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Abstract

Gaze direction can be considered as a key factor in the process of social
learning since is one of the most reliable indicators of the object that a
person is considering or focusing on.

This project investigates the estimation of the fixation point, based on
the information provided by both eyes, without using special equipment or
being user-intrusive. The project assumes that the location of the eye is
already estimated by a higher-order process, but not its gaze direction.

The steps followed are: iris location and position estimation, gaze dir-
ection calculation, eyes location in the scene, and fixation point projection
in the screen. Two additional steps are the camera calibration and the user
calibration.

The experiments carried out show that the iris location is quite good, but
the location of other eye features to estimate the iris position, like the eye
corners, is not a straightforward task. The fixation point calculation was not

as good as expected due to the user calibration process.
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Chapter 1

Introduction

Gaze direction can be considered as a key factor in the process of social
learning since is one of the most reliable indicators of the object that a person
is considering or focusing on. If the gaze direction and the fixation point
can be accurately estimated, there are countless applications where these
measurements can be used, like human-computer interfaces, communication
tools and man-machine interaction.

In the case of man-machine interaction, the use of the fixation point can
contribute to a great extent to make the task easier and closer to the way
human beings communicate between them. For example, in the process of
learning by imitation, if the learner has to determine the focus of attention of
the teacher, one of the clues used by human beings is the direction in which
the eyes are looking. If the objective is to mimic this kind of process, the
agent should estimate the gaze direction of its human teacher.

The initial proposal of the project was focused on reimplementing the
system made by Gee and Cipolla [Gee & Cipolla 95, Gee & Cipolla 94a,
Gee & Cipolla 94b], where the gaze direction was estimated based on the
face direction. The project considered some extensions of the system, like
real-time performance and automatic feature detection. Nevertheless, when

the project was analysed, other possibility emerged.
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The gaze direction can be estimated using two different approaches: using
the face direction, as in the system by Gee and Cipolla, or combining the
information from both eyes, which is the new aim of the project.

This decision was made because the estimation of the gaze direction using
the eyes direction may produce more accurate measurements. Other factor
that was in favour of this approach was the fact that there is already a project
[Stiefelhagen et al. 97] that overcame the limitations of the system by Gee
and Cipolla. This system runs in real-time and automatically finds the face
features.

When similar research already done was reviewed, it was found that in all
the projects done except for [Heinzmann & Zelinsky 98], the fixation point
estimation by eye direction was based on the information provided by one eye.
Additionally, some projects required the user to wear intrusive equipment
(e.g. head-mounted cameras) or used special equipment (e.g. LED sources,
automatic-rotating cameras, tracking vision systems).

Therefore, this project investigates the estimation of the fixation point,
based on the information provided by both eyes, without using special equip-
ment or being user-intrusive.

An overview of the process to find the fixation point is outlined in Figure
1.1.

The project assumes that the location of the eye is already estimated
by a higher-order process, but not its gaze direction. This decision was
made because there is a great amount of research already done to detect face
features. Chapter 2, Literature Review, contains a summary of the research
done on face image processing.

Chapter 3, Iris Location and Position Estimation, details the next step in
the process where the locations of the iris and the eye corners are calculated
within the eye image, using edge detection and contour fitting techniques.

Using the locations found in the previous step, the fixation point is cal-
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culated by estimating the gaze direction, the eyes’ locations in the scene and
the projection of the fixation point in the screen. This steps are explained in
Chapter 4, Location of the Fixation Point.

Chapter 5 contains the conclusions of the project.

Two additional processes needed for the location of the fixation point are
the camera calibration and the user calibration, which are in Appendices A

and B, respectively.

Video sequence

transformation

|

Frame
|

eye location

!

eye image

user calibration iris detection corner finding camera calibration

| |

iris radius and centre eye corners

fixation point calculation

J

fixation point

Figure 1.1: Sequence for Finding the Fization Point
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Chapter 2

Literature Review

2.1 Introduction

In general terms, the great diversity of research work related to human face

image processing can be classified into the following categories:

Face detection The objective is to determine the presence or absence of a
human face in the analysed image [Rowley et al. 96]. Therefore, this
task can be considered as a prerequisite for the remaining categories

[Yang et al. 98, Yow & Cipolla 97a).

Face recognition Consists of the identification of the face image under ana-
lysis, i.e. decide if the face coincides with one of the faces within a

collection or database.

Tracking The purpose of this category is to follow the position of the face
and/or facial features, through a sequence of images in which the face is
moving. The research approaches can be divided into: (a) face tracking

and (b) eye tracking.

Gaze direction The aim is to identify the fixation point to which the at-

tention of the subject in the image is focused on. This task can be

5



accomplished in two ways [Gee & Cipolla 95]: (a) by face direction
and (b) by eye direction.

A summary of their relationships can be seen in Figure 2.1.

Face Detection

Face Recognition Tracking Gaze Direction
Face Tracking Eye Tracking Face Direction Eye Direction

Stereo

Attention -—/

Gaze Usage / HCI

Figure 2.1: Problem Decomposition

In the following sections, the research work related to each category will
be briefly described, along with the techniques employed to achieve their
purposes.

Two additional sections are considered. Gaze usage comprises the ap-
plications done using gaze direction and fixation point. Stereo matching
is described in Chapter 4. For the purposes of the present work, it is con-
sidered as part of the tasks needed to determine the fixation point, since the

information provided by both eyes will be used.



2.2 Face Detection

The approaches taken for this category can be classified as follows:

e Whole face

* Skin colour

* Template matching
e Features

o Neural networks

2.2.1 Skin Colour

This technique consists of two stages [Yow & Cipolla 97a): (a) each pixel is
labelled, according to its similarity to skin colour and (b) each subregion is
labelled as a face, if it contains a large blob of pixels labelled as skin colour.

The purpose of [Yang et al. 98] is to present the statistical study of a
skin colour model. The technique used is: (a) skin colour distribution is
analysed in the RGB space, (b) goodness-to-fit tests are performed, and
(c) a maximum likelihood method is used to predict or approximate new
parameters. This paper shows the feasibility of this method for face detection.

Some applications that use this approach are:

[Jebara & Pentland 97|, which obtained its own skin colour model. Train-
ing samples of skin colour were obtained, with different tones and illumina-
tion. The method used is the one described above by [Yow & Cipolla 97aj.

[Stiefelhagen et al. 97] used a statistical colour model like the one de-
scribed in [Yang et al. 98], and the method used is the one described above
by [Yow & Cipolla 97a).

[Bala et al. 97] and [Liu 98] used a statistical colour model as well, but
selected skin colour by adaptive thresholding and a look-up table. A separ-

ation of fore- and background by segmentation was also performed.
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Further descriptions can be found as follows: [Jebara & Pentland 97]
in Sections 2.2.4 and 2.4, [Stiefelhagen et al. 97] in Sections 2.2.3 and 2.4,
[Bala et al. 97} in Sections 2.2.3 and 2.5, and [Liu 98] in Sections 2.2.3 and
2.7.

2.2.2 Template Matching

[Scassellati 98] describes an active vision system that saccaded to a person
facing it. Two cameras were used: a peripheral camera and a foveal camera.
The technique used can be described as: (a) the face was detected by apply-
ing a ratio template comparison, (b) the system saccaded to the highest score
face location, using sensori-motor mapping, and (¢) obtained a high resolu-
tion image of the eye, using the location provided by the ratio template and
a peripheral-to-foveal mapping. This application could detect faces in frontal

views, under varying lighting conditions and in a cluttered environment.

2.2.3 Features

In this technique [Yow & Cipolla 97a], the basic steps are: (a) search the
image for a set of facial features and (b) group those features into face can-
didates, based on geometrical relationships.

Some of the applications under this category are:

[Burl et al. 95] describes an application that located faces in cluttered
environments and with occlusion of features. The technique used was: (a)
features were found by multi-orientation, multi-scale Gaussian derivative fil-
ters, and (b) features were grouped in “constellations”, which were ranked ac-
cording to their face-like shape. The system achieved the objective planned,
but only in quasi-frontal view faces.

[Yow & Cipolla 97b] and [Yow & Cipolla 97a] follow similar approaches.

Their aim was to find face features, with unknown and varying orientation
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and viewpoint. [Yow & Cipolla 97b] used a second derivative Gaussian filter
and [Yow & Cipolla 97a] used two filters: a Gaussian derivative filter and
its Hilbert transform. Feature grouping was performed in partial groups,
using geometrical knowledge of facial features. False positives were rejected
by a belief network. Both applications worked well, but [Yow & Cipolla 97b]
failed in extreme illumination conditions, occlusions and different facial ex-
pressions. [Yow & Cipolla 97a| failed to detect images where the face was
too small.

[Stiefelhagen et al. 97) assumes an initial frontal view. Face detection is
described in Section 2.2.1. The features were located following the next steps:
(a) pupils were located by iterative thresholding, using geometric constraints,
(b) lip corners were located by horizontal integral projection and horizontal
edge detection, based on the position of the eyes and the face model, and (c)
the nostrils were located by iterative thresholding and using the position of
the eyes, lips and the face model.

[Bala et al. 97} and [Liu 98] detect the eyes by blinking, comparing lu-
minance differences of successive images. The pupil was searched by looking
for a circle-like dark region and its centre was calculated as the mid-point of
a rectangular block.

Further descriptions are: [Stiefelhagen et al. 97) in Section 2.4,
[Bala et al. 97] in Section 2.5, and [Liu 98] in Section 2.7.

2.2.4 Neural Networks

The stages followed in this technique are [Yow & Cipolla 97a): (a) the regions
of the image are subsampled to a standard size sub-image and (b) the sub-
images are passed through a neural network filter.

[Rowley et al. 96] detected frontal views of faces in gray scale im-
ages. The system performed a preprocessing step by lighting correction

and histogram equalisation. Two neural networks with retinal connec-



tions in their input layer were used, arbitrating their outputs by differ-
ent heuristics (ANDing, ORing and counting the number of detections
within a neighbourhood). The system detected all the faces present
in the images, only if they were frontal or slightly rotated. It also
used a bootstrap algorithm to add non-face examples during the training
phase. The face images used were collected in a database at CMU and
Harvard (http://www.ius.cs.cmu.edu/IUS/har1/har/usr0/har/faces/test/).

The non-face images were created using random pixel intensities.

[Maurer & von derMalsburg 96], represented face landmarks as graphs,
composed of jets (filter response of Gabor wavelets). It used a gal-
lery of frontal faces as a training and test set. [Jebara & Pentland 97]
used dark symmetry transforms, 3D warping and eigenfaces. = Some
examples can be found in hitp://www.neuroinformatik. ruhr-uni-

bochum.de/ini/ VDM /research/computer Vision_withFramelnit.html.

[Kriiger et al. 97] describes a system that automatically determines po-
sition, size and pose of the head. It used a bunch of graphs, that repres-
ented landmarks of the face. Elastic Graph Matching was used to estimate
pose, size and position. Statistical methods were used to improve speed
and performance, based on principles that stated how to select landmarks.
It used the FERET database, provided by the DARPA/ARL FERET pro-
gram (for information of this database contact Jonathan Phillips, at jphil-
lip@nul.army.mil).

[Talmi & Liu 98] used a combination of techniques: (a) eyes were detec-
ted by PCA (eigeneyes), (b) the 3D position of the eyes was calculated by
stereo-matching, (¢) the pupils were detected by using a LED light source,
which produced a reflection in the eye, (d) a Sobel operator and a Circle
Hough Transform were applied to calculate the centre and diameter of the
pupil.

Further descriptions can be found in: [Maurer & von derMalsburg 96]
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and [Jebara & Pentland 97] in Section 2.4, and [Talmi & Liu 98] in Section
2.7.

2.3 Face Recognition

There is a lot of work done in this category. The early proposed clas-
sifications can be found in [Samal & Iyengar 92|, [Valentin et al. 94] and
[Chellappa et al. 95], where nonconnectionist and connectionist approaches
are described. In [Fromherz et al. 97] the works are organised into frontal,

profile and view-tolerant recognition.

Frontal recognition includes approaches where a preprocessing step finds
and extracts facial features in 2D face images, which are matched

against the corresponding features of a face database.

Profile recognition is relative easier to analyse than frontal recognition,
allowing fast algorithms. But not much confidence has been put in this

approach and pure profile algorithms are rare.

View-tolerant recognition employs various techniques to correct for per-
spective or pose-based effects, due to illumination and the 3D nature

of the head.

2.4 Face Tracking

The techniques used for this category can be divided into feature-based and

neural network approaches.

2.4.1 Feature-Based

[Gee & Cipolla 94b] describes a non-intrusive gaze tracking system by head

orientation. Feature localisation was done by hand in the first frame (eyes
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and mouth corners). The tracking phase consisted of: (a) prediction of
features by linear extrapolation over the previous two frames, (b) the pupil
was detected by finding the darkest pixel in the window around the expected
position, the mouth line was detected by searching for a line of darkest pixels
and the corner was detected by pixel contrast, and (c) the tracking was
smoothed by a first order low pass filter. The tracking was improved by

stating multiple hypothesis, using facial geometry constraints.

[Gee & Cipolla 95] did face tracking using a minimal subset of data to
estimate pose. Feature detection is the same as in [Gee & Cipolla 94b]. Pose
estimation was done by a RANSAC algorithm, implemented in three forms:
(a) a consensus tracker, where candidate poses were selected based on the
size of the consensus set, (b) a temporal continuity tracker, where the se-
lection was done based on the smoothness of the implied motion, and (c)
a temporal consensus tracker, which combined both trackers by a Bayesian
inference framework. The consensus tracker had problems with occlusions,
the temporal continuity tracker did not cope with fast head movements, but

the temporal consensus tracker worked well, selecting the best subset.

[Heinzmann & Zelinsky 97] tracked faces in real-time, implementing a
gesture recognition application. Feature detection was performed by tem-
plate matching, applied by a MEP Fujitsu tracking vision system. Individual
search windows helped each other to track their features, using geometric re-
lationships. Kalman filters were used to merge uncertain tracking data with
the model. The tracking was reliable under stable illumination and head
rotation not exceeding 60°. It automatically initialised tracking without re-
strictions on head position and coped with occlusions. Gesture recognition

was done in parallel.

[Stiefelhagen et al. 97] describes a non-intrusive, automatic face tracker.
After the face and features were detected (as described in Sections 2.2.1

and 2.2.3), features were searched on windows around the last feature pos-
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ition. Predictions were made by linear extrapolation over the two last pre-
vious positions. Outliers were detected by using the algorithms proposed in
[Gee & Cipolla 95]. Tracking recovery was done by checking if the features
were within the face region. A comparison was made between the current
features and the model, initialising the search windows and geometrical re-

strictions to the previous found pose.

2.4.2 Neural Networks

[Maurer & von derMalsburg 96| presents a face tracking system on image
sequences which were continuous in time, coping with face rotation. Feature
detection is described in Section 2.2.4. Tracking was made by computation
of the displacement of single nodes, in two consecutive frames by disparity
estimation in stereo images. The learning process was made by the following
steps: (a) one direction was assumed, (b) the average movement direction of
all nodes, deviation and cost values of nodes were computed, (d) the lowest
cost nodes were considered as part of the optimal graph. The system assumed

that the first frame had a frontal view of the face.

[McKenna et al. 97] used Gabor wavelets and a Point Distribution Model
(PDM) to detect features. Tracking was initialised manually, by positioning
feature points on the first frame. Estimations of new position were made by
Gabor wavelet displacement estimation, which were aligned with the PDM
shape model and projected onto eigenvectors. The shape was reconstructed
and realigned to the image, to give the new position. The system was generic,
so it can be applied to other objects. PDM had problems to cope with large

deformations and rotations in depth.
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2.4.3 Hybrid

[Jebara & Pentland 97] describes an automatic face tracking system, in real-
time. Face and feature detection can be found in Sections 2.2.1 and 2.2.4.
Tracking was made by defining windows for features and applying template
matching by SSD correlation. Tracking recovery used structure from motion,
Kalman filters and eigenheads. The resulting system was robust and fast,

with automatic initialisation and re-initialisation upon failure.

2.5 Eye Tracking

[Young et al. 95] performs eye tracking by iris localisation. The user must
wear a head-mounted camera. Iris detection was performed using an eye
model, applying a Canny edge detector algorithm and a Hough transform
algorithm, finding iris radius and centre. Tracking was implemented in two
ways: (a) by locating the iris in each frame and (b) by applying an active
contour method. The application was accurate, except for situations where
strong highlights were present.

[Bala et al. 97] presents an automatic face and eye tracking system. Face
and feature detection are presented in Sections 2.2.1 and 2.2.3. The tracking
stage used luminance-adapted block matching. In case of tracking failure,

the system returned to the initialisation stage.

2.6 Face Direction

[Gee & Cipolla 94a] describes a non-intrusive system for gaze direction de-
termination, based on head orientation. The model was based on measure-
ments taken from the eyes, nose and mouth. The estimation of gaze was

based on facial normal, eye line, and gaze direction.
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[Horprasert et al. 96] estimated the 3D head orientation in a single mon-
ocular image. Feature detection is provided by the application described in
[Black & Yacoob 95]. The system computed roll, yaw and pitch based on
eye corners and nose tip, projective invariants of face symmetry and statist-
ical analysis of face structure. The application obtained the three rotation

angles, but only if the face is frontal (i.e. with eyes and nose visible).

2.7 Eye Direction

[Baluja & Pomerleau 94] presents a gaze tracking system, which is non-
intrusive and the user is free to move. The eye was located by searching
for a specular reflection of a stationary light, in the face of the subject. A
window surrounding the reflection was extracted and used as an input to a
three layer, feed-forward network. Various architectures were tested. The
system was used in an eye-mouse application, but needed a large amount of
data to be collected. Each image was considered in isolation to make the
predictions.

[Copeland & Trivedi 97] describes an experimental framework for evalu-
ating target acquisition. The subject had to use a fixed helmet and a chin
rest, and a small glossy black paper circle was placed below the eye. The pu-
pil and the reference mark were found by thresholding, connectivity analysis
and roundness measurement by ellipse fitting. The centroids of both fea-
tures were stored, to compensate small head movements. The fixation point
was determined using data from tracking, the images loaded on the screen
when the test was conducted and other measurements, which were fitted in
a geometrical model. The results were used to compute statistics for target
detection tasks.

[Heinzmann & Zelinsky 98] tracked a face, estimating 3D head pose and

gaze fixation point in real-time. Feature detection and tracking is the same as
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in [Heinzmann & Zelinsky 97]. Pose estimation used affine transformation,
based on a three point model fitting. The gaze vector direction was determ-
ined by the iris and eye corners location. Both locations were transformed
to an eye orientation vector, considering head pose. The results of both eyes
were merged, according to their confidence.

[Talmi & Liu 98] used eye tracking for a stereoscopic display. Feature
detection is detailed in Section 2.2.4. The gaze vector is calculated by the
positions of the pupil and the reflex of a LED light source, as well as an eye
model. Head movement compensation was also added as well. The system
was used to adjust the depth of focus of the stereoscopic display.

[Liu 98] determined the point of fixation, allowing head movement. Face
and feature detection can be found in Sections 2.2.1 and 2.2.3. The 3D po-
sition of the eyes was calculated using the 2D eye coordinates and optical
and geometrical parameters of the camera. The fixation point was estim-
ated by calculating the gaze vector, using an eye model, compensating head
movement and intersecting the gaze vector with the display coordinates, by

a geometrical model.

2.8 Gaze Usage

[Velichkovsky & Hansen 96] presents an overview of the progress in human-
computer interaction. Gaze can be applied in: (a) user interfaces, like eye-
mouse or non-command multimedia applications, and (b) communication
tools, to transmit user’s intention in face-to-face interaction, to help with
interactive documentation and cooperative support, or to facilitate visual-
isation of non-verbal perception.

[Stiefelhagen et al. 98] describes a system that tracked the focus of at-
tention of several participants in a meeting. The head pose determination

was implemented by two neural networks, one for pan and one for tilt. The
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networks were multi-layer perceptrons, with one hidden layer and used back-
propagation with momentum. The focus of attention was modeled by a
Hidden Markov Model (HMM), where gaze estimates were considered as
probabilistic functions of the different states.

[Pappu & Beardsley 98] classified the focus of attention of a car driver.
The steps followed are: (a) manual initialisation, by placing an ellipsoid,
coincident to the driver’s head, in fronto-parallel position, (b) synthetic views
(i.e. rotated, shifted, etc.) were generated off-line, (c) new images were
matched against the synthetic views, and (d) a pose space histogram was
generated, showing the head poses that were most frequently adopted.

[Salvucci 99] performed fixation tracing of eye movements, using a HMM.
The inputs to the system were eye movements data, target areas on the
screen, and a process model grammar. The fixation centroids were found
by converting raw eye movements to a sequence of fixation centroids, using
a saccade-fixation model. The tracing was made by mapping the fixation
centroids onto predictions of the process model, using a centroid sub-model
for each target area. The sub-models were used to construct the traces model,

incorporating the model grammar.

2.9 Conclusions

As stated in section 2.1, gaze direction can be estimated either by face dir-
ection or eye direction. The research works that utilise face direction are
more focused on tracking and they trade accuracy for speed, as stated in
[Gee & Cipolla 94a]. Therefore, the deployed applications under this cat-
egory do not rely on an accurate determination of the fixation point, like the
application described in [Stiefelhagen et al. 97).

On the other hand, the estimation of the gaze direction based on the

eye direction provides the means to determine the fixation point in a more
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accurate way. Generally speaking, the steps followed by the latest research

works are:
e Pupil / iris centre localisation

Gaze vector estimation

Gaze vector location in the scene, incorporating 3D eye position in-

formation

Fixation point determination, intersecting the gaze vector with the

screen

The techniques wused for each step differ between works.
[Copeland & Trivedi 97] and [Talmi & Liu 98] considered the informa-
tion provided by one eye to determine the fixation point on the screen.
[Heinzmann & Zelinsky 98] used the information of both eyes, but the
fixation point was not calculated. The last step was the estimation of the
gaze vector, placing its origin between the eyes. Nevertheless, it was stated
that the fixation point can be calculated by intersecting the gaze vector
with a world model.

The best approaches done so far are the ones described in
[Talmi & Liu 98] and [Heinzmann & Zelinsky 98], since the applications
were non-intrusive and the user could move freely. The disadvantage
of [Talmi & Liu 98] is that a LED light source was required and in
[Heinzmann & Zelinsky 98] a special equipment to perform the tracking was

used.
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Chapter 3

Iris Location and Position

Estimation

As stated in Chapter 1, the process assumes that the eye is already located
in the image by a higher-order process. Therefore, the first step is the iris
location in the eye image. This chapter describes the techniques used for iris
detection, namely edge detection and contour fitting, and then the techniques

for estimating its position within the eye.

3.1 Iris Edge Detection

In image analysis, one of the most common tasks is edge detection
[Jain et al. 95, Parker 97). There is a great number of algorithms devoted to
edge enhancing and detection due their importance.

Edge detection is the first step used in the iris location process, because
an edge defines the outline of an object. Edges separate the object from the
background and other objects, and are usually locations where the image
has large intensity changes. Once the edges are found, the objects can be
located and their properties can be measured. This means that, if the edges

belonging to the iris are found, a model (e.g. a circle) can be fitted to those
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edges by contour fitting and, consequently, the iris position can be estimated.

In general, edge detection operators can be classified as:

Derivative operators These identify places where intensity changes take

place.

Template matching The edge is modelled as an small image which con-

tains the abstracted properties of a perfect edge.

Parametric edge models Mathematical models of the edge are used. The

best operators incorporate a model of the noise.

Based on the review done in Chapter 2 of the research that perform eye
features finding using edge detection, the operators tested were Sobel and
Canny, since these were the ones used on those projects [Young et al. 95,
Talmi & Liu 98]. By suggestion of Dr. Craig Robertson, Research Fellow
in the Machine Vision Unit and second supervisor of this project, the Shen-

Castan operator was also tested.

3.1.1 Sobel Operator

This is a derivative operator, where a 3x3 pixels neighbourhood is used to
compute the gradient. The implementation of the partial derivatives can be
made as a convolution mask. More importance is given to the pixels closer

to the centre of the mask.

3.1.2 Canny Operator

The first derivative of a Gaussian is used, as well as an approximation of an
operator that optimises the product of the signal-to-noise ratio and localisa-

tion. The steps involved are:

1. Image smoothing by a Gaussian filter.
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2. Gradient magnitude and orientation calculation by finite-difference ap-

proximations for the partial derivatives.
3. Non-maxima suppression to the gradient magnitude.

4. Double thresholding to detect and link edges.

3.1.3 Shen-Castan Operator

This operator agrees with the Canny operator in the general form of the
detector, but it uses a different optimal filter function called the Infinite
Symmetric Exponential Filter (ISEF).

A detailed description of the operators used for edge detection can be
found in [Jain et al. 95, Trucco & Verri 98]. A comparison between the

Canny and Shen-Castan operators is made in [Parker 97).

3.1.4 Experiments

Two implementations of the operators were used: the programs provided
by the HIPS image processing system and the programs written by Dr.
Robertson.

The edge operators were applied using the default values, unless otherwise
stated. The eye images were manually cropped from the original images using
XV.

The images used in Figures 3.1, 3.2, and 3.3 were provided by
Arturo Espinosa-Romero, PhD student. The examples were taken
from the Face Images Database he collected as part of his re-
search project about representation, identification and detection of hu-
man faces. A detailed description of his project can be found at

http:/ /www.dai.ed.ac.uk/daidb/people/students/arturoe. html
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The rest of the images were taken with the camera used for the project.
The characteristics of the camera and the parameters used when the images
were taken can be found in Chapter A. All these images have a colour bitmap

format, with a resolution of 640 x 480 pixels.

HIPS Algorithms

The first algorithms tested were the ones provided by the HIPS image pro-
cessing system. A detailed description of the HIPS system can be found at
http://www.cns.nyu. edu/home/msl/hipsdescr.cgi

Since the HIPS algorithms require images in byte format, the images were
transformed from their original formats (colour and gray-scale tiff and colour

bitmap) to the HIPS format using XV.

v T3 TT0e T nchur/achermann 118 1| (v 3Ut0a s acil 0| hxvr3tioas i |

Figure 3.1: HIPS Edge Detection Operators Comparison (1)

right eye left eye
original irpage right eye left eye
colour “ff canny result | canny result
310 x 320 pixels

right eye left eye
sobel result | sobel result

The resolution of this image is too low (810 = 820), compared to the
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one provided by the camera used for the project (640 z 480), so the edge

operators were tested on images with higher resolution (570 z 739).

Figure 3.3: HIPS Edge Detection Operators Comparison (3)

right eye left eye

original image right eye left eye
gray scale tiff canny result | canny result
570 x 739 pixels
right eye left eye

sobel result | sobel result
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Figure 3.4: HIPS Edge Detection Operators Comparison /

original image righteye left eye
colour bitmap
640 x 480 pixels
right eye lefteye
canny result canny result
righteye left eye
sobel result sobel result

Dr. Robertson’s Implementation

Since the results produced by the operators of the HIPS system were too noisy
(i.e. too many edges that do not belong to the iris), other implementations of
the operators were tested. These programs were provided by Dr. Robertson
and are based on the code in [Parker 97]. As stated earlier, the Shen-Castan
operator was also tested.

The algorithms require images in PGM format, so the images were trans-
formed from their original format in colour bitmap to gray-scale PGM images
using XV.

From the tests carried out, the decision was to use the Canny operator al-
gorithm implemented by Dr. Robertson, since the resulting images contained

most of the iris edges and little noise.
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Figure 3.5: Edge Detection Operators Comparison (1)

right eye
HIPS Dr. Robertson’s
canny result canny result
HIPS Dr. Robertson’s
sobel result sobel result

Dr. Robertson’s
shen-castan result

Source Images Comparison

Another comparison was made to determine if there was any difference
between using the original image and the image with histogram equalisa-

tion. As seen in Figure 3.6 it is better to use the original image, since the
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image with histogram equalisation produced more noise in the edge detection

results and there was no noticeable improvement.

[Sl%v 3.30a: syes) tentil y | || v 3107 oyex/testil f 1l

] right eye
right eye with histogram
original equalisation

Dr. Robertson’s
Dr. Robertson’s canny result

canny result (from histogram
equalisated image)

Canny Operator Parameters Variation

The parameters used by the Canny operator were tested using different val-
ues. From the tests conducted, the operator that produced the best results
(i.e. detection of most of the edges of the iris outline and less noise) was
the Canny operator provided by Dr. Robertson using the default paramet-
ers (low threshold=0, high threshold=1 and Gaussian width=1). The Canny

operator selected was applied to additional images.
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Figure 3.7: Canny Operator Parameters Variation (1)

X low thres. =1
ng.h [. eye high thres.= -1
original
gaussian w. = 1
low thres. = 1 low thres. = 1 low thres. = 1
high thres.= 1 high thres.= 2 high thres.= 3
gaussianw.=1 | gaussianw.=1 | gaussianw.=1
low thres. = 1 low thres. = 1 low thres. = 1
high thres.= 4 high thres.= 5 high thres.= 6
gaussianw.=1 | gaussianw.=1 | gaussianw.=1

Figure 3.8: Canny Operator Parameters Variation (2)
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right eye

gaussian w. =4

gaussian w. =5

original
low thres. =1 low thres, =1 low thres, = 1
high thres.= 5 high thres.= 5 high thres.= 5
gaussimnw.=1 | g w.=2 | gaussianw.=3
low thres. =1 low thres. =1
high thres.= 5 high thres.= 5

Figure 3.9: Canny Operator Results
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3.2 Iris Contour Fitting

Once the edges of the iris outline are detected, the next step is to fit a model
to those edges by contour fitting. A contour is a representation for a region
boundary, where edges are linked [Jain et al. 95]. Contours can be modelled

as ordered lists of edges or as curves.

If contours are modelled as curves, two techniques can be used: curve
interpolation means that a curve passes through a list of points; curve
approximation means that a curve passes close to a list of points. The
model considered for the iris is a circle, so the technique used is curve ap-

proximation.

Two methods that use curve approximation are the Hough Transform
and Random Sample Consensus (RANSAC). Similarly to the edge detection
process, the technique considered for contour fitting was the Hough trans-
form, since it was used in some research works reviewed in Chapter 2 like
[Young et al. 95, Talmi & Liu 98]. The RANSAC algorithm was considered
by suggestion of Dr. Robertson.

3.2.1 Hough Transform

This kind of method uses a parameter estimation technique by a voting mech-
anism. Each point on a curve votes for several combinations of parameters.
The parameters that score the majority of the votes are considered as the

winners.

If the model is a circle, it has three parameters: two for the centre and
one for the radius. If the gradient angle of the edges is available, generally
as a by-product of the edge detection algorithm, the value of the radius will
be the only unknown parameter, since the gradient determines the direction

of the vector from the centre of the circle to each edge.
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3.2.2 RANSAC

This regression paradigm finds a significant group of points that are
consistent with a model and rejects the remaining points as outliers

[Fischler & Bolles 81]. The basic steps are:

1. Choose three points at random and fit the circle model to them.

2. Back-project the fitted model into the image, identifying the points that
lie within an error margin. These points will be part of the consensus

or evidence set for each candidate model.

3. Repeat steps I/ and 2 a determined number of trials and choose the

model which is supported by the largest set.

The circle model used to fit the points is as follows:

Implicit equation for the circle, with radius r and centre (zo, yo):

(z = 20)* + (y — w0)* =1

Having three points p; = (z1,91), p2 = (z2,¥2) and p3 = (z3,y3), the origin

of the coordinate system is placed at point p;:

r = TrT—I

Yy = vyY—Un

Therefore, the equation of the circle is transformed to:

(&' = o)+ (' — i) =7

Transforming the original coordinates into the new coordinate system for the
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three points in the implicit equation of the circle:

gl +yl—1 = 0 (3.1)
v — 2hTy + 30 + Yy — Wato+ys — 70 = O (32)
Ty — 2850+ o5 + Y —2ysY0 + Y — 70 = 0 (3.3)

Subtracting Equation (3.1) from Equations (3.2) and (3.3):

2Thzh + 2WaYh = Ty + Uy (3.4)
2wl + 2y = Ty + Yy (3.5)

Finding z¢ and y, from Equations (3.4) and (3.5):

! '2 10

I = ) 4 Yo Yalo
0 ! /
2 2z Ty

1ot 2 1,,'2 / 2 . ! 1,2
1 _TaTy Ty To¥s | Yz Tz To%3 | Yo Ts3Yp

Y Tou T b T 2mhyh 2 2yh 29h | 2 2ahyh

which are the coordinates of the circle centre in the new coordinate system.
To obtain the coordinates in the original coordinate system, (z1,y;) should

be added to (zf, yy). The radius can be calculated from Equation (3.1).

Success Probability

Since RANSAC chooses points at random, the probability of obtaining a
good model from those points must be measured. A bad triplet is formed
by one or more bad points, which are those points that do not correspond
to the model (i.e. they are not part of the iris circle but are included in the

result of the edge detection operator).
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The probability of cluttering (i.e. select a bad point) is calculated by:

numbero fbadpoints

P, clutter =
numbero fpoints

The probability of selecting a good triplet on a single trial can be obtained
by:

Pgood = (1 - Pclutter)3
Pgood = (1 _ numbeTOfbadeints>3

numbero fpoints

The probability of selecting a good triplet can be very low if there is a
lot of cluttering in the image. Therefore, the algorithm should have multiple
trials.

The probability of failure of the algorithm over N consecutive trials is:

Pfailure = (1 - Pgood)N

numbero fbadpoints\ 3 v
Pfailure = 1- (1 - . )
numbero f points

The probability of success of the algorithm can be estimated by:

Poyccess = 1 - Pfailure

. A\ N
P = 1-(1- (1 B numbero fbadpgmts) (3.6)
numberofpoints

To determine the number of trials that the algorithm must be run to

guarantee a probability of success Piyccess, from Equation (3.6):

111(1 - Psuccess)

3
o __ numberofbadpoints
In (1 (1 numberofpoints ) )

trials =
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3.2.3 Experiments

Although the Hough transform was considered for the contour fitting process
in the first instance, the RANSAC algorithm was a better option. The Hough
transform technique is more complex and its results are more difficult to
analyse.

The number of parameters used cannot be too many, because the number
of accumulators increases exponentially with the dimensions of the parameter
space. This makes the Hough transform technique computationally inefficient
if the model to fit is complex.

Once the votes for the parameters are obtained, convolution masks must
be applied in order to smooth the peaks produced by outliers and determine
which peaks are significant, but this is not a trivial task. Therefore, the
algorithm tested was RANSAC.

Success Probability

From the explanation in section 3.2.2, to calculate the probability of success
of the algorithm, the first step is to count the edge points of the image that
do not correspond to the iris circle. This was done manually on the result
images of the edge detection operator that appear in Figures 3.6 (the original
image with no histogram equalisation) and 3.9.

The image in Figure 3.6 has 250 bad points from 366 points; the image
on the top row of Figure 3.9 has 41 bad points of 137 points; the image in
the middle row has 101 of 200, and the image in the bottom row has 144 of
256. The percentages of cluttering are 68.30%, 29.92%, 50.5%, and 56.25%,
respectively.

Considering the worst case (68.30%) and a probability of success of 99.9%,
the number of trials can be estimated by:

1n(]- - Psuccess)
ln(l - (]- - Pclutter)s)
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In(1 — 0.999)
In(1 — (1 —0.683)3)
trials = 213

trials =

First Tests

The algorithm was tested using the results from the edge detection process.
The first results obtained were not good because the values for some of the
constraints used in the algorithm were wrong.

The constraints used to obtain better results from the algorithm were
the location of the centre and the radius of the circle. For the circle centre
the only values accepted were those that lay within the image, i.e. the
coordinates of the centre were not negative (above or to the left of the image)
or greater to the number of rows and columns of the image (below or to the
right of the image. The value of the radius was limited between a lower
bound and an upper bound. The lower bound was finally set to 25% of the
image height to avoid circles that were too small, and the upper bound to
50%, to avoid circles that were bigger than the eye image.

The first results were not good, since the limits for the radius were too
small. These values were set to 10% and 25% of the image height for the lower
and upper limits, respectively. The problem was corrected by modifying the
values to 25% and 50% of the image height. The results are shown in Figure
3.10.

Additional Tests

Once the constraints of the algorithm were corrected, the algorithm was ap-
plied to more images. The face was rotated only in the z direction to the left
and right (considering a coordinate system with the z axis in the horizontal

direction, the y axis in the vertical direction, and the z axis pointing to the
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screen).
From that face positions, the eyes were looking at different locations on

the screen, as displayed in Figure 3.11.

Figure 3.10: RANSAC Results (1)

right eye left eye right eye left eye
first result first resuit first result first result
right eye left eye right eye right eye
final result final result final result final result
|
NE
top-left top-centre top-right
middle-left X middle-right

middle-centre

bottom-left bottom-centre bottom-right
N
N N

Figure 3.11: Screen Locations
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Not all the results were good, since the circle was not placed correctly.
From the 62 images, 7 of them were completely misplaced and 5 were slightly

shifted. The wrong results can be seen in Figure 3.12.

Figure 3.12: RANSAC Results (2)

Eye: right
Rotation: none
Point:  middle-
right
Eye: left Eye: right Eye: left Eye: right Eye: left
Rotation: left Rotation: left Rotation: left Rotation: left Rotation: left
Point:  bottom- Point:  bottom- Point:  bottom- Point:  bottom- Point:  bottom-
centre left left right right
Eye: right Eye: left Eye: right Eye: left Eye: right
Rotation: right Rotation: right Rotation: right Rotation: right Rotation: right
Point:  bottom- Point:  bottom- Point:  middle- Point:  bottom- Point:  middle-
centre centre left left right

To see if better results could be achieved for these wrong results, the
parameters of the Canny operator were modified so more edges could be

detected. The parameters were set to low threshold=1, high threshold=5 and
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Gaussian width=1. Nevertheless, the results achieved were not very good,

because some wrong cases had better circle fitting but the correct cases had

the circle misplaced.
From the same 62 images, 53 had worst results, 4 were slightly better and

5 obtained the same result. Some examples are shown in Figure 3.13.

Figure 3.13: RANSAC Results (3)

wrong case correct case
wrong case edges detected correct case edges detected
first result first result first result first result
wrong case correct case
wrong case edges detected correct case edges detected
second result second result second result second result

3.3 Iris Position Estimation

Once the iris centre is located, other features of the eye should be found that

allow the estimation of the position of the iris within the eye. In the first

37



instance, the candidates considered were the eye corners. Some techniques

were considered but none of them proved to be reliable.

3.3.1 Edge Detection and Contour Fitting

Following the same principles as for the iris finding, the first idea was to
apply edge detection and contour fitting. In this case, the model of the eye

was considered like the intersection of two circles, as displayed in Figure 3.14.

eye L €ye

corner { %, cofner

Figure 3.14: Eye Model

This method would discard the edge points belonging to the iris and try
to fit circles for the upper and lower arcs. Then, the eye corners would be
calculated as the intersections of both circles. However, when the actual
images of the eyes were analysed this was not the case, specially with the
lower arc, as seen in some examples in Figure 3.15.

Even if this idea was followed, the selection of the model for the eye arcs

is not a trivial task, because the curve shape varies due to many factors like
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eye shape, eye location with respect to the camera, head rotation, eyelids

position, etc. Therefore, this approach was discarded.

Figure 3.15: Eye Images

3.3.2 Region Segmentation

The second approach was to perform region segmentation. In this case, the
objective was to find the sclera (the white of the eye) based on the difference
between the gray level values, since the iris is darker than the sclera.

The problem in this technique was to find reasonable gray level values to
perform the segmentation by thresholding, because some parts of the skin
surrounding the eye have similar gray levels to the sclera.

Using Visilog, some thresholding tests were done to get an idea of the
parameters that could determine if a pixel belongs to the region or not. On
the one hand, if the lower limit of the threshold was stopped before the
pixels belonging to the skin merged with the pixels of the sclera, the region
obtained covered a very small part of the sclera. On the other hand, if the

lower threshold was reduced until most part of the sclera was detected, a
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great part of the pixels belonging to the skin were included in the region

seeked. Some of the results are shown in Figure 3.16.

Figure 3.16: Thresholding

original image

before merging
with skin pixels

almost all sclera
detected
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before merging
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before merging
with skin pixels
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original image

before merging
with skin pixels

almost all sclera
detected
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3.3.3 Bounding Box Finding

The process to find the eye corners proved to be too complicated if simple
image processing techniques were used, so a different method was tried. In
this case, the objective was to find a bounding box around the eye that
could remain in the same position, independently of the eye characteristics,
like size, rotation, iris location, etc.

The steps followed in this approach were:

e Knowing the iris centre and radius from the previous process, the pixel
with the maximum gray level was selected, from those at a specified

distance in pixels from the iris (10 pixels), as displayed in Figure 3.17.

e Starting from the iris border, rays were projected from the centre to

the border of the image, as seen in Figure 3.18, under the constraints:

* The ray end must be within the eye image.

* The projection of the ray will stop if the current pixel value is lower

than an established threshold below the maximum gray level pixel.

* The projection of the ray will stop if the current pixel is labelled

as an edge pixel by the iris edge detection process.

e A bounding box was then fitted around the termination points of the

rays.

The problems encountered in this method were that the resulting bound-
ing box moves with the iris position and it produces reasonable results only
with unrotated eyes. Some examples are shown in Figure 3.19.

Since there is not a reliable technique to detect additional eye features,
the process will have to assume that other process will provide the location of
the eye corners. For the purposes of the reminder of the project the location

will be found manually.
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Figure 3.17: Mazimum Gray Level Pizel Selection

Figure 3.19: Bounding Boz Results
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Eye: right Eye: left Eye: right Eye: left Eye: right Eye: left
Rotation: none Rotation: none Rotation: left Rotation: left Rotation: right Rotation: right
Point:  top- Point:  top- Point:  top- Point:  top- Point:  top- Point:  top-
centre centre centre centre centre centre
Eye: right Eye: left Eye: right Eye: left Eye: right Eye: left
Rotation: none Rotation: none Rotation: left Rotation: left Rotation: right Rotation: right
Point:  top- Point:  top- Point:  top- Point:  top- Point:  top- Point:  top-
left left left left left left
Eye: right Eye: left Eye: right Eye: left Eye: right Eye: left
Rotation: right Rotation: right Rotation: left Rotation: left Rotation: right Rotation: right
Point:  top- Point:  top- Point:  top- Point:  top- Point:  top- Point:  top-
right right right right right right

3.4 Discussion

The process for iris finding does not guarantee perfect results, as shown in
the tests performed, where not all the images got a correct circle placement.
The success of this process depends on the efficiency of the edge detection

and the contour fitting phases.

In edge detection, the Canny algorithm worked well, but its performance
relies on the quality of the source image. The usual care recommended for
any edge detection process should be taken, like illumination, image contrast,

noise presence, image resolution, etc.

The phase of contour fitting involves randomness, so the possibility of
getting a bad result cannot be discarded or underestimated. The edge de-
tection images used as a source should contain the least possible amount of
noise. The percentage of correct cases was 80.65%, of slightly shifted cases

was 8.06% and of completely misplaced cases was 11.29%.

With regard to the search for additional eye features to estimate the iris
position within the eye, after trying all the explained techniques, none of

them worked adequately.
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Some approaches that might deal with this problem would require the
use of more complex techniques. One of these approaches is the analysis of
colour images, as suggested by Dr. Robertson. Since the sclera and the skin
have different colours, the problems encountered in region segmentation due
the similarity of gray levels could be overcome.

Other technique used in some of the works reviewed in Chapter 2 was the
detection of eye features as part of a face tracking system based on template
matching techniques. The disadvantage of this method is that it required
special equipment, like the project in [Heinzmann & Zelinsky 98]. But if a
global face model was used, the eye position would be known and the iris

position could be then reported, relative to the face model.

3.5 Conclusions

Like any image processing task, the success of the overall process depends on
the acquisition of the image. In the case of this project, if the image does not
have good illumination, is not properly focused or has a low resolution, it will
be very difficult for the remaining processes to do their work correctly, since
the edge detection relies on the image acquisition and the contour fitting
relies on the edge detection.

In relation to feature finding, if the feature considered can be modelled
accurately, like the iris as a circle, the process to find it is fairly straightfor-
ward and the results are good enough. But if the feature cannot be modelled,
because it changes due many factors, like the eye arcs with the view point,
orientation, eye shape, etc., the process to find it will require the use of
complex techniques and will be a very time-consuming task.

It is not surprising now that, in the review done in Chapter 2, there were
few projects performing feature finding with the accuracy required for the

task under consideration, except for features like the iris or the pupil.
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Chapter 4

Location of the Fixation Point

This chapter explains the process followed to calculate the 3D fixation point.
The steps used are: (a) find the gaze vectors, (b) find the eyes in the scene,
(c) find the view rays, and (d) project the fixation point onto the screen. A
brief description of stereo matching is also included, since the determination

of the fixation point will use the information provided by both eyes.

4.1 Stereo Matching

One important task in a computer vision system is the calculation of the dis-
tance from various points in a scene to the camera position ([Jain et al. 95)).
A common method to estimate depth is binocular stereo. which uses a pair
of images, obtained from two cameras, which are separated by a known dis-
tance.

The simplest model, as seen in Figure 4.1, consists of two cameras sep-
arated by a baseline distance b in the z direction. The image planes of the
camera are considered coplanar.

Placed at different positions in the image plane, the cameras view the
same feature in the scene. Disparity is the displacement between the loc-

ations of the two features in the image plane. The epipolar plane is the
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plane that passes through the centres of the cameras and the feature point.
The epipolar line is defined by the intersection between the epipolar plane

and the image plane.

Scene object point

Optical axes

Epipolar lines

Left image plane \ \ Right image plane

Left camera lens centre Right camera lens centre
Stereo baseline

Figure 4.1: Stereo Matching Model (adapted from [Jain et al. 95])

In the project, the two cameras are actually the two eyes. Because the
eyes can rotate, the principle of parallel optical axes does not apply. The

objective is to find the point that is closer to both view rays.

4.2 Finding the Gaze Vectors

4.2.1 Eye Axes

The process begins with the analysis of the image of the face taken by the
camera. Figure 4.2 shows a schematic view of one eye. The image coordinate

system has its origin at the left-top corner of the image, with axes 7 and

—
7 -

The coordinate system of the eye has its origin at (ig, jo), with axes @
and V. (ip,Jo) is also the coordinate of one eye corner and (i, j.) is the

coordinate of the other corner.
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Figure 4.2: Front View of the Eye

If (49, j0) and (i, je) are assumed as known, the rotation and translation
of the eye with respect to the image can be estimated by the calculation of
the eye axes, @ and 7, as follows:

2 = (ug,u,) = (Z:C_ZZO’J:C—J:O)
( y) “(% —10,Je — ]o)||

v = (v, vy) = (—Uy, Uz)

4.2.2 Eye Centre

(a,b) are the coordinates of the eye centre, which can be obtained by:

| 3¢ + %0 |
2

|je+j0|
2

4.2.3 Eye Width

The eye width w can be estimated as follows:
w= ”(ie — 10, Je — .70)”
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4.2.4 Iris Centre

(e, B) is the scale invariant position of the iris centre with respect to the eye

origin, (ig, jo), as seen in Figure 4.3. These values can be stated as:

(i =10, —Jo) ¥
a=(ag,0y) = ”
i—ig,j —Jo) - T
,8 — (ﬂzn@y) = ( )
w
............. ‘ -0.5
T B 0
o l
05
v
' 04
0 0.5 1

Figure 4.3: Location of the Iris Centre on the Image

4.3 Finding the Eyes in the Scene

Figure 4.4 shows a schematic diagram of the scene, in the (z,z) plane. @
is the camera position, A is the distance between the eye and the camera,
(a, b) are the coordinates of the eye centre obtained in section 4.2.2, V is the
camera ray passing through the eye centre (which depends on a and b), and
A is the distance between the centres of the eyes.

The values of V‘ are calculated by the camera calibration process, relating
the points in the 3D scene with the pixels in the image.

The coordinates of the centres of the eyes, & and €7, can be calculated
by:

el = (e, ey, €12) = € + /\zvz(az, bi) (4.1)
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_é_: = \€rzyEryy Erz) = 7+ )‘r?r @, by 4.2
v

Al

screen top-left
corner

Figure 4.4: Location of the Eye on the Scene

Assuming that the face is in a fronto-parallel position (i.e. the plane
in the z coordinate through the centres of the eyes is parallel to the plane
through the camera), and that ¢ and V are known, equations (4.1) and

(4.2) can be restated as:
AVi: = A Ve, (43)

(AMVie = MVe)® + (WVly = M V)% = A® (4.4)

From equation (4.3), A; can be obtained by:

AV

A
TV,

Substituting equation (4.5) in equation (4.4):

2
A Viz
Wa: - /\r‘/r:c> + (V—

lz

(AT‘/TZ

Iz

2
‘/ly - Ar%y) = A2
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Ar 1s estimated by:

A?

VezVig : Ve Wiy ’
() + ()

A =

To simplify the notation:

ViVia 2 VLV ?
D=1 _vy, L,
( Vi ) +< 7 )

therefore:
A2

Y 4.6
= (1.6
Substituting equation (4.6) in equation (4.5):
A2
Vol

A=

To find the centres of the eyes, equations (4.6) and (4.7) are substituted in
equations (4.1) and (4.2):

A2

o = T+ @V”Vf(az,bo
Iz

2 = 2+ 5 Wanb)

4.4 Finding the View Rays

As seen in Figure 4.5, the fixation point can be stated as:

7 = ?l‘i‘#la_l)(a’hﬂl) (4.8)
ﬁ) - e_r)+/J'rEr)(arnBr) (49)
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Figure 4.5: Fization Point

The values of d depend on the values of the gaze vector, (o, ), cal-
culated in section 4.2.4. These values must be customised for each user by
a user calibration process, relating each position of the iris centre with the
corresponding gaze vector.

To calculate the fixation point, the distances p; and pr must be found,

such that they minimise:

F=|f-FlP=R -7~ (4.10)

which is the point where the two view rays are closest. Theoretically speak-
ing, these rays should intersect, but due to noise they will often just pass
closely. To minimise F":

oF

— =0
O
oF
Opur !

a1



or _ Ta? —oF 27001 (4.11)
O 3% ' a#z '
oF —T0 Taf,-

= 9F -9 4.12
Otr I Aur I O (4.12)

Substituting equations (4.8) and (4.9) in equations (4.11) and (4.12):

a7d +wmd & -e"d - pd, 4 = 0 (4.13)
27T+ md d -l —wd 4 = 0 (4.14)

As
dd = d d=0
dd =dd=1

pr and g can be obtained from Equations (4.13) and (4.14) by:

P i l)(j a)+ (@ AT
(di ,) -1
a)TEr) _lTr Elﬂ‘dr EITE) dl

To obtain the fixation points Equations (4.15) and (4.16) are substituted
in Equations (4.8) and (4.9).

The fixation point is obtained by:

—

_)
_fl+fr
7= 2
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4.5 Projection of the Fixation Point onto the

Screen

4.5.1 Fixation Point Coordinates Transformation

Once the fixation point ? is found, it should be projected onto the screen
(i.e. transformed into screen coordinates), as seen in Figure 4.6. Assuming
that the camera vector, ¢, is known, an homogeneous matrix can be applied

to ? [Fisher 98].

® xy

<

X

Figure 4.6: Projection of the Fization Point onto the Screen

The steps involved in this process are: first, the point ? = (fo, for f2)T
is augmented to ? = (fz fy> [z, 1)T. Then, the homogeneous matrix II is

formed by the rotation matrix, R, and the translation vector T":

Ty Ti2 Ti3
R = To1 T22 T23

T31 T32 733
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T =TT, T.)"

T Tiz T3 1y
Tol T Tz 1y
T3t T3z T3z 1

0 0 0 1

Finally, the new point is estimated by:

G =1y

G = (M, M, M,)T
where:

M, = rufe+rofy+rsf+T;
My, = rafs+rafy+raf.+T,

M, = rafe+rsfy+raf.+T1;

4.5.2 Error Estimation

The true coordinates of the fixation point in the screen are (p; -7, —p, - s,0),
where p is the scaling factor of the screen, (i.e the equivalence of the pixels
in the screen in metric units). Therefore, two error measurements can be

stated:

depth_errory = M,

pizel_errory, = ” (— —-r,— — 8




4.6 Experiments

Once the user calibration was made, as explained in Appendix B, nine dif-
ferent images were taken to test the fixation point calculation process. The
user was in a nearly fronto-parallel position, but with no restrictions in the
movements of the head, as in the case with the user calibration.

The steps followed in the process are:
e Image transformation from colour bitmap to gray-scale PGM using XV.

e Eyes location by hand and cropping by program.

Iris centre calculation following the process explained in Chapter 3.

Gaze vectors estimation as stated in Section 4.2.

Eye centres finding as exposed in Section 4.3.

View rays calculation as explained in Section 4.4.

Fixation point projection onto the screen as stated in Section 4.5.

To evaluate the performance of the fixation point calculation, the true
coordinates of the fixation point on the screen were measured and compared
with the results obtained.

The performance was not quite good. There is not a systematic or con-
stant error that could be identified, e.g. a larger error in points located on
the sides than in the points on the centre of the screen, or a constant error
due to noise.

The reason of these errors can be attributed to the user calibration results.
The points used for the calibration were not enough and no interpolation was
performed to obtain the missing values.

Nevertheless, some results obtained were close to their true location. The

best result had a difference of 84 millimetres in the z axis, 5 millimetres
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in the y axis, and 66 millimetres in the 2 axis. The worst result had a
difference of 158 millimetres in the z axis, 192 millimetres in the y axis, and
176 millimetres in the z axis. The complete list of results is shown in Tables
4.1 and 4.2, and a schematic figure of the points used can be seen in Figure
4.7. The coordinates units and the depth error are in millimetres. The pixel

error is in pixels.

— ~— 79 mm
N
1 4 7
T
73 mm 2 5 8
3 6 9

Figure 4.7: Pattern Points Used on Ezperiments

With these large variations over the results is not easy to evaluate the
overall performance of the system, but as stated before, the source that

contributed more to the errors is the user calibration process.

4.7 Discussion

The calculation of the fixation point is a straightforward process and it should
produce good results if the processes that provide the source information are
accurate. Nevertheless, as seen in the experiments, if any process fails to

produce its results with the accuracy required, the overall process feels the
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effects of that failure.

In this case, the process that affected the calculation was the user calib-
ration process. As stated before, there was not enough information available,
since not enough points were used to calculate the corresponding gaze vectors

and no interpolation was made to estimate the missing values.

Two alternatives can correct this error. The first one is to repeat the user
calibration process. The problem with this choice is that it is a tiring process
for the user. If any application wants to use the output of this process, a
good choice suggested by Dr. Robertson is to consider more points on the
centre of the screen and less points on the sides of the screen since the users
generally focus more their attention on the centre than on the sides of the

screerl.

The second alternative is to perform interpolation to estimate the missing
values. The drawback of this method is that the accuracy will not be as good

as using real data.

Point | z true | z calculated | y true | y calculated | z true | z calculated
1 79 232 73 265 0 -163
2 79 183 146 254 0 -176
3 79 191 219 219 0 -81
4 158 205 73 208 0 -21
5 158 195 146 298 0 -28
6 158 192 219 214 0 -66
7 237 201 73 194 0 -20
8 237 188 146 192 0 -17
9 237 183 219 218 0 -95

Table 4.1: Results of the Fization Point Calculation
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Point | z error | y error | z error/depth error | pixel error
1 153 192 -163 835
2 104 108 -176 505
3 112 0 - 81 359
4 47 135 -21 498
9 37 62 - 28 249
6 34 -5 - 66 109
7 -36 121 - 20 441
8 -49 46 - 17 228
9 -54 -1 - 95 177

Table 4.2: Errors of the Fization Point Calculation

4.8 Conclusions

Similarly to the conclusions stated in Chapter 3, the success of the overall
process depends on the success of its components, since the accuracy of each
estimation depends on the accuracy of the preceding estimation.

The process is still very time consuming, because some processes should
be done by hand (image transformation, eye finding, corner finding, partial
results checking of the camera calibration and user calibration processes and
scene measurements).

The results obtained are not good, but if additional work is done on the

components, great improvements can be made.
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Chapter 5
Conclusions

The estimation of the gaze direction using the eyes direction produces more
accurate measurements than using the face direction, as seen in the research
already done in face image processing reviewed in Chapter 2.

The projects developed based on the face direction give an estimate of
the gaze movement, but they cannot give a precise location of the fixation
point. Nevertheless, these efforts produced good results for the applications
they were intended for.

When more accurate estimations of the fixation point were needed, the
projects used the eyes direction as the indicator of the gaze direction. The
results obtained were good, but the major drawback of many of the projects
is that they required special equipment or were user-intrusive.

This project investigated the estimation of the fixation point, based on
the information provided by both eyes, without using special equipment or
being user-intrusive.

As seen in Chapter 3, the success on the iris location, like any image
processing task, relies on the image acquisition. If the image quality is not
good, no approach will work, no matter which technique is used.

The finding of face features is not a trivial task. In the case of the iris, the

process was fairly straightforward and the results were good enough because
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the model used was accurate enough. But regarding the eye corners, the
process did not work even though different techniques were tested.

The fixation point calculation was not as accurate as expected, as shown
in Chapter 4. The success of the overall process depends on the success of
its components since each stage depends on the results obtained by its pre-
decessor. Consequently, any failure in any component will affect the results
obtained. But it also means that as more work is done on each component
to produce better results, the accuracy of the process will be better.

Some parts of the process are still done by hand and there is not an
automated flow between the components. Therefore, there are many aspects
of this project that can be enhanced if the aim is to use the result in any

application like the ones mentioned in Chapter 2.
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Appendix A

Camera Calibration

If a computer vision application needs to determine the position of the objects
in 3D space or reconstruct the 3D structure of a scene, it should estimate
the relationship between the coordinates of the points in 3D space and the
coordinates of the corresponding image points [Trucco & Verri 98].

This relationship is estimated by the camera calibration process, which is
one of the inputs for the fixation point estimation. In this chapter the process
used for camera calibration is explained, as well as the characteristics of the

camera used for the project.

A.1 Camera Calibration Methods

Camera calibration is accomplished by relating the coordinate systems of
the points in space and the image points with the camera reference frame,

considering two type of parameters:

e Extrinsic parameters. These determine the orientation and location of

the camera reference frame in a known world reference frame:

* Rotation matrix

* Translation vector
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e Intrinsic parameters. These associate the coordinates of the camera

reference frame with the pixel coordinates of the image:

* Focal length
* Location of the image centre in pixel coordinates
* Effective pixel size in the horizontal and vertical directions

* Radial distortion coefficient

Two of the methods proposed for camera calibration are: the direct recov-
ering of the parameters, proposed by Tsai, and the estimation of the projec-
tion matrix without explicitly solving the parameters, proposed by Faugeras
and Toscani. Both methods are explained in detail in [Trucco & Verri 98].
This kind of method requires a precise model of the camera.

One simpler method was used by Dr. Anthony Ashbrook, Research Fellow
in the Machine Vision Unit, for a shadow stripper. A detailed explanation
of the process, applied to a range finder is in [Trucco et al. 94] and applied
to a camera used in a range finder in [Fisher et al. 96].

The advantage of this method is that it uses an empirical calibration
instead of a model. The empirical calibration over-covers any systematic
deviations encountered in the normal pinhole camera model.

The ideas used in this method are as follows: a known pattern, like the
one seen in Figure A.1, is placed at a known distance z; from the camera
and a first image is taken. Then, the camera is placed at a known distance
2o and a second image is taken, as seen in Figure A.2. The pattern has a
circle that is lighter than the surrounding circles. The lighter circle in the
first image is considered as the origin of the world coordinate system.

The images are thresholded and the centroids of the circles are estimated.
With these centroids, the vectors V from the camera to the points on the

images are calculated, as seen in Figure A.3. Finally, the camera position ¢
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is obtained by a least-squares method, looking for the point that minimises

the distances between the vectors T}

Figure A.1: Pattern Used for Camera Calibration
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Figure A.2: Images Acquisition for Camera Calibration



The 3D position of each centroid of the pattern circles and the camera
position © are known, so it is possible to estimate the vector Z through
each centroid of the pattern circles. If linear interpolation is applied to the
nearby vectors from the circles, it is possible to calculate the view vector for

each pixel in the image.

patfern

Figure A.3: Parameters Calculation for Camera Calibration

The camera calibration file was obtained by a modified version of the
software for the Shadow Striper System, used in the Machine Vision Unit,
provided by Dr. Ashbrook. The modification was due the difference between
the resolution of the cameras. The steps followed in this process are explained

in detail in [Ashbrook 99].

A.2 Camera Characteristics

A complete description of the camera characteristics can be found at

http://www.pccam. com/products/kodak/dvc323 %20specs. htm

72



Kodak DVC323 Video Camera Specifications

Specification Characteristics

Image Sensor: Kodak 640(H) x 480(V) pixels, interline

transfer, progressive, scan colour CCD

with square pixels

Photo Resolution: 640 x 480, 24-bit colour, 16.7 million
colours
Colour Video Formats | YUV9: 160 x 120, 320 x 240
and Resolution: YUV12: 160 x 120, 320 x 240
176 x 144 (QCIF), 352 x 288 (CIF)
Lens: 3-element, 6.2 mm focal length lens with

£/2.5 aperture

Focus: Manual adjustment, 57 (12.7 cm) to infinity

Zoom: Digital, 1X-2X

Field of View: User selectable: 20, 30, or 42 degrees
horizontal

A.3 Camera Parameters

The parameters set on the camera to take the images shown on the experi-

ments are as follows:
e Image size and quality

* Zoom: middle point between telephoto and wide
* Video quality
*x Sharpness: high

+ Frame rate: low
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— Finished size: 640 = 480
e Exposure and colour

* Exposure

* Brightness: 3/4 between dark and light

* Contrast: middle point between low and high
* Shutter speed: normal

* Colour

* Light source: auto-balance
* Hue: middle point between green and red

* Saturation: middle point between low and high
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Appendix B

User Calibration

The process to estimate the gaze vector d based on the scale invariant iris
position «: and 3 is done by a direct relationship between those measurements
in a user calibration process, which should be customised for each person. It
is assumed that the camera is calibrated as stated in Appendix A.

The steps followed in this process are:

e Calibration pattern selection

Scene set-up

Images acquisition

Images processing

Parameters calculation

B.1 Calibration Pattern Selection

The patterns selected should contain a balanced number of points to where
the user has to look at, i.e. not too many, so the user does not get tired and

not too few, so the accuracy of the calculations is compromised.
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For the project, two different patterns were selected and their schematic
configuration can be seen in Figure B.1. These patterns gives the possibility

of 30 points for the one in the left and 9 points for the one in the right.

Figure B.1: Patterns Used for User Calibration

B.2 Scene Set-up

The next step is to set-up the conditions to take the images as controlled as
possible. This means that the positions of the screen and the user must be
measured and the user head must stay as still as possible and in a fronto-

parallel position. The used configuration is shown in Figures B.2 and B.3.

1l

user |
chin rest camera screen

Figure B.2: Scene Set-up, Lateral View
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Figure B.3: Scene Set-up, Top View

B.3 Images Acquisition

Once the user is comfortably placed, images of he/she are taken, looking
at the different points of the pattern. The usual care for image acquisition

should be taken, as illumination, camera focus, etc.

B.4 Image Processing

The images acquired will pass through the same steps described in Chapters

3 and 4, namely:
e Eye images cropping
e Edge detection
e Iris location
e Corner detection
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e Gaze vectors finding

To assure the accuracy of the process, the iris location process should
be verified, to correct those images where the iris circle is misplaced. In the
project this was done by hand. The eye images cropping and corner detection
was done by hand as well. The gaze vectors finding involves the calculations

explained in section 4.2.

B.5 Parameters Calculation

The last step is to relate the gaze vectors obtained in the previous step
with the corresponding points in the scene, using the measurements taken in
Section B.2, namely the position of the user’s eye centres and the locations
of the points with respect to the origin of the coordinate system, which is

placed at the top-left corner of the screen.
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