be especially important that the

images are first preprocessed with a noise reducing filter.

2.2.4 Single Channel Normalised Cross-Correlation Metric

Woodward [10] used this metric as the basis for his region match evaluation function. It has a

history of effective use [1, 6, 9, 7).

Define the mean of the N z samples (from the first image region) as:

=

1 N
T= Zz;
i=1

and the variance as:

8t

o

1 N
= N Z(x' - 5)2
=1

and similarly for § and 0';;’ (from the second image region). Then the normalised correlation

function is given by!:

N —
1 Z (l‘,‘ - z)(y,' - y) (24)

The best region match is given by choosing a neighbourhood {y;} that maximises p for a given

1A neater form for the divisor might be: o;0y, but during evaluation a direct translation would perform
two sqrt() operations. The equations given throughout have been carefully chosen to reflect the actual
implementation.

12



{z;}. Correlation returns a value for p in the range [—1,+1]. p = +1 means the regions are
perfectly correlated, with a value of zero denoting no correlation. The higher the value of p
then the stronger the correlation. Strong correlation shows that for any pixel in the first region
the associated pixel in the second region has a similar value with respect to the local standard
deviation of each region. Negative correlation values show that the regions are anti-correlated,
i.e. if any pixel in the first region has a high value then the associated pixel in the second region

has a low value and vice versa.

Cross-correlation thus provides a similarity measure based on the structure of the neighbourhood
pixel values and is robust to differences in contrast and absolute measurement level between the
matched regions. The standard deviation of a neighbourhood provides a measure of contrast
over that neighbourhood, and since the correlation evaluation (Equation (2.4)) normalises by
dividing through by the local standard deviation of each region the effects of contrast differences
are largely compensated for. Fisher and Oliver {3] suggest an adaptation to Equation (2.4)
when applied to image region matching. Here we argue that, given the consistent nature of
modern image capture devices, artificial discrepancies in contrast will be small (assuming the
illumination distribution changes little), and so we would wish to penalise two regions whose
contrast differed greatly. This is based on the assumption that contrast differences are due to
image structure rather than artifacts introduced by the image acquisition process. The cross-

correlation is modified to give:
N - =
1 Ty —Z i —
p= Z ( )y —7) (2.5)

Now, if the two regions {z;} and {y;} are slight variations of the same scene then this change has
little effect. If however, {z;} and {y;} have a marked difference in contrast p is pulled toward

zero, causing decreased correlation.

A number of different image region similarity metrics have been proposed above. These all
vary in computational complexity and sophistication. Woodward’s region matching algorithm

used the correlation metric given in Equation (2.4) ([10], p. 28), but took on average eight
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(a) Set 1, Slice 19, PD (b) Set 2, Slice 18, PD

(c) Set 1, Slice 19, T2 (d) Set 2, Slice 18, T2

Figure 2.1: Corresponding sections from brain data sets 1 and 2

hours to reach an initial match for each image pair ([10], p. 70). The next section details the
implementation, testing and evaluation of the considered metrics, drawing conclusions on the
best metric for this application, while later sections detail and evaluate generalisations of the
metrics to cover the multi-variate (multi-channel) case, concluding this chapter with remarks

upon suitability of the metrics with respect to the project as a whole.
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(a) Set 3, Slice 15, PD (b) Set 4, Slice 17, PD

(c) Set 3, Slice 15, T2 (d) Set 4, Slice 17, T2

Figure 2.2: Corresponding sections from brain data sets 3 and 4

2.3 Testing and Evaluation of Single Channel Matching

All five of the single channel image region matching metrics given in Section 2.2 as Equations
(2.1), (2.2), (2.3), (2.4) and (2.5) have been implemented, tested and evaluated. This section
presents the tests and experiments carried out to verify and evaluate the matching algorithms

suggested by these metrics.

The general search framework when computing an initial match for all pixels is one of brute
force search, with searching limited to a region about the expected match pixel. For this initial

matching it is assumed that the two images are already approximately registered, and so the

15



expected match pixel will occupy nearly the same position in the second image as it does in the

first.

Since MRI data currently available has two channels (the PD and T2 images), evaluation will be
carried out for three single channel cases: (1) PD only, (2) T2 only, and (3) for a composite image
of the average of the PD and T2 images, i.e. for pixel values PD; and T'2;, define the associated
pixel value in the composite image as C; = (PD; + T2;)/2, where ¢ indexes pixels, and PD, T2
and C represent pixel values from the PD, the T2 and the composite images respectively. It is
anticipated that generalised evaluation functions will yield better results than a single channel

evaluation function fed with such generalised, or partial data.

Figures 2.1 and 2.2 show the test images. These images are used to verify that the matching

algorithms work and have been implemented correctly.

The first set of tests takes an image, and translates it by a known amount for the second image.
Three such tests are carried out: (1) on a PD image, (2) on a T2 image and (3) on an image
that is the average of the T2-PD pair. Since the exact relation between the two images is easily

determined, this is used to provide evidence of correctness.

The second set of tests modifies the correlation match algorithms to to maximise anti-correlation,
and the second image is taken to be an exact negative of the first but translated by a known

amount as above. Again this is used to provide evidence of correctness.

The third set of tests takes an image, and multiplies each pixel value by the same amount for
the second image. This introduces a global contrast difference between the images. This is used
to provide testing of region match performance in the face of contrast differences. The structure

of the images remains the same; the contrast difference has therefore been isolated.

The fourth set of tests takes an image, and increases each pixel value by a constant amount
for the second image. This introduces a global pixel intensity difference. It is used to provide

evidence of correctness.
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The fifth set of tests takes an image, and rotates it by a known amount for the second image.
Since rotation of images is involved and the region match mask is not rotated in sympathy, this
introduces disparity between the likeness of the matched regions and serves to provide a measure

of the success of the similarity metrics when faced with similar but not identical regions.

The sixth set of tests examines the multiplicative effects of rotation, pixel value scaling and pixel

value offset on image region matching.

The final bank of tests in this section uses a number of “real” MRI data sets taken from the
patient at different times. This will provide a measure of how well the metrics cope with real

not manufactured data.

These tests do not form a complete suite (for example the behaviour under small image magni-
fication changes should be evaluated). They do however provide enough evidence to empirically

show correctness of both the theory and implementation of the initial region matching process.

Unless indicated otherwise, the base test images are those shown in Figure 2.1. In some cases,
these images have been transformed in known and detailed ways to provide artificial image

artifacts used as obstacles during testing.

2.3.1 Interpreting the test results

In the following sections, the test results will be presented in tabular form. Interpret the entries

as follows:

e Mapping: Gives the base images used for matching:

PD—PD An PD image is matched with another PD image

T2—T2 A T2 image is matched with another T2 image

PDT2/2—~PDT2/2 A composite image made from the average pixel
values of a T2 and PD image is matched with another
similarly defined composite image

T2,PD—T2,PD A pair of images, one a T2, the other a PD are
matched with a similar pair of images

¢ Metric: The region similarity metric used:

17



Contrast The contrast penalised cross-correlation similarity
metric given in Equation (2.5) or (2.11)

Cross The cross-correlation similarity metric given in
Equation (2.4) or (2.10)

Euclidean The Euclidean metric given in Equation (2.1) or (2.7)

Manhatten The Manhatten metric given in Equation (2.2) or
(2.8)

loo The lo or Lo, metric given in Equation (2.3) or (2.9)

e Time: Approximate timings (with a 486DX PC clone running at 50MHz).
e Matches: Number of pixels in the initial image for which a match has been computed.
¢ Bad: Number of bad matches.

e Criteria: Criteria for deciding if a match is bad. This figure represents the maximum
allowed error (Euclidean distance measured in pixels) between the expected match and the

actual match position.

¢ Mean Error: Mean error (in pixels) between the expected match and actual match

positions.

¢ Error S.Dev: The statistical standard deviation (in pixels) of the differences between the

expected match and actual match positions.

2.3.2 Test 1: Translation

This test shows the searching algorithm implemented is correct. It takes a number of images and
translates them by a known constant amount. Since the local structure and pixel values remain
unchanged between the original and translated images all the suggested similarity metrics should
perform faultlessly (providing of course there are no regions of constant gradient greater in size

than the matching mask).

For these tests, matching was performed with a 5 x 5 neighbourhood centred around each pixel,

with search restricted to an 11 x 11 area about the (non-translated) initial position.

Tests were carried out on the following image sets: PD—PD, T2—T2, PDT2/2—PDT2/2

(Figure 2.1). Without exception each metric provided the same correct region matches for every
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one of the 17,876 pixels in the initial images. Furthermore, the correlation metrics returned a
maximum correlation for every match as +1 (i.e. the strongest possible confidence that the match
is good). The only other results of interest are the average timings for each of the strategies,

presented below:

Metric Time Matches
Contrast 10m49s 17,876
Cross 10 m 57 s 17,876
Euclidean 2m37s 17,876
Manhatten | 2m 22 s 17,876
lo 2m24s 17,876

Table 2.1: Test 1: Identical images

This test shows the metrics to be fundamentally correct in measuring the absolute likeness
between two identical local regions. The difference in the timings reflect the computational

complexity of the metrics.

2.3.3 Test 2: Inverted images

For this test the correlation based matching algorithms were modified to search for the greatest
anti-correlation. The second image was an inverse of the first (like a photographic negative) but
translated in the vertical direction by a small amount. Matching was performed with a 5 x 5
neighbourhood centred around each pixel, with search restricted to an 11 x 11 area about the

(non-translated) initial position.

Without exception, each pixel was matched correctly with a correlation value of —1 for each

match. The timings were comparable to those above.

This shows the implementation and theory to be correct in measuring anti-similarity between
image regions. It should be noted that this test has little validity in determining the suitability
of cross-correlation for image region matching over the other metrics presented since they too

can be easily adapted to search for such anti-similarity.
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2.3.4 Test 3: Contrast Differences

This test aims to compare the behaviour of the five different region similarity metrics when
used with images of the same structure but where each pixel value has been multiplied by a
constant. It is reasonable to assume that any image matching algorithm will encounter images
taken with different hardware and even at different times. Such images may contain this sort of

pixel scaling, both on a global and local scale.

The test takes an initial image, multiplies each pixel value by 1.5 for the second image, and
translates it by five pixels in the vertical direction. Matching was performed with a 5 x 5
neighbourhood centred around each pixel, with search restricted to an 11 x 11 area about the

(non-translated) initial position.

If the similarity metric exhibited a random nature then chance alone would give around 17,686

bad matches. Typical performance of the initial matching is given below:

Mapping Metric Time Matches) Bad Criteria| Mean Error
Error S.Dev
T2—T2 Contrast | 10 m45s | 17,834 5,121 0 1.06 2.27
T2—T2 Cross 10m49s | 17,834 0 0 0.0 0.0
T2—T2 Euclidean | 2m 37s 17,834 16,802 0 6.34 3.35
T2—T2 | Manhatten | 2m 20 s 17,834 17,323 0 6.48 3.23
T2—T2 leo 2m 20s 17,834 13,223 0 5.11 3.89

Table 2.2: Test 3: Pixel value scalar difference

Figure 2.3 shows the vector mapping from pixels in the first image to pixels in the second image

for every fifth pixel for the top three results. An ideal map is exhibited by (b) where each pixel

maps to a location five pixels below itself.
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Figure 2.3: Match maps for pixel value scalar difference test, showing (a) poor performance of
the contrast penalised correlation metric, (b) perfect performance of the cross-correlation metric,
and (c) partial failure of the I, metric.

This shows a failure of all but the normalised cross-correlation metric. Perhaps a scalar of 1.5 is
a much larger value than can be expected in ‘real’ data? This thought prompted a second test
(test 3a) similar to above but with a scalar multiplier of 1.2 for the second image, the results of

which are tabulated below.

Again chance alone would give around 17,686 bad matches.

Mapping Metric Time Matches] Bad Criteria| Mean Error
Error S.Dev
T2—T2 Contrast 10m44s 17,834 2,155 0 0.32 1.21
T2—T2 Cross 10m47s | 17,834 0 0 0.0 0.0
T2—T2 Euclidean | 2m 35s 17,834 14,970 0 4.80 1.87
T2—T2 | Manhatten | 2m 20 s 17,834 16,503 0 5.21 3.33
T2—T2 loo 2m22s 17,834 7,324 0 2.43 3.48

Table 2.3: Test 3a: Pixel value scalar difference

The amount of scalar difference has been cut down by about half, and the results for the contrast
penalised metric appear to reflect this. The Manhatten and Euclidean metrics show a smaller
improvement, and the /., metric shows an order of improvement similar to the contrast penalised
metric. Both the Manhatten and Euclidean metrics sum an error over the match region, but the

loo metric takes the single largest error and finds a match where this is minimal.
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The cross-correlation with normalisation for local contrast appears to be the frontrunner at this
point. The two tests documented here show that all but the cross-correlation metric (Equation
(2.4)) fail rapidly with increasing global pixel value scaling—suggesting that the others may

work well with ‘real’ data.

Of course any such global pixel value scaling can be effectively removed by preprocessing the
images, but it is difficult to devise a reliable scheme for correction of more localised scalar

differences.

2.3.5 Test 4: Pixel value offset differences

This test takes an image and increases each pixel value by a constant amount for the second
image. This is intended to simulate a global pixel value offset, such as may be present as an

artifact of digitiser base level differences.

Typical results are tabulated below, in which the second image has a global pixel offset of +100
with respect to the first image. Matching was performed with a 5 x 5 neighbourhood centred
around each pixel, with search restricted to an 11 x 11 area about the initial position. Chance

alone would give around 17,657 bad matches.

Mapping Metric Time Matches| Bad Criteria| Mean Error
Error S.Dev
PD—PD Contrast | 10 m47s | 17,804 0 0 0.0 0.0
PD—PD Cross I0m52s | 17,804 0 0 0.0 0.0
PD—PD Euclidean 2m 38s 17,804 13,281 0 4.34 3.69
PD—PD | Manhatten | 2m 22 s 17,804 15,398 0 491 3.51
PD—PD loo 2m23s 17,804 2,184 0 0.88 2.51

Table 2.4: Test 4: Pixel value offset difference

Both cross-correlation metrics are robust to constant global offset differences in pixel values.
The remaining three metrics suffer badly, and are rendered useless by such large differences.
The I result is somewhat better than may be expected when comparing with the Euclidean

and Manhatten metric results.
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2.3.6 Test 5: Global image rotation

This test takes a PD and a T2 image, and rotates each by five and ten degrees for the secondary
images. This test should give an indication of the robustness of each similarity metric to small

rotations between images.

The results presented below were taken for a PD image rotated by five degrees and for a T2
image rotated by ten degrees. The PD test used a 5 x 5 match mask with search restricted to
a 17 x 17 area about the initial position. The T2 test used a 5 x 5 match mask with search

restricted to a 33 x 33 area about the initial position.

For the PD tests, chance alone would give around 16,062 bad matches. For the T2 tests, chance

alone would give around 17,371 bad matches.

Mapping Metric Time Matches| Bad Criteria| Mean Error

Error S.Dev
PD—PD Contrast | 25 m22s | 17,804 1,217 3 0.65 1.44
PD—PD Cross 25mlls | 17,804 522 3 0.26 1.39
PD—PD Euclidean | 5m 56 s 17,804 4,867 3 2.47 3.22
PD—PD | Manhatten | 5m 23 s 17,804 6,176 3 3.16 3.32
PD—PD loo 5m20s 17,804 3,433 3 1.85 2.98
T2—T2 Contrast [ 97 m 14s | 17,834 2,383 3 2.49 4.75
T2—T2 Cross 98 m 8 s 17,834 1,955 3 2.13 4.51
T2—T2 Euclidean | 23 m 14s | 17,834 7,983 3 5.35 5.80
T2—T2 | Manhatten | 20 m 23 s | 17,834 10,550 3 6.19 5.95
T2—T2 loo 20m25s | 17,834 10,288 3 5.95 5.82

Table 2.5: Test 5: Global image rotation through five degrees (top) and ten degrees (bottom)

This shows breakdown of the contrast penalised correlation metric when faced with even small
rotations of five degrees. To assess bad vectors a residual vector map was calculated for each
initial mapping by estimating and removing the global image rotation (Chapter 4). Any match
greater than three pixels in length was deemed bad. The match maps for a sub-sample of the
matches found for the contrast penalised correlation, cross-correlation, and Euclidean metrics
on the PD tests are shown in Figure 2.4. A perfect map would show no vectors deviating from

the anticlockwise flow.
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Figure 2.4: Match maps for image rotation test, showing (a) good performance of the contrast
penalised correlation metric, (b) excellent performance of the cross-correlation metric, and (c)
poor performance of the Euclidean metric.

2.3.7 Test 6: Combined global image artifacts

This set of tests explores the multiplicative effect of rotation, pixel value scaling and pixel value

offset on region based image matching.

For the T2 test, the initial image has pixel values in the range 0 to 1067, while the second image is
a copy of the first, rotated anticlockwise by 5 degrees but with rescaled pixel values in the range
200 to 455. A 5 x 5 match mask was used, with search restricted to a 17 x 17 area about the
initial position. Mappings were computed for every second pixel in the horizontal and vertical
directions. For the PD test, the initial image has pixel values in the range 0 to 1533, while the
second image is a copy of the first, rotated anticlockwise by 10 degrees but with rescaled pixel
values in the range 0 to 255. A 5 x 5 match mask was used, with search restricted to a 17 x 17

area about the initial position. Mappings were computed for every foreground pixel.

Chance alone would give around 4,020 bad matches for the T2 tests and around 17,371 for the

PD tests.
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Mapping Metric Time Matches| Bad Criteria| Mean Error

Error S.Dev
T2—T2 Contrast 6m27s 4,456 3,421 3 5.68 2.93
T2—T2 Cross 6ml7s 4,456 95 3 0.18 1.17
T2—T2 Euclidean 1m3ls 4,456 4,081 3 7.56 2.69
T2—T2 | Manhatten | 1m 22s 4,456 4,074 3 7.64 2.69
T2—T2 loo 1m22s 4,456 4,004 3 6.95 2.69
PD—PD Contrast | 97 m14s | 17,834 13,320 3 13.19 5.28
PD—PD Cross 98 m8s 17,834 1,945 3 2.12 4.51
PD—PD | Euclidean | 23 m14s | 17,834 17,172 3 12.21 4.85
PD—PD | Manhatten | 20 m23s | 17,834 17,207 3 12.25 4.58
PD—PD loo 20m25s | 17,834 17,465 3 12.91 4.78

Table 2.6: Test 6: Matching performance with combined global image artifacts
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Figure 2.5: Match maps for the multiple global image artifact test, showing (a) breakdown of the
contrast penalised correlation metric, (b) excellent performance of the cross-correlation metric,
and (c) breakdown of the Manhatten metric.

Figure 2.5 shows a sub-sample of the match maps for three of the metrics in the T2 tests. The

star-like patterning of the Manhatten map (and the Euclidean and !, maps also—not shown)

has an explanation as follows: The first and second images have the same structure, but with

differently scaled and offset pixel intensity distributions. The first image has minimum and

maximum intensity values of 0 and 1067 respectively, while the second image has minimum and

maximum values of 200 and 455. Say, for the sake of argument, that the first image region has

an average pixel intensity of (0 4+ 1067)/2 = 533.5 and the second image region has an average

of (200 + 455)/2 = 327.5, then any matching strategy that aims to minimise a function of the

difference between the two regions will by definition favour areas where this function is small
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(in this case, where the differences are small). Now where the pixel values of the second image
rise above the average, they will be closer on average to the pixel values of the first image.
Matches are favoured towards these points, manifesting vector mappings that characteristically
point towards high intensity areas of the second image. This behaviour is especially observable

in Figure 2.5 (c).

2.3.8 Test 7: Real Data

The preceding tests were concerned with the testing of the proposed image region similarity
metrics, and as such featured manufactured artifacts within the secondary image. Such a bank

of tests would be incomplete without any evalutation of performance on real data sets.

This test is concerned with the evaluation of the similarity metrics when applied to region based

matching of real MRI data.

The results presented are taken from tests carried out on data collected from the same brain at
four separate times. These are typical of the data sets currently available, and so the results

tabulated are also typical.

The PD test used a 5 x 5 match mask with search restricted to an 11 x 11 area about the initial
position. The T2 test used data taken at different times to the PD test and used a 9 x 9 match
mask with search restricted to a 25 x 25 area about the initial position. To quantify bad vectors
a residual vector map was calculated for each initial mapping by estimating and removing the
global image rotation (see Chapter 4). Any match greater than three pixels in length for the PD
test and greater than five for the T2 test was deemed bad. The PD images show little change
over time and hence there is strong correlation over most of the image (Figure 2.1 (a) and (b)).
The T2 images (Figure 2.2 (c) and (d)) were chosen as they embody a large scale change and so

provide for evidence of effectiveness towards the limits of expected use.

Of course not all matches counted as bad actually are bad since, in this real data, sections of

brain have moved relative to one another between images.
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Chance alone would give about 13,644 bad matches for the PD tests and about 15,501 for the

T2 tests.
Mapping Metric Time Matchei Bad Criteria| Mean Error
Error S.Dev
PD—PD Contrast 10mb4s 17,804 4,862 3 2.13 2.06
PD—PD Cross 10 m 59 s 17,804 4,701 3 2.05 2.13
PD—PD | Euclidean 2m38s 17,804 5,205 3 2.14 2.13
PD—PD | Manhatten | 2m 23 s 17,804 5,376 3 2.28 2.13
PD—PD loo 2m23s 17,804 5,521 3 2.33 2.09
T2—T2 Contrast | 169 m 58s | 17,729 4,896 5 4.30 4.39
T2—~T2 Cross 169 m 50s | 17,729 4,960 5 4.42 457
T2—T2 Euclidean | 41m 18 s 17,729 5,244 5 4.37 4.75
T2—~T2 | Manhatten | 37Tm0s 17,729 5,546 5 4.59 4.77
T2—T2 loo 36m19s 17,729 4,964 5 4.33 4.51

Table 2.7: Test 7: ‘Real data’

All tests on real data so far have given image matching somewhat better than that due to chance
alone, with the correlation metrics performing slightly better than the other three. Given that
the simpler metrics are some five times faster than the correlation metrics consideration must be
given to the question of whether the improved results are worth the time trade off in practice.
Figure 2.6 shows a sub-sampling of the match vectors for the PD tests. A perfect match map
would show the vectors swirling in an anticlockwise direction about a point to the left of the

centre of the image.

AST A
g )t et
SERARIR

X ?’:,-_““. 7

)
- ARTSANS

8 N
e XA R T

. Iy L rA\:"':;{“. YRIN
SN A2y TN AN TR
PR NENT N LA AR B NN ST S TR UF LN RN
; >;; % 7" \’5&.’(v AT TP TN Sroieany -l“') \4"'
,f>7\:‘\‘ \“ \\‘il 3 ‘: -:-'I-‘\\\\\\‘ ;*\\ LR A .: -c: "\\:R}v Y \=
R 'I‘}"s ;#:A.:Q—’::;:\}\Mv: {" -'-): ANV ‘vwi
AL TS RAEEREN S EOTE R 2707 Mg 3 ZI AN
3 /\j R IR ESA IR G /) T AR
o 425 S N Ay N ARSI
iy A2 S AN BN Q.&;.\,.L..; N7y
:Ij(:l M:'...\\l'\,.::;.z:,,hqs-. INRHTRNEN N SN |
’:\II '\-::\‘z\h-_ ‘::.l=£‘£’|<l' { -:.':--r ',{;jt,l
AN e i RIS AT
i SIIOHIA HEpAn
CAL IO Lotpdzizis it
e N 25 el 3t k4
s il ﬁ‘;
v 2i et ;C( 3
N4
(a) Contrast (b) Cross (c) Euclidean

Figure 2.6: Match maps for the PD real data test, showing similar performance of the region
similarity metrics.
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From 2.6 it can be seen that (with this data at least, and in the absence of ‘known’ results) there

is little to choose from between the matching techniques.

2.3.9 Conclusions

The fundamental region matching problem is one of designing a good similarity metric. The
five metrics presented here exhibit a trade off between quality of matching and speed. The
faster metrics suffer badly when presented with similar images that are rotated, or have different
pixel intensity distributions. Assuming any rotations encountered are small and therefore can
be disregarded for the moment then a standard model [3] for the intensity difference between
two images is:

Bi=ad; +p

Where 7 and j index corresponding pixels, A and B are the intensity levels of the pixels from
the first and second images respectively, « is the gain (or scalar) difference, and 3 is the offset
difference. Differences in illumination and digitiser hardware can be responsible for this kind of
difference. The Euclidean, Manhatten and !, metrics assume that the images being matched
have the same intensity distributions. The contrast penalised and cross-correlation metrics cope
well with this model since they normalise for both offset and scalar differences by (a) subtracting
the mean and (b) dividing by the standard deviation. Both correlation metrics exhibit good offset
normalisation (Table 2.4). The contrast penalised metric modifies the contrast normalisation
term (c.f. Equations (2.4) and (2.5)) to favour those matches between regions of similar overall
contrast. With artificial image artifacts, the contrast penalised metric can easily be made to
behave almost as poorly as the simpler metrics (Table 2.6), but with real data it is still unclear
whether such penalisation is a good thing (Table 2.7). In fact, with the real MRI data considered
it may be the case that little advantage is gained from the correlation metrics over the faster

ones once further constraints aimed at improving the matches are imposed.

Since the two correlation metrics divide through by the standard deviation of each region the

bad effects of a global pixel scalar difference (global contrast difference) is limited, and with the
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cross-correlation metric these effects are effectively completely removed. However, the contrast
penalised correlation metric actively discriminates against contrast differences in an attempt to
be more selective at the local level. The failure here may be due to too much discrimination,

suggesting a modification of Equations (2.4) and (2.5):

N
1 i —T)0yi -
o= ) ( )( ) (2.6)
i=1 (1 —a),/o20? + amax(c?, o)
When used for image region matching, @ € [0,1] is a gain constant, where « = 0 gives no

discrimination against contrast differences, and @ = 1 gives maximum discrimination.

2.4 Multi-Channel Image Matching

In the preceding sections five single channel image region similarity metrics have been presented
and empirically evaluated. When applied to image region matching the metrics based around
the statistical normalised correlation function (Equations (2.4) and (2.5)) are more robust to
unwanted global image artifacts (e.g. small rotations between images and dissimilar pixel value
intensity distributions), than the simpler difference error metrics (Equations (2.1), (2.2) and
(2.3)). In practice, however, global artifacts are few and, in the case of differing pixel intensity
distributions, can easily be removed by pre-processing (assuming that the two images are of the
same view). This gives rise to almost comparable behaviour between all the metrics, except that

the correlation based metrics are some five times slower.

The following sections generalise the image region similarity metrics already given in Section 2.2
to deal with multiple channels such as the T2-PD pairs that the MRI data is organised into,
or the three RGB channels of colour stereo imagery. Such similarity metrics work with vectors
of pixel values, and this section will show that these vector based metrics give better region

matching than their scalar based single channel counterparts.
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2.4.1 Multi-Channel Euclidean Metric

Let £; be a vector of pixel samples, one element from each channel of the initial image. Let z;
have dimension M where M is the number of channels. Similarly let ¥; be a vector of matched
pixels in the second image. Then if samples are taken over a neighbourhood of size N, define

the extended Euclidean similarity metric as:

j=1i=1

M N
= \‘ Z sz ny (27)

where j indexes the individual elements of the vectors. The best region match is given by
choosing a neighbourhood {¥;} that minimises E for a given {#;}. This function reduces to the

single channel case of Equation (2.1) when M = 1.

2.4.2 Multi-Channel Manhatten Metric

As above, let {Z;} and {g} of dimension M define neighbourhood samples of size N from two

multi-channel images, then the extended Manhatten similarity metric is given by:

N
= Z | f;'j - 17;',' | (2.8)

1i=1

s

I

The best region match is given by choosing a neighbourhood {y;} that minimises L; for a given

{z:}. This function reduces to the single channel case of Equation (2.2) when M = 1.

2.4.3 Multi-Channel Largest Absolute Difference Metric

Again, let {£;} and {gi} of dimension M define neighbourhood samples of size N from two

multi-channel images, then the extended largest absolute difference metric is given by:

max(|£3; — gi;|) (2.9)

<
I
—-

t
8
I
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The best region match is given by choosing a neighbourhood {y;} that minimises L, for a given

{z}. This function reduces to the single channel case of Equation (2.3) when M = 1.

2.4.4 Multi-Channel Normalised Cross-Correlation Metric

None of the preceding three multi-variate similarity metrics give equal weight to each channel.
The channel with the largest pixel value fluctuations will dominate. The cross-correlation metrics
normalise within each channel, causing each to have equal weight. For this reason it is anticipated

that the correlation metrics will give more correct matches.

Geiss et. al. [5] considered a multi-variate cross-correlation function between two multi-variate
signals. In a recent paper [3] we apply a modification of this function to image region matching.
This modified function is presented below and used as the multi-variate cross-correlation image

region similarity metric for multi-channel imagery.

Define the mean vector of the N &; (dimension M) vector samples as:

8p

1 N
=N;5

and similarly for y. Z; is a vector of pixel intensity values taken from the first (multi-channel)
image region, and y; is a vector of pixel intensity values from the second image. ¢ indexes pixels

over the respective regions of size N. Now define the vector A; to hold the local variance as:

A { Z(I,J 2vjel,. M}}

and similarly for A—y, where j indexes the elements of the vectors up to dimension M. The

multi-variate normalised cross-correlation function is then given by:

M

1 N z!] ‘BJ (le 37])
== (2.10)
M g ; N

The best region match is given by choosing a neighbourhood {y;} that maximises p for a given
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{£:}. Similarly to the one-dimensional case (Equation (2.4)) p lies within the range [—1, +1] and

has a similar interpretation.

Note that this function (2.10) normalises for pixel value offset differences by subtracting the
mean, and normalises for pixel value gain differences by dividing by the standard deviation.
Such normalisation is done for each channel. This function reduces to the single channel case of

Equation (2.4) when M = 1.

For the same reasons given for the single-channel case (Section 2.2.4), the multi-variate cross-

correlation metric can be modified to penalise contrast differences:

M N - z, — oY

1 1 L (35— 25) (5 — y,-))

p=— § — § L (2.11)
Mj=1 (N max(A,,-j,ij)

i=1

reducing to the single channel case of Equation (2.5) when M = 1.

During evaluation of the one-dimensional case of these two correlation based similarity metrics,
a combination of them was proposed and is given in Equation (2.6). This too can similarly be
extended to the multi-variate case as follows:

(&5 = )5 = 7))
S\ VST a- a)\/A‘,,.A“yj + amax(£z;, Ay )

again with o € [0, 1] acting as a parameter that specifies the amount of contrast penalisation.
The idea for this combined metric came too late in the project to allow for adequate evaluation,
and so is merely presented here in the hope that it may be implemented and evaluated at a later

date.

2.5 Testing and Evaluation of Multi-Channel Matching

The multi-variate image region matching algorithms presented above have been tested and evalu-

ated. From the preceding discussions, in which the multi-variate versions of the one-dimensional
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similarity metrics have been introduced, it can be seen that the multi-variate case is a straight-
forward generalisation. This means that the new metrics inherit the flaws and strengths from
the uni-variate cases. It has been seen that the correlation based metrics provide a normalised
similarity measure that can compensate for global image intensity distribution differences, and
hence provide a more robust region similarity measure than the simpler (and faster) Euclidean,
Manhatten and !, metrics. It has also been seen that in practice there is little to choose from
between the metrics if the quality of data is good, and the image distributions are identical—
except that the correlation based metrics perform marginally better but at a cost of five times

the run-time.

The testing presented here therefore explores the benefits of extending the metrics to M-dimensions
over the simpler case of compressing the M-dimensional data to one-dimension and using the

simpler metrics.

For guidance on interpretation of the results tabulated below, refer to Section 2.3.1.

2.5.1 Test 8: Global Image Rotation Revisited

In the uni-variate global rotation case of test 5 (Section 2.3.6), the two correlation based metrics
gave many fewer bad matches than the simpler metrics. In this next test, the same images
are used but with the multi-variate generalised metrics. Here, each test takes four images (as

opposed to two in the previous tests) (i.e. two PD,T2 pairs).

The first of the two rotation tests takes a second image that is rotated through five degrees
anti-clockwise from the first, and the second test takes the same images but rotated through ten

degrees.

The results from these tests are tabulated below in Tables 2.8 and 2.9. In each table the uni-
variate case PDT2/2—PDT2/2 (in which a single averaged image replaces a PD,T2 pair) is

tabulated below the bi-variate PD, T2—PD,T2 case.
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For the five degrees test, both the PD,T2 and PDT2/2 tests used a 5 x 5 match mask with
search restricted to a 17 x 17 area about the initial position in an image rotated through five

degrees. Chance alone would give about 15,921 bad matches for the PD,T2 tests and about

16,231 for the PDT2/2 tests.

Mapping Metric Time Matchés Bad | Criterin Mean | Error

Error | S.Dev
PD, T2—PD,T2 Contrast 46 m8s | 17,647 329 3 0.19 1.11
PD, T2—PD,T2 Cross 46 m 24 s | 17,647 154 3 0.09 0.80
PD,T2—PD,T2 Euclidean | 11 m 52s | 17,647 321 3 0.17 1.04
PD, T2—PD, T2 Manhatten | 10 m 49 s | 17,647 428 3 0.21 1.13
PD,T2—PD,T2 Lo 9m30s | 17,647 405 3 0.24 1.30
PDT2/2—PDT2/2 | Contrast | 25 m31ls | 17,991 | 1,257 3 0.66 2.09
PDT2/2—PDT2/2 Cross 25m42s | 17,991 496 3 0.25 1.32
PDT2/2—PDT2/2 | Euclidean 6mbs 17,991 | 1,230 3 0.61 1.91
PDT2/2—~PDT2/2 | Manhatten | 5m31s | 17,991 | 1,758 3 0.88 2.22
PDT2/2—PDT2/2 loo 5m32s | 17,991 [ 1,624 3 0.87 2.27

Table 2.8: Test 8: Rotation through five degrees (revisited)

Of importance to this test is the pixel intensity distributions of the four images used. They
have all been “normalised” (by linearly compressing the the range of pixel values) so that all
pixel values fall within the range [0, 255]. (This is also the case for test 5). This means that any
benefits the normalised correlation based metrics may have in compensating for global intensity
distribution differences have been reduced to a minimum. This is significant since, as such global
differences can be removed easily by pre-processing the images, the normalisation property of the
correlation based metrics may not be necessary to ensure good overall matches. In other words it
may be possible to gain similarly good matches from the simpler metrics if the ‘real data’ is first
‘normalised’. This would yield a matching algorithm almost as good, but some five times faster.
This is of prime importance once image match improvement constraints are imposed (Chapter 3)
as this will usually call for repeated region matching. This argument is based on the assumption
that local contrast differences (e.g. an illumination gradient) are negligible. Should such local
differences exist, then clearly the normalised cross-correlation metrics have the advantage since

they normalise on a local scale.
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The second set of tests take the same images, but rotated through ten degrees. The results are
tabulated below in Table 2.9. The uni-variate case PDT2/2—PDT2/2 is tabulated below the
bi-variate PD,T2—PD, T2 case. Both the PD,T2 and PDT2/2 tests used a 5 x 5 match mask
with search restricted to a 33 x 33 area about the initial position. Chance alone would give

about 17,189 bad matches for the PD,T2 tests and about 17,524 for the PDT2/2 tests.

Mapping Metric Time Matchés Bad | CriteriaMean | Error

Error | S.Dev
PD,T2—~PD,T2 Contrast | 170 m 30s | 17,647 | 665 3 0.66 2.98
PD,T2—~PD,T2 Cross 170 m 44 s | 17,647 | 561 3 0.54 2.73
PD,T2—~PD,T2 Euclidean | 44 m37s | 17,647 | 1,941 3 1.52 3.91
PD,T2—PD,T2 Manhatten | 39 m55s | 17,647 | 2,680 3 2.09 4.37
PD,T2—PD,T2 Ly 34 m28s | 17,647 | 2,420 3 2.28 4.43
PDT2/2—PDT2/2 | Contrast 98 m33s | 17,991 | 2,747 3 2.83 4.79
PDT2/2—PDT2/2 Cross 9 ml3s | 17,991 | 2,169 3 2.38 4.58
PDT2/2—PDT2/2 | Euclidean | 23 m28s | 17,991 | 11,373 3 6.31 5.85
PDT2/2—PDT2/2 | Manhatten | 21 m26s | 17,991 | 13,320 3 7.13 5.93
PDT2/2—PDT2/2 loo 21m22s | 17,991 | 11,770 3 6.42 5.78

Table 2.9: Test 8: Rotation through ten degrees (revisited)

These rotation tests have demonstrated the abilities of the image similarity metrics when used
on rotated MRI brain images under perfect conditions. The significant conclusions are twofold,
firstly all the addressed multi-variate similarity metrics perform better under rotation than their
uni-variate counterparts (i.e. compared with the results in Table 2.5), and secondly the order
of improvement for each of the metrics has been roughly constant, with the uni-variate cases
showing some four times more bad matches than the bi-variate cases. In [3] a strong argument
is presented that shows the multi-variate cross-correlation metric used here to be correct. This
argument carries through to the issue of correctness of the other multi-variate metrics developed
here. As each of them shows improvement of the order of four times, then this is supportive
evidence that these other metrics have also been correctly generalised. As will be seen in the
next test, such a high order of improvement is not to be expected when dealing with less than

perfect real data.



2.5.2 Test 9: Real Data Revisited

Tests on manufactured rotation of images (above) revealed substantial improvements in the
number of correct matches found when moving from uni-variate matching to bi-variate matching.
The cost of this is to double the run-time over the uni-variate case, but to improve the quality
of matching some four times (under ideal conditions). Tests on real data show similar but not

so drastic improvements.

Table 2.10 shows the results for bi-variate matching of the brain images shown in Figure 2.1
and, comparing this to the uni-variate results (shown both in Tables 2.7 and 2.10), a substantial
improvement can be seen. For this test a 5 x 5 match mask was used, with search restricted to
an 11 x 11 area about the initial position. Chance alone would give about 13,523 bad matches

for the PD,T2—PD,T2 tests and around 13,787 for the PDT2/2—PDT2/2 tests.

Mapping Metric Time Match¢s Bad | CriteriaMean | Error

Error | S.Dev
PD,T2—PD,T2 Contrast 19m 48 s | 17,647 | 3,220 3 1.58 1.93
PD, T2—PD,T2 Cross 19m48s | 17,647 | 3,199 3 1.54 1.99
PD, T2—PD, T2 Euclidean | 5m24s | 17,647 | 3,869 3 1.78 2.04
PD, T2—PD,T2 Manhatten | 4 m54s | 17,647 | 4,011 3 1.82 2.06
PD,T2—PD, T2 Lo 4m?2ls | 17,647 | 3,889 3 1.79 1.98
PDT2/2—~PDT2/2 | Contrast | 10 m 39s [ 17,991 | 4,888 3 2.13 2.13
PDT2/2—PDT2/2 Cross 10 m42s | 17,991 | 4,637 3 2.02 2.12
PDT2/2—PDT2/2 | Euclidean | 2m35s | 17,991 | 5,254 3 2.24 2.35
PDT2/2—PDT2/2 | Manhatten | 2m21s | 17,991 | 5,509 3 2.33 2.15
PDT2/2—PDT2/2 lo 2m2ls | 17,991 | 5,551 3 2.32 2.09

Table 2.10: Test 9: Bi-variate matching (top) and uni-variate matching (bottom) of images in

Figure 2.1

All metrics show notably improved performance (especially Lo, ) over the uni-variate cases.

Figure 2.7 compares match maps for uni-variate and bi-variate cases of the brain images given
in Figure 2.1. Matches were computed for every second pixel in the horizontal and vertical
directions, using a 9 x 9 match mask, with search restricted to an 11 x 11 area about the initial
position. A perfect match would show all vectors swirling anti-clockwise around a point to the

left of the centre of the image. Bad matches are evident as cross-hatchings on the maps. Clearly
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the bi-variate case shows good improvement over the uni-variate cases.
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Figure 2.7: Comparison of match maps obtained by matching every second pixel of the images

given in Figure 2.1. Single channel mapping (2) and (b) show many bad matches, visible as

areas where long vectors create cross hatching patterns.

one ‘averaged’ channel before matching (c) shows no fewer bad matches. Treating each channel
separately (d) and using a bi-variate matching algorithm produces many fewer bad matches.



For the next test (Table 2.11) a 9 x 9 match mask was used, with search restricted to a 25 x
25 area about the initial position. Chance alone would give about 15,429 bad matches for the

PD,T2—PD, T2 tests and around 15,642 for the PDT2/2—PDT2/2 tests.

Mapping Metric Time Matchfs Bad | CriterjaMean | Error

Error | S.Dev
PD, T2—~PD,T2 Contrast | 307m44s | 17,553 | 3,426 5 3.28 4.04
PD, T2—PD,T2 Cross 306 m16s | 17,553 | 3,438 5 3.43 4.28
PD,T2—PD,T2 Euclidean | 82 m45s | 17,553 | 7,745 5 6.15 5.22
PD,T2—~PD,T2 Manhatten | 74 m30s | 17,553 | 8,105 5 6.37 5.30
PD,T2—PD,T2 Leo 64 mb5s | 17,553 | 4,972 5 4.35 4.52
PDT2/2—PDT2/2 | Contrast | 173 m23s | 17,890 | 5,603 5 4.83 4.58
PDT2/2—PDT2/2 Cross 172m 44 s | 17,890 | 5,068 5 4.51 4.55
PDT2/2—~PDT2/2 | Euclidean | 42m22s | 17,890 | 11,117 5 7.74 4.80
PDT2/2—PDT2/2 | Manhatten | 38 m6s | 17,890 | 11,690 5 8.03 4.74
PDT2/2—PDT2/2 loo 37m15s | 17,890 | 9,289 5 6.80 4.78

Table 2.11: Test 9: Bi-variate matching (top) and uni-variate matching (bottom) of images in
Figure 2.2

Again, a very strong improvement can be seen by the Lo, over the uni-variate I, case. Without
exception, moving to a multi-variate similarity metric will improve the quality of matches for
any of the metrics explored here. With real MRI data, the most correct matches have been
found by the cross-correlation metric (Cross), but tests have also shown that often one or more

of the simpler, faster, metrics may be almost as good with MRI data.

2.5.3 Summary and Conclusions

In this chapter, five uni-variate image region similarity metrics have been presented and evaluated
within the context of region matching within MRI brain scan data. Of these metrics, only the
normalising cross-correlation metric of Section 2.2.4 (Equation (2.4)) has been shown to be robust
in a wide range of circumstances. This metric compensates for contrast differences between
images. However, in practice, it is sometimes more prudent to penalise contrast differences—in
which case the contrast penalised correlation metric of Section 2.2.4 (Equation (2.5)) performs
slightly better. This has suggested a new metric which is given in Section 2.3.9 as Equation (2.6).
The correlation based metrics provide more correct matches than the simpler metrics presented
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here. However, correlation takes some five times longer to perform than any of the other three
simpler metrics (Euclidean, Manhatten and /), and initial experiments with real data suggest
that one or more of these simpler metrics may perform adequately once further improvement

constraints are imposed (Chapter 3).

Woodward ([10}, p. 70) took on average eight hours to match two simple images using the cross-
correlation similarity metric of Equation (2.4). He used a pair of 128 x 128 images with eight
bits per pixel. The current MRI data used for this project is some 256 x 256 with sixteen bits
per pixel, but match times for a pair of images average under eleven minutes (e.g. Table 2.1).
The reasons for this improvement are numerous. Firstly, more advanced modern hardware may
have given a speed improvement of a factor of two. Woodward’s code was far from optimal, and
the removal of a few small array index checks provides another factor of two improvement ([10],
p. 71). Further improvements have been made by calculating mappings for only foreground
pixels, and then by keeping these calculations to a minimum. Woodward’s code made many
unnecessary repeated calculations. These speed improvements have made change detection by

image region similarity a practical technique.

Woodward used only uni-variate MRI data. The availability of multi-channel MRI imagery has
led to the development of multi-variate image region similarity metrics for this project. Each of
the uni-variate metrics has been extended to handle multi-variate image data. Tests with these
multi-variate image region similarity metrics have shown a general improvement over their uni-
variate counterparts. The reason for this is that the multi-variate metrics use all the available
data whereas the uni-variate metrics must use either a single channel from the multi-channel
images, or use some single channel that represents a compressed multi-channel image. In either
case not all the available information is used. In all cases the multi-variate generalisation of the
metrics is a straightforward operation, resulting in region matching that takes a time linearly
dependent on the number of channels being matched. In the focus of this project, two channel

MRI data matching is improved by the use of bi-variate image region similarity metrics.

Both the uni-variate and multi-variate correlation metrics produce a measure of the likeness
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of two regions. This measure is within the range [—1,+1] (see Section 2.2.4). The higher the
measure, the more similar the two regions. When applied to image region matching, the match
with the strongest correlation measure is chosen. This figure can act as a measure of confidence
in the match. As improvement in the number of matches has been observed when moving up to
a uni-variate case, it is reasonable to expect that the confidence of the matches will generally be

greater (i.e. that the metric will have a better ‘idea’ of what makes a good match). Figure 2.8

Histogram of correlation strengths Histogram of correlation strengths

1400

1400 T T
Number of vectorf —— Humber of vactors ——
1200 1 1200 |
o 1000 | @ 1000 |
o o
P W
8 ¢
H 800 | 2 800 |
- -
o o
= 500 1 H 600 [ q
= 400 b = 400 1
200 p | 1 200 ) 1
S I L.LLLL” P ..IIHI i
o 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Correlation strength Correlation strength
(a) Uni-variate mapping Figure 2.1 (b) Bi-variate mapping Figure 2.1
Histogram of correlation strengths Histogram of correlation strengths
1400 T T T T T 1400 T T T T T
Number of vectors —= Humber of vectors ——
1200 ¢ 1 1200 L 4
® 1000 | 1 ® 1000 | 1
o o
o o
3 8
g 800 @ 800 | 1
. “
3 o
N 5§00 [ " 600 | 1
i i
= 400 = 400 i
200 | 250 ” 1
° " " ..||”|| 0 " " |llll||
o 0.1 ©.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Correlation strength Correlation strength
(c¢) Uni-variate mapping Figure 2.2 (d) Bi-variate mapping Figure 2.2

Figure 2.8: Comparison of histograms of correlation strengths for matched pixels using (a), (c)
uni-variate correlation, and (b), (d) bi-variate correlation

shows a comparison of the histograms of correlation values between uni-variate and bi-variate
matching. What seems to be happening here is a general migration to lower correlation values in
the bi-variate cases. This is probably a side effect of the bi-variate matching function averaging
the correlations from two channels. Because of such averaging, the chances of a highly ranked

(but possibly bad) match decreases.
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Tests with real data show that the normalised cross-correlation metrics give a larger number of
correct matches. The simpler metrics often come close to the quality of the correlation metrics,
but rarely supersede them. This still leaves the question of which metric is best in this situation.
If the number of correct matches is the most important aspect then clearly the cross-correlation
metric is the best choice, yet the simpler metrics run some five times faster and often approach
the quality of the correlation metrics. Further image region matching constraints may reduce
the quality divide between the simpler metrics. In which case one of the faster metrics may

suffice to give a reasonable change detection system that runs with reasonable speed.

Multi-modal computer assisted tomography (CAT) data is now becoming commonplace. The
physician or neurophysiologist may now have a selection of image data available, from any one
patient, obtained from different scanning modalities (e.g. CT, PET, and MRI scans). Pelizzari
et. al. [8] give a system for the accurate three dimensional matching of such multi-modal data.
Since different modalities highlight different structures of interest, such registered data is an

ideal input into the multi-variate matching algorithms developed here.

Consideration must be given to the size and shape of match mask used. Larger masks will give
more reliable matches, but at the expense of speed and localisation. In practice, a 9 x 9 mask
seems a good size, but for the purpose of comparative testing a 5 x 5 mask has been used for
the tests presented here. Woodward ([10], p. 30) used a roughly circular match mask, under the
argument that this would be more robust to rotational differences between images. Woodward
produced no evidence of analysis of the behaviour of differently sized and configured match

masks, and little analysis is presented here. This is left as a suggestion for further work.

Finally, attention is drawn to the consistently good performance of the cross-correltation metric
(Cross). Not only does this return the fewest bad matches, but the mean target placement
error and standard deviation are consistently lower than with other metrics. This suggests the

normalised cross-correlation metric to be the most stable and robust.
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Chapter 3

Improving the initial match map

Chapter 2 describes how a brute force search of the second image is used to arrive at an initial
image region match map for any pixel in the first image. This map is composed of a number
of directed line segments which each specify the probable movement of pixel-sized areas of
the brain between the first image and the second. For convenience of notation these directed
line segments are known as pizel movement vectors. The initial mapping process is often not
reliable enough to form a basis on which to analyse and detect brain structure changes over
time. For example, many bad matches are generated in practice (Chapter 2, Tables 2.10 and
2.11). Even if these bad matches are detected and removed they will still distort any analysis
performed. Woodward ([10], p. 37) used a post-operative smoothing algorithm, based on vector
neighbourhoods, to ‘swing’ around vectors pointing in different directions to their neighbours.
This has proved unsatisfactory for two reasons: (1) it assumes that all neighbouring vectors are
pointing in the correct direction—iterating in order to work to the centre of whole groups of
mis-aligned vectors, and (2) badly aligned vectors will affect correctly aligned vectors. Also, the
image structure being mapped to is not consulted in any form during this smoothing. When
two similar image are being initially mapped, each vector is obtained by a search aimed at
maximising some local image region similarity function. If a region fails to map to the correct

target region (and can be identified as such), then choosing the next best similar region may
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provide the correct mapping—iterating until all bad vectors have been identified and corrected.

The aim of this chapter is then to explore methods of improving initial image match mapping.
Such improvement may be of two forms: (1) the match map may have fewer bad matches, and

(2) the match map may be arrived at more quickly.

By reducing the surface area of the image region match mask, speed improvements can be made.
This is the subject of the first part of this chapter. The remainder of the chapter looks at match
map improvement aimed at reducing the number of bad matches. This is done by analysis of

neighbourhoods of matches and by mapping to sub-pixel levels.

3.1 Improving region mapping speed

Although speed improvements of the order of 4,400% have been made over Woodward’s [10]
system, to produce an exhaustive initial match map for a pair of two channel MRI images with
a fair degree of reliability can still take between five minutes and three hours. Time taken
increases with the complexity of the region similarity metric, match mask size and search area.
Choice of similarity metric depends upon the quality of data. Choice of search area depends
both on initial image registration and the amount of brain structure migration between images.
The choice of match mask size involves a localisation trade-off, with faster mapping a side effect
of smaller match masks. The smaller the mask, the more local the structure movement that
can be detected. However, the smaller the mask, the more susceptible to image noise and local

ambiguities it will be, and hence, more bad matches will be found (i.e. coincidental bad matches).
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(d) Euclidean, 9 X 9 mask, 25 active elements

Figure 3.1: Test 10: Bi-variate matching of images in Figure 2.1. (a) Shows a poor match
map returned by a 5 x 5 match mask with 25 active elements, using the multi-variate cross-
correlation metric. (b) Shows a good match map returned by moving to 2 9 x 9 match mask
with 81 active elements—at the expense of three times the run-time of (a). (c¢) Shows a good
match map returned by a 9 x 9 match mask with only 25 equidistant active elements (in a
chequer-board pattern), using the multi-variate cross-correlation metric—runtime is same as for
(a). (d) Shows a good match map returned by a the same match mask as (c), but using a
multi-variate Buclidean metric—speeding runtime by a factor of five over (c).
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The choice of match mask affects not just the initial mapping, but also the post-operative

smoothing of the map (since the original images are reconsulted).

This section shows that by spreading out the distribution of a match mask, so that it becomes
a grid, speed improvements can be made with negligible loss of locality and number of good

madtches.

The following table details the results from three tests on the real data shown in Figure 2.1.
Firstly, an initial map is produced using a 5 x 5 mask; secondly a 9 x 9 mask is used; and
thirdly a 9 x 9 mask with only 25 equally spac.ed active elements (i.e. a grid shaped mask,
like a chequers board) is used. In all cases, search is restricted to an 11 x 11 area about the
initial position, and chance alone would give about 3,380 bad matches. Matches are computed
for every second pixel in the horizontal and vertical directions. For interpretation of the table

headings, refer to Chapter 2 Section 2.3.1.

Mapping Metric Time Matches Bad Criterid Mean | Error

Error | S.Dev
PD,T2—PD,T2 Cross 4mdTs 4411 788 3 1.54 1.99
PD,T2—PD, T2 | Euclidean | 1 m19s 4,411 965 3 1.77 2.04
PD, T2—PD,T2 Cross 15m42s | 4,411 202 3 0.57 1.26
PD,T2—PD,T2 | Euclidean | 4 m3s 4,411 389 3 0.91 1.63
PD, T2—PD,T2 Cross 4mb7s 4,411 228 3 0.68 1.38
PD, T2—PD,T2 | Euclidean | 1m 19s 4411 425 3 0.99 1.65

Table 3.1: Test 10: Bi-variate matching of images in Figure 2.1. First test (top row) uses a
match mask with 25 active elements, covering a 5 x 5 square area. Second test (middle row)
uses a match mask with 81 active elements, covering a 9 x 9 square. Third test (bottom row)
uses a match mask with 25 equidistant active elements covering a 9 x 9 square. Significant
speed improvements can be seen in the third test with little loss of quality.

A significant improvement over run-time, with little cost to the number of correct matches, has
been gained by using a match mask in which only alternate elements are active. Table 3.1 shows
this improvement. When a 5 x 5 match mask with 25 active elements is used, processing is
quick, but the number of bad matches is unacceptably high. When a 9 x 9 match mask with 81
active elements is used a good number of correct matches are returned, but at a cost of higher

run-time. However, when a 9 x 9 match mask with only 25 equidistant active elements is used,
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processing is quick while incurring little loss in the number of correct matches returned.
Figure 3.1 shows some of the initial match maps produced during these tests.

Only a small number of tests have been presented here. While they indicate that advantages
are to be gained when using ‘thinner’ match maps, they do not provide conclusive evidence.
Certainly the effects of the shape, size and coverage of match masks needs to be further investi-

gated.

3.2 Improving the Number of Correct Matches

Section 3.1 has shown how the runtime of image region matching can be speeded up with judicious
choice of region match mask. In this next section, attention is turned towards increasing the
number of correct matches, both by matching to sub-pixel levels and by providing a post-

operative vector map smoothing algorithm.

3.2.1 Image Region Matching to Sub-Pixel Levels

Movement of local brain structure between images is often subtle, and rarely by whole pixel
quantities. Any of the vector maps shown in Figure 3.1 show the effects of quantisation to whole
pixel levels by the ‘blocky’ appearance of vector groups. Often vectors are only one or two pixels
in length, severely restricting the accuracy to which mappings can be built. This section details
the development of a sub-pixel matching algorithm which, at the cost of longer run-times, allows

sub-pixel matching to an arbitrary level.

The algorithm has two basic stages. Firstly, the target image is enlarged, interpolating new
sub-pixel values, and secondly, match maps are built taking vector start points as whole pixel
indices from the first image and mapping to whole pixel indices of the interpolated, enlarged
image. Vector end-points are then transformed from the enlarged image coordinate frame into

the start image coordinate frame. The result is vector mappings from whole pixels to sub-pixel
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levels (quantised to the degree of enlargement).

The initial stage of the sub-pixel matching algorithm takes the target image, and enlarges it
by a whole pixel scale value. New pixel values are interpolated from the original target image.
The scale value used is also the sub-pixel level. For example, if the desired sub-pixel level is 4,
then each pixel in the target image is notionally sub-divided into 4 x 4 = 16 sub-pixels. This is
equivalent to enlarging the target image by 4 in both the horizontal and vertical directions. The
choice to enlarge the target image (instead of interpolating sub-pixel values as region matching
progresses) provides for a faster matching algorithm since no sub-pixel is interpolated more than

once.

Choice of interpolation function will affect the quality of the new target image, and hence the
quality of match map returned. Linear interpolation (based on the Gouraud shading model [4]
p. 736) is used. The parameters to the interpolation function are the four pixel values a, b, ¢

and d taken from each 2 x 2 neighbourhood in the original image:

and two pixel location indices @ and (@ used to index into the enlarged neighbourhood. Assume

that this 2 x 2 neighbourhood is to be interpolated into an N x N neighbourhood:

«a
01 N-1
0
1
B
N-1

then, letting n = N — 1, each new pixel value at location (e, 3) is given by:

0= (1-2) (-2 o 2 +2 (- Der 24
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At new locations (0,0), (N — 1,0), (0, N — 1), (N — 1, N — 1), the new pixel values are exactly
a, b, c and d respectively, and any pixel value indexed by 0 < o < N and 0 < # < N is a linear

combination of these four initial values.

Figure 3.2 shows such an interpolated enlargement, compared to a simple pixel-wise enlargement.

(a) Pixel-wise enlargement (b) Enlargement with linear interpolation

Figure 3.2: Image enlargement with linear interpolation.

When computing matches to such an enlarged image, an appropriately scaled and sub-sampled
target match mask is used. Thus, at every (N — 1)** location in either direction, the mask will
be aligned such that the pixel values it covers are exactly the same as the normal mask would

cover on the original image.

Table 3.2 and Figure 3.3 detail some results from the testing of the sub-pixel matching strategy.
Firstly, bi-variate tests on globally rotated images are presented. Here the sub-pixel algorithm

is shown to operate better than the whole-pixel algorithm (Table 2.5). Secondly, results from
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bi-variate tests on real data are presented. Although performance seems statistically no better
than the whole pixel algorithm (Table 2.10), Figure 3.3 does shows a marked improvement in
the general direction, ‘flow’ and placement of vectors when compared with Figure 2.7. For the
rotation tests a 9 x 9 match mask with 25 active elements was used with search restricted to a
17 x 17 area, sub-pixel level is 4 (i.e. each original pixel is replaced by a 4 x 4 group). Chance
alone would give 3,898 bad matches. For the real data tests a 9 x 9 match mask with 81 active
elements was used with search restricted to an 11 x 11 area, sub-pixel level is 4. Chance alone
would give about 3,380 bad matches. In both cases matches were computed for every second

pixel in the horizontal and vertical directions.

Mapping Metric Time Matches Bad Criteria Mean | Error
Error | S.Dev
PD,T2—PD,T2 Cross 187Tm25s | 4,321 21 3 0.04 0.37
PD,T2—PD, T2 | Euclidean | 43 m 44 s 4,321 35 3 0.07 0.56
PD,T2—PD,T2 Cross 242m2ls | 4411 206 3 0.50 1.27
PD,T2—PD, T2 | Euclidean | 55 m 24 s 4,411 404 3 0.87 1.65

Table 3.2: Test 11: Sub-pixel bi-variate matching of image in Figure 2.1 (a) and (b), with
second image a copy of first rotated through five degrees (top). Sub-pixel bi-variate matching of
real data in Figure 2.1 (bottom). Mappings have been computed for every second pixel in the
horizontal and vertical directions.

Figure 3.3 shows two of the match maps obtained during testing. The bi-variate Euclidean
match function took almost one hour to arrive at a reasonable match map, while the bi-variate
cross-correlation match function took some four hours to arrive at a good match map with far

fewer bad matches.
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(a) Real data, sub-pixel level 4, bi-variate (b) Real data, sub-pixel level 4, bi-variate cross-
Euclidean, 9 x 9 mask, 81 active elements correlation, 9 x 9 mask, 81 active elements

Figure 3.3: Test 11: Bi-variate matching of images in Figure 2.1 to sub-pixel level. Sub-pixel
matching has been achieved by dividing each original target pixel into 16 sub-pixels whose
values have been linearly-interpolated. (a) Shows the match map from the bi-variate Euclidean
matching function, and (b) shows the match map from the bi-variate cross-correlation matching
function.

The whole-pixel level has been shown to be too coarse to permit subtle change detection and
analysis in currently available MRI data. At the expense of increased run-times, target images
can be interpolated to arbitrary sub-pixel levels, and match vectors computed to these sub-pixels.
A sub-pixel level of four (i.e. each whole pixel is replaced by 4 x 4 = 16 interpolated sub-pixels)
gives much improved match maps, but in practice sub-pixel level 2 may provide a good time

trade-off.

3.2.2 Identifying and Dealing With Bad Matches

The accuracy of correctly pixel movement vectors has been greatly improved by sub-pixel match-
ing (Section 3.2.1), but a large number of false matches are still generated in practice. For

example, both the match maps of Figure 3.3 show many such false matches, evident as areas of
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cross hatching where the longer vectors cross paths. Such bad matches will adversely affect any
attempted change detection. If bad matches can be identified, it is possible to either remove them
from any further analysis, or (preferably) recompute their mappings with additional constraints
imposed from correctly mapped neighbouring vectors. This section details the development
of a strategy for identifying possible bad matches, and outlines an extension to a data driven

re-mapping strategy for badly placed matches.

Any movement of brain structures over time will alter the total structure of the brain, but only
very rarely will the relative local structure change radically. For example, if three colinear local
features fi, f2 and fa, are identified in the source image, then, even though colinearity may be
disturbed in the target image, it is highly unlikely that the local ordering will change. Figure 3.4

illustrates this point. Detection of possibly bad vectors could be achieved through searching for
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Figure 3.4: Local feature ordering is usually preserved between source and target images (a).
Detection of possible bad matches can be made by looking for crossed vector paths (b)

adjacent vectors which have crossing paths (Figure 3.4 (b)). Unfortunately, such an approach
has two downfalls. Firstly, which one of the two vectors are bad (if not both)?, and secondly, well

matched adjacent vectors often cross, as illustrated by Figure 3.5. An alternative strategy for
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Figure 3.5: Detection of bad matches by crossed vector paths often fails under normal circum-
stances.

detecting bad matches has been developed from the following three local structure assumptions:

1. For every local structure in the source image, an identifiable variation of the same structure

is present in the target image.

2. Changes in the structure of local features between images will be small (i.e. similar local

structures between images will in fact be variations of the same structures).

3. The ordering of local features in the horizontal and vertical directions will be preserved

between images.

Under assumptions one and two, a bad match is due to coincidental local ambiguities (a case
of mistaken identity). If such a bad match is identified, it may be corrected by re-mapping it
to the next best match, iterating to reach a final solution. A final solution will always be found
under assumption one. Although reasonable, assumption one may be restrictive in practice.
Change detection may not only involve determining the movement of brain structures over time,
but it may require that new or missing structures are identified. Assumption three allows the
development of a bad match detection strategy based on the convez hull of the target mappings

of neighbouring vectors.

Cormen et. al ([2], p. 898) define the convex hull of a set of points as follows:
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The convex hull of a set @ of points is the smallest convex polygon P for which each

point in @ is either on the boundary of P or in its interior.

They go on to say:

Intuitively, we can think of each point in Q as being a nail sticking out from a board.
The convex hull is then the shape formed by a tight rubber band that surrounds all

the nails.

Figure 3.6 illustrates how the convex hull of the vector target points may be used in the detection
of bad matches. Here, the convex hull of the eight-neighbourhood of the vector under analysis is
determined. Should the target point of the vector fall outside of this convex hull, then assumption

three must be broken and the vector deemed a bad match. Of course this is not a complete
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Figure 3.6: Detection of bad matches by violation of a convex hull constraint. Analysing local
neighbourhoods of vectors is difficult, with many good match vectors showing crossing paths (a).
Comparing the vector target point with the convex hull of the target points of it’s neighbours
provides an easy solution. A match is bad if it’s target point falls outside of the convex hull of
the target points of it’s immediate neighbours (b).
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strategy. Bad matches may well exist within the convex hull, and good matches may well
exist outside of the convex hull if the local image structure has changed so much as to violate

assumption three.

Graham’s scan ([2], p. 899) is used to compute the convex hull. Graham’s scan first sorts all
points by polar angle with respect to the left-lowest point. Each point is then taken in turn (anti-
clockwise) and the angle between it and it’s two preceding neighbours is considered at each step.
If this angle involves a right hand turn, then an internal point has erroneously been included.
This point is then removed from consideration, and the algorithm iterates to a solution. In

pseudo-code, using a stack of points, the algorithm is:

GRAHAMS-SCAN(Q)
let pg be the point in @ with the minimum y-coordinate,
or the leftmost such point in case of a tie
let {p1,p2,--.,pm} be the remaining points in Q,
sorted by polar angle in counterclockwise order around py
(if more than one point has the same angle, remove all but
the one that is farthest from pg)
top[S] 0
PUSH(po, S)
PUSH(p1, S)
PUSH(p3, S)
fori—3tom
do while the angle formed by points NEXT-TO-TOP(S),
TOP(S), and p; makes a nonleft turn
do POP(S)
PUSH(S, p:)
return S

Once the convex hull is computed, a simple test can be used to determine whether or not any
point lies within, or outside of the hull. Since the convex hull is described by an ordered set of
boundary points, then if-and-only-if the point under consideration lies on or to the same side of

every edge of the boundary, it lies within the convex hull.

Figure 3.7 illustrates the typical effects of this strategy. Here each bad match detected (by
application of the convex hull strategy) has been removed. Input to the test is the match map

shown in Figure 3.3 (b).
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(a) One iteration (b) Five iterations

Figure 3.7: The convex hull test is used to identify bad matches. Input to the test is the match
map shown in Figure 3.3 (b). After just one iteration a small number of bad matches have been
removed (a). After five iterations (b), more bad matches have been removed, but many good
matches have been eroded from the outer edges.

This algorithm may be less promising than it seems at first sight. In Figure 3.7 (a) the occasional
lone bad match has been removed, but many still remain. The reason for this is that badly
matched neighbours support each other. Lone bad matches occur fairly infrequently. Where a
bad match exists there is most probably a number of surrounding bad matches also. These bad
matches can point in any direction and be of any length allowed by the original search window.
The average effect then is that, in regions of bad mapping, the convex hull of any particular set
of neighbours is quite large, and this therefore causes almost any bad match to be shielded from
detection. Even just two badly matched vectors can support each other. This is shown in areas
of Figure 3.7 (a). Iterating the convex hull bad vector removal strategy eventually erodes away
areas of bad matches, but an unfortunate side effect is that good matches from external edges

are also eroded. This is evident in Figure 3.7 (b).

As an alternative to simply removing such detected ‘bad’ matches, they could be re-mapped to

the region of greatest similarity that does lie within the convex hull. Initial tests of this strategy
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have shown promising results. Typically, after iteration, most areas of bad matches are ‘picked’

away.

3.3 Summary and Conclusions

By spreading out the distribution of a region match mask, it has been shown that considerable

run-time improvements can be made at little cost to the number of bad matches.

Considerable improvement of image region matching has been demonstrated by mapping to sub-
pixel levels. In the tests presented, each target pixel has been divided into sixteen sub-pixels,
whose values have been linearly interpolated from the whole-pixel level. Such improvement is
at the expense of runtime, but initial experiments have shown that sub-dividing each pixel into

Jjust four sub-pixels provides a reasonable time trade-off.

A heuristic method for detecting and re-mapping bad matches has been introduced. This method
is based upon the assumption that the relative ordering of local image features does not change
between images. While promising in theory, this strategy fails to account for mutually supportive
neighbouring bad matches. The solution may be to re-map each identified bad match so that
it lies within the convex hull of the target points of neighbouring vectors—iterating until close

enough to the final solution.

It seems clear at this point that a more effective strategy needs to be developed to overcome
bad matches. Using real data, the number of bad matches can be as low as 0.49% (Table 3.2),
but even this small number are still significant enough to affect analysis. However, removal or
constraining bad matches may not be the total solution. Bad matches are usually due to two
main reasons: (1) local image structure has changed radically between images, and (2) local
image structure is too faint to facilitate good matching (resulting in bad matches as side effect
of image noise). Both these cases can be seen in the images of Plates 1 and 2. If a false match
is due to reason one, then this is precisely one of the changes being looking for (the other being

movement), and the fact that the match vectors are randomly strewn around such an area can
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act as an identifying feature. If the bad match is due to reason two, however, then the bad match
is due solely to image noise, and is therefore of less significance than other bad matches. Different
strategies for dealing with these two types of bad match need to be developed. Woodward [10]
used the local standard deviation as a measure local feature importance. If this figure is high,
then something interesting is going on in that region, and so any bad matches here are probably
due to reason one. If on the other hand, the local standard deviation is low, then the bad match

is probably due to reason two.



Chapter 4

Analysis of Image Region Match

Map

The preceding chapters have introduced new techniques and improvements for local image region
matching applications. These techniques have been presented under a framework problem for
detecting local brain structure changes by analysing MR imagery taken at different times. This
chapter deals with the removal of global image mis-registration, and presents some considerations

for analysis of the residual local match maps.

4.1 Removal of Global Image Transformation

Woodward [10] described a method for the calculation of global image transformation based on
a least squares fit. This method has been implemented and used to estimate and remove such
transformations from the image match maps presented in earlier chapters. Since the majority
of matches arise from global image mis-registration, and not from local structure changes, then
these form the bulk of the data that transformation estimation will work with. Removal of such

transformation therefore leaves the vector map with (mainly) only localised features evident.
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The global transformation is estimated as follows ([10], p.49):

If an image I; undergoes a translation (;,ty), rotation 6, defined to be +ve anticlockwise, and
o ey

magnification A to become I — 2 then points P, (z1;, y1;) in I; will be expected to map to the

points Ej, (Zes, yes) in I according to the following equation:

Tei \ _ cosf —sinf T4 tr
( Yei ) N /\( sinf  cosf ) ( Wi >+ ( ty (4.1)
The centres of rotation and magnification can be incorporated into the translation, so that the

rotation and magnification are treated as being centred on (0, 0).

The transformation parameters between I; and I are unknown, but the output from the regu-
larisation is a list of points M, (za;, y2i) in I2, which match the points P;, (z1;, y1:) in I;. If more
than two matching pairs are known the system is overdetermined for the unknown parameters
tz, ty, @ and A. These parameters will not usually have a solution because the matching points
are not exact and will be perturbed by noise and changes. The values of the parameters are then
determined by minimising the sum of the squared distances between the actual match points M;

and the expected match points £;. Defining:

mgy = Acosf

my = Asind

Equation (4.1) can be written as

Tei = MpZ1i — MyYri + 1z
Yei = Mgy1i — Myz1i + 1,

and in vector notation:

where:
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Tel z11 -yu1 1 0

Yel Mz yu znn 0 1

E = yt = My ) P= :
iz .

Ten ty Tin —Yin 1 0

Yen Yin Tin 01

z.; and y.; are linear functions or m,, my, t; and ¢,. The solution to this linear least squares
problem is:

t=(PTP)'PTM

In practice, it was found that at least three iterations of an estimate-remove transformation cycle

was required to remove global transformations to within half a pixel.

4.2 Residual Vectors

Once global image transformations have been removed from the vector mapping, any correctly
mapped vectors that do not map to their own start points do in fact point in the directions of
detected change. The length of the residual vector gives the dimension of movement for that
pixel-sized brain image structure. Figure 4.1 shows the residual vector map after global image

o
transformation has been estimated and removed from the vector map given in Figure 3.7 (kff
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Figure 4.1: The residual vector map, showing likely local structure changes between images,
computed as follows: A bi-variate cross-correlation local image region matching function is used
on the images shown in Figure 2.1 to compute an initial image match map (Figure 3.3 (b)).
This initial map is computed to sub-pixel level at a scale of four. Lone bad vectors are identified
and removed (Figure 3.7 (a)). Finally global image transformation is estimated and removed
(above). Plate 1 shows this image in full colour.

Plate 1 shows the final residual vector map in full colour. From this, areas of change between
the source and target can easily be identified. Plate 2 shows the length of each residual vector,
as a colour-coded overlay. Darker blue areas show residual vectors of short length, and hence
areas of little change. Brighter red/orange areas showing increasingly longer vector lengths, and
hence larger scale change. The brightly lit areas about the top and top left of this image show
change detection of a fairly self evident nature—easily detected by the human observer. The
smaller brightly lit area about the ‘bulge’ at the bottom right of the image has shown up a more
subtle change (the local area has grown in size). This is less easily detectable by the human

observer.
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Plate 2: Visual analysis is aided by replacing the vectors shown in Plate 1 with a colour-coded overlav. Blue
shows little to no local structure change. whereas increasingly bright red shows increasingly large changes.
Overlay colours are calculated directly from vector lengths. with short vectors contributing to blue areas. and long
vectors contributing to red areas.



Plate 1: Mappings are first computed for every second pixel in the horizontal and vertical directions. Linear
interpolation of image data allows mapping to sub-pixel levels. A least squares estimate has been used to remove
effects of global image transformations. Vectors indicating local structure changes are shown in red. Vector start
points are shown in grey, while vector target points are shown in white.
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Addendum

Figure 3.5 on page 52 is incorrect. It should read as below:
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Figure 3.5: Detection of bad matches by crossed vector paths often fails under normal circumstances.




Chapter 5

Conclusions and Further Work

Woodward concluded his dissertation [10] with the remark:

If this technique is to be investigated further the main areas of effort should be on
reducing the speed of operation of the technique and on eliminating the groups of

bad matches from the initial mapping.

In this work, I have presented a number of techniques generally applicable to image region

matching and analysis.

With the availability of higher powered computers, plentiful memory, and better quality image
data, image matching by pixelwise techniques are once again being researched. The main work
done for this dissertation include the development of a new multi-variate image region match-
ing strategy based on the normalised cross-correlation function. This function is especially
suited to local image region matching as it compensates (on a local level) for differences of
pixel value intensity distribution between multi-modal data. A number of other well known
image region similarity metrics have been evaluated, and the main conclusion drawn here is that
a simple multi-variate extension of the standard Euclidean metric performs almost as well as

cross-correlation on real data, but with some five times greater speed.
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Also presented is the extension of such multi-variate matching to sub-pixel matching to arbitrary
levels. An image is subdivided into sub-pixels whose values are linearly interpolated from the
original image. Such sub-pixel matching provides for initial region matching to a much greater

accuracy than at the whole pixel level.

Finally, a method for identifying possibly-bad matches, based on the convex hull of the target
points of neighbouring matches, is developed. This strategy does not work as well as hoped when
faced with large groups of bad mappings. However, argument is given that such large groups
do not necessarily need to be re-mapped or excluded from analysis since they most likely signify
large scale changes that are so severe as to completely disrupt the local structure in that area.
The exception here is where such bad matches are due to a failing of the local similarity metric
in the face of noisy data (usually in areas of low gradient intensities). There is a need for further
work to be done in identifying such bad matches, and their founding reason. A suggestion is
made that the local standard deviation of pixel values can point to the cause of bad matches in
any one area. If the standard deviation is low, the bad matches are probably due to noise and
low pixel value activity in that area. If, on the other hand, the standard deviation is high, then,
in the light of this, such a failing to match correctly is most probably due to there being radical
differences between the structures in that part of the images. So much so that the similarity

metric does it’s job in reporting no cohesive similarity.

The available MRI data is organised into serial two-dimensional sections. Stacking such sections
will facilitate the development of a three-dimensional change detection system. This project
has made some advances aimed at paving the way to such a development. The image matching
strategy developed generalises well to three-dimensional data. Computational complexity (time)
still being the only practical problem. It is not necessarily a requirement that a match is made
for every pixel in the source image. Further work may develop a matching strategy that aims to

match only pertinent areas (if any are identifiable).

Little assessment of the effects of differently shaped image match masks has been presented here.

It is a suggestion for further work that such assessment is made.
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In final conclusion, the work presented here has advanced the power and flexibility of local image
region matching techniques. Application has been made to the detection of brain structure over
time without explicit reference to higher order structures other than local image similarity.
Simple pixel area matching has been improved by moving to the sub-pixel domain. Linear
interpolation has been chosen for ease of analysis and implementation. It is suggested that further

matching strategy improvements can be made with more advanced interpolation techniques.
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Appendix A

On-line information

This project has been approached very much in the spirit of research and evaluation of the
the developed techniques. A large number of ‘C’ programs have been developed (and a large
number discarded). As of presentation of this dissertation, all relevant details appertaining to
the developed system of programs, data structures, etc. (in fact everthing needed to continue

this work further) can be found in the subdirectories of my DAI and CS accounts:
DAL /petero/PROJECT/ (See the file README).

DCS: /pio/PROJECT/ (See the file README).
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