University of Edinburgh
Division of Informatics

Evaluation of a range data segmentation program

4th Year Project Report
Computer Science

Alexander Clarke

May 30, 2003

Abstract: This project report explains the steps that were involved in eval-
uating Edinburgh Universities range segmentation program, RangeSeg, using the
automated evaluation framework developed by the University of South Florida.
RangeSeg and the framework are described, as well as the necessary adaptation
process (data conversion, pre and post processing, among others) needed to run
the evaluation program correctly. The final evaluation results are presented, as
well as a comparison with performances from other range segmentation programs.

]

2

—

==

==

=

E=S

=

r

L4

Contents

1 Introduction

2 The Automated Evaluation Framework

2.1 Performance measurement
21.1 Groundtruth
2.1.2 Performance metrics

2.2 Parameter tuning oo

2.3 Validation

24 Testdata
241 ABW . .
242 CW . . e

2.5 Package organisation oo o

3 RangeSeg

3.1 Segmentation method L

3.2 Parameters e

3.3 Graphical and textual output oL
3.3.1 Graphicaloutput
3.3.2 textualoutput.o

34 Fileinputandoutput.
34.1 Imageinput
342 Fileoutput oo

4 The adaptation process

4.1 incompatibilities, constraints and limitations

4.2 Adaptingthedata
4.2.1 General PGM to HIPS cross-conversion
422 ABWconversion
4.2.3 Planar machine segmentation data conversion
424 Cyberware conversion
4.2.5 Curved surface machine segmentation data conversion . . .

4.3 RangeSeg interfacing programmes
4.3.1 ABW planar data evaluation.
4.3.2 Cyberware planar data evaluation

4.4 Parameter selection

4.4.1
4.4.2

Planar data segmentation
Curved-surface data segmentation

iii

qJ DD OO T s W -

O e
UL O LU O W W — O ©

5 Pre and post-processing
51 ABW preprocessing
52 ABW post-processing

6 Evaluation results and discussion

6.1 Results. . .

6.1.1 ABWoplanarscenes,
6.1.2 CW curved-surface scenes

6.2 Comparison
7 Conclusion

Bibliography

29
29
30

33
33
33
34
35

37

39

1. Introduction

Range data segmentation, the process of extracting meaningful three-dimensional
shapes and their equations from range data, has been a widely studied subject
within the field of computer vision. The vast array of scientific and industrial
applications this low-level technique could support, ranging from robot vision
(a machine can analyze its environment in terms of mathematical equations) to
Computer Assisted Design (creating an ideal, non polygonal shape from a scanned
real life object) only serve to comfort further research in this field. Despite this
potential, range data segmentation has not yet matured as a commonly used tech-
nology. A reason for this is a lack of empirical evaluation methods, which could
measure the performance of range segmentation algorithms objectively. The ra-
tionale behind this need is the following: proving the accuracy of an algorithm
against real world data is much more relevant than providing a theoretical proof
based on ideal data; objects in real life are typically uneven, bumpy or eroded.
Being able to clearly describe the efficiency of a segmentation algorithm against
real data is a key factor in developping applications whose requirements demand
a specific level of accuracy or robustness (a CAD application would be required
to fit scanned objects with maximum precision, for the pupose of reverse engi-
neering). Finally, if the performance of an algorithm can be measured in terms
of clear metrics (such as over and under-segmentation), weaknesses in current
algorithms can be identified, providing clear requirements for future research in
data segmentation.

Recently, with the realisation of its importance, much attention has been put
into developing such an objective evaluation method; the most notable result
so far has been the evaluation framework developed by the University of South
Florida. This package revolves around real-life test data for which ideal segmen-
tations, so called ground truth (GT) images are specified in fig.1.1. The test data
is segmented and the result compared to the GT image, returning performance
metrics based on the similarities between both images. This evaluation system
has proven to be quite successful and as such is slowly acquiring the status of
standard empirical evaluation tool, used in several inter-university segmentation
competitons. In this project, we use this evaluation package to measure the
performance of RangeSeg, Edinburgh Universitys vision groups range data seg-
mentation algorithm. When last measured 6 years ago[l], RangeSeg performed
very well, receiving the best scores in 9 out of 10 accuracy measurements. Nev-
ertheless, this only covered range data including planar scenes; here we evaluate
RangeSegs performance on both planar and curved data. Furthermore, RangeSeg
has since then been rewritten using the much more precise albeit slower Euclidean
distance to fit surfaces(3], and as such has gained in robustness

The goal of this project is to extract meaningful evaluation results so as to

1

2 1. INTRODUCTION

Figure 1.1: A range image and its corresponding ground truth specification

measure RangeSegs current performance and eventually identify its weaknesses.
To this end evaluation is performed both on a planar data set and a curved-
surface data set. Beyond this, this project covers the steps that were necessary
to adapt RangeSeg to the evaluation package.

The scope of this project considers RangeSeg to be a black box; all the adapta-
tion operations needed to run the evaluation framework of Rangeseg are external
to the program and performed by a data converting interface. As will be covered
in this report, this approach has certain limitations, and in the case of testing
RangeSeg on the planar range data, information was lost due to data transfor-
mation. As a consequence, some evaluation results were slightly affected, and
can therefore only be used as an approximation to the real performance. A
further part of this report addresses the usefulness of pre-and post processing
techniques such as hole-filling algorithms, to improve evaluation results. Finally,
the project also involved choosing correct parameters for evaluation; some of them
were trained using the evaluation packages inbuilt training facility, the others set
manually.

This report is organised into 7 chapters; Chapter 2 describes the workings of
the USF evaluation package, its performance metrics and its training and vali-
dation methods. Chapter 3 introduces the RangeSeg application, along with its
parameters and its visual and textual output. Chapter 4 builds on the previous
chapters to describe the steps taken in adapting Rangeseg to the evaluation pack-
age, the test data in particular. Correct parameters choices are also explained
for both planar and curved data segmentation evaluation. Chapter 5 discusses
the advantages of additional pre-and post processing on the test range data as
well as the on the segmented output in order to yield more satisfactory results.
The specific algorithms used to these ends are described. Chapter 6 presents
the final evaluation results, and compares them to previous RangeSeg results as
well as results obtained from other segmentation algorithms. Chapter 7 offers a
conclusion to the project.

2. The Automated Evaluation
Framework

The initial work made on segmentation evaluation by the University of South
Florida was made in 1996 as reported in [1]. In this experiment, 4 different al-
gorithms (including RangeSeg) were evaluated and compared. The evaluation
framework used today is essentially an enhancement of this older framework;
while the ground truth precept and performance metrics stay the same, it is now
able to evaluate segmentation of curved surfaces [4] and includes an automated
parameter training device. This chapter introduces the evaluation package. The
workings of the framework are covered in the first 3 sections, which describe per-
formance measurement, parameter tuning and validation, respectively. Section
3.4 describes the test data associated with the package used in this project. Fi-
nally section 3.5 describes the various tools in the package and how they are used
in practice.

2.1 Performance measurement

The main challenge in developing an objective evaluation framework is indefining
an adequate measurement for performance. Here, performance of a segmentation
algorithm is defined as the lack of discrepancies between the algorithms segmen-
tation of a scene and the equivalent ground truth (GT) segmentation, a manually
created, ideal segmentation of a set scene. For clarity, we define segmentation as
described in [2]:

A segmentation of an image R into regions ry, - - -, 7, is defined by the following
properties:

1. mUryU---Ur, = R.(Every pixel belongs to a region.)

2. Every region is spatially connected. (Currently defined as four-connectivity.)
{

3. Vry,r; € R§ # §,riNr; = 0.(All regions are disjoint.)

4. Vr; € R, P(r;) = true (All pixels in a region satisfy a specified similarity
predicate; in the case of range images, they belong to the same surface)
A
5. Vri,r; € Rf # j,r; and 7y, 7; are four-connected and adjacent, P(r; Ur;) =
false. (If two regions are four-connected and adjacent, then they represent
different surfaces.)

4 2. THE AUTOMATED EVALUATION FRAMEWORK

Machine Segmentation Ground Truth
A 1 6
E
D 2 5
B 3
4

MS megion A conmesponds to GT region 1 as an instance of comect segmentstion.

GT region 5 corresponds to MS regions C, D, and E as an instance of over-segmentstion.
MS region B cormesponds to GT regions 2, 3, and 4 as an instance of under-segmentation.
GT region 8 is an instance of a8 missed region.

MS region F is an instance of a noise region.

Figure 2.1: A graphical explanation of the scoring metrics

6. There are artifact regions in the image where no valid measurement was
possible which all have the same label (violating rule 2) and for which rules
4 and 5 do not apply.

2.1.1 Ground truth

As mentioned above, GT images are the manually elaborated ideal segmentations
of a range image. In order to achieve such a perfect segmentation, each pixel
from the original range image is considered separately and assigned a surface (or
segment) label using an interactive tool. A pixel cannot be assigned a surface
label in every case; noise pixels, shadow pixels, and cross edge pixels (pixels
located on the edge between 2 adjacent surfaces) are all labeled as nonregion,
as defined in rule 6. The task of specifying ground truth is straightforward for
scenes comprising only of planes, but more complex when curved surfaces are
concerned. Indeed, it has been noted [4] that regions in ground truth can only
be defined for as many quadric surface types that can be easily categorized. In
the current generation of ground truth images, this only includes planes, spheres,
cones, cylinders and torii. (More shape categories can in fact be defined, such as
ellipses, elliptic cylinders and cones, but these are not considered here).

2.1.2 Performance metrics

Once a segmentation algorithm has created its machine segmentation (MS) of a
scene, it is compared to the GT specification, yielding the following five metrics,
based on degrees of mutual overlap: correct segmentation, over segmentation,
under segmentation, missed region and noise region. These are represented in fig

2.2. PARAMETER TUNING 5

2.1 and defined as follows: correct segmentation occurs when a sufficient ratio
of pixels share the same x and y coordinates in both MS and GT instances of a
region. QOver-segmentation occurs when a region in GT is mapped to more than
one region in MS. Conversely, under-segmentation occurs when several regions in
GT are mapped to a single region in MS. A missed region is when a GT region is
mapped to a unsegmented (nonregion) patch. Finally, a noise region occurs when
an MS region appears where only nonregion pixels are present in GT. A more
formal description of these 5 measurement can be found in [1]. Each metric can
be a useful measurement in itself, depending on the application the algorithm
is destined for. Nevertheless, in the current implementation of the evaluation
framework, performance is solely defined as a function of correct segmentation
instances. As already mentioned , correct segmentation is a function of a certain
ratio; for example, a ratio of 0.6 means 60% of MS pixels in a region must be share
the same coordinates as the pixels in the corresponding GT region. To calculate
the final performance score, this ratio (or overlap threshold) is set successively to
0.51, 0.51, 0.60, 0.65, 0.70, 0.75, 0.8, 0.85, 0.90 and 0.95. Result-
ing comparison values are plotted to draw a performance curve, which is then
normalized. The area under the curve (AUC) is then calculated, which is the
final performance score, an area between 0 and 100.

2.2 Parameter tuning

One of the main enhancements of the evaluation tool since its first use [1] is its
ability to tune segmenter parameters (typically minimum fitting residual, etc...)
to favor optimal performance in evaluation. Performance using this method is
has been shown to be generally more effective than manual parameter setting in
[2].

To train a set of parameters, an extra set of images is used; it is separate from
the evaluation set and is used solely to train the algorithm’s parameters. It is
essential that the data used to evaluate the segmenter is of the same nature as
the data used to train it or results may suffer; the range data must not only be of
the same type (noise levels, quantization or other, can vary considerably between
different range scanner acquisitions) but must also have similar objects in the
scenes that they represent. The parameter training acts as a form of adaptive
search: in a first step, a range is given for each parameter (e.g. between 0.04 and
1.6). This range is then uniformly sampled at 5 points for each parameter. For
n parameters to be trained, the tuning algorithm starts with 5" initial parameter
settings to be considered. Each setting is used in the segmenter, resulting in 57
MS images per scene. After a run though the compare tool, the highest-scoring
settings are kept. A 3™ sampling around the best settings is performed, the new
settings are used with the segmenter, the highest scoring settings are kept, and so
on and so forth until the difference in performance is no higher than 5% between

6 2. THE AUTOMATED EVALUATION FRAMEWORK

iterations. At the end of the tuning, parameters should be optimal.

Although this method provides good results, it is very time consuming, and
it is not practical to tune more than 4 parameters with it, hence the importance
of choosing the most significant parameters. For instance, tuning 4 parameters
on 14 train images represents 5*z14 = 8750program executions for the first iter-
ation only. If the execution of the segmenter happens to take 15 minutes, total
execution time for the first step alone would span over 3 months! This is not
good.

2.3 Validation

Once the parameters have been tuned, the actual evaluation process takes place.
Parameters are tuned for each set train set (individual sets of train images).
In the end, we have m parameter settings (for each train set) and n validation
sets. The final validation result is mzn AUC performance results. Parameters
are tuned with an increasing number of dimensions. First only one parameter is
trained, then 2 together, then 3, etc. At the end of the parameter tuning for each
dimension, a test is made to see if the performance between the last 2 tunings is
significantly better. A statistical sign test is carried out, checking if performance
has a significance a = 0.05 in normal approximation of binomial distribution.
If the performance is not significantly better, the next dimension is not tuned,
otherwise, training is resumed adding a new dimension.

2.4 Test data

In this particular package, there are 2 separate data sets; A set of planar scenes
in ABW format and a set of curved surface scenes (containing planes, cylinders,
cones, spheres and torii) in Cyberware (CW) format. Both data sets comprise
40 range images, along with their ground truth specification. Within these 40
images, 14 are used for training, 13 for validation and another 13 for testing. For
each group, 10 sets are defined, each containing 6 of the images (a same image
can be in several groups).

2.4.1 ABW

All the planar data is in ABW format. These are 512 x 512 PGM (Portable
GrayMap) 8-bit (256 levels of gray) images. They are extracted using the ABW
structured light scanner (a depth acquisition technique using striped light pat-
terns). An example is shown in fig.1.1 Data is represented in a perspective view,
and Cartesian coordinates for each pixel of the range file can be extracted using
the calibration (filename.cal) file, which specifies the camera offset, scale, fo-
cus and correction. The data is characterized by the presence of shadows which

2.5. PACKAGE ORGANISATION 7

Figure 2.2: An example Cyberware image

are a side-effect of the scanning technique. Furthermore, the low color resolution
results in quantization noise.

24.2 CW

All the curved-surface data is in Cyberware format.These are 256 x 256 PGMs.
An example is shown in fig. 2.2. Data is represented in an orthographic view.
Cartesian coordinates are extracted from the echo (filename.eko) file, a com-
pressed binary version of the range image file; the filename.range file is not
actually used. As with ABW images, the low color resolution causes a noticeable
level of quantization noise.

2.5 Package organisation

The evaluation package (downloadable from http://marathon.csee.usf.edu/range/seg-
comp/SegComp.html) is a composed of several individual binaries. Each is briefly
described in this section.

Compare usage -g ground truth -m machine segmentation -t tolerance
-r result file name
This is the tool which performs the comparison operation described in 3.1 and

8 2. THE AUTOMATED EVALUATION FRAMEWORK

writes the five overlap measurements based on the defined tolerance to a file
result file name

Segtrain usage: segtrain -c configfile -d dimension

This is the tool which trains the parameters as described in 3.2. the configfile
is a text file containg information about the location of various binaries and
data, including the segmentation algorithm itself. the dimension option sets the
maximum number of parameters to be trained

Segtest usage: segtest -c configfile -d dimension

This is the tool which evaluates the segmentation algorithm once the parameters
have been changed, as described in 3.3. Dimension defines for which dimension
of trained parameters the segmentation algorithm should be evaluated.

Signtest usage: signtest -c configfile -d1 dimension -d2 dimension
This is the tool which measures the statistical sign test between training of 2 suc-
cessive parameter dimensions, as described in 3.3 -d1 is the first dimension and
-d2 the second.

Scrpt usage: scrpt -t traindirectory -c configfile -d dimension
This is the tool which successively runs training, sign testing and validation.
traindirectory is the directory where the aforementionned binaries binaries are
located.

Segmentation algorithm requirements Finally, to be properly evaluated,
the segmentation algorithm must take the following options:
segmenter -r rangeimage -p paramfile -m msimage

3. RangeSeg

This chapter introduces the RangeSeg application, Edinburgh Universitys range
data segmentation algorithm, developed as a part of the Imagine II project. In
order to understand the steps taken in evaluating RangeSeg, it is necessary to
explain the applications method of execution, parameters and main outputs.
RangeSeg is a state of the art range data segmenting algorithm which runs on Sun
stations as well as X. It is characterised by its interactive interface, which graph-
ically presents the segmentation at run time, as well as its precision, thanks to
a least squares curve-fitting algorithm using true Euclidean distance (as opposed
to an approximation).

In a first section, RangeSegs 3-step segmentation method is explained. A
second section describes RangeSegs modifiable parameters (which will be tuned
in the evaluaiton process). A third section describes the array graphical and
textual output/feedback provided by RangeSeg. Finally a fourth section covers
RangeSeg’s file input and output.

3.1 Segmentation method

In order to achieve accurate segmentation of range data, RangeSeg uses a 3-
step method, using both pre-processing and initial shape classifications. These 3
steps are described in this section. The properties that result from this method,
as outlined in[rbf] are also described.

The first step involves noise reduction in the range data using smart pre-
processing. Firstly, surface boundaries are determined; these are can either be
blade edges, defined as significant depth changes in the data (what is perceived
as the extremity of an object), or fold edges, defined as large variations between
the normals of two adjacent pixels (what is perceived as a fold or corner in the
object). Once surface edges are detected, diffusion smoothing is performed within
these set boundaries, hence stopping surfaces from bleeding into each other and
preserving the general shape of the object. In the second step of segmentation,
the principal curvatures k; and ko are extracted from the data, and from these
the relative H (mean) and K (Gaussian) curvatures are calculated for each pixel;
based on its H and K property, each pixel is then classified as belonging to a
specific shape class, as classified in fig. 3.1.

Inner and outer H thresholds are defined , effectively classifying each H as pla-
nar (under the inner threshold), curved (above the outer threshold) or unlabeled
(any value between the inner and outer threshold). Using proximity, patches are
defined by grouping labeled pixels of the same shape class. A morphology sched-
ule, a string composed of the characters + and —, is then applied, as a sequence
of dilations, + (labeled regions are expanded to unlabeled regions) and erosions ,

9

10 3. RANGESEG

Curvature Signs
K=k xky H=(k+ky)/2 Shape Class
0 0 plane
0 — negative cylindrical
0 + positive cylindrical
+ — negative elliptic
+ + positive elliptic
- any hyperbolic

Figure 3.1: Class shapes by H and K curvatures

— (small labeled regions are reverted to unlabeled regions). This has the effect of
filling small unlabelled gaps and removing small isolated labeled regions, which
are usually there due to noise. A final operation removes all regions which are
smaller than a certain size (again, usually spots of curvy noise).

The third step takes each of the previously defined pixel regions and expands

them as follows: if a pixel is 8-connected to the region (i.e. a region pixel is one
of the 8 pixels surrounding the original pixel, diagonals included), its Euclidean
distance from the surface being fitted is within an allowed deviation, and its
normal is in good enough agreement with the current fitted surface, it is added
to the region or slurped. Previously slurped pixels can be stolen from a region
if the new surface provides a better fit (in terms of normals and least squares
fitting).
For each region, a selection of primitive shapes (plane, sphere, cone, cylinder,
elliptic cylinder, or general quadric) is considered to fit the data. Since the
equations of most of these shapes (spheres, cylinders, etc.) are just a special form
of quadric, a penalty, the Aikaike metric, is put in place to avoid a systematic
fitting of general quadrics and favor primitive shapes. This number is subtracted
from the estimated fitting error of all shapes but the general quadric. Once
optimal parameters for each implicit surface equation are found through a least-
squares method, the region pixels are compared to each decision surface. The
surface equation yielding the lowest fitting residual (post Aikaike penalty) in the
least-squares fit is chosen. Finally, the region is contracted to best fit the shape.
Using the new surface equation as a basis, the region is grown again, and so on
and so forth...These iterations are called slurp refinements. The region growng
step is acted out for each region defined in the second segmetnation step. Once
all regions have been grown, the segmentation is completed and a final labeled
image is written.

RangeSegs particular segmentation method makes it particularly resistant to
noise, and by using Euclidean distance for least-squares fitting, it is very precise,
at the cost of greater calculation time. It was also shown[buyers guide|that the
use of Euclidean distance initiated greater robustness (can deal with a reduced

3.2. PARAMETERS 11

point density) and as a consequence also pose-invariant (segmentation does not
change in accuracy when data is moved in space), properties which did not apply
when distance approximations (such as the Taubin method) were used.

3.2 Parameters

In the previous section, RangeSegs operation was described. In this section, we
list what metrics used in this segmentation method can be tuned for best results;
these are of particular importance for evaluation . Each modifiable parameter
is listed, along with its default value and its general effect on the segmentation
process:

Sculptured: Determines whether the input scene has spline surfaces (default:
no)

Background threshold: Sets what depth values should be considered as infi-
nite background or not segmented (e.g. shadows). Typically these are the lowest
2 or 3 grayscale values of a scene (default 2)

Depth disc. threshold: The maximum amount (mm) which can vary between
2 pixels before a depth discontinuity edge is declared. If this value is set too small,
steep slopes will be considered as blade (or jump) edges, if it is set too large, real
depth discontinuity between separate surfaces might not be detected. (Default
5; should be adjusted according to image dimension)

Fold edge threshold: The maximum amount (degrees) adjacent surface nor-
mals can vary before a fold edge is declared. This value must not be too big (e.g.
a value of 90 means fold edges will only be detected when 2 adjacent surfaces
from a sharper angle than 90 degrees), but not too small, or noise will create
spurious fold edges everywhere. (Default 25; should be as low as can be afforded
without the interference of noise)

Number of smoothings: The number of smoothing iterations applied using
boundary-preserving diffusion smoothing. Too few smoothings leaves noisy, dif-
ficult to segment data, too many smoothings distorts the data shape, especially
if fold edge detection is disactivated (typical with noisy data). (Default 2)

Morphology schedule: The series of dilations and erosions made the initial
shape class regions of step 2, represented by a string of + and — (dilation and
erosion, respectively). This is used to remove falsely labeled noise pixels, and
expanding unlabelled pixels to labeled pixels. (Default + — ++)

12 3. RANGESEG

H curvature Threshold Hi/Lo: Any pixel with an absolute H value higher
than the Hi threshold is labeled as positive or negative, depending on the sign
of the curvature, any pixel below the Lo threshold is labeled as planar. Pixels
between Hi and Lo are declared to be unlabeled pixels. Typically, pixels will be
mislabeled due to image noise. This indirectly affects the minimum curvature a
surface can have before it is considered a plane (e.g. the maximum radius of a
sphere). Both values are set to the same value, and should be a factor of the
noise level in the scene (default 0.02)

Fitting residual tolerance: The maximum deviation (mm) allowed between
a pixel in the data and the surface which is trying to fit it (if the deviation is
higher than this value, the pixel will not be added to the fitted surface). Too
small a tolerance will only accept very close pixels, missing out much data if the
data is noisy. Too large a tolerance will allow too many pixels to be added to
the fitted surface. Again, this value should be a factor of noise level in the scene
(default 1.0)

Max norm. deviation: The maximum, in degrees, the normals from 2 adja-
cent pixels can deviate from each other and still be fitted to the same surface.
(Default: 90)

Eigenratio for plane: The ratio defined as distance of a pixel from plane/length
of plane. the smaller the value, the further away a pixel can be from the plane
and be fitted. (default: 250)

Max slurp refinements: Maximum number of times the fitted surface shape
parameters should be re-estimated when surface-fitting. As pixels are added, the
least squares fit will change. This means that the pixels satisfying the residual
test will change. Typically, after 2 refinements too few pixels are added to really
make a significant difference in the parameters resulting from a least-squares fit.
Since refinements are still as calculation-intensive regardless, it is more efficient
time-wise to stick to low values (default: 2)

Minimum region size: The minimum size, in pixels, a region must before it
can be considered for growing in the third step. If this is set too small, small
patches of noise will be considered as independent surfaces. If set too large,
regions identifying genuinely small surfaces will not be considered for growing.
This value should be set taking in account the morphology schedule, which will
previously grow and shrink the regions prior to the decison. (Default: 30)

Number of slurps: The number of times the whole surface fitting process is
used on the data. Typically, this is once. (Default: 1)

3.3. GRAPHICAL AND TEXTUAL OUTPUT 13

Aikaike: The level of penalty put in place to avoid the systematic fitting of
general quadrics to the data. Too low a value will not stop general quadrics from
being the best fit; too high a value will prevent the fitting of any general quadric.
(Default: 0.00025)

3.3 Graphical and textual output

As an interactive graphical application , one of the characteristics of RangeSeg is
the rich level of feedback which is sent the users way. This provides a significant
advantage when manually adjusting parameters, as the effect of most changes
can be seen in real time. Beyond the graphical interface, RangeSeg also provides
textual output, which is useful in estimating how well current data is being fitted.
This section covers what graphical and textual output is provided and how it can
be used to optimize parameters.

3.3.1 Graphical output

In order to assist the user in the tweaking of parameters, RangeSeg provides
a series of displays which show intermediate steps in segmentation graphically.
These are listed here, categorized by the 3 main steps they belong too.

Step 1 (boundary-preserving surface smoothing)

Non-background: shows which pixels in the scene are being considered in
the segmentation process (green). If this does not seem right, the background
threshold parameter must be adjusted.

Blade edges: shows the blade edges of the scene (green). If these do not
seem to correspond to the actual extremities of objects in the scene, the depth
discontinuity threshold must be adjusted.

Normals: shows a cosine-shaded version of the scenes surface normals. Brighter
means the surface points more towards user. This image can help give a good
idea of where fold edges in the scene should be.

Fold edges: shows the fold edges of the scene (blue). If these appear in more
places than they should, the fold edge threshold should be adjusted to a higher
level

Closed edges: shows the gaps in both blade and fold edges filled using a
morphology technique

14 3. RANGESEG

Smoothed depth: shows the resulting smoothed range data

curvature-based segmentation)

H + K values: images shaded by the values of the H and K curvatures, re-
spectively. In both cases, brightness represents a larger magnitude

H + K histogram: shows the histogram of all H and K values, respectively.
Here the H Hi and H Lo threshold bars are displayed.

H thresholds: shows the pre-morphed H value in terms of Hi and Lo thresh-
olds. If not all supposed planar data is displayed as yellow and not all supposed
curved data is displayed as red, H Hi and Lo thresholds should be adjusted.

K thresholds: shows the pre-morphed K value in terms of Hi and Lo thresh-
olds. If not all supposed planar or cylindrical data is displayed as yellow and not
all supposed u and v (e.g. sphere) curved data is displayed as red, H Hi and Lo
thresholds should be adjusted.

H + K morph: shows the result of applying the morphology schedule on
both H and K thresholds images, respectively. If the image is too eroded or too
much noise subsists, the morphology schedule should be modified. Shape classes:
shows the 6 different types of regions that were identified in the image based on
the respective H and K values of each pixel

Unique labels: divides the previously defined patches into the individual re-
gions, which will be grown in the region-growing step. Ideally, these should
provide an approximation to the final image segmentation; parameters should be
set so that at least one region should be present per surface. Too many regions
may mean the data is still too noisy (either more smoothing erosion or a higher
minimum region size should be applied).

Step 3. (Region-growing/ surface fitting)

Slurping: shows the region growing process; each pixel is assigned the color
of its final surface fit.

Slurped pixels: shows what pixels have been already successfully fitted to a
surface. For each pixel, red indicates a positive fitting residual, blue a negative
fitting residual. This can help determine if a shape fitted to the pixels is in fact
correct (e.g. a plane fitted to a curve and vice versa). The H Hi/Lo threshold
can be accordingly adjusted.

3.4. FILE INPUT AND OUTPUT 15

3.3.2 textual output

As well as providing a graphical display, RangeSeg also outputs useful informa-
tion to the terminal. This is the feedback provided with verbosity set to the
minimum. For each shape being fitted (ordered by size), each surface type is con-
sidered in the least squares fitting, yielding different sets of parameters. Other
information such as radii are shown for cyliders, elliptical cylinders and spheres.
The fitting residual for each likely surface is shown, before and after the Aikaike
penalty is removed. The chosen surface type with the smallest error will is even-
tually shown. the codes for each surface type are :

4-plane

5-cylinder

6-elliptical cylinder

7-sphere

11-general quadric

3.4 File input and output

This section briefly describes the type of range data RangeSeg accepts as input,
and what segmentation output files it produces.

3.4.1 Image input

RangeSeg takes HIPS images as range data input. A typical Hips header contains
image height and width, as well as color depth. Hips range data should addition-
ally include the projection type (orthographic, perspective), the range (max and
min) of x, y and z values, respectively. Camera location w.r.t. the origin, and
camera orientation (x- and z-axes). Here data is represented as floating point
values.

In its current implementation, RangeSeg only accepts range data using an
orthographic projection.

3.4.2 File output

Once the range data has been successfully segmented, RangeSeg generates the
following files:

filestem.labels: Hips file showing the original range data pixels labeled ac-
cording to what individual surface/segment they have been fit to. This is typical
labeled data output equivalent to most segmentation algorithms file.ms-seg
(machine segmentation)

16 3. RANGESEG

filestem.ms-nor: ASCII text file detailing the normal directions for each sur-
face/segment Each segment is described in the form: Surface/segment number,
normal x direction, normal y direction, normal z direction

filestem.ms-seg: Rasterfile containing pixel labels plus additional surface/segment
information.

filestem.rawsurfs: ASCII text file listing the parameters for the implicit equa-
tions of each individual surface fitted to the data.

filestem.seg: Hips file containing information about discontinuity in the data.

4. The adaptation process

Although the primary objective of this project is to extract meaningful perfor-
mance results from RangeSeg, most of the effort was in fact put into adapting
RangeSeg to the evaluation framework. In the two last chapters, both RangeSeg
and the University of South Florida evaluation framework were described. By
comparing various inputs and outputs of one and the other, it is soon obvious that
a minimum of adaptation is necessary. For a start, the evaluation package requires
that the segmentation algorithm be executed as segmenter -r rangeimage -p
paramfile -m msimage; these are not the options used by RangeSeg. Less triv-
ially, we know that the image format accepted by RangeSeg is HIPS; both sets
of test data are in PGM format. As we shall see the next section, the list does
not stop there.

The first section of this chapter lists the various incompatibilities that arose
in applying the evaluation package on RangeSeg, as well as other constraints and
limitations that applied due to the nature of RangeSeg and of this project. The
section after that covers the problem of adapting the data; a task, which we
shall see, is non-trivial. A third section describes the software that was written
in order to seamlessly interface RangeSeg to the evaluation package. Finally, a
fourth section is reports the process of choosing parameters for evaluation. This
covers which most significant parameters were chosen for training, as well as the
values chosen for the remaining parameters.

4.1 incompatibilities, constraints and limitations

As is common with standard evaluation tools, the University of South Florida
evaluation framework requires a set input and output format from the algorithm
to be evaluated. As a consequence, some adaptation was required in order to
successfully use the evaluation package. In this section we list what initial in-
compatibilities needed to be bridged, as well as what limitations prevented a
perfect evaluation of RangeSeg,.

As mentioned in the introduction to this report, the scope of this project has
been considering RangeSeg as a black box, this implies that incompatibilities are
not dealt with by altering the program, but by creating an interface between it
and the evaluation package. This in itself can be considered as constraint in evalu-
ating Rangeseg. The main incompatibility between RangeSeg and the evaluation
package lies in the difference in data formats. Whilst the evaluation package
provides data of type PGM, RangeSeg accepts images solely of type HIPS. Along
the same line, the evaluation package relies on the segmentation algorithm to
produce a PGM segmentation; RangeSeg outputs HIPS. Nevertheless, the data
incompatibility problem is deeper than a mere file-conversion issue; in the case

17

18 4. THE ADAPTATION PROCESS

of ABW scanned images, the topology of the data is different from RangeSegs.
ABW range data is stored in a perspective view, whereas the current implemen-
tation of RangeSeg only reads range data presented in an orthographic view (i.e.
x is the pixels x position, y the pixels y position and z the pixels intensity level).
The data therefore needs to be converted from a perspective to an orthographic
view, as well as being converted from one image type to another. Of course, once
processed, the orthographic ABW data must be converted back to perspective,
as well as being converted from HIPS to PGM. These data conversions and trans-
formations and the side-effects they incur on the data are covered in the following
chapter.

A second class of constraints arises when we consider training parameters for
RangeSeg. The first issue is that RangeSegs use of Euclidean geometry for bet-
ter precision (as mentioned in the previous chapter) makes it a particularly slow
algorithm. Segmentation of a scene on a SunBlade 100 Sparc machine can take
any time between 15 minutes and 1h30 hours depending on its complexity. This
execution time is approximately divided by 5 on a DICE Pentium 4 machine
(using Rangesegs X-windows implementation). This still means that an average
run of the algorithm takes in the neighborhood of 15 minutes to execute; as a
measure of comparison, a single execution of the University of Bern planar seg-
mentation algorithm takes a little less than a minute. Using the calculation from
chapter 2, section 2, it becomes obvious that we must limit the amount of trained
parameters in consequence. Since parameters had to be trained for both planar
and curved-surface scenes, we decided to limit the number of trained parameters
to 2 (an approximate total of 500 runs of RangeSeg per scene type). Despite this
choice, there is still scope for training more parameters for future evaluation, as
is covered in section 4. The second parameter issue is that not all of RangeSegs
parameters are numeric, or for that matter, linear. This is specifically the case
for the morphology schedule parameter, which is a string of + and —. A range
for the various combinations cannot be reliably specified: uniformly sampling 5
values between — — — — — (5 erosions) and + + 4 + + (5 dilations) is not really
possible. The only possible recourse could be to manually sort all the different
permutations of + and — by their qualitative effect on the data, and then to
create a table mapping each morphology schedule to number between 1 and 52,
which could be used as input for the training algorithm. Since this method is
still quite approximate, and the number of parameters that could be trained was
limited, we have decided not to cover this problem. Fortunately, the training
tool supports both integer and floating point types of parameter values, so all
the other parameters can potentially be trained in a more traditional manner.
The remaining incompatibilities, such as the required execution format of the seg-
menter, are quite trivial. This particular issue is covered in section 3, RangeSeg
interfacing programs

4.2. ADAPTING THE DATA 19

4.2 Adapting the data

In this section we present the general method to for converting HIPS to PGM
and back, then we look at the specific topological transformations that need to
be made for each kind of data conversion.

4.2.1 General PGM to HIPS cross-conversion

All the image transformations are from PGM to HIPS format, or from HIPS top
PGM. Here the format of both image types is described, as well as the simple
conversion operation.

PGM is very basic image type: the header has a simple format:

char * magic number (here: P5)
int rows int cols (number of rows, number of columns)
int depth (intensity depth)

The pixel values are then displayed as a series of unsigned bytes (as specified by
the P5 header - P2 denotes pixel values displayed as ASCII numbers) HIPS is a
more complex format, although it is not compressed. The header is organized as
follows (courtesy of Craigs Hips page [reference]):

originator of this sequence. here defaults to Array2D::init_header())
name of this sequence. here defaults to No Name)

number of frames in this sequence. here 1)

char * orig date date the sequence was originated)

int rows number of rows in each image)

char * orig name (
(
(
(
(

int cols (number of columns in each image)
(
(
(
(
(

char * seq_name
int num_frame

int bits_per_pixel (number of significant bits per pixel. here: 32)

int bit_packing Nonzero if bits were packed contiguously. here: 0)
int pixel_format format of each pixel, here defaults to empty string)
char * seq.history (sequence’s history of transformations here ABW2Hips)
char * seq-desc Descriptive information, ending with a single ’.%)

The descriptive information section is used for RangeSeg range data as:

20 4. THE ADAPTATION PROCESS

+COLORMAP range

CAMERA-INFO

char * projection type (here : orthographic)
x-range float min float max

y-range float min float max

z-range float min float max

location float x float y float z (here 0 0 0)

z-axis float x float y float z (here 0 0 -1)

x-axis float x float y float z (here 1 0 0)

The pixel values are then displayed as a series of floating point numbers.

To convert PGM to HIPS, we extract rows and cols from the PGM file. We then
write these to the HIPS header, as well as the date of image creation, and x, y
and z ranges. If the original PGM view/topology is orthographic, x and y ranges
are 0-512 and the Z range is the minimum and maximum pixel intensities. If
it perspective, x, y and z ranges are the maximum and minimum values of the
extracted Cartesain coordinates. The data is then cast from byte to float. To
convert HIPS to PGM, we extract rows and cols from the HIPS file, write these
to the PGM header, then cast the data from float (or short) to byte.

4.2.2 ABW conversion

ABW data is characterised by the fact that the data is organised in a perspective
view. To convert it to an orthographic representation, 2 steps must be taken:
Firstly, extracting the cartesian coordinates from the data

This is performed using the following equations| ABW-desc]:

z[i, j] = (y; — rows) * (range[z;, y;]/scal + of fset)/|fk|
?J[’L,J] = (COlS - fIJi)/C * (Tange[xiayj]/scal + OffS@t)/|fk|
2[i, j] = (cols — range[z;, y;])/scal

where range[xi,yj] are the pixels in the range (file.range) image and scal, f, c
and offset are the calibration metrics obtained from the calibration (file.cal)
file.

Secondly, mapping the data to an orthographic view.
Once we have a table containing the cartesian coordinates for each point, the
orthographic representation for each point is defined as :

hips[zij, yi;) = 2ij

,where hips|z, y] are the pixels in the resulting hips image.
Unfortunately, as the x and y values represent pixel postions here, they are re-

4.2. ADAPTING THE DATA 21

quired to be integer values, which they are not necessarily. An approximation of
an orthographic representation can be defined as:

hips[round(zi;), round(yi;)] = zj;

As the points are now represented with an error margin of 0.5, this adds a propor-
tional amount of noise in the scene; methods for dealing with this are discussed
in chapter 5.

Because of the change of projection, the sampled points are displayed in a
different manner, which creates 3 problems. The first is that holes appear in the
data, namely in areas of the scene which are further away (this is explained by
the fact that further objects are smaller in perspective and are described by less
pixels). Filling in the holes with surrounding pixels using 8-connectivity solves
this problem. A hole is filled with the mean value of pixels on either side of it
vertically, horizontally or diagonally. The process is repeated until all holes are
filled. It must be noted that this only works because the surfaces represented are
planar; if the surfaces were curved the interpolation would be wrong.

The second problem is the logical, opposite side effect: areas of the scene which
are nearer produce a condensation of pixels; pixels are written on top of each
other (this is explained by the fact that closer objects are larger in perspective
and hence more pixels are used to describe them). This is less of a serious problem
as most of these pixels are part of the same surface, so proper segmentation is not
affected, at the exception that a higher level of noise is created. This is solved
by creating a mean of the values of all the points that are written to a single
pixel. The third problem is more serious: with the change of view, some objects
are partially occluded by others. This happens when several pixels have similar
x and y coordinates, but are at a different depths in the scene. A case of this
is highlighted in fig. . Here the occluded pixels have no relation to the pixels
overwriting them (unlike the previous case), so information is definitely lost. This
particular case of occlusion can be separated from the previous case by using a
depth threshold; if the difference between both pixels is higher than a certain
value, it is definitely a case of an object hiding another, otherwise we consider
that the pixels are part of the same surface. The problem could be partially fixed
by rotating the scene slightly, but this would incur the occlusion of other pixels.
There would be ways of fixing this problem entirely, such as creating multiple
images taken from different angles and segmenting them separately, but since the
amount of data lost is not particularly significant, we have chosen to ignore this
problem.

These last three issues could have been avoided if we had modified the RangeSeg
program to extract Cartesian coordinates from the ABW directly. In this sense
this was the major drawback of using the black box paradigm.

On an aside note, the problems experienced here underline the general prop-
erties of perspective range data: the distribution of the sampled points is far

22 4. THE ADAPTATION PROCESS

from being uniform in Cartesian space. Surfaces further away will generally suf-
fer from being sampled less than close ones, and as a consequence will risk being
less accurately segmented.

4.2.3 Planar machine segmentation data conversion

Once the ABW-originating Hips file has been processed by RangeSeg, a resulting
machine-segmented file (filename.labels) will be created. We need to convert
it from HIPS back to PGM, but also from orthographic to its original perspective
view, so that the image can be compared to the ground truth image, which is
based on the original perspective ABW image. To do this, we use a similar
method to the one used in converting perspective to orthographic. The first step
is the same; using the original ABW image and caliber file, we extract Cartesian
coordinates for each pixel/point of the original range file as before. We then
perform the previously described rounding operation to figure out what pixel
that point is mapped to in an orthographic image. We can now map a pixel of
the perspective image to a pixel in an orthographic image, and vice versa. Using
this, we can write each label pixel of the orthographic segmented image to its
equivalent perspective pixel; we now have a perspective labeled image. Again,
the problem of multiple perspective pixels mapped to a single orthographic pixel
appears. The artifact circled in figure a appears. This can be partially solved
. by mapping an orthographic pixel to a single perspective pixel only, yielding the
result shown in figure b. Once we have the labeled perspective image, a further
modification must be made; the evaluation packages compare tool requires that
the first 10 intensity values be reserved for nonregion pixels. Therefore we leave
the 0 value (used for non-scene pixels by RangeSeg) as it is, and add +9 to each
label from 1 upward.

4.2.4 Cyberware conversion

Unlike ABW images, Cyberware (CW) images contain orthographic range data.
Despite this fact, converting them to HIPS was not a trivial deed. Whereas much
documentation was provided on extracting cartesian coordinates from ABW, none
was available for doing this with CW images. Finally, a ¢ module borrowed from
the baseline segmenter, cyfile.o,was used to obtain the coordinates; these are
extracted from the compressed echo (filename.eko) file. The depth values re-
turned were nevertheless a bit bizarre, and included negative values. These were
removed by shifting all the values past the z origin. By using a graphical debug-
ging system, it became apparent that the z values also needed to be multiplied
by 22, despite being quite arbitrary, seemed like the best value (fig).

12

4.3. RANGESEG INTERFACING PROGRAMMES 23

4.2.5 Curved surface machine segmentation data conver-
sion

Converting CW-originated machine-segmentation images is the simplest conver-
sion: the only requirement beyond the HIPS to PGM conversion was to add 9 to
all the label values, except for 0, as in the ABW case.

4.3 RangeSeg interfacing programmes

4.3.1 ABW planar data evaluation

ABW2Hips This is the program that converts ABW images to Hips, as de-
scribed in 4.2.1. As well as producing a HIPS file which can be used by RangeSeg,
it also produces a text file, filename.pixloss which describes the ratio of lost pix-
els, for hidden and ”recoverable” pixels respectively.

Usage : ABW2Hips [-hpfco] <filename.range>

The -p option forces ABW2Hips to convert the ABW to HIPS conversion with-
out converting to data to orthographic (i.e. keeping it in perspective).

The -f option defines how many hole-filling iterations are performed to fill the
gaps left by the perspective to orthographic conversion. -f 0 disactivates the hole-
filling. default is 2.

The -c option is used to define the path to the calibration file, if it is not in the
same location as the range image.

The -o option defines the path where the HIPS image is written to.

pseg This is the program which converts an ABW-originated machine-segmentation
filename.labels image to a PGM format filename .ms-seg image, as described

in 4.2.2 Since the segmentation results can be quite noisy, a noise reducing/ edge
smoothing algorithm can be used. This is fully described in Chapter 5.

Usage : pseg [-hfo] <filename.labels>

The -f option activates the edge-smoothing algorithm. Default is off.

The -o option defines the path where the ms-seg image is written.

nr Stands for not really RangeSeg. This program is the interface between Range-
Seg and the evaluation package for planar data. It acts as a segmentation algo-
rithm, accepting segmenter -r rangeimage -p paramfile -m msimage

as its input. Internally, it parses the parameter file, then successively runs
ABW2Hips on rangeimage, then runs RangeSeg (in text mode) with the specified
parameters and the Hips image generated by ABW2Hips, then runs pseg on the
resulting .labels file with its output sent to msimage. This pipelining is illustrated
in fig. 4.4.

24 4. THE ADAPTATION PROCESS

NR

ﬁlynge ParameIers filenamv

[ABW2Hips} RangeSeg] { pseg]

NSNS

filename.hip filename.labels

Figure 4.1: The nr interface (planar data)

4.3.2 Cyberware planar data evaluation

CW2Hips Thisisthe program that converts ABW images to Hips, as described
in 4.2.3.

Usage : CW2Hips [-heo] <filename.range>

The -e option is used to define the path to the echo file, if it is not in the same
location as the range image.

The -0 option defines the path where the HIPS image is written to.

CWpseg This is the program that converts an CW-originated machine-segmentation
filename.labels image to a PGM format filename .ms-seg image, as described

in 4.2.4. Unlike pseg, CWpseg does not incorporate the edge-smoothing algo-
rithm, which is more adapted to planar data.

Usage: CWpseg [-ho] <filename.labels>

The -o option defines the path where the ms-seg image is written to.

CWnr This program is the interface between RangeSeg and the evaluation
package for curved-surface data. It is analogous to the nr program.

4.4 Parameter selection

Once RangeSeg is set up to run seamlessly with the evaluation framework, the
next step is to select the right parameters for evaluation. A similar process
is described in [1], where each parameter was selected manually and the most
significant parameters were given 2 to 7 different values, so as to find the best
combination. Here our work is similar, except that the framework now provides
the automated training function. As mentioned already, for the purpose of time

4.4. PARAMETER SELECTION 25

efficiency, we will only train the 2 most significant parameters and manually select
values for the others. Here is a list of parameters listed by estimated greatest to
least significance (refer to chapter 3 for a detailed description of each parameter):

1. H-K Hi-Lo threshold

2. Minimum fitting residual

3. Morphology schedule

4. Number of smoothings

5. Minimum region size

Fold edge threshold

Depth discontinuity threshold

Number of slurp refinements

© 0 N o

Aikaike

In the next 2 subsections, we describe how the value for each parameter was
chosen, using the visual displays provided by the RangeSeg GUI.

4.4.1 Planar data segmentation

In [1], the following parameters were chosen for RangeSeg using the ABW data:
Most significant parameter ranges:

H-K inner threshold: [.011 .012 .013 .014 .015 .016 .017]
Minimum fitting residual: [1.5 2.0 2.5 3.0]

Morphology schedule: [+-+ +-++ +-++-]

Number of smoothings: [2 3]

Minimum region size: [20 25 30]

Least significant parameters:

Depth discontinuity threshold: 15
Fold edge threshold: 180

H-K inner threshold: infinity
Eigenratio for plane: 0

Slurp refinements: 3

In this evaluation, we decided to use a slightly different set of parameters. Firstly
here, it must be noted that RangeSeg was fixed in order to only fit planar surfaces.

26 4. THE ADAPTATION PROCESS

This was done by setting the HK inner threshold to infinity, classifying all H val-
ues as planar or undefined. Furthermore, setting the Eigenratio for plane fitting
to 0 effectively disactivated this parameter. Here, we decided to set both Hi and
Lo values to the same value, which is ultimately more organic. Furthermore, the
Eigenratio was left to its default value of 250. The morphology schedule was also
set to its default value +— ++ (region dilate, erode, dilate, dilate), which seemed
to be the most effective. Again this is an influential parameter, as it defines the
size of initial regions to be grown, and other schedules might have been better,
but due to its non-numerical, non-linear nature, this parameter was not trained.
Whilst in [1] the fold edge threshold is disactivated with a setting of 180 degrees,
by inspection of the displays it seemed that a value of 90 detected real fold edges
without picking up noise.

Despite the particularly noisy nature of the data (due to the original quantization
noise and the subsequent view transformation noise), a value of 2 was chosen for
the number of smoothings. The rationale behind this is the lack of fold edge
detection; since not all of these are identified with a value of 90, the edge bound-
aries are not properly detected, and a large amount of diffusion smoothing would
erode the data. This underlines a paradox in the method used by RangeSeg: if
the data is too noisy, fold edges cannot be reliably identified, hence using a large
amount of smoothing (initially used to remove this noise) ultimately blurs the
surface boundaries and erodes the data, so a low value is preferable. On the other
hand, a low value of smoothing does not effectively remove noise!

As in [1], the depth distance threshold was set to 15. The minimum region size
parameter was set to 50, as many small regions are created due to the noisy data.
Finally, the number of slurp refinements was set to 2 to speed up execution time.
The values trained were the H Hi-Lo threshold and fitting residual.

The range specified for H Hi-Lo was 0.001 0.04

The range specified for the fitting residual was: 0.6 2.5

4.4.2 Curved-surface data segmentation

The parameter values chosen for the curved-surface segmentation are similar to
the ones used in planar, with the exception that the data is considerably less
noisy, but also 4 times smaller. Also the curvature H Hi-Lo must be more pre-
cise, as we are dealing with both curved and non-curved surfaces. While running
tests on data to find the best parameters, a cylinder-fitting bug was detected,
wherein a cylinder is only fitted if its length is bigger than its width. In the
opposite case, a cylinder-like general quadric is fitted instead, causing a slightly
irregular shape being fitted. These are the values that were used for evaluation:

Depth discontinuity threshold: 15

4.4. PARAMETER SELECTION 27

Number of smoothings: 4

Morphology schedule: ”4-++"

Eigenratio for the plane: 250

Minimum region size: 50

Number of slurp refinements: 2

Again the parameters trained were the H Hi-Lo threshold and the fitting residual
The range specified for H Hi-Lo was: 0.0001 0.01

The range specified for the fitting residual was: 0.6 2.5

28

4. THE ADAPTATION PROCESS

5. Pre and post-processing

In this chapter we consider the effects of pre-processing and post-processing to
obtain a better evaluation result. 2 different goals are sought: The first, with
pre-processing, is to make the input data as noise-free as possible, maximizing
the chances of an accurate segmentation. The second, with post-processing, is
to remove obvious noise in the labeling of the segmented data, maximizing the
score yielded by the compare tool.

The first section describes a strategy to reduce the noise created by the per-
spective to orthographic transformation in the ABW data, before RangeSeg pro-
cesses it. The second section describes a noise removing/edge-smoothing algo-
rithm, which can be used to perfect the labeled data before comparison with
ground truth. The positive and negative effects of each technique are covered.

5.1 ABW preprocessing

Inherently, the ABW data, due to its limited color depth of 256 level of gray,
presents a certain level of quantization noise (maxz — minz)/256. When the
data is converted to an orthographic representation as described in chapter 4,
section 2 the rounding of the x and y values creates additional noise of variation
0.5. Although it was not used in this project, this section explains a method to
reduce this noise to a minimum.

Rather than round each extracted Cartesian point to an orthographic pixel
of coordinates x,y, a much more accurate way of converting the data would be to
start from the integer x, y pixel coordinates of the orthographic image, and sample
the perspective data at that point. An issue with this is that the perspective
data is not continuous, but itself a collection of discrete points. This is not so
much a problem as the fact that these points are not uniformly distributed in
Cartesian space. Applying the rules of sampling theory, we know that to sample
the perspective data accurately for each orthographic pixel (x, y), we need to
convolute the perspective points around the orthographic point (x, y) using a
pulse function. In practice, this would be used as illustrated in fig 5.1 The
orthographic point would be an average of the values of the perspective points,
weighted by their level of intersection with the cone function (much easier to wield
than a pulse function). This works well in areas where there are many points in
the perspective data (the closer points), but badly in areas where the points are
sparse (the points further away). To solve this, a threshold should be set where if
only a minimal value of weighted point value is sampled, the orthographic pixel
should be written as a hole in the data. The holes in the data (typically in the
further away regions) could then be filled in using the 8-connectivity hole-filling
technique described in chapter 4, section 2.

29

30 5. PRE AND POST-PROCESSING

Xi

[1

Orth pixel sample

X

Figure 5.1: Sampling an orthographic pixel from non-uniform perspective data

Although this technique would reduce noise considerably, we chose not to use
it, as the ABW image segmentation is already biased by the fact that data must
be converted from perspective to orthographic; since the data is transformed,
the segmentation performance can only be taken as a approximate result. Fur-
thermore, the added noise provides a good test for measuring the robustness of
RangeSeg.

5.2 ABW post-processing

A segmentation image, be it machine segmentation or ground truth, has a char-
acteristic property: it is organized as patches of similarly colored regions; each
pixel fitted to a surface will be colored with the surface label. In practice, segmen-
tation of noisy data produces noisy segmentation: boundaries between 2 regions
will be rough and occasionally small (less than 30 pixels big) regions spurious
may be created. Ultimately, this noise can go against a good performance when
the machine segmentation is compared to the ideal ground truth specification.
This section presents a post-processing algorithm, which eliminates such noise
without eroding the data. If such an algorithm invariably creates better results
in evaluation, it can be considered as a useful addition to any segmentation algo-
rithm. A simple noise-reducing algorithm would be to evaluate, for each pixel if
it is sufficiently surrounded by pixels of an identical color. If it is, then this pixels
color is changed to this surrounding color. Thisworks well to a certain extent, but
can result in a deadlock in certain situationﬁ This problem is fixed by using
the concept of dominant label. A first pass e algorithm counts the amount
of instances where a pixel of color A is surrounded by a pixel of color B. this is
repeated for each pixel in the scene. At the end of this, we have a N x N table
where N is the total amount of labels. For each label, the number of instance
where it is surrounded by another label is counted. For 2 adjacent labels, the
dominant label is the one that surrounds the other more than it is surrounded.
The aforementioned noise-reducing algorithm is then used so: evaluate, for each

5.2. ABW POST-PROCESSING 31

pixel, if it is sufficiently surrounded by pixels of an identical color. If it is, and the
surrounding color dominates the pixel color, the pixels color is changed to this
surrounding color, otherwise, it is unchanged. This strategy avoids deadlocks,
and stops spurious regions from growing (these regions are always dominated by
the surrounding regions) A problem occurs with corners: these are surrounded
but should not be re-colored. A fix to this is based on the observation that the
region around the corner is often larger than the corner region. Based on this
observation, we can give an advantage to smaller regions, which save corners,
but not noise patches. This algorithm is quite effective, but we have chosen not
to use it for the training process, Indeed, a noisy segmentation (using a low fit-
ting residual) looks like a non-noisy (using a higher fitting residual) one once the
algorithm is used. The training algorithm will not see the difference and as a
consequence will keep the low fitting residual.

32

5. PRE AND POST-PROCESSING

6. Evaluation results and
discussion

Although most of the effort dedicated to this project was put into interfacing
Rangeseg and the evaluation framework, the most important aspect is the out-
come of the evaluation. This chapter presents these results in a first section, then
places them in context by comparing them to previous RangeSeg results as well
as results from other segmentation algorithms.

6.1 Results

Two separate evaluations were performed, one on the planar data and the other
on the curved surface data.

6.1.1 ABW planar scenes

The ABW data, despite its various degrees of noisiness and data loss, did quite
well. The final trained parameters were 0.014 for the H Hi-lo threshold and 1.25
for the fitting residual. the final results for each validation set was (out of 100):

validation set 0 : 74.68
validation set 1 : 66.52
validation set 2 : 75.74
validation set 3 : 76.08
validation set 4 : 75.7147
validation set 5 : 74.4322
validation set 6 : 76.1195
validation set 7 : 80.8344
validation set 8 : 69.0096
validation set 9 : 66.9448

yielding an overall score of 73.602
This relatively high score despite the large quantity of error in the data confirms
that RangeSeg is very robust. Further levels of performance was achieved when
applying the noise-reducing algorithm on the segmented data:

validation set 0 : 75.2563
validation set 1 : 67.3428
validation set 2 : 75.7393
validation set 3 : 76.2401

33

34 6. EVALUATION RESULTS AND DISCUSSION

validation set 4 : 76.9828
validation set 5 : 75.6755
validation set 6 : 77.6755
validation set 7 : 81.5668
validation set 8 : 69.8280
validation set 9 : 67.5527

,
yiedling an overall score of 74.381 ¢ & v

As we can see, performance goes up by approximately 0.8 points when the post-
processing algorithm is used. The individualmachine segmentation images can be

found at amd/partition/u41/s9904184-temp-expansion/RangesegProject/results

6.1.2 CW curved-surface scenes

Performance of curved-surface scene segmentation was surprisingly quite low.
Several factors are present:

a) he data itself was approximate (an arbitrary number, 17, was used to multiply
the z values)

b) Rangeseg does not fit torii, yielding unusually high over-segmentation metrics
c)Rangeseg produces a bug in the segmented output, where the rim of the data
is not labelled. This adds to degrading comparison performance.

Surprisingly, whilst spheres and cylinders were fitted with low levels of error, no
cones were succesfully mapped to the range data, even when the cone-shaped
nature of the data was quite explicit.

A further, and in fact simple, explanation to the poor results is that the data itself

a) is too complex (many real-life objects are used)

b) has unrealistically specified ground truth; the walls in the background do not
always consist of a single plane, as we are laed to believe. Even very high fitting
residual settings do not manage to segment some walls as a single plane.

The final trained parameters were 0.004 for the H Hi-lo threshold and 2 for the
fitting residual. These are the scores for the various validation sets:

validation set 0: 42.9955
validation set 1: 49.1331
validation set 2: 42.2055
validation set 3: 43.9903
validation set 4: 39.7955
validation set 5: 42.3850
validation set 6: 39.7547
validation set 7: 47.8277

6.2. COMPARISON 35

validation set 8: 44.1752
validation set 9: 37.6568

The average score was 42, 91

6.2 Comparison

In this section, we compare our current performance results to those of the base-
line University of Bern (UB) segmenter, and also to previous results obtained by
rangseg on the ABW data

6.2.1 Baseline algorithms

The UB ”baseline” segmenters (they are, along with RangeSeg, the most effective
segmenters around) yield the following results on Planar and curved-surface data:
UB planar data algorithm

validation set 0: 79.9708
validation set 1: 76.5129
validation set 2: 81.7753
validation set 3: 80.5969
validation set 4: 79.2726
validation set 5: 82.7415
validation set 6: 81.5183
validation set 7: 82.4716
validation set 8: 78.0811
validation set 9: 80.8150

overall score 80, 3
UB planar curved data algorithm

validation set 0: 50.2382
validation set 1;: 52.6223
validation set 2: 67.6987

36 6. EVALUATION RESULTS AND DISCUSSION

validation set 3: 46.6517
validation set 4: 40.9566
validation set 5: 52.0409
validation set 6: 55.5572
validation set 7: 58.7663
validation set 8: 44.9967
validation set 9: 52.5342

overall score 52,2

As we can see, both of these yield better performances. Whereas the Curved-
surface algorithm beats RangeSeg by a solid 10 points, it still is far from per-
forming at the same level as its Planar counterpart. This further confirms that
the Cyberware data is simply too complex and at times unrealistically specified.
Interestingly, both Rangeseg and UBC received similar scores (around 44) for
validation set 8.

RangeSegs Planar data segmentation is beaten by only 6 points, which further
underlines RangeSegs robust performance on the ”deteriorated” ABW images.
Whether this is due to Rangesegs new Euclidean fitting can only be found out
by running the ABW data intact and comparing results to RangeSegs last run
on that data.

6.2.2 Rangeseg PAMI 96 results

In [1] a different system for measurement, taking in account all 5 fitting criteria
was used, neverthelss, we know that RangeSeg performed slightly better than the
UB Planar algorithm, which has not been changed, so one can imagine that this
score was anywhere between 80 and 85. As described in chapter 4, the parameters
used, had "fixed” Rangeseg to only accept planar data. Perhaps using such a
strategy this time round would have collected a couple more points...

7. Conclusion

Several conclusions can be made for this project: firstly on RangeSegs perfor-
mance: During the adaptation process, both planar and curved-surface data lost
a certain level of information (be it because of erosion, in the case of the ABW
data, or distortion, in the case of the CW data). Therefore, the results cannot
be truly compared with other performances on the intact data. Nevertheless, we
can still observe some trends in RangeSegs surface-fitting. We already know that
RangeSeg performed well on the ”intact” ABW data in [1], it is interesting to see
that Rangeseg also performs well on a seriously noisier version of the same data.
For many reasons, namely the combined complexity and small resolution of the
data, RangeSeg performed quite poorly on the curved data. Still, some trends in
RangeSegs behaviour were identified, such as a cylinder-fitting bug (cylinders are
only fit if their length is greater than their width), a general reticence in fitting
cones, and the lack of torii in the surface -fitting. These are all problems that
can be worked on in future implementations of Rangeseg.

We can also discuss the usefulness of post-processing the labelled segmentation
data; As we saw, using such an algorithm improves the measured performance;
should such techniques generally be added to range data segmentation algo-
rithms? If this kind of hole-filling and smoothing of edges can make a labelling
of data more accurate, can it useful for specific applications? Although it has
no impact on potential applications such as extracting models from the range
data (the only important output here is the surface equations), its main selling
point is that is makes the labelled data look more coherent to the user. Finally,
although it improves performance in evaluation, this sort of algorithm can only
serve to hide the true effectiveness of a segmentation algorithm, so ultimately, its
usefulness is limited.

Future work on this project might involve performing actual modifications
on RangeSeg so that it could read point coordinates from various types of data
directly without the damaging side-effects of image conversion. A suitable system
would be to implement a plugin system, where a module can be written for each
type of range data. Each module would deal with the specifics extracting the
correct Cartesian coordinates, as well as provide some other information such as
the intial projection type, data maximum and minimum, etc. Plugins specifiying
different types of range data could be written then seamlessly added.This System
would counter the currently quite rigid HIPS-only image input in Rangeseg.
Further work would also involve responding to the problems which were identified
with Rangeseg segmentation; cone and cylinder fitting would have to be tweaked,
and torii fitting using least-squares implemented. Could maybe also be worked
on is the inital boundary-preserving smoothing technique, whose effectiveness on
removing noise from the data without eroding it is paradoxically a factor of the

37

38 7. CONCLUSION

existing noise level.

As far as further evaluation is concerned, more parameters could be trained
simultaneously if time was not an issue. With the advent of RangeSegs new X-
windows implementation, much faster machines can be used, so there is scope for
simultaneously training 4 or even 5 parameters at once. A suitable solution for
training the morphology schedule, an important parameter could also be figured
out. Training a large number parameters at once can be interesting as it may
yield some unintuitive yet powerful combinations.

Another area that can be explored is evaluating RangeSeg with other types
of test data, such as K2T and Perceptron, which have been much more widely
tested on other segmentation algorithms. (It seems the Cyberware data set is
less popular due to its complexity and unrealistic ground truth specifications)

Bibliography

[1] An experimental comparison of range image segmentation algorithms, 1996.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 18(7).

[2] K. Bowyer J. Min, M. Powell. Automated performance evaluation of range
image segmentation, 2000.

[3] R. Fisher P. Faber. A buyer’s guide to euclidean elliptical cylindrical and con-
ical surface fitting, 2001. Proc. British Machine Vision Conference BMVC01
,pp 521-530.

[4] M. Powell. Comparing curved-surface range image segmenters, 1997.

39

Em

r-

= |

===

C

J

-

m——

