On-line Image Processing Operator Demonstrations in Java,

Konstantinos Koryllos

MSc Information Technology: Knowledge Based Systems
Department of Artificial Intelligence
University of Edinburgh
1996

Abstract

A new tool for developing interactive software has emerged. It is called Javal
and is an object-oriented language developed by Sun Micro-systems. Now it is
possible to have Java-enhanced Web pages to interactively teach students new
material.

This project is aimed at exploring the facilities provided by Java for image pro-
cessing and implementing a few representative operators from different classes

which will operate within a Web-browser environment.

!Registered trademark of Sun Microsystems, Inc.

Acknowledgements

Firstly, I am obliged to my supervisor, Robert B. Fisher, for keeping
me in track and for making this project interesting, without signi-
ficantly increasing the amount of grey hair in my head.

Secondly, I would like to thank Pavlos Papageorgiou for proof-
reading this document as well as for his expert advice on a diversity
of topics.

Lastly, credit is due to the SAA? for their funding, to my parents
who still love me, and to my University for having me around longer

than I expected.

2Students Award Agency (not South African Airlines), Grant number 7582633

i

Contents

1 Introduction
1.1 The Internet in Education . . .
1.2 Image Processing
1.3 Previous Work
131 HIPR
1.3.2 Andrew Fitzgibbon . . .
133 Visilog
1.4 Aims of this Project
1.5 What follows
2 Java
2.1 Background Information
2.1.1 Useful definitions
212 Javavs C& C++ . ..
2.1.3 Java Bytecodes
2.1.4 Applet Methods
2.2 Image Processing Support . . .
2.2.1 The Java Color Model .
2.2.2 Pixel Independent Operations
2.2.3 Single Pixel vs Neighbourhood Operations
3 The Generic Applet
4 The Applets
4.1 The Gamma Correction Applet
4.1.1 Operation
4.2 The Rotation Applet
4.2.1 Simple Rotation
4.2.2 “Shear” Rotation
4.2.3 Operation
4.3 The Convolution Applet
4.3.1 Operation
4.4 'The Noise Generating Applet .

i

O O 0000~ D b

Nel

13
14
14
15
16
17
17
18
19

21

44.1 Operation i e e 37

4.4.2 Algorithmic Details 37

4.5 The Noise Reducing Applet 39
4.5.1 Mean Smoothing L. 39

4.5.2 Median Smoothing 40

4.5.3 Gaussian Smoothing 41

4.5.4 Mean-Median Smoothing 42

4.5.5 Operation e 43

4.6 The Thresholding Applet 43
4.6.1 The Histogram 44

4.6.2 Operation L 44

4.7 The Thinning Applet 45

5 Communicating Applets 47
6 Testing 52
6.1 The Comparison i v ittt 52
6.1.1 Testing Conditions 52

6.1.2 Performance Comparison 53

6.2 Correctness Of Algorithms 95

7 Conclusions—Future Work 61
701 Java is e vias e §8eEGE . 61

7.0.2 The Project 62

7.0.3 TheFuture 62
Appendices 64
A TImages Used 65

il

List of Figures

1.1
1.2

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
9.2
3.3

6.1

Interactive Vector Cross-Product 11
Fitzgibbon’s Threshold Applet 12
Behind the Scenes o 19
0.45 and 3.3 Gamma Correction transforms. 24
The Gamma Correction Applet 25
The Rotation Applet 27
Rotation Schema 28
Wrap-around of Pixels 30
The Convolution Applet 32
How Convolution Works 33
Salt-Pepper and Gaussian Noise 35
The Noise Generating Applet 36
The Noise Reducing Applet 39
The Median Operator 40
The Thresholding Applet 43
Before and After Thinning 45
Thinning structuring elements 46
Communicating Applets 1 48
Communicating Applets 2 49
The Applets and the Cascade of Images 51
Gammavalue =33 58

v

6.2
6.3
6.4
6.5

Al
A2
A3
AA4
Ab

Laplacian Operator 59

Mean Smoothing (5x5) 59
Median Smoothing Lo 60
Thinning e 60
Simon Perkins and the Famous L-Object 65
Papaand the UFO 66
Olga and the Holy Square 66
Andrew and the Dark Holy Square 67
A diagram of the java.awt.image Package 68

Chapter 1
Introduction

We are probably quite fortunate to be living in an era where we can communicate
with each other via the World Wide Web (WWW) and exchange a very broad
variety of information with most of the rest of the world. The ability to be able
in seconds to exploit world-wide resources is probably the best justification for
the existence of the WWW.

In the Computer Science and Artificial Intelligence fields one of the major ex-
changes of information is achieved through software programs. It is more than
probable that when you are developing some piece of software you will be able to
draw upon previous work and source code on the subject. This is where we hit
upon a slight snag. With a few tens of widely used languages one would have to
be extremely computer-literate to be able make full use of the source code one
wishes to elaborate upon.

At this point, many hope, that Java! will come to the rescue by allowing all the
programmers in the world to communicate using the same language. This is quite
an ambitious and powerful vision but given the attention the Internet is receiving

at the moment it has reasonable potential for success.

1The famous new Object-Oriented Language developed by Sun Microsystems.

1.1 The Internet in Education

In the present day and age the personal computer has become a standard house-
hold apparatus and educational software packages? are amongst the most popular
ones. People are usually far better at remembering interactive rather than static
material. Interaction with knowledge is always more fruitful than mere textbook
memorisation so children and students in particular can benefit greatly from the
new technology.

In the past few years many Universities and Colleges have produced their own
WWW pages with several links to teaching material, papers, exercises et(;., SO
that the rest of the world can benefit from their work. This idea has had a great
response, resulting in huge amounts of information becoming available to any
user with Internet access. On the hot-list now are the interactive stand-alone
programs that occupy a part of a WWW page with educational content. The
favourite set-up seems to be composed of some length of theory about a particu-
lar subject and then a real hands on (mouses on?) application, for which Java is
ideal. This forms the basis of an “interactive textbook”.

A very representative example of such an application can be found in the WWW
pages of the Physics Department of the University of Syracuse in New York and
is illustrated in Figure 1.1. The purpose of this on-line demonstration is to give
the opportunity to students to have a hands-on experience with the way the vec-
tor cross-product behaves as the magnitude of the vectors and the angle between
them varies. After a couple of minutes of interaction with the program one cannot

help wanting to see more such demonstrations.

1.2 Image Processing

Digital image processing is a fairly new field which made its appearance in the
1960’s together with third generation computers. One of the first fields to use

image processing was space research to compensate for camera distortion of lunar

2e.g. Microsoft Encarta etc.

surface images. From the early 1960’s to date, image processing has infiltrated
numerous fields such as medicine, biology, geography, meteorology, plasma phys-
ics, etc.

Image processing, for the purposes of this project, can be defined as the trans-
formation of (at least) one image to another by the use of some local operator.
An inventory and a brief description of the major classes of operators this project

touches upon follows.

Point Operators The pixel is the smallest unit that can be processed and it
represents a single dot on an image displayed on a computer monitor.
Point operators are functions that are applied to individual pixels and are,
therefore, position independent operators. The most popular representat-

ives of this category are Thresholding and Gamma correction.

e Thresholding
An intensity value is supplied by the user above which all pixels values
are set to the maximum (or alternatively, the value 1) and below which
all pixels value are set to zero. Thus, if the input image contains
values in the range 0..255 the output image will only contain pixels
with values either zero or 255 (a binary image).
One application of thresholding is in segmentation whereby an object

may be separated from its background.

e Gamma Correction

An image which is too dark or too bright can be adjusted to prefer-
ence using the non-linear gamma correction transform which relates
closely to a brightness control on a monitor and is used in standard
TV cameras.

The function which relates input to output pixel in the gamma trans-
form is given by:

Out(i,) = ¢ In(3, 5)"

A gamma value of 1.0 produces a null transform. For less than one

pixels with high intensity value are suppressed whereas if v is greater

3

than one high intensity pixels are enhanced.

Visually, values in the range 0.0..1.0 brighten the image and values
greater than 1.0 darken it.

The normalisation constant c is once again used to make sure that no
output pixel value exceeds a preset range (e.g. 0..255). This trans-
form is similar to two well known operators, the logarithmic and the
exponential.

The logarithmic is described by:
Out(i, j) = clog(|In(z, 5)|)

in which each pixel value is replaced by its logarithm. This has the
effect of enhancing low intensity pixel values. The scaling constant
¢ is used to make sure that the output value O(3,) does not exceed

the maximum value (255 in our case). The exponential operator is
described by:
Out(i,) = ¢ ™)

where c is again the scaling factor, b the basis which has the effect of

enhancing high intensity pixel values.

Image Arithmetic Image arithmetic requires two images which are combined
to produce a single one as an output. This is a popular class of operators

of which subtraction, inversion and logical AND/OR are very widely used.

e Pixel Subtraction

Pixel subtraction takes two images and produces a third one whose

corresponding pixel values have been subtracted, or
OUt(Za]) = I’I’Ll(’L,]) - I’nz(’L,j)

where Out(i,j) represents the output value of the pixel located at

(2,7).

It usually forms part of a more complicated series of operations but is

also used on its own.

e Inversion
Inversion produces the effect observed on photographic negatives and
is used to change the polarity of an image as part of a larger process.

Its equation is simply
Out (i, j) = Imez — In(i, 7)

where I,,,. is usually equal to 255.

e Logical AND
Logical AND takes two images and applies the AND operator in a
bitwise fashion between corresponding pixels in each image. The effect
is to return the intersection of the two images and it can be used to
detect changes in consecutive image of a particular scene.
Similarly, logical OR can be used to obtain the union of two images

which is equivalent to merging them.

Geometric Operations These are well known operations which include Rota-
tion, Translation and Scaling. The most interesting of them is rotation
whereby a point (7,7) in one image is mapped to another location on a

target image using the transformation matrix:

cos(0) —sin(6)
sin(d) cos(0)

M=

where 0 represents the anti-clockwise rotation angle. The whole transform-

ation can then be written as

o) -1

Morphology Under this heading belong operations where the input is usually
a binary image plus a structuring element and the output a combination of

the two.

A structuring element is usually a 3x3 pixel matrix like the ones illustrated
in Figure 4.14. These structuring elements determine the fine details of the
effects of an operator on an image using the Hit-and-Miss transform. This

transform is the basis for most of the remaining morphological operators.

e Hit-and-Miss
The hit-and-miss transform operates as follows: The origin of the
structuring element is translated to each point of an image in sequence.
For each position, all points in the structuring element are compared
with the image pixel value they happen to overlap at that point in
time. If a match can be made (according to criteria explored later)
then the pixel underneath the origin of the structuring element is set
to the foreground colour (1 or 255) otherwise to zero.

e Thinning
This is a useful operation and can be described in terms of the hit-
and-miss transform. Its effect is to produce a one-pixel thick version
of a binary image (while preserving the overall geometry of the shape).

It is described as
thin(I,J) = I — hit-and-miss(7, J)
where [is the input image and J the structuring element.

Digital Filters These filters are generally used for smoothing or enhancing fea-
tures in images and are based on a two-dimensional convolution operation
(which expresses a linear filtering process applied to an image). The con-

volution of two functions f and g is described by

9(z,y) = fo,y) = [[fl@B) 9@~y -) dadp

where f(z,y) represents the image, g(z,y) the kernel, & and § are dummy
variables for the integration (the range of which is across the entire image)

and the symbol * indicates convolution (see [14]).

Later on we shall encounter a more practical discrete convolution imple-
mented for the purposes of this project.

Smoothing is a direct application of the convolution operation as is com-
monly used to remove noise from an image.

Mean, and Gaussian smoothing are two such techniques which are further

discussed in Chapter 4.

Image Synthesis Under this heading one finds noise generation. In order for
the effectiveness of a smoothing filter to be measured, one should possess
the capability of willfully corrupting an image. Two types of noise are

commonly produced:

e Salt and Pepper Noise

The new image is exactly like the old one except for the fact that
several pixels (depending on the percentage of corruption) are replaced
by either a maximum or a minimum intensity value. The corrupted

image thus has black and white speckles scattered all over it.

e Gaussian Noise

This type of noise is common in recorded images where the recording
medium corrupts the image in a uniform way. This corruption can
be modelled by a Gaussian with zero mean and a selected amount of

variance.

1.3 Previous Work

Using Java for image processing is quite a novel idea. While this does have
advantages its obvious disadvantage is that there is not a lot of previous work to

draw upon. A few of the most useful resources are listed below.

1.3.1 HIPR

This has been the single most useful reference for this project. HIPR or Hyper-
media Image Processing Reference [13] is a project undertaken by the Machine
Vision Unit the Artificial Intelligence Department of the University of Edinburgh.
Its purpose is help students learn about image processing by achieving the golden
ratio between having too few examples and too much technical information (as is
the case with the majority of textbooks in image processing and machine vision).
The Worksheets section of HIPR includes a series of topics starting from image
arithmetic to morphology and image transforms. These worksheets contain the-
oretical background on each topic plus a number of examples of applications,
including numerous before-and-after type of images. This way the student can
comprehend the exact effects of the particular operator as well as understand its
theoretical basis.

At the end of each section a set of exercises and further references are given for

the student to elaborate upon.

1.3.2 Andrew Fitzgibbon

Although image processing is itself a deeply explored field, image processing using
Java is not. Using the power of Java as the current Internet platform-independent
language one can provide an interactive world-viewable teaching tool for image
processing.

The first such demonstration I came across was in the WWW pages of the Marble
Project [1] (see Figure 1.2). It was a “thresholding” applet with a slider to set
the threshold value and a source and target images. This demonstration, coupled
with the relevant background theory (in HTML) made for an entertaining and
educational experience.

My project has made use of some of the Java classes written by Andrew Fitzgib-
bon the most useful of which is ImageCanvas() whose purpose is to “tie an image
to a canvas, wait until its size is known, resize the canvas and later update the

on-screen image”.

1.3.3 Visilog

Visilog is the standard commercial image processing package used in the Depart-
ment of Artificial Intelligence in the University of Edinburgh. Its purpose is to
provide machine vision students with practical experience in their area of study

by implementing a large number of operators such as
e Point (arithmetic, logical, etc.)
e Filtering (for smoothing, sharpening, etc.)
e Morphology (thinning, hit-and-miss, etc.)
e Geometry (rotation, sliding, etc.)

Visilog’s features go far beyond the ones mentioned but for the purposes of my
project it has been used as a testing and performance benchmark.
Chapter 6 compares the execution speed as well as the output of each operator

implemented in Java against Visilog (for speed and correctness).

1.4 Aims of this Project

The purpose of this project is to investigate the suitability of Java in image
processing and to implement some of the most representative operations in that
area.

The final product will be world-viewable via a web-browser and the operators

will be able to communicate by passing on output data to each other.

1.5 What follows

Chapter 2 contains an overview of Java and its mechanisms that support image
processing.
Chapter 3 briefly describes the generic applet template used in the applets im-

plemented.

Chapter 4 describes the applets implemented in detail and chapter 5 describes
the way applets have been made to communicate data with one another.
Chapter 6 briefly compares the performance of Java-based image processing to
Visilog.

Finally, chapter 7 briefly lays down the conclusions of this project’s work and

discusses future plans.

10

Angle phi : 80

Figure 1.1: Interactive Vector Cross-Product

11

Exercise 1: This image is of a white square against a black background. Try to find a
threshold which makes the square completely white and the background cornpletely black.

Figure 1.2: Fitzgibbon’s Threshold Applet

12

Chapter 2

Java

Interesting, from a developers perspective, Java is a compelling tech-
nology. It’s based on C++, a language that almost all programmers are at
least familiar with. Java’s creators stripped out most of the Bad Stuff —
structs, pointers, unions, multiple inheritance, and more — that are prob-
ably responsible for 50% of the C++ programming errors and problems,
and added some Good Stuff — automatic memory management, garbage
collection, and strings, whose absence are probably responsible for the

other 50%.

Steve Mann, PDA Guru.

2.1 Background Information

Java, as mentioned earlier, is an object-oriented language developed by Sun Mi-
crosystems. It is modelled after C++ but it is designed to be small, simple and
machine independent.

Java programs belong in two categories: applets and applications. Applets are
programs that are referenced through an HTML! document and are down-loaded
over the WWW and executed by the Web browser on the reader’s machine. Ap-

plications are simply conventional stand-alone programs written in the Java lan-

!HyperText Mark-up Language

13

guage. Due to the educational nature of this project, we shall be concentrating

on applets rather than applications.

2.1.1 Useful definitions

Class A template for an object. It may contain methods and variables and may

also exploit inheritance by extending other classes.
Object An instance of a class.

Method Functions that operate either on instances or classes. No functions

outside classes are allowed.

Interface A collection of abstract behaviour specifications that individual classes
can implement. This is Java’s answer to multiple inheritance. One of the
most important interfaces is the Runnable which enables the use of threads

in applets.

Package A collection of classes and Interfaces. For instance, java.awt is the
Abstract Windowing Toolkit package which contains all the building blocks

for user-interfaces, drawing etc.

2.1.2 Java vs C & C++4

This very brief comparison has been adapted from [8].

e Java has no pointers. Instead, variable assignments, arguments passed on

to methods etc, are accomplished by reference (for class objects).

e Arrays and Strings in Java are objects, and their boundaries are strictly
enforced. Any attempt to access beyond their end means that a compile or

run-time error will occur.

e All memory management is automatic so no explicit allocation or dealloc-

ation of memory is required (or allowed).

14

e Errors are objects in their own right and can be handled explicitly. This

feature greatly simplifies debugging.
e Multiple inheritance (in the C++ sense) is not allowed.
e All functions must be methods so that no functions outside classes exist.
e Java does not have a preprocessor so no #defines or macros exist.

e Java does not support mechanisms for variable-length argument lists to

functions.

e The test expression for each control flow statement must return a boolean

value (true or false) and not, for instance, an integer as in C or C++.

e Support for threads is built into the Java language.

2.1.3 Java Bytecodes

When Java code is compiled the result is not directly executable but it must be
interpreted by each computer (using a web browser or other tools). This first
‘compilation’ produces bytecodes out of source code. A bytecode instruction con-
sists of a one-byte op code to identify the operation required and a number of
bytes which represent the parameters involved.

This system has been employed so that every computer in the world can run the
same bytecodes, whatever its architecture. To achieve this, Java has assumed the
existence of a Virtual Machine which the bytecode-interpreter (e.g. a WWW
Browser) will implement so that the bytecodes can be executed on the host ma-
chine. This scheme works fine for most programs but if more speed is required

then two solutions are available
e Use of native C code.

e Just-in-Time Compilers.

Java has mechanisms that will allow compiled C to be used in order to improve
performance where required. While this solution is fine for applications executed
locally, it runs into the portability constraints that all binary executables have.

The better solution is to wait for Just-in-Time compilers? which will translate
Java bytecodes into native machine code. This will enable Java programs to run

at almost the same speed as C.

2.1.4 Applet Methods

Applets share several methods which must be overridden by the user if they are

to do anything constructive.

e init(). This is the initialisation method and it is called when the applet is

first loaded. Usually object creation and image loading is done here.

e start(). After initialisation the applet is started. This method is called
whenever the user visits the WWW page containing that applet and thus

it may be called several times during the lifetime of the applet.

e stop(). When the user leaves the page containing the applet this method is
called. If the applet contains any threads they must be stopped explicitly
though this method.

e run(). If the applet implements the Runnable interface it may use this

method to include anything that is to be run in a separate thread.

e destroy(). This method enables the applet to clean up after itself before it

is destroyed.

e paint(). This method is used if an applets wishes to draw something on

screen.

2Compilers that will be ready just-in-time for this project!

16

2.2 Image Processing Support

Java offers a variety of functions dedicated to the manipulation of images, as well
a Graphics class which implements the usual set of drawing primitives.

This support for using images is spread out between the java.applet, java.awt
and java.awt.image packages. The latter package contains the support for ma-
nipulating images that have been already loaded. The loading of an image is
achieved through the getImage() method of an Applet instance by supplying a
URL? parameter.

To display an image one invokes the drawlmage() method of the Graphics object
which is passed onto the applet’s update() or paint() method. One can keep track
of the state of the image(s) using an instance of a MediaTracker class and use
the methods provided. The ImageObserver interface can be used for even closer

monitoring of an image.

2.2.1 The Java Color Model

Java has a class named Color. In order to create a Color object the red, green
and blue components must be specified as floating point numbers between zero
and one. Alternatively one can specify hue, saturation and brightness and the
equivalent color will be created. Internally, however, Java stores color components

as 8-bit values between 0 and 255. An RGB color is a 32-bit integer of the form:
0xAARRGGBB

where AA represents the alpha transparency value, and RR, GG, BB the red,
green and blue values respectively.

The Java image class allows the programmer to access the pixels of the image as
a one-dimensional array. Pixel values are stored in each element of the array in
the above form. In order to extract the individual color components from this

form, bitwise arithmetic is used:

e R = rgb & 0x00{f0000 >> 16

3Uniform Resource Locator

17

e G = rgb & 0x0000f00 > 8

¢ B = rgb & 0x000000fF

2.2.2 Pixel Independent Operations

The ImageProducer interface represents an image source and defines the methods
which must be implemented by classes wishing to communicate with ImageCon-
sumer classes.

Once an Image object has been created (using Applet.getImage()), the ImagePro-
ducer for that image can be obtained with the Image.getSource() method. If, on
the other hand, one is given an ImageProducer object, its corresponding Image
object can be created using the createImage() method.

Once an ImageProducer object is obtained, it can be manipulated using the classes
contained in the package java.awt.image.

The ImageConsumer interface defines a set of methods which must be imple-
mented by any class that desires to consume image data from another class that
produces it. These methods should only be called by the ImageProducer that
wishes to pass image (and other) data to the ImageConsumer. Behind the scenes
image data is created according to Figure 2.1. An image producer is the object
which implements the ImageProducer interface and which produces the raw data
for an Image object. This data is sent to an image consumer which is an object
that implements the ImageConsumer interface. Java allows the user to modify
an image is by enabling the user to define and insert an image filter between the
producer and the consumer of the image. The producer will then send the data
which will be modified by the filter before reaching the consumer.

The filter is an ImageFilter object which also implements the the ImageConsumer
interface since it receives data sent by the ImageProducer.

The procedure which follows may be adopted to realize the aforementioned plan

The above procedure can then be described as follows:

1. Get an Image object using Applet.getImage() .

18

w Image Data {
ImageProducer J [ImageConsumer

Image .
ImageProducer ° ImageFilter Modified

ImageConsumer
Data

Figure 2.1: Behind the Scenes

2. Using Image.getSource() obtain the data source for that image.
3. Create a filter instance.

4. Filter the image using FilteredImageSource() which takes the image source

and the filter and returns an image producer, and finally

5. Create the new image by using Component.createImage() which takes an

image producer (created in the previous step).

2.2.3 Single Pixel vs. Neighbourhood Operations

Java has optimised single-pixel operations by giving the user the option to dir-
ectly filter the colormap instead of working with image pixels.

In neighbourhood operations it is no longer the case that we can simply modify
the colormap as with pixel operations. In any case, while colormap modifications
are fast and global, they are a bad idea if you want to do anything other than
display the image. It is thus a more general solution to produce new data for a

standard colormap.

19

The most straightforward way to achieve this is to convert the image into an
array of numbers which can then be processed as desired.

For this purpose, the PizelGrabber class is used. This class implements the I'm-
ageConsumer interface and is used to extract a requested rectangular array of
pixels from an Image object. These pixels are stored into a one-dimensional ar-
ray of integers in the RGB format described earlier.

Most of the applets implemented are neighbourhood operations and the proced-

ure which was adopted is as follows:

e Obtain the source image using Applet.getImage().

Convert the image into a one-dimensional array using PizelGrabber.grabPizels().

Extract colors and process as desired.

Create the target image using the class MemorylmageSource and the func-

tion Component.createImage().

Display the target image.

This procedure is described in more detail in the next chapter.

20

Chapter 3

The Generic Applet

In each of the applets, described individually in chapter 4, certain important

steps are common. These steps are described below.

Step 1

The first important step is to obtain the image to be processed. This is achieved

using
src = getImage(getCodeBase(), image_name);

where src is an Image object, getCodeBase() obtains the path where the compiled
program resides and image_name is a String object. This object contains the name

of the image which can either be obtained from an HTML document or directly.

String image_name = getParameter("image");

if (image_name == null) image_name="images/simon.gif";

The method getParameter() obtains the value of the image parameter in the
HTML document that holds the applet. If no such parameter exists then a
default value compiled with the applet is used. The combined code above results
(if no HTML parameter is found) in the image simon.gif to be loaded. This
image must reside in the directory images of the directory holding the executable

applet code.

21

Step 2

Next, the image must be tied to a canvas so that its size can be obtained!. An

instance of the ImagesCanvas class is first created:
ImageCanvas src_canvas = new ImageCanvas(src);

and to retrieve the image width and height the following piece of code is used:

int i_w = src_canvas.getImageWidth();

int i_h = src_canvas.getImageHeight();

Step 3

The following piece of code is responsible for producing a one-dimensional array

of pixels from the image contained in src.

PixelGrabber pgl = new PixelGrabber(src,0,0,i_w,i_h,src_1d,0,i_w);
try {
pgl.grabPixels();
} catch (InterruptedException e) {
System.err.println("InterruptedException!");
return,
+
if ((pgl.status() & ImageObserver.ABORT) != 0) {

return;

src_1d will contain the pixel values required provided that the operation executes
smoothly.
The method grabPizels() initiates the pixel acquisition process. If this process is

interrupted then an error occurs.

! ImageCanvas is a subclass of Canvas and was written by Andrew Fitzgibbon.

22

Step 4

The colors can now be extracted and operated upon from the array src_1d con-
taining the image pixels. Section 2.2.1 describes the procedure required to achieve
this.

Step 5

The line

dest = createImage(new MemoryImageSource(i_w,i_h,dest_1d,0,i_w));

is responsible for creating an Image object from a one-dimensional array of pixels
of a particular size. This image can be, in turn, tied to an ImageCanvas and

displayed. The following two lines of code achieve this.

dest = createImage(new MemoryImageSource(i_w,i_h,dest_1d,0,i_w));

grid.add(dest_canvas = new ImageCanvas(dest));

23

Chapter 4

The Applets

4.1 The Gamma Correction Applet

n gamma = 0,45 1 gamma = 3.3
T
// 7
0.8 / 0.8 /
!
s
0.6 -~ 0.6 /
0.4 / 0.4 //
{,r/
0,2 0,2 ’
{ //
0 2 5 N N 0 a —-""-: 2 M
0 0,2 0.4 0.6 0.8 1 0,2 0.4 0.6 0.8 1

Figure 4.1: 0.45 and 3.3 Gamma Correction transforms

As already mentioned, the gamma transform is a pixel transform in which the

input and output pixels are related by the formula:
f(@) =ca”
For the purposes of this project, the formula

f(z) =caz/”

24

——

Figure 4.2: The Gamma Correction Applet

was used where z is a pixel value in the range 0.0..1.0.

For « in 0..1 the output image is darker than the input image whereas for -y
greater than one the reverse is true i.e. the output image is brighter. In Figure
4.2 the value of gamma applied to the original image (left) is 3.3. The effect of the
function is to considerably brighten the image. The transformation undergone

by the pixels is illustrated in the right of Figure 4.1.

4.1.1 Operation

A Gamma value must be supplied in the corresponding text field. By pressing

the “return” key the operation of the applet will commence.

25

Two minor details must be kept in mind here:

1. The pixel values obtained by Java are in the range 0..255 so they have to
be normalised to 0.0..1.0 before the transform can be applied and they have

to be re-normalised to 0..255 before the image can be displayed.

2. Any values exceeding 255 (due to floating-point imprecision) should be kept
at 255.

As a further point of interest, negative gamma values have the effect of producing
a photographic negative version of the original image and so they have been

allowed.

4.2 The Rotation Applet

Rotation of images is an interesting problem. A two-dimensional anti-clockwise

rotation is represented by the corresponding four-element matrix:

cos(8) —sin(6)
sin(f) cos(f)

M =

In image processing a few considerations have to be taken into account before

this transformation can be applied. For instance,

e What happens to the parts of the image that are rotated out of the bound-
aries of the destination image? Do we use a larger frame and rotate the

whole image or do some areas get inevitably cropped out?

e Do we represent areas with no source pixels as black areas or do we wrap-

around the source image to produce a ‘tiling’ effect?

e How do we make sure that each pixel in the source image will map to one
distinct pixel on the destination image? How can we ensure that not more
than one source pixel maps to a destination pixel? This is not possible in

general, so we must find a satisfactory approximation.

26

=

== p——=m = =

Figure 4.3: The Rotation Applet

e Similarly, how can we ensure that no destination pixels are left without a
value when they clearly should have one (i.e. are mid-image pixels and not

out-of-screen ones).

e Given that rotation can be a computationally intensive operation, how do

we cut down on execution time?

In order to address all of the above questions properly, two rotation algorithms

have been implemented.

4.2.1 Simple Rotation

This rotation algorithm is a fast implementation of the rotation where we fill in

the destination image in raster order by point-sampling the source image. The

27

==

Unit Vectors “ __.--*Image scan-lines
. d] -

Incremental dx unit steps

Rotated Origin \ N

\ “Incremental dy unit steps

Figure 4.4: Rotation Schema

optimisation lies in the fact that the expensive matrix multiplication is done once
outside the inner loop. The inner loop itself contains step additions for going from
one pixel to the next (in the source image) as well as some conditional statements
to check for pixels which map outside the boundaries of the source image.

The algorithm operates as follows:

1. Rotate the top left corner of the destination image (origin), about the
centroid of the image, employing the above rotation matrix, using the neg-
ative value of the desired rotation angle.

This step occurs once outside any loops. The values for and y obtained
will be used to index into the source image array to retrieve the first pixel
of the rotated image (which is placed in location (0,0) of the destination

array).

28

2. Rotate a unit vector on the x-direction and a unit vector on the y-direction
using the transformation of step 1 (see Figure 4.4). This rotated unit vector
will help us determine which pixel to retrieve from the source image next.

This step also takes place once.

3. In order to avoid further expensive matrix multiplications we are going
to exploit a property which relates collinear rotated pixels; by adding the
rotated unit vector in the x-direction (calculated in step 2) to the rotated
origin of step 1 we obtain the next set of coordinates which will be used
to index into the source image array. This will return the next pixel to be
placed in location (1,0) of the destination array, etc, until we reach the end

of the row.

4. The coordinate of the first row have been kept and the coordinates for the
next row can now be produced by adding to the ones we have the unit

vector in the y-direction.

5. This process is repeated until all locations in the destination image have

been filled.
There are several things to note/add here

e FEach pixel in the destination array is guaranteed to have a value though not
necessarily a distinct one; i.e. it could be the case that with index rounding
a pixel in the source image array will be copied in more than one locations

in the destination image.

e Pixel coordinates which exceed the limits of the source image are “cropped”

out (represented by black color).

e No averaging of pixel values takes place so that for certain angles the effect

of aliasing (jaggedness of straight lines) is obvious.

e The speed of execution seems to compensate nicely for the slightly aliased

rotated image.

29

4.2.2 “Shear” Rotation

@~ - Points putside image

1 \‘
'I 1y
!]
- ' 7'y
Pl - ®
. f
I’ B
i
/ '

®
:

Corresponding wr'a;)pc;i around points

|
,
|
|
|
r
®

Figure 4.5: Wrap-around of Pixels

This algorithm was implemented using a pseudo-code version described in [3].
The general idea is that one can decompose the 2D rotation matrix above into a
product of three shear matrices. Raster shearing is done on a scan-line basis and
is thus quite efficient.

The shear matrix in the x-direction is given by
z shear =

and the corresponding one for the y-direction by

10

y shear =
g1
The product of three 2x2 shear matrices gives rise to a 2x2 rotation matrix
1 «a 10 1 vy | | cos(d) —sin(6)
0 1 g1 01 sin(0) cos(f)

1Tt is due to Alan W. Paeth of the University of Waterloo in Ontario, Canada.

30

from which the following shear product can be derived (using half-angle identity

for the tangent as the previous solution is numerically unstable near zero):

1 —tan(%) 1 0 1 —tan(%)
0o 1 sin@) 1|0 1

which represents a counterclockwise rotation by 8.

In this algorithm, scan-line shearing is approximated by a blending of adjacent
pixels. For angles less than 45 degrees the algorithm operates at its best and no
visible shifts in intensity are produces neither are “holes” introduced. “All pixel
flux is accounted for”.

There are a few things to note/add here as well:

e This implementation, contrary to the previous one, “wraps-around” parts of
the image that would normally reside outside the boundaries of the rotated
image according to Figure 4.5. This produces a “tiling” effect and none of

the rotated image is black.

e This implementation is buggy in that it rotates only a subset of the image
correctly. The image is corrupted near the edges. This could be fixed if we

used much larger images as intermediate steps between the shears.

e Shear rotation eliminates the aliasing problem encountered in simple rota-

tion.

4.2.3 Operation

The operation of the applet is quite simple. The user enters the angle of rotation
(in degrees) in the text area present and chooses the rotation algorithm by ticking
the relevant button. Rotation commences as soon as the “return” key is pressed

within the text area. The rotation is clock-wise.

31

P

Figure 4.6: The Convolution Applet

4.3 The Convolution Applet

A convolution is a neighbourhood operation that takes place over the whole im-
age. A convolution kernel is essentially a matrix, which may represent a discretely
sampled function, which is applied to a number of pixels of the same size and
shape as the kernel. If one mentally placed the kernel over each pixel of the source
image in turn, then below each kernel element there exists a pixel element. Thus,
each output pixel of the destination image is a function of all the elements of the
kernel as well as the corresponding pixel elements of the source image.

Convolution is typically used in image processing whenever the output pixels can

be described by a simple linear combination of the input pixels.

32

Image Kernel

In1|I12|113 114 |I15| 116|117 118 K11 K2 K13
I21|122|123 124 |I25|126| 127|128 Ko1Kz (K23
I31|132(I33|134 135 |I36| 137|138 K31 K32[K33
I41|I142|143|144|145|146|147 148

Is1|Is2(153|154|155|156 157|158

Is1|I62|163|164|165|166 (167|168

I71|172|173 174|175 |176 |177| 178

Is1|Is2(I83|184|Iss|Is6|187|1ss8

Figure 4.7: How Convolution Works

Mathematically, a convolution is described by the following formula:
0(,7) = ii](i+k— 1,7 +1-1)K(k,1)
k=1 i=1
where O() and I() are the output and input images respectively and K() the ker-
nel. To make the mathematics more concrete consider the two arrays in Figure
4.7 where I;; represents image elements and K;; kernel elements. Upon comple-

tion of the first iteration of the convolution procedure the output element Oy

takes the value
On =InKn+ IoKig + i3 Kz + ... + I33K33,
upon completion of the second iteration, element O,y takes the value

Oz = oK1 + 13 Ko + 14 K3 + ... + [34 K33

33

and so on. What happens when the kernel reaches the image boundaries and
so no complete overlap between kernel and image exists? Three techniques are

commonly employed.

1. One can either ignore those pixels in which case the output image will be

slightly smaller 2 than the original, or

2. Making the input image larger to accommodate the kernel used and produce
an output image the same size as the original input image. In this case one

must invent pixel values to enlarge the original image.
3. Return a default value (e.g. 0) at the unprocessed boundary

Of these three the last one has been employed. If the destination image in Figure
4.6 is closely observed the empty pixels on the borderline will be clear. Two of

the most common convolution kernels are the Laplacian

-1 -1 -1
L=|-1 8 -1
-1 -1 -1

used for detecting edges, and the low-pass filter

1 21
1
H=—
16 2 4 2
1 21

which has the effect of smoothing the image by removing the high frequencies
(see [9]).

4.3.1 Operation

The values are entered in each of the nine text areas of the applet, each one

representing the corresponding one of a 3x3 kernel. Real values are allowed so

2By the width of the kernel minus one.

34

that, for instance, low-pass filters can be tried out.

By pressing the “Apply Convolution” button, the applet will commence its exe-
cution.

If a resulting value exceeds 255 then it is kept at 255 and negative values are kept

to zero.

4.4 The Noise Generating Applet

Figure 4.8: Salt-Pepper and Gaussian Noise

The process of capturing an image is not ideal and we cannot expect to get a
perfect image out of a natural scene. This discrepancy between real and captured
image is called Noise and its causes vary from the sensitivity of the detector to
quantisation errors.

The forms of noise most commonly present in images are salt-pepper and Gaus-

sian noise.

Salt-pepper This type of noise is produced by corrupting the original image so
that individual pixels are randomly flipped to black or white (0 or 255 for
8-bit gray-scale) with some low probability.

This type of noise is normally due to errors in data transmission.

35

Gaussian This type of noise is due to the properties of the detector and is
present, to various degrees, in all recorded images. Its name is derived by
the fact that it is described by a Gaussian function:

1 _1E-w?

fz) = e e

T ooV2r

where
(oo}
w= / zp(z)dz
is the mean (usually zero),

o? = /_ o:o(ﬂv — u)’p(z)dz

is the variance and o the standard deviation.

Figure 4.9: The Noise Generating Applet

Both types of noise can be created as separate images and then superimposed

on the original image, using image arithmetic, to produce a corresponding noise

36

image. Figure 4.8 contains two corrupted images.3. The left one contains salt-
pepper noise with probability five percent whereas the other contains zero-mean
Gaussian distributed noise with ¢ = 2.

The reason one would desire to corrupt an image in the first place is to test the

operation of various filtering techniques which will be discussed further below.

4.4.1 Operation

The applet is displayed in Figure 4.9 and it accepts three parameters:
1. The percentage of Salt-Pepper noise to be produced.
2. The standard deviation value of the Gaussian noise.
3. The mean value of the Gaussian noise.

After these parameters have been set, the user may proceed in generating the
type of noise desired by pressing on the corresponding button. After a noise
image has been generated (like the middle one in Figure 4.9) it can be added to

the original image by pressing the “Add Images” button.

4.4.2 Algorithmic Details

In order to produce salt-pepper noise one requires the use of a random number
generator. If the value returned by the generator is greater or less than a certain
value dictated by the probability parameter (supplied by the user), then the
corresponding pixel is flipped to black or white accordingly.

This process has to be repeated for each element of the image array and even with
a 256x256 the time taken is several seconds as calls to random number generators
are generally slow. This delay is multiplied by a factor of three when a call to
a Gaussian-distributed random number generator is made. This is not a serious
problem when the applet is running on its own. If however many applets are

being loaded at the same time on a web page, this delay will be more pronounced

3The uncorrupted images may be found in appendix A.

37

and may become irritating.
In order to overcome this bottleneck the following quick-and-dirty method was

employed:

e An array the size of the image filled with random numbers is calculated

during the startup phase of the applet, as a separate low priority thread.

e From that same random number generator, a 4 = 0,0 = 1 Gaussian dis-

tributed array is produced using the empirical formula
togauss(r) = 3.47*r — 1.735

where r is the value produced by Java’s random number generator Ran-
dom.neztFloat(). Note that this would not work if the results of this gen-
erator were not already approximately Gaussian distributed.

The fact that the above formula works was experimentally verified by feed-
ing its output to a program (adapted from [16]) which returned the mean

and the standard deviation of that data.

e In order to produce Gaussian-distributed noise with varying u and o values,
the formula
anygauss(g) = o x g+ p
is employed where ¢ is a Gaussian value picked from the array constructed

initially (with p = 0,0 = 1).

Negative Gaussian noise in the noise image has not been normalised so large
mean and standard deviation values may have a strange color (due to overspill to
the other color channels). Normalisation has, instead, taken place in the addition

of Gaussian noise to the original image.

38

Fo—— =

Figure 4.10: The Noise Reducing Applet

4.5 The Noise Reducing Applet

4.5.1 Mean Smoothing

Mean smoothing in image processing can be described by a convolution kernel

which for the 3x3 case would look like this:

111

1
Mean (3z3) = 9 111
111

When this kernel is passed over an image its effect is to average the pixel values
in each 3x3 image area.

This reduces the amount of intensity variation between neighbouring pixels and
thus reduces noise but also visually blurs the image. Larger kernels (e.g. 5x5,

7x7) suppress noise even more but they also tend to blur-out the fine details in

39

an image. It is a fine balance between removing noise and retaining image detail
but in general a 3x3 smoothing operator is sufficient.

The 5x5 mean smoothing kernel which looks like this

(1111 1)
11111
Mean(5m5)=§13 11111
11111
11111

has also been implemented for comparative purposes.

4.5.2 Median Smoothing

Source Image Destination Image

142 11551150{139|250 |160 | 55 {136

150120 |140|129 126 | 132|148 143

4 1145119123 |135}123| 15 |137 ——1133

140|124 127|118 (2201133 |121 | 144

1471130145 (1421331134 (125 24

0 |131|212145|128 135|255 |133

1351120127 | 163 |143 | 146 [122|141

1391153 (130} 19 (140 |230 {149 138

Figure 4.11: The Median Operator

40

As opposed to mean smoothing, this filter replaces a set of pixels belonging to
the same neighbourhood by the their median value. The median value of an odd-
numbered sorted set of numbers is the half-way point of those numbers (or the
average of the two in the case of an even set of numbers). Figure 4.11 illustrates
this idea on a 3x3 image neighbourhood.

The procedure thus is quite straight forward:

e Retrieve first set of pixels to be processed.
e Sort? them and extract the median value.

e Place this value in the corresponding pixel location of the target image.

Median smoothing, although more computationally intensive than mean smooth-

ing, does offer substantial advantages:

e Isolated high frequency noise (e.g. salt-pepper) is effectively removed since

it will not be the median value.
e Fine detail is preserved since no averaging is involved.

e All pixel values in the result image are guaranteed to be ones that existed

in the source image.

If substantial corruption of the image has occurred, however, one is best off using

the mean filter.

4.5.3 Gaussian Smoothing

Gaussian smoothing can be implemented by using discrete convolution kernels.

A 3x3 kernel may have the form

1 21

1
Gaussian (3z3) = T 2 4 2
1 21

4Initially using quick-sort from [7], but insertion-sort operated much faster for a nine-element

array

41

and its equivalent 5x5 kernel

(2 4 5 4 2]
4 9 12 9 4
Gaussian (5z5) = s 5 12 15 12 5
4 9 12 9 4
] 2 4 5 4 2

This type of smoothing is quite similar to mean smoothing except that the kernel
values are discretely-sampled and Gaussian-distributed (see formulas in Noise
Generating Applet). The Gaussian filter has a useful property which the mean
filter does not: by choosing the size of the Gaussian one can be certain of the
spatial frequencies that are present after filtering. Furthermore, it is biologically
plausible and it approaches the optimal edge-detection filter that is used in the
Canny edge detector.

4.5.4 Mean-Median Smoothing

One button of interest here is the “Mean & Median” button. The way this

operates is as follows:

e One pass of each 3x3 neighbourhood is made during which black and white

pixels are counted (salt-pepper noise).
e Pixel values excluding salt-pepper noise are summed together.
e The resulting pixel is the average of the values added in the previous step.

This has the effect of removing salt-pepper noise more efficiently than the median
operator (for noise greater than approximately 8%) and also performing a mild
smoothing effect. If no salt-pepper noise is present then it operates just like
the mean filter. The more salt-pepper noise present the more the operation

approximates median filtering.

42

4.5.5 Operation

The operation of this applet is straight-forward. The user chooses the type of
smoothing by pressing on the corresponding button.

In all of the above algorithms, the un-processesed corners of the images are left
blank (the alpha value of the pixels there is assigned to zero so they become

transparent).

4.6 The Thresholding Applet

|
|
il
lap

iplat started

Figure 4.12: The Thresholding Applet

This is a straightforward and quite fast operation to implement. All one has to
do is retrieve the pixel value of an image, compare it to a preselected threshold

value and replace the original pixel by either a one (or 255) or a zero depending

43

on whether the threshold is greater than the pixel value or not. Mathematically

1 (or 255) forold(i,j) > Threshold

new(i, j) =
0 forold(i,j) < Threshold

The output is a binary image and this process is used either as a preliminary seg-
mentation procedure (e.g. separating object from background) or for producing

binary images from edge-detection filters for further processing.

4.6.1 The Histogram

The Intensity Histogram is a useful tool in image processing for various reasons.
One of its most popular uses is in helping to select a suitable threshold value.

It is constructed by counting all the occurrences of each grey-scale value in an
image. A graph is then plotted which on the horizontal axis contains the different
pixel values, and on the vertical the number of times they occur (see middle image
of Figure 4.12).

In our case, the histogram shows two clearly separable peaks. This is a “bimodal”
histogram, that is one with two clearly separate peaks. The first one represents
the object and the second one the background.

By choosing a value between those two peaks (e.g. 128) we can separate object

from background nicely.

4.6.2 Operation

As soon as an image is loaded, its histogram is produced and displayed. If the
distribution of pixel values is similar to the one in Figure 4.12 then a suitable
threshold value can be easily found.

This value can then be entered in the relevant text-field. By pressing “return”
inside the text-field, a thresholded image of the original one is placed on the
right-hand-side of the applet.

Threshold values less than zero or greater that 255 are not allowed.

44

4.7 The Thinning Applet

Figure 4.13: Before and After Thinning

Thinning is a morphological operator applied to binary images. It can be used
for skeletonisation of images or, more commonly, for producing a one-pixel thick
outline of the object in question. The thresholded output from an edge detecting
filter (e.g. Sobel) is a binary image containing the outline (edges) of an object.
This outline is often several pixels wide and this is not always desirable. One
way to produce a single-pixel wide outline of the object without incurring loss
to the geometrical properties of the shape is to process the binary image with
the structuring elements in Figure 4.14. This processing takes the form of a

hit-and-miss transform and it operates as follows:
e Sweep the image with the structuring element.

e If the 3x3 image pattern matches the structuring element (blanks denote
don’t-care points) then put a one on the corresponding location of the

resulting image, otherwise put a zero.

e Invert the resulting image and perform a binary AND of it with the initial

image. This removes the points produced by the first structuring element.

45

[S—
Pk
S
O
[—
[

OO O
[E—Y

O |

OO

Figure 4.14: Thinning structuring elements

e Repeat this processes until all structuring elements have passed over the

image (each element takes as input the output of the previous one)

e Repeat all of the above until the image doesn’t change anymore, i.e. no
more patterns ‘hit’ from the above process and thinning has thus been

completed.

This algorithm guarantees that connectivity will be preserved so the overall geo-
metric structure of the object in the image is preserved. Figure 4.13 contains an
example of a binary image and its thinned equivalent as produced by the thinning
applet.

One obvious disadvantage of this technique is that it takes a long time. In inter-
preted Java code a straightforward convolution of a 256x256 image with a 3x3
kernel takes approximately five seconds. If a similar process has to take place at
least eight times for one iteration (several are required then one might agree that

the interactivity of the thinning applet is not stunning.

46

Chapter 5

Communicating Applets

We have reached a stage where several independent applets have been created.
A natural progression is to include them all in an HTML document and display
them in a Web page. Furthermore, it would be nice if the output image from
each applet could be fed to the next one down the page so that it can be further
processed.

The way to achieve this is by giving each applet the ability to communicate with
the next one.

First of all, though, we must add the applets to an HTML page. This can be
achieved by the following piece of HTML code:

<APPLET CODE="AddNoise.class" WIDTH=800 HEIGHT=400>
<PARAM NAME=images VALUE="images/holesquare2.gif">
</APPLET>

If the parameter named images is given a value (as in this case) then it used
otherwise a default image is loaded.
Next, the procedure which Java employs to grant applets the privilege of com-

municating with each-other is fairly simple and works as follows:

e The applet must be given a name using the NAME parameter in the rel-
evant HTML document e.g.

<APPLET CODE="AddNoise.class" WIDTH=800 HEIGHT=400 NAME="addnoise">

47

Li

Enter.Gamma value:

Execution time:

b1 can produce an image with noise (

#
}

Figure 5.1: Communicating Applets 1

48

——y

——

The Gamma Correction appled takes:

MKEWLALLDAHP)ﬂ@n@jdﬁ n.nj;m"

sosite is tru

Entsr Gamma vaiue:
Egecutlon i

Salt-Pepper Noisa

Mea

cean

Figure 5.2: Communicating Applets 2

49

e Then, one must use the getApplet() method from the applet context with
the name of that applet as a parameter. This will return a reference to that
applet. One can use this applet as if it where an object and manipulate
it accordingly. For example, if one wishes to obtain the applet named
“addnoise” belonging to the AddNoise class one would need to declare an
AddNoise variable and cast the applet obtained by getApplet() to that class:

AddNoise addnoise_applet;
addnoise_applet = (AddNoise)getAppletContext().getApplet("addnoise");

e All one needs to do now is define the functions that will implement the
communication protocol.
Each applet has been equipped with two extra functions. One of these
functions is send_image(). This function is allowed to activate after the
button “Forward Results” has been pressed (this button only appears if
another applet can be found in the same page). The effect of send_image(),
is to send the whole integer array of the final image produced by this applet
to the next applet down the line.
For example, consider Figures 5.1 and 5.2. The applets pictured are called
“camma” and “addnoise” respectively. In Figure 5.1 the “gamma” applet
operates on its own. After the “Forward Results” has been pressed and
the gamma operation repeated, the resulting image is passed on to the
“addnoise” applet (Figure 5.2).
This is achieved by a call to send_image() which, in turn, calls the function

set_src.image() of the “addnoise” applet in the usual object-oriented way:
addnoise_applet.set_src_image(img_1d);

This is the second extra function the applets have been equipped with in
order to communicate. Its purpose is simply to set the source image of the
applet which defines it to be the image sent by the applet that calls it.

In Figure 5.2, the source image of the “addnoise” applet is set by a method

within this applet called by the send_src_image() of the “gamma” applet.

50

Now each applet can pass its image to the next applet as illustrated by Figure

5.3. To make the communication procedure more general a parameter has been

Figure 5.3: The Applets and the Cascade of Images

added which can be set from the relevant HTML document. This parameter is
called receiver_applet and is used to set the destination of the resulting image
of an applet. If this parameter is missing the default is to send the image to the

next applet in the manner described above.

ol

Chapter 6

Testing

This chapter aims to make a brief comparison of the time it takes for the Java
applets to perform a particular image processing operation compared to the equi-
valent Visilog operation. Note that the operations are not strictly equivalent as
the underlying algorithms may differ but nevertheless should help provide a feel
for the difference in performance.

Java as an interpreted language is pretty slow. This study showed that it is about
five to ten times slower than C. Java as a compiled language, on the other hand,
it is quite fast.

Below you will find a comparison of Java with C and compiled Java which should

put everything into perspective.

6.1 The Comparison

6.1.1 Testing Conditions

The machine on which the interpreted Java (and Visilog) tests were run was a
lightly loaded Sparc 4 (110MHz). The timing was performed using one of Java’s
built in functions for retrieving the current time in milliseconds. Visilog has its
own built-in counter (also in milliseconds). The applets where being individually

run through the appletviewer program and all the images used where 256x256

52

Processor | Clockspeed | SPECint92 | SPEC{p92
microSparc-II 85MHz 65.3 53.1
microSparc-I1 110MHz 78.6 65.3

Pentium 133 133MHz 147.5 109.6
Pentium 100 100MHz 100 81

Table 6.1: Sparc vs. Pentium

pixels large, greyscale.

The machine on which compiled Java was tested on was an Intel Pentium run-
ning at 133MHz. The web-browser was Netscape version 3, running under MS-
Windows 95, which includes a JIT! compiler for Java.

One should bear in mind that running compiled Java on a different machine than
the one C was tested on is liable to create surprising results. A P133 processor
is approximately 1.8 times faster than the Sparc 4 processor, by comparing pure
processing power in terms of floating point and integer operations (see table 6.12).
There are many other factors, however, which cannot be accounted for such as

memory speed, caching strategy, etc.

6.1.2 Performance Comparison

Table 6.2 contains the summarised results of this comparative study.

e Rotations
Two algorithms have been used for rotations. The first one can be thought
of as the equivalent of Visilog’s ‘Nearby pixel’ rotation and the second one
as ‘Four Neighbours’ rotation although strictly speaking this is not quite
the case. In both of these rotations Java performed adequately by being on

average about a second slower than Visilog’s algorithms.

1This type of compiler is not as efficient as a proper compiler would be. It is , however, the

next best alternative.
2Figures taken from http://www.maths lth.se/bengtl/horna/spectable.html

53

Compiled Java in the case of normal (simple) rotation did not make any
difference which is surprising. Later investigation lead the author to be-
lieve that Netscape’s compiler did not compile the code for simple rotation
though the reason for this is not obvious. Microsoft’s Internet Explorer,
however, does and the performance is three times faster than Visilog’s
‘Nearby Pixel’ rotation (on a Pentium 133).

Compiled shear rotation was indeed very fast, a fact which justifies the

predictions of its author.

Smoothing

Gaussian (3x3) smoothing is approximately five times slower whereas Mean
(3x3), Mean (5x5) and Median smoothing where all about ten times slower
in interpreted Java.

Three Median algorithms where implemented. The first one involved quick-
sorting each nine-element array but that proved to be too slow as quick-sort
is really not suitable for arrays less than fifty elements long. The second
one replaced quick-sort for straight insertion-sort (adapted from [16]). This
is the one included in table 6.2.

A “fast” median finding algorithm adapted from [3] was implemented and
was indeed on average half a second faster than the previous one but its
performance was not great for large amounts of salt-pepper noise (greater
than 8%). I suspect that this algorithm does not compute the true median
value but rather an approximation.

Compiled Java, in almost all cases here, performed faster that compiled C.
The striking difference occurred in the case of Gaussian smoothing. This
must be due to the algorithm employed by Visilog, since the one imple-
mented for the purposes of this project involves approximately the same

computational effort as the algorithm for mean (3x3) smoothing.

Noise & Arithmetic

Noise generation was almost instant due to quick-and-dirty programming

and image arithmetic was just as fast. In addition of images Java is about

54

two times slower than C.

Compiled Java performs these operations instantly (down to milliseconds).

e Gamma & Thresholding

Gamma correction takes a bit less than two seconds. Unfortunately, Visilog

does not have a gamma correction transform for comparison.

Thresholding is, surprisingly, almost as fast Visilog’s.

Compiled Java performs thresholding extremely fast (almost instantly) whereas
gamma correction does not seem to have a striking difference in perform-
ance than that of interpreted Java. Again, however, Microsoft’s compiler
showed a two-fold improvement in performance over the (compiled) figure

in table 6.2.

e Thinning
Thinning is another disappointment as the Java program approximately 40
times slower than C. This can be attributed to the extremely naive nature
of the algorithm implemented.
Even compiled Java is five times slower than C which further reinforces the

fact that the algorithm employed is by far a sub-optimal one.

e Convolution
Convolution (3x3) takes, as was the case for Gaussian (3x3), about five
times longer in interpreted Java.
Compiled Java performs twice as fast as C. This suggests that Visilog’s

algorithm may be more general.

6.2 Correctness Of Algorithms

Although it would have been nice to compare the algorithms (at source code
level) produced for this project with the ones used in Visilog, time constraints
did not permit such a luxury.

Instead, “correctness” has been tested in terms of the visible output of each

%)

Type of Operation | Java | Visilog (C) | Java with JIT
Rotations

Normal 1.1-1.3 — 1.2-14

Shear 4.0-5.2 — 0.5-0.6

Nearby pixel — 0.8-1.0 —

Four neighbours — 3.0-3.2 —
Smoothing

Gaussian Smoothing (3x3) || 5.0-6.0 0.8-1.0 0.3-0.4

Mean Smoothing (3x3) 4.0-5.0 0.3-0.4 0.3-0.4

Mean Smoothing (5x5) 11.0-12.0 0.8-0.9 0.7-0.8

Median Smoothing 6.0-7.0 0.4-0.5 0.3-04

Median & Mean 5.0-8.0 — 0.3-0.4

Noise Generation
Salt-Pepper Noise 0.2-0.3 — instant
Gaussian Noise 0.2-0.3 — instant
Gamma Correction
Gamma Correction 1.0-2.0 — 0.7-0.8
Thresholding

Thresholding 0.3-0.4 0.2-0.3 0.0-0.06
Thinning

One Iteration 21.0-23.0 0.3-0.5 1.7-1.9
Convolution

Laplacian (3x3) 4.5-5.5 0.8-1.0 0.4-0.5
Arithmetic

Addition of images 0.2-0.3 0.1-0.2 instant

Table 6.2: Java vs. C in Seconds

96

operation.

Below the reader will find a set of paired images. The image on the left is the one
produced by the relevant applet and the image on the right the one produced by
Visilog except in figure 6.1, where X V3 was used instead.

Although, in theory at least, no difference between the two images should be
detectable, in practice this was not always the case.

In Figures 6.1, 6.2, 6.3, 6.4 and 6.5 you will find images which have been gamma
corrected, convolved (Laplacian), mean smoothed (5x5 kernel), median smoothed
and thinned.

A brief description of the findings follows. The original, unprocessed images, can

be found in appendix A.

e The gamma transform applet produced the same results as the gamma

correction option in Xv. No obvious flaws were present.

e The Laplacian convolution kernel was applied in the original object of Fig-
ure 6.2. The output from the applet is more pronounced than the one from
Visilog. The reason for this discrepancy is that Visilog handles differently
intensity values which exceed the maximum. In the Java version if a value
exceeds 255 then the output is 255. In Visilog a negative value is assigned

instead.

e In mean smoothing by a 5x5 kernel the output from Visilog is different than
the one from the corresponding applet due to the color-scheme adopted by
each implementation (see previous bullet). The output from the equival-
ent operation in XV is exactly like the one produced by the applet. The
reason the one from Visilog is displayed instead, is precisely to illustrate

this difference in color handling.

e The original image of Figure 6.4 was corrupted by 25% salt-pepper noise
before being passed to the median filters of Visilog and of the Smoothing
applet.

3©1994 by John Bradley

o7

The median smoothing operation employed by Visilog must bear a very
close resemblance to the median-mean operator implemented for this pro-
ject as the results they produce are identical. The “true” median algorithm
(which involved sorting) was outperformed by Visilog’s and by the median-

mean operator.

e The thinning algorithm employed by Visilog produces the same result (after

one iteration) as the one implemented in Java. The only difference is in

terms of performance (discussed earlier in this chapter).

Figure 6.1: Gamma value = 3.3

58

Figure 6.2: Laplacian Operator

5x5)

(

Figure 6.3: Mean Smoothing

59

Figure 6.4: Median Smoothing

Figure 6.5: Thinning

60

Chapter 7
Conclusions—Future Work

The remainder of this report contains a brief account of personal opinions con-

cerning Java, this project, and the future.

7.1 Java

The purpose of this project was to investigate the suitability, or otherwise, of Java
for image processing. The question to this answer became reasonably apparent
during the early stages of the project.

Java is suitable for image processing both for creating proper applications (such
as Visilog or xv) as well as for providing interactive teaching material for stu-
dents via the Internet.

One of the major reasons arises from the fact that Java comes with a plethora
of built-in methods specifically for image manipulation. The facilities which are
provided for image loading and pixel retrieval, for instance, are not to be found in
other programming languages. Implementing a function to load a gif of jpg image
in C would be a tedious and difficult task which may well take over two weeks
to complete. Java gives this and much more for free. Furthermore, it is easy to
learn and use, debugging is usually straight-forward and is platform independent.
The question of performance which is raised in the case of interpreted Java is elim-

inated by compiled Java as we have seen in the previous section. Java compilers

61

and JIT compilers already exist and new products are under rapid development.
According to my opinion Java has a lot going for it and not many against. It

may soon be the language most people will be using.

7.2 The Project

This project has been both interesting, practical and fairly straight-forward. I
was given the opportunity to experiment with a new tool which has a lot going
for it in terms of user-friendliness as well as commercially.

The difficulties encountered where mainly due to the heavy use of threads during
the early stages of the development of the applets. It turned out that the web
browser the applets where being tested on ! could easily become overloader which
in turn caused it to halt for unreasonably long periods of time. These difficulties
where eliminated by restricting the use of threads and by keeping the computation
within them down to a minimum.

A general “template” for handling images has been adopted which is a useful
preliminary step before the specific pixel manipulation can proceed. Down to
algorithmic level there is scope for improvement. The shear rotation algorithm,
for example, is not operating properly but that is probably due to my inability to
deeply comprehend the paper upon which it is based. Furthermore, the thinning

algorithm employed is naive and could be made to operate faster.

7.3 The Future

As far as future work is concerned, the sky is the limit. It would be gratifying to
see applets similar to the ones seen earlier included in projects such as HIPR and
it would be even more gratifying to find out that students are actually finding
them useful.

More features (options) can be built upon the existing applets and new applets

INetscape version 2.02

62

can be easily created provided the underlying algorithms are available.
If this project has contributed towards something useful I hope it is towards mak-

ing the life of teachers a bit easier and the life of students a bit more interesting.

63

Bibliography

[1] Heriot Watt University, Napier University and the University of Edinburgh.
Marble Interactive Vision. http://www.marble.ac.uk/marble/, 1996.

[2] Helmut Kopka & Patric W. Daly. A Guide to BTgX. Addison-Wesley, 1993.

[3] Edited by Andrew S. Glassner. Graphics Gems. Academic Press Professional,
1988.

[4] Edited By Michael P. Ekstrom. Digital Image Processing Techniques. Aca-
demic Press, Inc., 1984.

[5] David Flanagan. Java in a Nutshell. O'Reilly & Associates Inc., 1996.

[6] Bernd Jahne. Digital Image Processing. Second Edition, Springer-Verlag,
1993.

[7] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Second Edition, Prentice Hall, 1988.

[8] Laura Lemay and Charles L. Perkins. Teach Yourself Java in 21 Days.
Sams.net Publishing, 1996.

[9] Adrian Low. Introductory Computer Vision and Image Processing. McGraw-
Hill, 1991.

[10] Andre Marion. An Introduction to Image Processing. Chapman and Hall,
1991.

64

[11] Vaclav Hlavac Milan Sonka and Roger Boyle. Image Processing, Analysis
and Machine Vision. Chapman & Hall, Cambridge University Press, 1993.

[12] Wayne Niblack. An Introduction to Digital Image Processing. Prentice-Hall
International, 1986.

[13] Robert Fisher, Simon Perkins, Ashley Walker and Eric Wolfart. HIPR. John
Wiley & Sons Ltd, 1996.

[14] John C. Russ. The Image Processing Handbook. CRC Press Inc, 1995.

[15] The Java Development Team. The Java Tutorial and The Java API Docu-

mentation. Sun Microsystems, java.sun.com, 1.0 edition, 1996.

[16) W.T. Vetterling W.H. Press, S.A. Teukolsky and B.P. Flannery. Numerical
Recipes in C. Cambridge University Press, 1992.

65

Appendix A

Images Used

Figure A.1: Simon Perkins and the Famous L-Object

66

————y

Figure A.2: Papa and the UFO

Figure A.3: Olga and the Holy Square

67

Figure A.4: Andrew and the Dark Holy Square

68

ColorModel
(abstract class)
DirectColorModel
Object
FilteredImageSource
IndexColorModel
---------------- ImageFilter
Cloneable .
CropImageFilter
java.lang package N
: MemorylmageSource
RGBImageFilter
KEY: (abstract class)
: (3| PixelGrabber
CLASS ImageConsumer | -
\. J
INTERFAC% () v
ImageObserver ImageProducer i

java.awt.image package

Figure A.5: A diagram of the java.awt.image Package

69

