University of Edinburgh
Division of Informatics

Fast Colour Based Hierarchical Image Region
Segmentation

4th Year Project Report
Artificial Intelligence and Mathematics

Jonathan Betts

May 26, 2004

Abstract: This paper presents a fast colour based image segmentation
technique based on recursive application of a modified version of the K-Means
clustering approach. The algorithm works on multiple scales to produce a hier-
archical representation and reduce computational demands. Several adaptations
to the traditional K-Means algorithm are presented to extend it to the segmenta-
tion of multichannel images and to enhance performance at the cost of accuracy.
The effects of these extensions and overall performance are considered in terms
of speed, subjective performance and correlation to hand segmented images.

Acknowledgements

Bob Fisher for is guidance and patience.
Penny, Sally and Dave for their perseverance.

And as always Tor.

—E————e—— T

Contents

1 Introduction 1
1.1 Dissertation Qutline« ... 1
1.2 Applications 1
1.3 The Segmentation Problem 2

1.3.1 Complications 3

2 Current Techniques 5

2.1 Flat Methods e 5
2.1.1 Edge Detection 5
2.1.2 Region Growingo 7
213 Clustering« « . . v o e e e e 9

2.2 Hierarchical Methods o 10
2.2.1 Splitand Mergeo 11
222 GraphBased ¢ inee s 12

2.3 Pre/Post processingo e s oo 13
2.31 CommonPFilters. it 13
2.32 Convolution5 s arm awsmwen &onm 15
2.3.3 Edge Preserving Blurs 15
2.3.4 Mathematical Morphologies 17

3 Flat Methods 19

3.1 Region Growing 19
3.1.1 Random / Modulo Arithmetic Seeding 21
3.1.2 The Homogeneity Criterion and Distance Measures 22
3.1.3 Symmetric Nearest Neighbour (SNN) 23

3.2 K-MEANSs . . . v o v v e e e e e e e e e e e e 26
3.2.1 Distance Measures« oo oo e e 30
3.2.2 Random / Spaced / Region Growing Seeding 31
3.2.3 The Effect of Iteration 33
324 IDPFilteringo 35
3.2.5 spatial / Non spatial Colour Merging 37

3.3 BEvaluation e e 41
3331 Speed e 41
3.3.2 Comparison with Hand Segmentations 47
3.3.3 Subjective Comparison 52

T ————

4 Hierarchical Methods

4.1 Graph Based Hierarchical Segmenter

4.2 Recursive Application Two Phase IK-Means Hierarchical Segmenter

4.3 Evaluation
4.3.1 Speed
4.3.2 Subjective Comp

5 Conclusion

A General Appendix

arison

A.1 Proof of Modulo Arithmetic Traversal
A.2 Results of the Flat Methods Speed Tests

A.3 Results of Speed Test of
A.4 5 Hand Segmentations

Varying k

A5 Results of the WSCM Tests
A.6 Results of the Hierarchical Speed Tests

B Code Appendix
B1 KMeans
B.2 TwoPhaseKMeans . .

B.3 HierarchicalTwoPhaseKMeans 20 o an o R L5

B.4 RegionGrower
B.5 AveragingRegionGrower

Bibliography

59
39
62
64
64
65

71

73
73
74
75
79
78
80

81
81
87
88
91
93

95

T —————

1. Introduction

1.1 Dissertation Outline

Two flat segmentation techniques have been developed in this project: The Two
Phase K-Means segmenter (Section 3.2) based upon the K-Means procedure
and the Region Grower (Section 3.1). Subjective results of the processes can
be observed in Section 3.3.3 which illustrate the impressive object centric seg-
mentations that can be produced with suitable settings.

Limiting factors of the K-Means approach such as the output of a fixed k segments
has been addressed though the joint application of Spatial and Non-Spatial Merg-
ing to provide more connected and representative regions (see Section 3.2.5).

Additionally filtering methods appropriate to each methods are presented to help
each cope with noise. Symmetric Nearest Neighbour (Section 3.1.3) for Region
Growing and ID Filtering (Section 3.2.4) for K-Means.

Both techniques require seeds to initialise parts of the algorithm. In both cases
seeding schemes have been developed to increase the quality of the segmenta-
tions produced. In the Region Growing technique an image traversal based on
modulo arithmetic is presented to avoid generate and test solutions and reduce
runtime(Section 3.1.1). In the case of K-Means a technique was developed to
improve the spacing of the seeds produced and so improve the quality of the
segmentation (Section 3.2.2).

Both of these techniques were then extended to deal with the hierarchical seg-
mentation problem. The Hierarchical Two Phase K-Means (Section 4.2) was
developed to tackle the problem of generating hierarchies based on features at
different scales and the Graph Based segmenter (Section 4.1) was developed to
generate hierarchies based on the containment of regions by others.

Evaluations of the speed and quality of all of these methods can be observed in
the relevant sections.

1.2 Applications

Region segmentation as a representation of an image is of great interest in a
number of fields due to the object centric nature and compactness of the rep-
resentation. Recently hierarchical segmentation methods have been applied to
video compression techniques [6], often based on arranging information about

1

[N}

1. INTRODUCTION

the image at different levels of abstraction in a tree structure [4], with higher
levels of abstraction close to the root. These methods are primarily concerned
with achieving maximum fidelity at the lowest possible bit rates, harnessing the
structural information produced by segmentation.

Segmentation techniques, the most basic being thresholding, are frequently used
in all manner of visual systems and often play the role of low to mid level process-
ing. Segmentation of an object from background, non-object areas of an image,
is used extensively in automatic video surveillance and object tracking systems,
with application in both robotics and security. Mobile robotic systems in par-
ticular are often concerned with object identification, with a view to navigation
and avoidance [5]. In this context it is imperative that the object extraction is
performed at a rate that is comparable to the speed of the world to facilitate
sensible reaction times.

Visual attention models attempt to explain the shifting of attention of the rela-
tively small but sensitive fovea area in the eye to extract important information
from a larger image. Many models have been proposed that are concerned with
movement between feature points in the image, often corners or other single points
that meet some criterion. More recently it has been proposed that visual atten-
tion is more preoccupied with areas, or segments of interest, rather than points;
in particular moving from areas to sub areas at multiple scales. Hierarchical seg-
mentation, particularly at high speed, is therefore a necessary prerequisite to a
complete vision system.

Since the advent of satellite imagery intense interest has arisen in the segmenta-
tion procedure as the first stage in automatic object detection. Many scientific,
military and political applications exist in satellite image recognition from iden-
tifying military vehicles and troops to analysing river swell and crop sizes.

Another area of enormous interest is that of automatic processing of medical
imaging data to produce an interactive and intuitive representation, to facilitate
the physicians understanding of a possibly large data set. A crucial first step to
this process is the classification of regions of interest. Other medical applications
include cell counting on slides, atlas construction and disease diagnosis.

1.3 The Segmentation Problem

The classic segmentation problem is, given a source image I and homogeneity
criterion H where;

true, if R is Homogenenous
false, otherwise

H(R) = {

S RS

1.3. THE SEGMENTATION PROBLEM 3

Find a segmentation S of the image into connected regions Ro... R, such that:
1. H(R;),VYi
2. RONR; =0,Vi#]

3. H(R;UR;)Nadj(R;,R;) — 1=
4 O(r)=1
Stating that each region must be homogeneous(1), all regions are distinct(2), no

two adjacent regions should form one larger homogeneous region(3) and that the
segmentation should cover the entire image(4).

Another possible formulation of the segmentation problem is to state that a
segmentation should divide the image into regions of interest. Working from a
human centric view, as is inherent in the formulation of the colour spaces and
image file formats, we would wish our segmentation to approach the areas that
a human might highlight as important or distinct.

1.3.1 Complications

There are a great deal of complications associated with this simple outline of the
problem which contribute to the difficulty of the segmentation problem.

e Semantic

What is a homogeneous region? Is it specified by local image level data
such as pixel intensity, or is it defined by higher level statistical data such
as texture? Often one would wish the segmentation to be comprised of
regions which include objects, whereby the homogeneity criteria is defined
as some measure of an areas correlation to a particular object; requiring
knowledge outside that contained simply within the image.

¢ Human Centric

Humans recognise regions which are not necessarily connected; a dense
pattern of dots for example. So should these be considered a single region
or should the classic description be adhered to?

e Uniqueness

This formulation of the problem makes no claims about the uniqueness
of a particular solution. So are all segmentations according to the same
homogeneity criterion equally valid? For that matter how can the quality
of a particular segmentation be quantitatively assessed at all?

R NIC) Vsl 3]

INTRODUCTION

1.

2. Current Techniques

2.1 Flat Methods

There are a wide variety of algorithms concerned with the flat segmentation prob-
lem. In this context flat implies that while the implementation of an algorithm
may rely on recursion or tree based methods its output is a single flat segmen-
tation which uniquely attributes each pixel to a segment without any concept of
hierarchy or connectedness (although many attempt to respect this).

Broadly all segmentation techniques fall into several categories [3]:
e Edge Detection

e Region Growing

Clustering
e Split and Merge
Note: Split and Merge is covered in 2.2 Hierarchical Methods.

2.1.1 Edge Detection

Edges in an image are areas of high discontinuity in the frequency domain. The
interest in finding these edges for the application of segmentation is that they
often lie along the boundaries of regions. The basic approach of an edge detecting
segmenter is to identify the edges using a suitable preprocessing step and then to
link these edges so as to form region boundaries.

An example of the edge detection process can be seen in Figure 2.1 where
an example image edges are detected and thresholded in an attempt to isolate

Figure 2.1: An image of a helicopter (left) with edge detection applied (centre)
and thresholded (right).

6 2. CURRENT TECHNIQUES

—
—_
(b)

(a)

(©

Figure 2.2: Zero crossings, here we see an edge in intensity values of the image
(a), the gradient of these values (b) and the second derivative (c) showing a zero
at the edge location.

sufficiently strong edges.
Zero Crossings

Many edge detectors work on the basis of finding zero crossings in the second
derivative of the intensity values of the image. Figure 2.2 (a) shows a large
change in the intensity values in the source image, which the process is attempting
to classify as an edge. The one dimensional derivative of the intensity values can
be seen in (b) where the peak indicates the location of the edge. In the second
derivative (c) this is indicated by the zero crossing point.

The Laplacian and Laplacian of Gaussians

Theoretically this can be implemented as the Laplacian of the image. The Lapla-
cian L(z,y) of an image of intensity I(z,y) is given by:

O 192
L = — —_—
The Laplacian

As the Laplacian is often strongly effected by noise, it is common to apply a
Gaussian filter first. As these effects can both be approximated using convolu-
tions, which are additive, it is also common to compose a kernel which performs
both Gaussian filtering and the Laplacian operator in one pass. This approach is
known as the Laplacian of Gaussians. Such kernels are an approximation to the
equation:

ot 202

2 2 22052
LoG(z,y) = — ! [1_1: +y]e =t

The Laplacian of Gaussians with a standard deviation of o.

Whilst very accurate, the Laplacian of Gaussians approach only yields an ap-
proximation to the second derivative which must be further processed to give the
location of the zero crossings as opposed to zero regions where no edges occur.

~I

2.1. FLAT METHODS

-1 0] +1 +1)42 +1
210 |+2 o010
-110 | +1 120 -1

Figure 2.3: The Sobel G (left) and Gy (right) edge detecting kernels (7).

Convolution based approaches

In practice edge detection is often implemented as two linear convolution filters
which approximate the spatial gradient in orthogonal directions. If these convo-
lutions are G, and G, then the magnitude of the gradient at a point can be calcu-
lated as |G| = /G2 + G2. Which is commonly approximated to |G| = |G| +[Gy|
to increase speed and thresholded to remove weak edges. The common Sobel edge
detection kernels for G, and G, can be seen in Figure 2.3.

Edge based approaches problems

Unfortunately edges frequently occur in the interior of regions due to texture
and noise and additional processing is required to attempt to reconstruct the
regions from the edges without including these false edges. One approach to this
is hysteresis tracking (1], whereby weak edges are only permitted to contribute
to real edges if they are adjacent to high magnitude edges.

Due to the prolific nature of edges in images, and the addition processing require-
ments to take an edge detected image to regions, pure edge detection methods
have not been applied in this project.

2.1.2 Region Growing

Region growing is a local approach to segmentation whereby regions are initialised
from seed pixels and connected pixels are considered for inclusion in to each
region. If the region that would be formed by adding the new pixels passes the
homogeneity criterion then it is added to the region and the region spreads from
that pixel to all surrounding pixels recursively. Although region spreading can
be implemented in a recursive manner it is still a flat segmentation technique as
its output is a single assignment for each pixel.

The typical random seed segmenter will choose an arbitrary non assigned pixel
and spread from it until no further spreading occurs, at which point the segment
is finished and the process continues until all pixels are covered. Figure 2.4 (left)
shows a seed pixel located within a region spreading to its connected neighbours

o

2. CURRENT TECHNIQUES

Figure 2.4: A growing region from a seed pixel (left) spreading (centre) and
ceasing to grow at discontinuities (right).

Figure 2.5: A centre pixel with 4 connectedness to the surrounding pixels (left)
and 8 connectedness (right).

(centre) and finally some of the second generation pixels failing to spread any
further (right).

Although it is possible to formulate other topologies, most spreaders work on
either 4 or 8 connectedness (see Figure 2.5) to the surrounding pixels. The
main effect of different levels of connectedness is whether a chequerboard pattern
is considered connected and a twofold increase in run time (as twice as many pixel
are checked at each step). In region growing a number of redundant checks are
made when pixels already attributed to a region are marked for spreading by other
neighbouring pixels from different directions. For this reason 4 connectedness is
often chosen as a balance between speed and accuracy as less redundant checks
are performed.

Benefits of Region Growing

As region growing is a local approach, fast implementations can be realised
and the process is well suited to parallel computation. Its simplistic nature
makes region growing procedures easily adaptable to new approaches, such as re-
segmenting arbitrarily shaped regions, unlike the Quadtree structure which will
discussed later. Region growing facilitates intuitive human computer interactive
segmentation, where the human selects the centre of a region, essentially the seed
pixel, and the computer performs the segmentation.

Limitations of Region Growing

2.1. FLAT METHODS 9

Region growing is sensitive to the choice of seed pixel; an initial choice of pixel
which lies on an edge, for example, would lead to a false classification of a thin
region between genuine areas of the image. If a seed pixel is unduly affected
by noise then it may not spread at all causing a small false region. This can
be counteracted by a post processing step of assigning regions under a certain
size to their most similar neighbouring region or by an adaption of the close
morphological operator.

Pixels are biased toward regions created first over those which follow, as they
become irreversibly claimed. For example if two neighbouring regions have similar
colours, yet their union still fails the homogeneity criterion, then there may be
boundary pixels between the two which are sufficiently similar to both regions
to be included in either. In the case of a serial spreading algorithm, whichever
region is generated first will claim the similar pixel region, rather than a more
intelligent approach which might assign the pixels to the regions they most closely
resemble. One way to combat this effect is to grow all regions simultaneously;
this can be achieved with a fixed number of seed pixels which spread and merge
as they meet other suitably homogeneous regions. Assuming the starting number

of seed pixels is suitably large, the image will not be under segmented.

2.1.3 Clustering

Clustering is a general method for grouping arbitrary data in some space, into like
regions based on a distance measure. This has been applied to the segmentation
problem of grouping pixels in colour space, Euclidean space, or & combination of
the two.

K-Means Procedure

The K-Means procedure assumes a predefined k regions in which the data is to
be grouped. Each of these regions are seeded with initial values for the means
me...my. Bach of the data points are then attributed to the region with the mean
that it most closely resembles. The means are then updated to reflect the change
in the contents of the regions. The procedure is repeated until the means either
do not change, change is below some predefined threshold or some predefined
termination condition is reached.

Although other measures may be used, the most common measure of distance

between two points z,y € R", is the Euclidean distance:

n

dp(z,y) = |2 (3 — v)°

i=0

The Euclidean distance between two points in n dimensional space.

——— =

———

10 2. CURRENT TECHNIQUES

The effect of this procedure is to create approximations to the centres of & regions,
which it is hoped correspond to & underlying regions in the data. Over time these
approximations move to better approximate the true centres.

Applying K-Means to Colour Segmentation

K-Means can be used to segment the image purely in colour space, whereby all red
pixels might compose one region regardless of connectedness. Another possibility
is to cluster the points in a higher dimensional space composed of the two spatial
dimensions of the image along with a number of colour dimensions. For this
application is it necessary to scale each dimension so as to give proportional
representation. For example if the © component ranges from 0 to 1024 and each
colour component between 0.0 and 1.0, the colour of pixels will be all but ignored.
One further possibility is to segment the image twice, once in colour space and
again in Euclidean space.

Limitations of the K-Means Procedure

The initial choice of means is crucial, as some may swallow a disproportionate per-
centage of the space by fortuitous placement, while others may attract no points
whatsoever. Optimality of the eventual partitioning of the space is therefore not
guaranteed. A common approach is to randomly allocate the means.

Often one would wish to discover the number of regions in an image rather than
specify them, as a guess to the number of regions in a completely unseen data
set is unlikely to be accurate. To combat this we can ask for a small number of
regions and regard these as the major regions and then re-segment them until
some criteria is satisfied.

2.2 Hierarchical Methods

Hierarchical methods in this context are those which provide a multi layered or
structured output whereby each pixel may belong to one or more regions at dif-
ferent levels of abstraction. These processes provide a mechanism for analysis of
the source data at either different resolutions or conceptual levels of abstraction.

For some techniques (Quadtree) the main thrust behind the technique is to gain
a speed advantage by processing larger portions of the image in one go at higher
levels. Others (Binary Space Partition Trees) seek to gain a compact representa-
tion of the source image more suited to compression.

TP TR T IR

2.2. HIERARCHICAL METHODS 11

B ELLH [

(a) (b) () (d)

Figure 2.6: The quadtree process upon an original image (a), the divisions after
the splitting phase (b) with the split approximation (c) and the final merged
approximation of the original (d).

2.2.1 Split and Merge

Split and merge approaches work by recursively diving an image until homoge-
neous regions are achieved and then subsequently merging similar regions. The
first splitting phase begins by testing a portion of the image (often the whole
image) for homogeneity: if this region is suitably homogeneous then the process
stops, otherwise the region is divided into some regular arrangement and the pro-
cess continues recursively. A second merging phase then merges adjacent regions
if their union passes the homogeneity criterion until no further merges are pos-
sible. The splitting phase is often quick and computationally elegant, whereas
the merging phase naively requires each region to be compared with every other,
leading to exponential runtime.

Quadtree Split and Merge

Quadtree split and merge is a common technique based on the quadtree data
structure in which each node represents a square portion of the image with four
children corresponding to the four quadrants of the portion. This technique is
most elegantly applied to square images with width 2". The splitting phase can
be efficiently implemented due to the quadtree structure, however the merging
phase is complicated by the need to merge regions at different depths in the
structure; indeed the problem of deciding when all possible merges have taken
place is non trivial in itself.

The quadtree process and many other splitting methods based on regular patterns
introduce artefacts based on those patterns. Quadtree segmentations have a
much stronger response for horizontal and vertical edges than those at 45°. So
for images which exhibit strong non axial features the segmentation may include
a large number or regions. In the pathological case of a small scale chequerboard
at 45°, the quadtree approach may give very little improvement on merging the
original pixels to form regions.

If only the leaves of the quadtree are inspected then the process as presented is

e ——————T

12 2. CURRENT TECHNIQUES

Figure 2.7: An image containing two regions A and B divided by lines L1 to L4
(left) and the corresponding BSP tree produced with the line cuts marked (right)

another example of an algorithm that produces a flat output despite a hierarchical
process. It is when the tree is viewed at each depth instead as a representation
of the source image that the the quadtree process is truly hierarchical.

Binary Space Partition Trees (BSP) [4]

BSP trees are a technique for classifying any space into sectors by recursively
dividing the space using a cutting plane. In the case of image segmentation the
image is repeatedly divided by a cutting line fitted to the data (see Figure 2.7)
using some other image recognition technique (possibly the Hough Transform or
RANSAC algorithm). This process continues until the homogeneity criterion is
met for each of the sectors.

The process produces a binary tree which can be used to efficiently code the
image for video compression. Similar to the Quadtree process this technique
introduces artefacts as it has a stronger response for polygonal structures than
smooth curves or gradients.

2.2.2 Graph Based

Graph based methods are those that view the image as a set of nodes connected
by arcs. A flat segmenter can be constructed by searching all arcs in the graph,
merging any node whose union passes the homogeneity criterion.

These nodes may represent segments from a previous segmentation procedure
with the express aim of providing a large number of small segments for the graph
method to group appropriately. Another approach is to initially view each pixel
as a node, in this case the region grower could be thought of as an implicit
implementation of a graph based approach. Explicit graph based methods can be
used to monitor and control the workings of the merge phases of split and merge
algorithms, assuming some sensible conversion from the native representation of
the method to a graph based representation can be formed.

2.3. PRE/POST PROCESSING 13

()
o N @
O
®

Figure 2.8: Elliptical regions used in one multiple median filter technique.

The real power of graph based approaches is to facilitate abstracted analysis of the
connectedness of the regions. A great deal of mathematical graph theory exists
and can be directly applied. In particular analysis to identify groups of regions
that surround others can be employed to convert the graph into a tree hierarchy
of objects which contain others. However many of these graphing problems are
in them selves mathematically hard problems. A graph based approach for this
is presented and dealt with in more detail in 4 Hierarchical Methods.

2.3 Pre/Post processing

Images collected from almost any type of sensor are likely to be corrupted by
noise. The purpose of all of the preprocessing filters is to reduce the effect of
noise and enhance the segmentation process. The question of the quality of a
particular filter therefore becomes the balance between the effectiveness of the
filter in facilitating good segmentation and its speed of application.

2.3.1 Common Filters

Median Filter

The median filter is one of the simplest filters, attempting to reduce the noise
at a particular pixel by replacing its value with the median of the surrounding
pixels in some neighbourhood.

This can be achieved in a simple n x n square region or in elliptical regions around
the centre pixel. In this elliptical method the median of the five areas are taken
independently and the centre pixel is replaced with the median of these values
(Figure 2.8). There is no specific ordering of colours in R3, and so the median
is undefined for colour images. One way to overcome is this to apply the filter in
each of the colour channels independently, or to order by lightness alone.

The effect of the median filter is good suppression of salt and pepper noise, with

14 2. CURRENT TECHNIQUES

1 1'2 12‘2
O(2) = ——e37 Clo,y) = ——e T

2ro 2no

Figure 2.9: The Gaussian Distribution for one (left) and two dimensions (right)
with a standard deviation of o

a reduction in Gaussian noise. Edges are adversely effected by the median filter;
a characteristic blocking effect results.

Mean Blur

The mean filter again is one of the most intuitive filters where the centre pixel, in a
typically square neighbourhood, is replaced with the mean of that neighbourhood.
The mean filter can be applied using a normalised convolution kernel of all ones.
As the mean filter is symmetrical and linear it can also be decomposed into two
linear kernels, with attendant benefits to processing time. These kernels are
themselves linear mean filters in the horizontal and vertical directions (kernels of

all ones).

The mean filter is highly destructive to edges and, when applied in a square
kernel, introduces square artefacts around edges due to the high effect of extreme
values upon the mean. The mean is more effective in removing Gaussian noise
than salt and pepper due to the effect of extreme values.

Gaussian Blur

The Gaussian filter is one which follows the Gaussian distribution give in Figure
2.9 to decide the effect of surrounding pixels on the final pixel value. The effect
is one of a smooth blur and is hence very edge destructive.

The Gaussian filter is a mathematical ideal, as such all actual implementations
are approximations; in particular as the kernel is infinitely large all pixels have
an effect on every other pixel, which would make its application computationally
intensive. In practice the simplifying assumption is made that after a set number
of standard deviations the effect is negligible.

The Gaussian filter is often applied using an integer approximation to the true
values in a normalised convolution kernel. Like the mean filter, the Gaussian can
be decomposed into two subsequent applications of the same linear convolution
kernel in the horizontal and vertical direction. A good approximation to the
values of this linear matrix is obtained from the coefficients of the binomial series
(the values of Pascals triangle). Unlike the mean filter subsequent applications
of the Gaussian filter do equate to one application of a larger kernel.

2.3. PRE/POST PROCESSING 15

2.3.2 Convolution

Convolution is a process which can be used to achieve a wide variety of filtering
operations by the application of a variable kernel at every pixel value in an
image. This kernel is centred on a pixel and specifies a weighted sum for all of
the surrounding pixels. It is common to ensure that these weights sum to one to
ensure that the output of the convolution is in the same range as the input; such
a kernel is said to be normalised.

The convolution process can be used to implement the mean filter easily using
a square kernel of all ones. As with any symmetric kernel, it is possible to de-
compose the two dimensional kernel into successive applications of linear kernels.
This has a direct implication to runtime as the application of linear kernels is
an O(n) process with respect to the number of pixels, whereas two dimensional
kernels require O(n?).

The Gaussian blur is commonly approximated as a combination of linear kernels
as it"is symmetric. Furthermore, repeated applications of a smaller Gaussian
kernel produces the same effect as the single application of one larger kernel.
Therefore a square Gaussian kernel approximation of any size can be achieved
with judicious application of a single 3 x 1 kernel.

2.3.3 Edge Preserving Blurs

The aim of edge preserving filters is to achieve the reduction of noise within
homoegeneous regions without destroying the information at the edges of regions.

Symmetric Nearest Neighbour Filter (SNIN)

The symmetric nearest neighbour filter (or SNN) is an example of such a filter
which attempts to suppress noise whilst preserving edges.

One method of applying the SNN filter is to test each member of the 8 connected
neighbourhood with its symmetric opposite beyond the centre pixel (see 2.10).
The mean of the four most similar pixels, to the centre pixel, then generates
the output value for centre pixel. Greater effects can be achieved by repeated
applications of the filter.

Another method is to apply the same principal in some neighbourhood about the
centre pixel. For example in a square neighbourhood each pixel at (3,) relative
to the centre pixel, would be compared to (—%, —j). In this case greater effects
can be achieved using a larger neighbourhood.

The effect of the SNN filter is to reduce noise but to sharpen the edges; a charac-
teristic crystalline structure of similarly coloured patches appears in the resultant

r—pT——

16 2. CURRENT TECHNIQUES

' |
|
|
I Anpixel and its
}‘ — symmetric

I opposite

|

|

|

8-connected neighbourhood

Figure 2.10: A centre pixel with symmetric pixels labeled

| S e 1

E e o000 O

H e o i One of the four

1= =l _.__;__.____.__ square regions
1

1® @(O!® ©

R LA 0 1

!0 000 O

1 1 H [

i® 0,00 O

Figure 2.11: The centre pixel showing the surrounding four regions in which the
variance and mean are calculated.

image. The filter achieves its edge preserving qualities by making the assumption
that at a local level edges are straight lines. This line ideally divides the pixels
either side into pixels which are like the centre pixel and those which are not.
The centre pixel is therefore replaced with the mean of only those pixels which
are on the same side of the edge.

Kuwahara Filter (2]

The Kuwahara filter attempts to preserve edge sharpness and position (like SNN)
by considering four square regions about the centre pixel; one such region is
highlighted in Figure 2.11. For each of these regions the mean and variance are
calculated. The centre pixel is replaced by the mean of the region with the lowest

variance.

The effect of the Kuwahara filter is similar to the SNN, but slower to calculate
and with a lower capacity to remove salt and pepper noise.

TR — e T

2.3. PRE/POST PROCESSING 17

2.3.4 Mathematical Morphologies

A mathematical morphology is an operator based upon the relative positions
of pixels rather than their value[l]. Commonly they are only applied to binary
images although there are adaptions to allow their use in grey scale and colour
images.

Erode and Dilate

The most basic morphological operators are the erode and dilate operators. The
dilate operator returns the maximum value in some neighbourhood B about a
pixel (acting upon an image X this is denoted at X @ B). In binary images this
translates to returning 1 if there is at least one positive pixel. The effect of the
dilate operator is to grow white regions. The erode operator (denoted X © B)
is the complement of dilate, returning 0 if there is at least one zero pixel in the
neighbourhood about the centre pixel.

Open and Close

Open: (X ®" B)©™ B
Close: (X &"B)@" B

The open and close operators are comprised of repeated applications of the erode
and dilate operators. The effect of the open operator is to remove speckles and
smooth boundaries. The close operator has the effect of healing small holes of
negative pixels in the midst of positive ones. Again the two operators are the
complement of each other. These operators are often used to clean the results of
a binary segmentation.

e o N Ul P 3

2. CURRENT TECHNIQUES -

3. Flat Methods

3.1 Region Growing

It is assumed here that the outline of the general region growing process has been
read in the current techniques review Section 2.1.2. This section relates to the
specifics of the implementation of the region growing implementation developed
in this project. The JAVA code for this can be seen in Appendix B: Code. An
example output of the process described here can be seen in Figure 3.1.

Overview

In the broadest overview the process of region growing presented here can be
described as the application of several processes, each of which is discussed in
detail in later sections.

1. Filter input image.

2. Choose a seed pixel.

3. Grow a Region.

4. If all pixels have been included in regions end, otherwise goto 2.
The Basic Structure

The most basic implementation of the region grower attempted was instantiated
as a recursive call to a seed pixel location. This call initiates a region including
that pixel and forms a recursive call to the pixels in either a 4 or 8 connected
neighbourhood about that pixel. Each of these pixels are compared to the region,

Figure 3.1: An example image (left) and the result of the SNN filter and region
growing process in mean region colour (center) and false colour (right)

19

20 3. FLAT METHODS
1 segment[] RegionGrow(image I)

2 I = SNN(I);

3 (width, height) = I.getDimensions();

4 int ID[width] [height];

5 int count = 0;

6 int seg = 0;

7 segment s[];

8 while(count != (height * width - 1))

9 (x,y) = pickSegmentSeed(ID);

10 s[seg] = doGrowing(x, y, seg, I, ID);
11 seg = seg + 1;

12 endwhile

13 return s;

Figure 3.2: The Pseudocode for the Region Growing control loop

if they are suitably similar then the pixels are added and a call is made to pixels
in the neighbourhood about the new pixel. If the pixel is already within the
region or too dissimilar then the recursion ceases at that branch.

Tt was found that this recursive method placed far too much information on the
stack and the process rapidly ran out of memory. To resolve this the process
was serialised and implemented as an agenda of pixels (see Figure 3.3) to be
considered for addition to the region. The process was then initialised by adding
the seed pixel to the agenda (Figure 3.3 line 3). The agenda is processed one
pixel at a time in a similar fashion to the recursive method, however recursive
calls are emulated by placing the new pixels that are spread to, onto the end of
the agenda (Figure 3.3 lines 11-14). If the agenda is empty then the region
has ceased to spread and the process terminates.

To eliminate search when determining whether or not a pixel has already been
allocated to region, an array of values is maintained which mirrors the pixels in
the image and records their membership to a particular region coded as an integer
(Figure 3.2 line 4 and Figure 3.3 line 8). This array is referred to here as the
ID array, where a value of -1 indicates that the pixel has not yet been allocated
and any other integer indicates membership to the region by that number. This
technique increases memory requirements but decreases the time to determine
membership from O(m) where m is the number of pixels allocated to the region
in question to constant time O(1).

R S

3.1. REGION GROWING 21

1 segment doGrowing(int x, int y, int segID, image I, int IDJ][])
2 stack agenda;

3 (x, y) — agenda;

4 segment s;

5 while(agenda.size() != 0)

6 (x,y) + agenda;

7 if (getDistance(s, (x,y)) < distanceThreshold)

8 if(ID(x,y) = -1)

9

(x, y) — s;
10 ID(x, y) = seglD;
11 (x+1, y) — agenda;
12 (x-1, y) — agenda;
13 (x, y+1) — agenda;
14 (x, y-1) — agenda;
15 endif
16 endif
17 endwhile

18 return s;

Figure 3.3: The Pseudocode for single Region Growing

3.1.1 Random / Modulo Arithmetic Seeding

The region growing process is very sensitive to the placement of the seed pixels
that initalise the regions. In the case of a serial region grower the choice of seed
pixels is one that must be made, as the program runs, each time a new region is
spawned. The following methods implement the function pickSegmentSeed (int
ID[][]) in Figure 3.3 line 9. Image Order Traversal

The most naive method of seed choice is to pick each pixel in turn, left to right,
top to bottom; if the chosen pixel is already in a region then move to the next.
The disadvantage of this procedure is that it introduces a large bias toward the
pixels in the upper left hand corner. The first region is always seeded at [0, 0],
which will at some point reach an edge and cease to spread. The next seed pixel
is therefore guaranteed to be on this boundary as it is the next scanline pixel
after the first segment. This introduces a large number of false boundary regions.
In its favour only one position has to be recalled (the last seed pixel tested), and
the total number of checks that will be made is exactly the number of pixels.

Random Generate and Test Traversal

One alternative method is to randomly generate locations over the whole image
and test for a pixel which has not been allocated yet, each time a seed pixel is
required. While this works very well for the initial segments, the time taken to

—rmr——

3. FLAT METHODS

Q%]
(SN]

n

s) =3 (@i =) dulmy) = o - wil

i=0 1=0

Figure 3.4: The Sum of Squares distance (left) and Manhattan Distance (right)
of two vectors z,y € R"

randomly generate a pixel that has not already been allocated increases dramat-
ically as the percentage of unallocated pixels decreases.

Modulo Arithmetic Traversal

To combat these problems a method based on modulo arithmetic is presented

which combines the benefits of pseudo random traversal of the image with the -

benefit of only having to store one position value. If the images are constrained
to dimensions of 27, with p € [0,2*") as the position though the image and
k,mn € N U{0} then the traversal function is as follows:

F(p) = 3*p mod 2%*

The claim is that f : [0,22%) — [0,2%") is a bijection. That is to say that each
input value of p determines a unique position within the image. The implication
of this in the case of our application is that if p is incremented from 0 to 22" then
each of the pixels in the image will be covered once and only once, and if k is
suitably large, in a pseudo random fashion. A proof of this fact can be read in

the appendix.

3.1.2 The Homogeneity Criterion and Distance Measures

The homogeneity criterion links a candidate pixel with a region and determines
if the region would still retain homogeneity after inclusion of the pixel. For the
purpose of this implementation the homogeneity criterion has been implemented
as a comparison between some distance measure and a threshold. The distance
measure used is the Euclidean distance squared, or sum of squares between the
candidate pixel and the segments average colour (Figure 3.4 left). The sum of
squares gives identical performance to the traditional Euclidean distance save for
the fact that the threshold must be squared to remain at the same level. This
has the benefit of avoiding a square root calculation which can greatly speed

execution.
Distance Approximations

The Manhattan distance or Taxicab metric (Figure 3.4 right) is an approxima-
tion to the common Euclidean distance measure used to save on computation

3.1. REGION GROWING 23

(n—1m,+wv
n

Mep1 =

Figure 3.5: The equation for incremental update of a mean over time where v is
the new value

(as the modulus avoids calculations of squares and roots). This approximation
was used but was found to be only negligibly faster at the cost of segmentation
performance. The reason for this degredation can be seen when the isosurfaces
of the function are considered. In 3 colour space the isosurfaces of the Euclidean
distance form spheres about a centre point, whereas the Manhattan distance form
concentric cubes. This causes colours toward the corners of the cube to be rated
as unreasonably close to centre point compared with the centre points of the
sides.

Averaging Colour Segments

The segments used in this project are plain coloured, where the plain colour
represents the average colour of the pixels within the region. It is this value
to which all candidate values are compared. To avoid full recomputation of the
mean value after each pixel is added, the mean can be altered incrementally using
the equation in Figure 3.5.

It is possible to use only the seed pixel colour value for comparisons to avoid the
computation of the mean of the region. It was found that this caused reduced
segmentation performance due to increased sensitivity to the seed pixel and any
noise which might be present at that point. As the time saved was only marginal
over the incremental mean method this approach was not used.

Another possibility considered was a leaky accumulator approach whereby the
old mean is reduced by some fixed factor o, and summed with the new colour
multiplied by (1—a). The effect is to allow each new pixel to have some fixed effect
on the accumulated mean value. This process increases chaining errors where a
long string of pixels which are suitably similar connect two dissimilar regions
which violate the homogeneity criterion. As the leaky accumulator is forgetful
of early values, it is possible that such errors could occur; indeed region drift
was observed over gradients. This drifting effect and the minimal computational
saving caused this method to also be abandoned.

3.1.3 Symmetric Nearest Neighbour (SNN)

The Need for Filtering As region growing is a purely local operation it is

24 3. FLAT METHODS

Figure 3.6: A test image with varying levels of Gaussian and salt and pepper
noise(left), the effect of one SNN pass (centre left), the long term effect after 50

pgsseé(centre right) and a comparison with Gaussian Blur with a 1 pixel radius

sensitive to local noise effects. In particular salt and pepper noise will cause
over segmentation as single pixels will fail to spread and form their own regions.
While these can be dealt with via a process of morphological type operators, it
is desirable that they do not arise in the first place. As one of features we are
interested in is the boundaries between regions, it is desirable that the filter we
use does not disturb these boundaries. For this reason, along with the high speed,
the SNN filter was chosen as the preprocessing step to facilitate region growing.

The Implementation The implementation used realised the SNN filter with a
3 x 3 neighbourhood. An array of four colour values was stored for each of the
the opposite pairs (N-S, NE-SW, E-W,NW-SE), which retained the value out of
those two pixels which most closely resembled the centre pixel using the sum of
squares.

The sum of squares distance measure was used as it omits the need to calculate
a square root. As the calculation is performed many times this can add up to a
good saving in time without any loss of accuracy. There is no loss of accuracy
as the sum of squares orders pixels in exactly the same fashion as the Euclidean
distance measure, only the exact lengths are different.

After these four most similar points are acquired, they are averaged to provide
the eventual output for the pixel.

The code for this method can be seen in Appendix B: Code
The Effect of SNN Filtering upon Noise

On the left hand side of Figure 3.6 a chequerboard patter can be seen that has
been corrupted with increasing levels of Gaussian noise (on the left side) and salt
and pepper noise (on the right) to illustrate the ability of SNN to remove said
noise. The centre left image shows the effect after one application of the filter,
with the centre right image giving the long term effect of multiple applications
of the filter. In this case 50 passes were applied, but the result is much the same

P — e

3.1. REGION GROWING 25

P,

za

Figure 3.7: A test image with varying levels of detail(left), the effect of one
SNN pass (centre left), the long term effect after 50 passes(centre right) and a
comparison with Gaussian Blur with a 1 pixel radius

as after 6.

The effect upon the salt and pepper noise is particularly marked, with the un-
derlying pattern being almost completely reclaimed in the lower levels of noise
after only one pass. The effect upon the Gaussian noise is not as pronounced but
some reclamation of the pattern is achieved.

The edge preserving qualities of the SNN filter can be observed when compared
to the one pixel Gaussian blur (far right), where the edges of the chequerboard
have been noticeably disturbed.

The Effect of SNN Filtering upon Structure

In Figure 3.7, a test image is given with various binary pixel patterns at different
resolutions. Left to right they are the chequerboard, horizontal lines, random
noise and vertical lines. From top to bottom the patterns are scaled at 1,2,4 and
16 pixel sizes. The aim is to illustrate the effect of the SNN filter upon deliberate
structure.

The SNN filter works in a 3 x 3 neighbourhood, which roughly corresponds to a
one pixel radius from the centre pixel. Unsurprisingly the structures at the level
of one pixel are significantly altered with the chequerboard removed in the first
pass and the lines removed in the long term. Interestingly in the long term the 2
pixel chequerboard is also destroyed, due to converging grey values generated in
the first pass. The noise is first regarded as structure at the point of 4 X 4 pixel
blocks (before random regions are generated).

As a guide it can be concluded that any deliberate structure above the size of 4 x4
should remain largely unaffected, and most features at the scale of 2 pixels should
also remain unaffected provided they are part of a larger structure (a 2 X z line
for example). By comparison the Gaussian blur can be seen to adversely affect
the structures at all scales after just one pass.

The Speed of SNN Filtering

26 3. FLAT METHODS

Tmage Size | Colour? [Mean Time (ms) | Pixels /ms
64 x 64 Yes 16.38 250.06
64 x 64 No 16.31 251.13

128 x 128 Yes 52.68 311.01

128 x 128 No 53.46 306.47

256 x 256 Yes 219.41 298.69

256 x 256 No 215.03 - 304.78

512 x 512 Yes 827.82 316.67

512 x 512 No 825.09 317.72

Figure 3.8: Runtimes for the SNN filter applied to various images.

Figure 3.9: An example image (left) and the result of the Two Phase K-Means
process in mean region colour (center) and false colour (right)

To evaluate the speed of SNN, the filter was run upon a test set of images acquired
from the Hypermedia Image Processing Reference (HIPR2)[7] image library. The
library contains 189 greyscale and 59 colour images of a wide variety; ranging
from assembly parts and medical images to normal photographs. All images
were scaled to square images of width 64, 128, 256 or 512 for compatability with
the program. The SNN filter was applied to each photograph 10 times and the
resulting mean times can be observed in Figure 3.8.

The process is swift and never exceeds one second even for 512 x 512 images.
This irnplementation is in JAVA, no doubt a swifter implementation could be
formulated in C.

3.2 K-Means

It is assumed here that the outline of the general K-Means process has been
read in the current techniques review Section 2.1.3. This section relates to the
specifics of the implementation of the various K-Means implementations devel-

3.2. K-MEANS 27

oped in this project. The JAVA code for this can be seen in Appendix B: Code.
An example output of the process described here can be seen in Figure 3.9.

Overview

K-Means in not a sole purpose segmentation technique. It can natively be made
to segment an image into k disjunct regions which have the same colour by simply
applying the basic process to the set of image points considering only their colour
value. However any segmenter should also produce regions which are spatially
adjunct. '

Unlike the region growing implementation, several variants of K-Means were pro-
duced which build upon each other. The vanilla K-Means implementation seg-
ments an image either based on a spatial distance measure, a colour distance
measure or a combination measure. The most successful process named Two
Phase K-Means, consists of first segmenting in the colour space as above, then
subsequently re-segmenting each of these regions under a spatial measure. A
further variant of K-Means was created to allow successive iterations to run at
different scales to improve performance but due to the fact that large numbers
of iterations do little to improve the quality of the segmentation produced, this
approach was abandoned.

The most basic overview of the plain K-Means implementation can be viewed as
the following:

Setup k& means
Allocate all pixels to nearest mean using distance measure
Update all means to reflect changes in pixels allocations

If iteration limit is not reached GOTO 2

SRR FRECOREST.

Filter the IDs produced.
The Basic Structure

To begin with, the means are seeded with (z,y) locations (Figure 3.10 line 7
) and the colour value from the image at that point is read into the mean colour
for that region. Each mean also has an attendant value which records how many
pixels have been attributed to that mean, which is initialised to 0 (Figure 3.10
line 5).

One iteration of the procedure consists of moving though each pixel in the image
and comparing it with each of the k means (see Figure 3.11) under the current
measure. Which ever mean it is closest to, by that distance measure, is updated
to reflect the inclusion of the pixel and the size for that mean is also incremented.
In a similar way to the region growing procedure an ID array is use to store the
membership of each pixel. This allows a fast check to see what mean the pixel

e

O 0 N O O & W N =

= e
N = O

W 00 N O O W N -

[ol o
O W O

3. FLAT METHODS

segment|] KMeans(image I, int k, int iterations)
(width, height) = I.getDimensions();
int ID[width] [height];
color means [k] ;
int sizelk];
segment s[];
(means, size) = seedMeans(means);
for(i=1 ... iterations)

doOneIteration(I,means,size);

endfor;
s = readIDsToSegments(ID);

return s;

Figure 3.10: The Pseudocode for the K-Means control loop

color(] int[] doOnelteration(image I, color[] means, int[] size)
int old, new;
for(x=1 ... width)
for(y=1 ... height)
old = ID(x,y);
new getNearest(x,y,means);
if(old != -1)
reduceMean (means, old);
size[old] = sizel[old] - 1;
endif;
increaseMean(means, new);
size[new] = sizelnew] + 1;
endfor;
endfor;
return means;

Figure 3.11: The Pseudocode for one K-Means iteration

3.2. K-MEANS 29

was attributed with previously. If the pixel was not attributed to any mean (a
value of -1) then no action is taken, however if the pixel did belong to another
mean, that means size is decremented and the mean value is adjusted to reflect
the removal of that pixel (Figure 3.11 lines 7-10).

This iteration procedure is repeated up to a predefined iteration limit (Figure
3.10 lines 7-10). Initially a method was attempted that detected the change in
the means between iterations and terminated when said change dropped below
a certain threshold. It was found that the total number of iterations require
for the means to stabilise is rarely more than 4 making such a procedure was
unnecessary.

Two Phase K-Means

Many of the processes discussed in this chapter are designed as solutions to the
limitations of the K-Means approach as a segmentation technique. The most
fundamental of which is using it to cluster the data in the image in a way that
ensures that pixels in the same region are both close in colour space and Eu-
clidean space. As a unified distance measure which achieved both was not found
(see Distance Measures in this section) it was thought that a far more na-
tive approach for K-Means would be to segment the data twice. Once in colour
space, which K-Means achieves very competently and then again for each of the
segments produced in Euclidean space. The rationale being that if the image is
separated into regions of dissimilar colour then each of the regions formed will
represent the union of a number of spatially disjunct regions; as any regions which
are connected at this point are already of suitably similar colour and therefore
form one region by definition.

The new problems created by this approach are that the segments produced in
the initial colour phase may make it impossible to create any sensible connected
regions in the second. To combat this shortcoming a technique of region allocation
filtering (see ID Filtering) was developed to allow the removal of very small
clusters of pixels.

A further problem of the K-Means approach when used with the common Eu-
clidean distance measure for spatial segmentation is that while this may guaran-
tee good spatial clustering it makes no concessions for connectedness. To combat
this, a technique of merging based on spatial information was developed to con-
servatively ensure that no connected regions were segmented into different regions
in the output (see Spatial Colour Merging: Section 3.2.5).

As this process works by merging regions which are connected by any pixels it
is preferable to increase k in the second phase so that in essence the process
becomes an abstracted region growing method. In this sense the nature of the
two phase mechanism works in our favour as if the image is segmented into &
colour regions each of which is then re-segmented into k spatial segments. This

30 3. FLAT METHODS

(dE(-T’Z/))2 = Z(l‘i - yi)Q

Figure 3.12: The sum of squares function for distance between elements z,y €
(R)™ space.

leads to the situation where the effective k at the colour level is in fact k%, A rare
example of combinatorial explosion working in the favour of an algorithm.

Abstractly the flow of Two Phase K-Means is as follows:
e Phase One: K-Means in Colour Space

e ID Filtering

Non-spatial Color Merging

Phase Two: K-Means in (z,y) space (on all color segments)

spatial Color Merging

3.2.1 Distance Measures

The notion of how close a pixel is to the mean of a region is completely dependant
on the distance measure used and in which space one is interested in defining that
measure. In both cases the sum of squares measure (see Figure 3.12) is used in
either R3 in the case of colour or R? in the case of (z,y) space. The full Euclidean
distance is not used as it includes the calculation of an unnecessary square root,
which can slow calculation significantly. The sum of squares is sufficient since
only the order of the distances is important (which is preserved in the positive
reals by the squaring function).

Higher Dimensional Measures

In the case of this application the ideal measure would separate the pixels in both
colour and Euclidean space such that a small distance would relate to the pixel
being simultaneously similar in colour and close to the region. This would allow
full segmentation of the image in one fell swoop. One such function could be the
higer dimensional sum of squares of the vector composed of both the colour and
spatial coordinates.

One issue with this method is that in order for colour and spatial distance to
have an equal effect they must both be normalised. Irrespective of the particular
scaling used however it is always the case that at a particular distance the colour

T it e e

3.2. K-MEANS 31

value will either dominate, or be completely ignored. This leads to regions being
indiscriminate about the colours near their centres and impossibly strict about
colour at the extremities. In practice it was found that the higher dimensional
approach is a poor compromise compared with segmentation in colour followed
by segmentation in the spatial dimensions and so was not used.

Nearest Neighbour Distance

For spatial distance measuring, simple distance measures from the mean point of
a region lead to undesirable allocation of pixels when the underlying regions are
not circular. For example consider a large round region horizontally next to an
extremely tall and thin region, with a pixel equidistant from their centre points.
The pixel should obviously be attributed to the large round region as its distance
to the edge of that region will necessarily be less. However the naive method is
equally likely to attribute the pixel to either region. Other pathological situations
include large 'C’ shaped regions where none of the points in the true region are
close to their mean; using the conventional method such features are unlikely to
be detected at all.

To combat this issue a method was developed that compared a pixel with a
local neighbourhood and returned the distance corresponding to the nearest pixel
allocated to a region. If no pixels in the region were allocated or if more than one
pixel from different means were equal, then the conventional distance measure
would be used. It was hoped that this would encourage the formation of connected
regions that were not necessarily round as a pixel could be close to a region by
being close any other member of that region.

In actuality it was found that whilst the process did indeed encourage connected-
ness within the scope of the neighbourhood size, even very small regions increased
the computational demands vastly. Consider a small square neighbourhood of dis-
tance 5 pixel in each direction from the centre pixel, the total number of pixels to
be considered is (2x 5+1)21 = 120. This is already a large number of comparisons
at each pixel and a neighbourhood of this size only encourages connectedness on
the scale of 11 pixels squared (certainly not enough for global clumping). For
this reason the method was not used.

3.2.2 Random / Spaced / Region Growing Seeding

Although the K-Means procedure is sensitive to the placement of the seed pixels
it is not critical that they be placed in specific locations as it is accepted that
over time the mean points will drift toward the centres of significant regions. For
this to be achieved the means must be distributed representatively across the
space in which the image is to be segmented. For example if the image is to be
segmented using a spatial distance measure it is enough to ensure that the pixels

32 3. FLAT METHODS

are distributed in (z,y) space across the image. However if one wishes to segment
in the colour space then the positions of the means must correspond pixels which
have dissimilar colours, regardless of physical location. Random Seeding

The simplest method of seeding is again to randomly specify (z,y) positions in
the image. In the spatial domain this is an effective method of guaranteeing good
distribution. In the colour domain colours have a likelihood of representation in
direct proportion to their density of distribution in that colour space. That is to
say if 50% of the pixels in the image are red, one would expect on average for
50% of the means to sample red pixels. In general this is not a desirable property;
consider the situation where a number of different coloured object lie against a
constant colour background. If the background fills a significant enough propor-
tion of the image then the likelihood of any particular mean sampling a pixel in
the object of different colour decreases. Furthermore as the K-Means procedure
continues there is little chance of the different coloured regions being able to in-
fluence the means as a large number of background pixels will be attracted to
each one.

Separated Seeding

One possible method to attain good separation in the spatial dimension would be
to simply randomize the colour values of the means. Unlike the spatial domain
however the colour space is not necessarily uniformly distributed over the image.
A random sampling might therefore produce a large number of means that do
not correspond at all to any particular feature in the image.

To attempt to overcome this problem without adding undue processing before the
K-Means has even begun, a simple method for increasing the spread of the means
has been developed. The idea is to create a simple generate and test method to
find a solution to the problem of finding means which are all mutually spaced by
at least the specified figure in the colour domain and are present in the image.

The process works by taking a user specified spacing (in colour space) which all
means should hopefully attain from each other. Initially all of the means are
randomly seeded from the image, at which point each pairing of means is tested
to see if the distance between them is greater than the specified spacing. If this
test fails then first of the pairs (z,y) position is randomized and the colour value
from the image is read in as the new mean. If this occurs for any pairing then
the process is flagged as incomplete and the checking-randomizing loop begins
again, up to a specified number of trials.

Clearly if all of the means are at the specified distance from each other then the
process will return a solution. This method is certainly not guaranteed to find a
solution at all but it does in general produce means which are separated in colour
space but also represented in the image.

3.2. K-MEANS 33

Region Growing Seeding

Whilst the above process is swift and gives good separation, no information about
the regions in the image is utilised. One large draw back to the K-Means proce-
dure is the necessity to specify a fixed k, which will cause the process to generate
k region irrespective of the contents of the image.

To combat both of these drawbacks a method was developed which used a region
growing technique on a small scale representation of the image to quickly generate
a rough segmentation. The means of segments above a specified size were used
as the seeds for the procedure. The hope was to simultaneously automate the
process of choosing a k for the process and generate means that correspond not
only to strong features in the colour domain but in the spatial domain also.

In practice it was found that in order to capture important but small features in
the image, the size threshold for inclusion to the process had to be set to a level
which generated a prohibitively large number of seeding regions. Furthermore,
many of these segments tended to correspond to the same feature, where some
small interuption had caused the growth of two regions rather than one. In
addition, with the extra time required to not only perform the pre-segmentation
but to rescale the image to a suitably small size, it was decided that the process
was not as suitable as either random or separated seeding.

3.2.3 The Effect of Iteration

K-Means is an iterative process that attempts to obtain more accurate representa-
tions of underlying groups in the data by refining the means over each successive
iteration. As the number of iterations increase, so will the accuracy of the result,
at the cost of an increase in the runtime of the process. But at which point does
the cost in increased time outweigh the benefit of the increased accuracy?

To answer this question a small batch of tests were performed to ascertain the
change in the centre points and colour values of the means between iterations.
This distance was measured as the average Euclidean distance in R® composed
of the three colour channels and (z,y) values. The result of a batch of ten runs
with ten iterations and k = 10 can be seen in Figure 3.13. For this test all
additional processes such as filtering were turned off.

It is clear that almost all of the movement of the means is conducted in the
very first step. Additionally the change in iterations 2 and 3 is roughly equal to
the total change in the following 7 iterations. As the effect of more iterations
is, predictably, a linear increase in runtime the default value for iterations is
recommended as 3, with 2 for speed.

34 3. FLAT METHODS

Tterations | Change Time (ms) ms/Iteration
1 234.7 319.5 319.5
2 4.8 632.9 316.5
3 4.0 933.4 311.1
4 2.6 1380.9 345.2
5 1.7 1548.3 309.7
6 14 1857.6 309.6
7 14 2161.2 308.7
8 1.1 2470.5 308.8
9 0.8 2776.0 308.4

10 0.7 3194.6 319.5
Mean: 315.7

Figure 3.13: A table of the change measured as the average distance between
the mean positions before and after an iteration measure in combined colour and
Euclidean space and runtime over 10 runs.

Figure 3.14: Three separate segmentations in Euclidean Space only after 1 iter-
ation (left) 2 iterations (centre) and 3 iterations (right) shown in false colour.

It is worth noting that although it may be tempting to only perform the first
step looking purely at the movement of the means, significant refinement of the
pixel allocations is achieved in the second iteration. Theoretically under the
sum of squares distance the boundaries between regions in (z,y) space should
be polygons formed from the lines of equidistance between the centre points
(The same is true of colour space although the meaning is harder to visualise).
Therefore once the regions have settled to these polygons of equidistance the
process should not show further improvement.

This allows an intuitive visual appraisal of the progress of the iteration proce-
dure as can be observed in Figure 3.14 where the far left image shows regions
with significantly curved boundaries due to the mean shifting over the process of
the iteration; the centre image exhibiting some curvature and the third iteration

3.2. K-MEANS 35

showing almost completely polygonal boundaries. In this context the recommen-
dation for 3 iterations becomes more clear, as at this point the boundaries are
almost completely straight and therefore will exhibit little further movement.

3.2.4 ID Filtering

An initial segmentation in purely colour space provides no guarantees about the
distribution of the resultant pixels. Often the pixels will be spatially adjacent
as the regions they emerge from are often similar in colour but often when an
area of an image is close to equidistance from two means in colour space, the
resulting segmentation contains a large cloud of single pixels or small islands.
Ideally it is hoped that the overall process will produce connected regions; in
order to facilitate a spatial segmentation to achieve this it is necessary to re-
move these small islands and single pixels. To achieve this a process known as
mathematical morphologies is often employed (see Section 2.3.4 Mathemati-
cal Morphologies). These morphologies as presented work with binary images,
in this instance a variant will be used that will operate on the ID array produced
during segmentation.

ID Array Filter

The ID filter counts the number of pixels allocated to each mean in a square
neighbourhood about a centre pixel. The allocation of the centre pixel is replaced
to correspond to the mean with the maximum number of occurrences. A second
formulation was made that only changed the centre pixel if the mean selected
accounted for a certain percentage of the neighbourhood. This was done to

reduce the destructiveness of the filter and the parameter is refered to as the
filter threshold.

The Effect of ID Filtering

The effect of the ID filtering is to remove small areas at the scale of the neigh-
bourhood and to merge those regions into larger coherent regions. This comes at
the cost of losing small details below the filter aperture size. To combat the loss
of these details the filter threshold can be increased. This prevents areas where
the pixels are evenly distributed to all of the means from arbitrarily assigning
new values where one mean may happen to just hit the maximum. On the whole
higher apertures should be accompanied by larger threshold values to combat the
increasingly destructive effect.

The effect of ID filtering is best observed on an example image, as its effect upon
the resolution test image is negligible at any settings due to the nature of its
effects upon regular patterns. The results of various levels of filtering can be seen
in Figure 3.15.

36 3. FLAT METHODS

Example Iﬁiag_é - __No Filte‘,;_i__ng.

_ Aperture2

Aperture 4 N Ap.ei’tﬁre 8

Figure 3.15: An example image and 5 false colour segmentations at various levels
of ID filtering with a filter threshold of 0 % .

3.2. K-MEANS 37

It can be seen that very small apertures provide good reduction of small re-
gions without destroying overall structure. Better quality can be obtained at
larger aperture sizes by increasing the filter threshold level however this is largely
counter productive as these larger sizes also require more time to compute. It is
worthy of note that any value for the filter threshold below % is essentially the

same as 0, as no region can have a majority with less than this value.
The Speed of ID Filtering

To test the speed of the ID filtering process a small batch of 10 runs at different
aperture sizes was conducted. All non essential processes were disabled and only
one iteration of K-Means was conducted. In order to isolate the time spent
on filtering, the process was run 10 times without filtering to get a base line
value (1050.2ms), which was subtracted from the measured runtimes to produce
the values in Figure 3.16. The process was run with all other processing steps
removed from the K-Means process using one iteration and a fixed filter threshold
of 0% .

The filter completes extremely quickly and is capable of processing an aperture
of 5 (corresponding to a square region of 121 pixels) faster than the SNN filter
processes a neighbourhood of 9 pixels. ID filtering is able to achieve these speeds
as the process is only concerned with a single integer as opposed to a triple
of integers to denote colour. This vastly reduces the time required to perform
operations over the same neighbourhood.

The time per pixel relates to the time per pixel in the neighbourhood. It can
be seen that the time is roughly linear with the number of pixels in the neigh-
bourhood and thus in proportion with the square of the aperture size. Due to
the extremely fast performance at low aperture setting, along with the ability to
preserve small details apertures of 1 or 2 are recommended.

3.2.5 spatial / Non spatial Colour Merging

The K-Means process is limited by its strict adherence to producing k regions
irrespective of their suitability. In general under-segmentation can be remedied
by increasing k, over segmentation (the likely consequence of increasing k) is
harder to deal with. To remedy over segmentation two merging techniques were
developed which merge regions with similar colours, one with consideration to
spatial placement, one without.

Non-spatial Colour Merging

Pure colour space segmentation of an image can result in separation into more
different colours than are broadly speaking present in the image. Of course in
any real coloured image there will be thousands of distinct colours by value, in

e ———————

—_—

38 3. FLAT METHODS

NHood Radius | Pixels in NHood Time (ms) (ms)/pixel
1 9 83.5 9.28
2 25 160.5 6.42
3 49 331.8 6.77
4 81 495.0 6.11
S 121 732.4 6.05
6 169 1041.8 6.16
7 225 1612.6 ol
8 289 1846.0 6.39
9 361 2312.6 6.41

10 441 2860.4 6.49

Figure 3.16: The timings of segmentations with different ID filter apertures with
filter threshold of 0% .

this context it is the extraction of possible underlying structure that is of interest.
That is to say if there is a largely red object in the image then the potentially
large number of distinct reds within that region are not of interest, instead it is
the representative red that classifies the region.

Under this definition an over segmented image will exhibit regions which are very
similar in colour value. To counter this all regions that fall below a certain colour
distance threshold can be merged. The benefit to this procedure is that a high
value of k can be used in conjunction with a colour merge threshold and the
process will return at most k regions with at least the specified distance in colour
space.

spatial Colour Merging In spatial K-Means segmentation of an image, under
the sum of squares distance measure, connectedness is not guaranteed. This
creates the dual problem of single regions which are not connected and multiple
regions which are connected being separated. Single disjunct regions can be
remedied to some extent by increasing k leading to smaller more connected regions
at the cost of more over segmented connected regions.

Such multiple regions which are not connected but should be can be remedied by a
process of comparing each spatially adjacent pixels attributed to different regions
and merging the parent regions if the distance is below a specified threshold.

At the extreme, where k is the number of pixels, this process is exactly region
growing, however in general when k is much less than the number of pixels the
process is more efficient than region growing. The process presented assumes
that an ID array has been produced by the earlier segmentation process which
consists of an integer representing membership to a similarly numbered region at
each (z,y) position.

3.2. K-MEANS : 39

Figure 3.17: An example of over segmentation (left) and the results of spatial
colour merging (right)

At each position in the array the value need only be compared with the pixels
directly to the right and directly below independently to guarantee that all con-
nections between pixels are explored. If the values are identical then no further
action need be taken, otherwise the means of the two regions specified by the
ID values should be compared as in non-spatial colour merging and merged as
appropriately. The benefit over classical region growing is that most pixels will be
in the same region as those adjacent to them whereby the computation required
is only two integer comparisons rather than a sum of squares value. Additionally
no redundant checks are made as the process only needs to be able to check all
connections rather than follow them (possibly in 4 directions).

In practice the process completes extremely quickly (in the 100s of ms) and
produces the effect that no connected regions fall in two segments. Due to the fact
that the process merges all pixels in two regions that share at least one connection,
the regions produced are often the union of disjunct regions. In the example of
Figure 3.17 (left) an image can be seen in which spatially adjunct areas of
similar colour are divided into separate regions (the dots and background). After
the colour merging process (Figure 3.17 (right)) the connected areas of similar
colour have been merged, resulting in the background being correctly classified
as one region and the debatable effect of classifying all of the circular regions as
one. This is not an entirely undesirable quality as a human observer may view a
dense area of dots as one region rather than as many separate and unconnected
regions.

To decide at which point discontinuous regions become merged consider the whole
image to contain n pixels and let the overall density of ’in’ pixels that are being
considered for the spatial colour merging procedure to be do then the total number
of ’in’ pixels is don. Let a region R be circular with radius r, then the area of R
is clearly 2. If a proportion d of R are 'in’ pixels then the total number of ’in’
pixels in R is drr®. Assuming the k means are distributed randomly though out
the ’in’ pixels we would expect the number of means in R to match the percentage

rrvrE——

———

e ——

——————r

40 3. FLAT METHODS

R Ty S 1 SE AT]

Figure 3.18: A regularly spaced pattern of squares (left) with the segmentation
produced in false colour at k = 21 (centre) and k£ = 81 (right). Note the centre
image exhibits 3 linked regions from the top left down.

of ’in’ pixels in R, thus the mean number of means (/) centred within R is:

dnr?

= do’rb

2

K

Now let K =1 then the following relations hold:

pr R, CUG0R
~ Vdrk T dwr?

That is to say in a region of local density d one would expect a region of radius
r to contain one mean centre point on average. If we consider the region to be
centred on the mean then R gives us some idea of the average spacing at a given
density. The second equation gives us an idea of what k to specify to maintain
a certain radius. Note that the d in this case is only the local density at the
centre of that particular region, for an image of varying local density a more
sophisticated application of this formula would be necessary.

As a simple validation of this result consider a 512 x 512 image split into 16 square
regions each of which has the upper left quadrant coloured black so as to form a
regular spacing of 64 x 64 black squares at 64 pixels apart. The overall density dy
is clearly % and as a simplifying assumption for any suitably large neighbourhood
the local density can also be viewed as a constant %.

As the gap between the squares is 64 pixels wide then this is the minimum radius
at which we would the regions could be considered separate as over this value a
seed in one square may claim pixels in another. Thus using a radius of 64 pixels

the result is:
domn = 0.25 x 512 x 512

T dmr? . 025 x 7 x 642

k ~ 20.37

e e

Lia

3.3. EVALUATION 41

Reassuringly this value is above the bare minimum of 16 regions needed to account
for the 16 squares. Note that this value only guarantees that the average spacing
will be 64 pixels apart, so unless all of the means are spaced exactly 64 pixels apart
then some regions certainly will be merged at this value. Instead this value should
be considered the absolute minimum at which separation is possible. It is worth
noting that as the values in the spatial segmentation are randomly attributed
there is no value at which separation is guaranteed.

As a rule of thumb however using a radius of roughly half of the minimum required
separation yields good results. Accordingly halving the radius will quadruple the
number of regions needed (in this case to about 81). The results of this can be
seen in Figure 3.18, where as predicted linked regions can be observed at k = 21
where the top three squares are merged in the far left row of the centre image.

3.3 Evaluation

3.3.1 Speed

The speed of the processes presented is of critical importance to the environments
that they are employed in and is of central concern to this project. A thorough
investigation of the effects of the various parameters upon the speed of the process
was therefore conducted.

To evaluate the speed of Region Growing and Two Phase K-Means each was
run upon a test set of images acquired from the Hypermedia Image Processing
Reference (HIPR2)[7] image library. The library contains 189 greyscale and 59
colour images of a wide variety; ranging from assembly parts and medical images
to normal photographs. All images were scaled to square images of width 64,
128, 256 or 512 for compatability with the program.

Region Growing

The Region Grower was tested with colour merging thresholds of 50, 100 and 200
(with the Symmetric Nearest Neighbour Filter (SNN) on and off for each) upon
the colour and black and white images at the four resolutions. No repetitions
were performed due to the large time taken to run the tests. Full results can be
seen in Appendix A.2.

Superior Greyscale Performance

It is immediately clear that the process appears to work a good deal faster on
the greyscale images than the colour images. While this may indeed be the case
it is worth noting that this could instead be due to the fact that these greyscale
images are quicker to segment than the coloured ones, rather than all greyscale

42 3. FLAT METHODS

images. There is no reason for greyscale images to run any faster merely by virtue
of their lack of colour as no special optimisations are used upon them as they
are represented in the same manner (three colour channels). Therefore any speed
improvements will be due to the distribution of the greys in the colour space and
the effect his has upon segmentation.

For example the process will be slowed by the generation of large numbers of
segments as there is a fixed overhead in initialising the data structure regardless
of how many pixels will be attributed to it. Another effect upon the runtime is
the number of colour comparisons made. These comparisons can only be avoided
by a pixel already being claimed by another region, therefore the longer pixels
remain unclaimed the more colour comparisons may be made against them. For
this reason large regions which claim many pixels are preferable as they will
minimise future comparisons.

Many of the greyscale images are, barring noise and resizing effects, monochrome.
This would lead naturally to larger regions and so possible higher speed.

Disproportionally Good Performance on Small Images

The performance of the region growing process is obviously far greater upon small
images, therefore to compare performance more directly between the images sizes,
the timings were scaled to a value showing the milliseconds taken to process 1000
pixels. The graph can be seen in Figure 3.19.

As one would expect there is a slight decline in performance for the very small-
est images, as certain constant time procedures common to all image sizes may
exhibit a greater relative performance hit. But surprisingly the performance for
the largest size (512 x 512) is significantly worse per pixel the previous sizes.

One possible explanation for this is the nature of the image test set. Many of the
images scaled to the 512 x 512 resolution were of similar size, therefore noise in
these images would be largely preserved. In addition many of the colour images
from the HIPR2 library are 8-bit indexed colour images; that is to say that they
only possess 256 unique colours. This is often accompanied with dithering to
fool the eye into believing there are a greater number of colours. The effect
of dithering is to create a perceived gradient between two distinct colours by
scattering the pixels of each colour with a varying percentage of colour belonging
to each. For example an apparent purple colour can be obtained by a scattering
of red and blue pixels. The relevance of this to the region growing procedure is
that the ends of boundaries will not be described by the smooth change from one
colour to another but rather a ragged scattering of colours. To the region growing
process this effect appears as noise, increasing the number of regions created and
so increasing the time taken.

The effect of resampling the images is such that the smaller images do in fact

3.3. EVALUATION 43

20 —— — — - - S
194+—— — ———
n 18
2
PRI — —
S 16
S A |mso
5 154 S L 100
"8 / 5 (v 200
S 14 A 5 50 SNN
? 5 » 100 SNN
2 13 ___._/ < 200 SNN
= 12%»---- = a7 L
e
10— — ; - [4
64 128 256 512

Image width

Figure 3.19: A graph of the relative performance of the Region Growing method
with various parameters. The timings shown are in ms/1000 pixels.

contain smooth gradients as each pixel is the average of many. Therefore it is
reasonable to expect a greater proportion of noise and dithering effects to survive
resampling to similar or larger sizes. This effect can be seen in Figure 3.20
whereby a 128 x 128 section of a 512 x 512 image has been selected to be in pixel
to pixel corresponce to a smaller 128 x 128 image. Far more dithering effects and
noise are visible on the larger image.

To test this hypothesis the region grower was run upon two test images, one
of uniform neutral grey and one with random coloured noise. The noise was
generated at each different resolution to avoid the softening effect introduced by
resampling. If the swift performance of the method is due to the reduced noise in
smaller images then the resu already described with threshold 200 and no SNN
filtering (to preserve the noise). The results can be seen in Figure 3.21.

In addition to the time and per pixel performance another figure is given showing
the time of the process at the current resolution divided by the time for the
previous resolution. As the process is theoretically linear with the number of
pixels it is expected that this figure should be 4 for all processes (as the image
quadruples in area each time).

It is clear from the results in Figure 3.21 that the process did not obey a linear

44

3. FLAT METHODS

Figure 3.20: A magnified section fo a 512 x 512 image (left) exhibiting more
dither produced noise than the resampled 128 x 128 image (right)

Image Measure 64 128 256 512
Neutral Grey Time (ms) 39.40 177.90 887.93 5149.37
ms/1000 pixels | 9.62 10.86 13.55 19.64
% of prevrun | n/a 4.52 4.99 5.80
Random Color ~ Time (ms) 120.83 460.00 1989.57 Mem Error
ms/1000 pixels | 29.50 28.08 30.36 n/a
%of prevrun | n/a 3.81 4.33 n/a

Figure 3.21: A table of various results of 30 repetitions of the region growing

process running upon a neutral grey image and a random color image.

3.3. EVALUATION 45

Threshold 64 128 256 512
50 -2.06% -1.35% 0.24% 0.12%
100 -4.90% -3.19% -0.45% 0.59%
200 -3.10% -1.95% 0.12% 12.71%

Figure 3.22: The percentage increase of runtime upon enabling SNN filtering for
various thresholds in the Region Merging procedure.

time for the neutral grey image, but instead followed a similar pattern to the
previous results; increasing time at higher resolutions. This is clearly visible
from the values of the multiples between image sizes which are all over 4. It is
clear that the non linear effect is not due to differing levels on noise in the image
and that some other unpredicted effect is at work. One possibility is the increased
activity of the Java garbage collector when the memory demands are higher.

It is worth noting that as predicted the random image provided significantly
poorer performance than the neutral grey. Furthermore the time for this process
was consistently around 30 ms/1000 pixels. As this value is higher than any of the
other results is is possible that the process is bounded above by this linear time,
and therefore is linear itself. On the 512 x 512 image the Java virtual machine
experienced an out of memory error. This will be due to the large number of
regions which would be generated by such an image as each region will require a
fixed minimum amount of memory.

SNN Filtering Reducing Runtime

The results of enabling and disabling the SNN filter have been summarised in
Figure 3.22 as the percentage extra time required dueing the segmentation phase
when filtering is enabled. Therefore negative values represent a time saving and
the filtering can be observed to save time in most cases except for the 512 x 512
images. However apart from the threshold 200 run the added time is negligible.
In the worst case enabling filtering here increases the time required by 12.71%,
which translates to an increase of 558 ms. Note that these values do not include
the extra time take to actually perform the filtering; in depth results for the speed
of SNN can be gained in Section 3.1.3. Furthermore the quality of segmentation
is increased when the SNN filter is enabled.

Two Phase K-Means

The Two Phase K-Means process was run upon the HIPR2 image library test set.
The process was constrained to k = 6, separated seeding and one iteration though
the set due to time constraints. Various features of the K-Means procedure were
enabled and disabled to form a better idea of their impact upon the runtime of
the whole process. The full results of the test can be seen in Appendix A.2.

Superior Greyscale Performance

3. FLAT METHODS

17
1

16.5 3=

16 S AN
@ N
g 15.5 N
[R "\
o 15 < >
8 145 L o Basic
- ~o @ | NSM-1500
o 14 = == & |v SM-2000
T a5 N & NSM-1500 SM-2000
o B » (2p%,0%) NSM-1500
o r SM-2000
D 13 -
R} ~ < (3px,33%) NSM-1500
= 125 — SM-2000
= 2 AW '

12- —

115 \\/

1 ; R .

64 128 256 512
Image Width

Figure 3.23: A graph of ther
various parameters. The timin

Again K-Means presents superior perform
the colour images. However in t
the source image.
pixels allocated in one iter
additional processing that
pixel leaves and joins to reflect the change.

nearly ide

elative performance of the K-Means method with
gs shown are in ms/1000 pixels.

ance upon the greyscale images than

his instance the trend is less marked the larger
The K-Means approach will increase in runtime when the
ation shift positions in the next. This is due to the
has to be effected upon the means of the region the

Otherwise the procedure should have

ntical performance regardless of the contents of an image.

Constant Time Behaviour Over Varying Image Size

Unlike the Region Growing process, K-
to varying the scale of the image. The res
be seen in Figure 3.23 and clearly show
the figure SM and NSM relate to the pr

merging thresholds whereas the tuples (2px,0%)

Means is very well behaved when it comes

ults of scaling to ms/ 1000 pixels can
the process to be bounded above. In

esence of spatial and non spatial colour

and (3px, 33%) represent the

presence of ID filtering at 2 and 3 pixel radii and 0

Decrease in Performance due to spat

The speed of the process under different s
those that employ spatial colour merging
that do not. Other than this distinction
virtually indistinguishable.

ial Colour Merging

ettings can be broadly separated into
(denoted SM in the graph) and those
the runtimes are so similar as to be

3.3. EVALUATION 47

While this might indicate a reason to disable spatial colour merging it should be
remembered that without this step the second spatial phase is prone to generating
very over segmented results. spatial colour merging should therefore be regarded
as an essential part of the process. It is the authors belief that with suitable
time a solution could be found to greatly reduce the time spent on spatial colour
merging as most of the computation of the process is actually spent converting
between the contents of the ID array and segments rather than merging regions.
For this reason if an implementation that omitted these conversion steps were
introduced, the processes speed would benefit greatly.

Increase in Performance due to Non-spatial Colour Merging

As the non-spatial colour merging step works directly with the values in the ID
array, and serves to reduce the number of regions to undergo segmentation in
the second phase, a small but uniform increase in performance can be observed
when it is enabled. The effect can be observed in Figure 3.23 where in both
bands of performance the fastest procedures were those with non spatial merg-
ing enabled. As the process also increases the quality of the segmentation by
eliminating extremely similarly coloured regions it should be enabled by default.

Linear Increase in Runtime with &

A set of 20 runs though the colour and greyscale image was performed with the
Two Phase K-Means with k ranging from 1 to 20. The raw results can be seen
in Appendix A.3. Figure 3.24 summarises the results of the tests and clearly
shows the procedure to be linear with respect to varying k.

3.3.2 Comparison with Hand Segmentations

To attempt to quantitatively assess the performance of the quality of the seg-
mentations produced by the procedures it was necessary to produce a measure
that compared the segmentations to some ground truth. This could easily be
achieved by checking to see if the segments produced exactly matched those in a
hand segmentation, but several problems with this approach exist.

e Non-Unique Solutions

Two different segmentations may be of equal quality. If one single ground
truth is used to evaluate them how can it possibly differentiate?

e What is a Good Segmentation?

The items that might be of interest in one context may be completely
useless in another. Where the boundaries lie depends on what objects you
are trying to find.

48 3. FLAT METHODS

5800

5600 -

5400 —
5200

5000 - ol

4800 —+

4600

4400 —

4200
4000
3800
3600

3400 T T T T T T T]
0 2.5 5 7.5 10 12.5 15 17.5 20

k

Average Time (ms)

Figure 3.24: A graph of the performance of the K-Means method, vaying &k from
1 to 20. The timings shown are in ms

To answer both of these questions it was decided that the hand segmentations
produced should follow the boundaries of objects that any object centric segmen-
tation should pick out. This means that the regions defined in the segmentation
follow the boundaries of the most significant objects in the scene rather than the
most prominent boundaries of colour. It also means that in the instance where
a human observer would find it hard or ambiguous to place an exact boundary
none was placed. This situation arises, for example, when tracing the outline of
a tree; although the basic shape can be seen when the edge is inspected closely
it becomes increasingly difficult to decide what is leaf and sticks and what is

background.

To answer the question of non unique solutions, we have already stated that the
objects we have highlighted in the hand segmentation are so obvious that any
segmentation should pick them out. This means to say that although there may
be many segmentations all should contain at least these objects.

The Weighted Segment Coverage Measure (WSCM)

The WSCM was developed to allow the comparison of two segmentations that
may differ but follow the same boundaries of the hand example and conclude
that they represent the same quality. Briefly the WSCM is a measure that will

e ——r———— ==

3.3. EVALUATION 49

return 100% for any segmentation that has regions that never cross the bound-
aries defined in a specified hand segmentation and 0% for a completely random
allocation of pixels.

For clarity the predefined regions will be refered to as objects and the regions
being considered for evalutation will be refered to as segments. If S _, are the
segments to be compared with the defined objects Oy, ., then the WSCM is as

follows:
n m Si I O 2 1
Wscn(S1..m, Ol...m) = ((Z LWO-?—'I) B 1) (m == 1)
1 7

i=1 j=1

The inner summation of the equation is a weighted sum over object O; of the
percentage of segment S; in O; weighted by the percentage of O; that it covers.
The percentage of S; in O; is given by |S; € O,|/S; and the percentage coverage
of O; is given by |S; € O,]/0;. The sum of all the fractions of O; will be 1 and
therefore the inner summation will be at a maximum when the percentage of S;
in O; for every i is also 1, that is to say that each .S; in O; is wholly in O;.

As this sum is performed for all m objects the central section is divided by m
to produce a number in [0,1]. This would be the case if the minimum of the
summation over m were indeed 0, but it can be shown for a purely random
assignment of segments the minimum is in fact # For this reason the further
scaling evident in the equation is performed to return the measure to the full
range of [0, 1].

Properties of the WSCM

e A completely random allocations of pixels will have a WSCM of 0% for any
predefined segmentation

Any segmentation with regions that do not cross any boundaries in the
defined segmentation will have a WSCM of 100%.

Therefore a segmentation consisting of every pixel in its own region will
have a WSCM of 100%.

The larger a number of segments a segmentation contains the closer to this
situation it will be and so the higher WSCM it will have.

Therefore values of WSCM are only comparable between segmentations
with equal numbers of segments upon the same predefined segmentation.

Testing Segmenters: Crystal, Grid and Random

The fact that WSCM values are only directly comparable between segmentations
with equal number of segments (as it is easy to get a high WSCM with a high

50 3. FLAT METHODS

number of segment) is a severe draw back, as this will undoubtedly be the case
for most examples. To combat this several testing segmenters were developed
to randomly segment the image in a specified way into a specified number of
segments. As these testing segmenters completely ignore the contents of the
image they can be deemed to represent the value that is returned by utterly
uniformed segmentation. Therefore the performance of any segmentatation can
be evalutated in terms of how significantly it beats these random segmenters.
The different segmenters are as follows:

e Crystal Segmenter

This segmenter is in fact the K-Means segmenter set to perform spatial
segmentation over the whole image without any filtering of merging. As
there is no colour information to work with this will produce polygonal
segments independent of the contents of the image. The segmenter is called
the Crystal segmenter due to the crystal like output. This segmenter is
highly useful as it can produce a random clumped segmentation with any
number of segments by specifying k.

e Grid Segmenter

The Grid segmenter chops the image into a regular grid using the square
number which most closely approximates the required number of regions.
As the Grid segmenter cannot exactly match the number of regions required
its WSCM value will always be given as a tuple including the actual number
of segments produced.

e Random Segmenter

The Random segmenter allocates the pixels in an image to a specified num-
ber of regions completely randomly. The WSCM value of this segmenter
should always be very close to 0%.

The WSCM Results

A series of tests were conducted to obtain the WSCM measures for various set-
tings of the Region Grower and Two Phase K-Means processes. Twenty repe-
titions of the algorithms were performed upon a test set of 5 images with hand
segmentations. The Region Grower was run at thresholds 50, 100 and 200 with
SNN on and off. K-Means was run with k =6,12 and 18, spatial merging at 2000,
non spatial merging at 1000 and ID filtering on a 2 pixel radius with 0% thresh-
old. For full results and details of the WSCM results collected see Appendix
A.5.

To allow the WSCM values to be compared between the various techniques it
is necessary to account for the fact that high numbers of segments are likely
to increase the WSCM value. This was achieved by dividing the WSCM value

Fr——

3.3. EVALUATION 51

w
n
w n

n
Y
[$ 4,1

2.25

N

Performance relative to Crystal Segmenter
i

1.75
Average K-Means
1.5 : Average Region
Average Region
125 Growet with SNN
1
075 F—— e
. ~ == T
05 \\
0.25
O T T T 1
1 2 3 4 5
Image

Figure 3.25: A graph of the performance of the adjusted WSCM values for the
average of the Two Phase K-Means and Region Grower runs.

obtained from a run of the segmenter in question by the WSCM value obtained
from the Crystal Segmenter set to produce the same number of segments that
were produced in that run. This gives an estimator for the performance relative to
an uninformed segmentation technique and is referred to as the adjusted WSCM.

Figure 3.25 shows the average adjusted WSCM performance of the Two Phase
K-Means, Region Growing and Region Growing with SNN. It can be seen that the
K-Means approach achieves a significant improvement over the Region Grower
due to the vastly smaller number of regions produced. Figure 3.26 shows this
more clearly with the average number of regions produced and the ranking of the
algorithms based on the adjusted WSCMs for each image.

The K-Means based approaches all rank above the Region Growers and all runs of
the Region Grower with SNN enabled rank above the same threshold run without.
While the increase in significance may only be small for enabling SNN, the number
of regions is always significantly reduced (usually around the order of one half).
In this ranking the low threshold Region Growers perform well but the number
of segments produces is very high and so the significance of the segmentation is
reduced. Other than this the subjective comparisons which follow confirm that
this ranking accurately represents the significance of the segmentations produced;
particularly as the Two-Phase K-Means based approaches achieve a very high
WSCM measure with extremely low segment counts compared to the Region
Grower.

52 3. FLAT METHODS

Process Mean Rank | Mean Segments
k=6 (2,0%) 1.2 9.1
k=12 (2,0%) 2.0 16.2
k=18 (2,0%) 2.8 21.0
Reg 50 SNN 5.6 2161.6
Reg 100 SNN 5.8 501.0
Reg 50 6.2 3943.0
Reg 100 6.4 864.0
Reg 200 SNN 7.0 175.6
Reg 200 8.0 287.0

Figure 3.26: A table of the relative rankings of the procedures based on the
adjusted WSCM and the average segments produced during segmentation.

3.3.3 Subjective Comparison

Subjective Performance A difficult but important topic to discuss is the qual-
ity of segmentation as it appears to a human observer. Necessarily such assess-
ments of quality will be subjective but serve to highlight important features of
the performance of the various procedures that other measures do not. Note
that all images given in this section are presented in false colour to highlight the
different regions.

Region Grower

To produce example images for the region grower the process was run at various
colour thresholds with and without SNN filtering to illustrate the effect. WSCM
values are also included. As this mesure is only directly comparable with values
produced from segmentations resulting in an equal number of segments values
are also given for the Crystal Testing segmenter and Grid segmenter. As the grid
segmenter can only segment to the nearest square number, values are given as a
tuple of the actual number of segments produced and the WSCM.

3.3. EVALUATION 53

Threshold=25 Threshold=25, SN

Segments = 9227 WCSM = 91% ' Segments = 4987 WCSM = 89%
Crystal = n/a Grid = (9216, 62%) Crystal = 84% Grid = (4900, 69%)

Obviously such a small threshold has caused the image to be highly oversegmented
in both cases (at nearly 10000 segments). Although the WSCM is high, with this
many segments almost any segmentation would achieve a good measure. It can be
seen that the segmentation is not scoring significantly above the Grid segmenter.
The Testing Crystal segmenter did not complete after 20 minutes and so the
attempt was abandoned. This is not surprising as it is essentially identical to
running K-Means with k = 9227.

The application of the SNN filter nearly halves the number of regions produced
while preserving almost the same WSCM. Many small noise segments are visible
in the water section of the image without filtering which are subsequently removed
by the filtering process. Although some structure is visible a less strict threshold is
obviously required to differentiate between noise and structure. It is difficult even
for the human observer to pick out the structure of the boat and its occupants
with this many subdivisions.

The nature of the region spreader is to segment, very precisely, each patch of
colour under the specified threshold. In the case that two very similar regions
are separated by even one pixel there will be no merging of the regions. This
can be seen in the water where the ripples each form their own individual regions
despite strong similarities and spatial proximity.

e

B

54 3. FLAT METHODS

Threshold=100 Threshold=100, SNN

1

T
Segments = 353 WCSM = 55% Segments =273 WCSM =48%
Crystal = 56% Grid = (324, 55%) Crystal = 52% Grid = (256, 48%)

It is immediately clear that the segmentation at threshold 100 is significantly
better with the large scale features such as the boat and birds visible. This
improvement is not apparent in the WSCM where in both cases the WSCM
performance has been equivalent to the random segmenters. In this instance the
measure is unrepresentative as many of the larger segments do indeed correspond
well to features in the image.

In tandem with the clarity of structure in this segmentation the number of seg-
ments produced has been dramatically reduced. Again enabling the SNN filtering
reduces the segment count, however in this case the WSCM has been more sig-
nificantly effected.

Event though many of the large scale features are well represented the segment
count is still very high compared to the number of significant segments observable
in the image. The temptation would be to increase the threshold in order to try
and eliminate these smaller regions. However it can be observed in both images
the the birds wing in the lower left hand corner has already been absorbed into
the water segment and any further increase in threshold will on exacerbate the
problem.

o
ey |

3.3. EVALUATION

Threshold=100, SNN

Segments = 118

WCSM = 18%

Crystal = 40%
Grid = (100, 33%)

When the threshold is reduced again many of the smaller features are obliterated
as predicted. The WSCM suffers accordingly and the process significantly under
performs the random segmenters. Although this is the case for this image it is
possible that an image with a larger dynamic range could benefit from such a
high threshold.

Two Phase K-Means

For the Two Phase K-Means example images settings of £ = 6, Non-spatial
Colour Merging (NSM) threshold of 1000 and a spatial Colour Merging (SM)
threshold of 2000 were used. A setting of 3 iterations was used and filtering was
set to 2px radius and a threshold of 0%.

T

T

56 3. FLAT METHODS

No Filter
i

Segments = 22 WCSM = 61% Segments = 14 WCSM = 62%
Crystal = 19% Grid = (16, 15%) Crystal = 14% Grid = (9, 11%)

This example was created to illustrate the effect of disabling spatial merging. As
is clear from the left image there are large artefacts in the form of false boundaries
in continuous regions; most notable in the background and boat. For this reason
the use of spatial merging is strongly recommended. In the right image the results
can be seen on a different run where the similar regions in the water particularly,
have been merged into one. Notice how the segmentations are different due to
the randomised seeding points.

The number of segments produced is far lower than any of the region growing
and is capped by k? which in this case is 36. Despite this limit on numerous
segment the procedure manages a WSCM far in excess of the testing segmenters.
In addition the spatial merging reduces the segment count again without effecting
the WSCM. This implies that each of the segments in the merged region are of
higher significance. Indeed most of the regions in the merged image can be seen
to strongly correspond to a feature in the image.

Note that unlike the Region Grower the Two-Phase K-Means approach classes
all of the bodies and wings of the birds in the bottom left hand area as one region
in the non merged image. In this case this is an acceptable interpretation as a
likely human response to the question "What are the important features of this
image?” may well be "The birds there”. In other cases this linking of regions is
not a desirable property and can be counteracted by increasing k.

There are detectable single pixel and small island parts of regions visible partic-
ularly in the bottom left hand corner of the merged image. These are the results
of the colour phase producing highly non-connected regions. This is exactly the

en
|

3.3. EVALUATION

noise that ID filtering is designed to prevent.

ID Filtering Enabled

Segments = 8

WCSM = 65%
Crystal = 11%
Grid = (9, 11%)

Once the filtering has been enabled the resultant segmentation exhibits far fewer
small island regions. In addition the individual segments are more contiguous. In
this example run a very respectable WSCM of 65% was achieved. In comparison
with the region grower the 8 segments produced here correspond more strongly
to the image than the more than 300 produced in the threshold 100 runs.

The effect of undesirable linking however can be observed where the chest and
feet of the lone bird are classed as the same as the lighter region of the rock.

Summary of Subjective Results

The segmentation performance of the K-Means based approach can be seen to
far exceed that of the region grower. However T'wo Phased K-Means is a variable
process and is not guaranteed to always give such predictable results as the region
grower. In some of the runs above areas of the birds wings were omitted from
the segments produced by the Two Phase K-Means segmenters, but on occasions
the birds themselves are omitted altogether.

Furthermore the image used plays to the strengths of the Two Phase K-Means
approach as it contains a limited number distinct objects separated by generous
gaps. As can be seen from the results of the spatial Colour Merging section when
the proximity of distinct objects reduces, k£ must be raised correspondingly to
compensate. Thus on very densely populated images where under segmentation

ey ——

58 3. FLAT METHODS

is not acceptable region growing may be preferable.

4. Hierarchical Methods

In this section two techiniques are presented that tackle different versions of the
problem of extracting hierarchical information from an image. The Graph Based
Segmenter generates a hierarchy based on connected component analysis of a
previous segmentation; whereby the hierarchy corresponds to unions of regions
which contain the unions of other regions grounded from the edge of the image.
The Two Phase K-Means approach however produces hierarchical results based
on the scale of details in regions of an image.

While both may be examples of hierarchical segmentation technicues their results
as quite different as can be observed in the subjective comparison section of this
chapter.

4.1 Graph Based Hierarchical Segmenter

The graph based hierarchical segmenter is in fact the flat region growing method
with a post processing step applied to detect the connectedness between pixels
and construct a Regional Adjacency Graph (RAG). From each region this RAG
catalogues the regions which it is connected to. A graph processing step is then
taken that converts the RAG to a Regional Hierarchy Graph (RHG) which at-
tempts to capture the notion of the union of regions surrounding other regions.
RAG Representation

The RAG in this case is stored as a set of nodes of the format (Node# ,{nodes
connected to}). The zero node is taken to represent the outside region.

For example in Figure 4.1 the segmented image (left) with labelled regions

Figure 4.1: An example image and 5 false colour segmentations at various levels
of ID filtering with a filter threshold of 0 % .

59

60 4. HIERARCHICAL METHODS

and the corresponding Regional Adjacency Graph (right) the RAG would be as
- follows:

0: {1,2,5}

1: {0,5,2}

2: {0,1,3,4,5}
3 {2,4}

4: {2,3}

5. {0,1,2}

Considering how to construct a hierarchy, it is not immediately clear what the
parent of regions 3 and 4 should be as neither is completely surrounded by 2. It
is clear that in some sense 2 surrounds both regions and so should be above both
3 and 4 in the hierarchy: in this method we will say that 2 surrounds the new
region composed of 3 and 4. It is important to state that this is not the same
as merging regions 3 and 4; we are merely stating that they have similarities in
the hierarchical placement. We can also clearly say that region 0 is the root of
the hierarchy from which all other regions follow. Given that 1,2 and 5 do not
surround each other in any way, they must be at the same depth in this sense.
Therefore the hierarchy we can construct is as follows:

{0} parent of {1,2,5} parent of {3,4}

This should be interpreted as region 0 surrounding the multiple region group
{1,2,5} which in turn surrounds the multiple region group {3,4}. Note that in
this representation the fact that 2 is the sole parent of {3,4} is not preserved.

RAG to RHG Algorithm

To retain all of the information of this nature and facilitate processing consider
a new data type, called an RHG entry (Regional Hierarchy Graph entry), which
contains :

Nodes[] A list of nodes in this region group (replacing the Node#)
Depth An integer depth from the 0 group.

Edges[] All vertices connected to those in the node list.

Above[] All nodes in Edges[] with greater depth

Same[] All nodes in Edges[] with equal depth

Below[] All nodes in Edges[] with lesser depth

To initialise the process one RGH entry is made for each entry in the RAG where
Nodes[] includes only the Node# , and Edges[] contains the edges as in the
RAG. The depth is set to -1 (to indicate not set yet) and all other sets are
empty, bar Same[] which contains the Node#. A list Todo[] is composed of all
the entries. An empty list Done[] to store the results and another intermediate
empty list Processing[] are also initialised. For this process it is assumed that
all nodes are connected to themselves.

4.1. GRAPH BASED HIERARCHICAL SEGMENTER 61

The RAG to RHG algorithm is then:
Begin with only the entry with node list \{0\} in Processing[].

WHILE Processing is not empty:
Remove the first entry e in Processingl[]
FOR every node n in e.Edges([]:
IF the entry e2 for n is in Todol[]
set e2.depth = e.depth
remove e2 from Todol[]
add e2 to the end of Processingl]
ELSE e2 = the entry containing n in its node list
(either in Processing[] or Donel])
IF e2.depth = e.depth
merge all sets of e and e2 into e
remove e2 from Processing(]
IF e2.depth >= e.depth
add e2 to Abovel]
END FOR
IF e.nodes[] = e.samel[]
add e to Donel]
ELSE
add e to the head of Processingl]
END WHILE

The effect of this process is to generate a depth based on the distance from the
edge of the image. Any segment connected to the edge of the image will have
depth 1 and any regions which are enclosed by a union of these regions will have a
depth of 2 and so on. The depth that a region will be placed at can be calculated
by observing the minimum number of regions that you have to cross though to
get to the edge.

For example, the finished RHG entries for the example above looks as follows:

Nodes[] Depth Edgesl[] Above[] Same[] Belowl[]
{0} 0 {0125} {} {0} {1,2,5}
{125} 1 {0,1,2,3,4,5} {0} {1,2,5} {34}

{34 2 {2.3,4} {2} {34t {}

Note that the {3,4} group retains the information about its 2 being its single
parent in the Above[] list. It can be observer that this representation contains
all of the information of the previous formulation of an RHG along with the
specific information about the parents of a region.

62 4. HIERARCHICAL METHODS

4.2 Recursive Application Two Phase K-Means
Hierarchical Segmenter

The Hierarchical Two Phase K-Means is a recursive application technique based
upon the Two Phase K-Means process. The process operates on a multi resolu-
tion representation of an image in order to simultaneously reduce computational
demands and extract information about the image at different levels of abstrac-
tion. Unlike the Graph based approach this method is both hierarchical in is
proceduie as well as output. Multi Scale Image Representation

The process works upon an image pyramid where the lowest level is in 1-1 corre-
spondence with the source image and each subsequent layer on top is exactly half
the height and width. The Pyramid is obtained by averaging each four pixels in
a square regions to generate the pixel value for the layer above. The process runs
up to a specified depth, which determines the maximum number of recursions as
well as the hight of the pyramid and so the resolution of the smallest image at
the top of the pyramid.

Each layer in the pyramid has an attendant Two Phase K-Means segmenter
initialised on the image at that depth, this is to prevent the additional costs
of adjusting one segmenter to work at the different depths as the procedure
continues.

The Flow of Segmentation

The process is begins by initialising a root node for a tree based representation
which includes then whole image at the smallest level, represented as one region.
This region is the segmented using a regular Two Phase K-Means segmentation
upon the region and the image with matching scale. Each of the segments pro-
duced in this step are considered as children of the parent region and compared
against various recursion termination conditions. This is to prune recursion in
unsuitable regions which can allow large time savings as each pixel processed at
level n + 2 represents 4 pixels in level n + 1 and 16 in level n and so forth.

Children are pruned if they fall below a certain size as it is deemed that all the
important information has been gained at this level. Heuristically this level was
set to 7?5 of pixels in the image at the current resolution to allow the value to alter
with scale and k used. If only one child was produced then this was also pruned as
no further information has been gained. Lastly if the maximum recursion depth

has been reached recursion is also terminated.

For segmentation to take place at a more detailed resolution it is necessary to
rescale the parent segment prior to re-segmentation in to the the new larger
resolution. This is achieved by writing the value of each pixel in the parent region
into the corresponding four pixels below. This results in a blocky approximation

 EEESR———————..

e —

42 RECURSIVE APPLICATION TWO PHASE K-MEANS HIERARCHICAL SEGMENTER

to the true lower region; the higher in the hierarchy a region is produced the more
blocking effect produced.

Output produced

The process produces a tree of regions where each region represents a segment of
the image at the scale of the image at the specified depth. The hierarchy can be
viewed as a series of slices whereby each depth in the tree is painted to a separate
image. In this visualisation approach holes can be seen in layers where recursion
has prevented any data from being produced at that level. Another method to
" visualise the output is to paint all of the leaves of the tree to one image (scaling
as appropriate). These leaves should form one non overlapping segmentation for
the image.

Complexity

The runtime of the Two Phase K-Means process has been empirically shown to
be linear as one would expect. As there is a finite and fixed maximum number of
calls to the Two Phase K-Means possible for a set k and maximum depth Grmaz,
the hierarchical version will also have linear runtime. While this is comforting,
it is possible that this linear runtime will also be extremely long. To show that
this is not the case consider the number of pixels processed at a specific depth in
the tree. For convenience let the depth d be labelled so that the original image is
at depth 0 and all layers above are numbered accordingly. Then processing will
begin at d = dimaz and descend at most until d = 0. At the level d the fraction

d
of pixels compared to the image at depth 0 is %) as each image is one quarter
the size of the image below. One Two Phase K-Means call will be made at this

level and process %d of the base number of pixels. This will generate at most

k2 regions which will be re-segmented on an image of size (Zli) d—l, but none of
these regions share any pixels so each will process on average 'klg of these pixels.
Therefore the total number of pixels processed at each depth will simply be those
in the image at that resolution. This argument can be continued recursively to
show that every pixel in each of the image is processed at most once.

If relative to the base image each image is % of the size, then the upper limit
on the number of pixels it is possible to process can be calculated. Let n be the
number of pixels in the base image and let S be the limit of the number of pixels
processed as dmaz — 00.

S n

=n+z+ﬁ+a—3+
S__n n n o n
ITItETET R

e

64 4. HIERARCHICAL METHODS

45 -S5=35=4n
4

S=-n
3

Therefore the number of pixels processed will never exceed 5‘ of those in the base
image. While the Two Phase K-Means process is linear with the number of pixels
there is a cost associated with initialising the process to begin segmentation upon
a region. In general for a maximum depth of d the total number of calls to the
segmenter that can be made is k?¢. This is obviously highly exponential and for
suitably large d this would produce a very slow algorithm. In general there is
little requirement to set the maximum depth to more than 3 or 4. In this case
for a suitably small k& the process will run in a timely fashion. This is also the
worst case; for many segmentations the recursion termination conditions prune
a great enough proportion of the process to make the hierarchical formulation of
K-Means faster than the flat method.

4.3 Evaluation

4.3.1 Speed

As the runtimes of the two undelying processes are well understood a smaller
range of tests were performed to show the new behaviour of the hierarchical
algorithms. To compare the speeds the two processes were run upon the HIPR2[7]
image set. Only one repetition was performed due to the lengthy nature of the
runs. The Graph Based segmenter was run with SNN enabled at thresholds of
100 and 200. The Hierarchical Two Phase K-Means was run with spatial merging
at 2000, non spatial merging at 1000, ID filtering on at radius 2 pixels with 0%
threshold at k£ = 6,12 at a maximum depth of 3. The full results can be seen in
Appendix A.6.

As before the values for the runtimes have been scaled to millisconds / 1000 pixels
the results of which can be seen in Figure 4.2

It can be seen that the K-Means based approach appears once again to be linear,
coincidentally running under the 30 ms /1000 pixel boundary for all runs apart
from k = 12 on image width 64. Although a slight increase in runtime appears
for the 512 wide images. The graph based approach however appears to exhibit
strongly non-linear runtime with the per pixel runtime rapidly increasing with
the number of pixels. This is a highly undesirable property and is most likely due
in part to the complexity of the RHG algorithm but also due to the non linear
behaviour exhibited by the underlying region grower in previous test. From
experince the authour has indeed noted a strong increase in time based upon

4.3. EVALUATION 65

55 :
9 v

50 \\ =
w 45 d
G
Sl :
(o8 \ //
O s
8 35 \\ '
~— 30 o ®
- \ : m K=6
8 25 S —— |e k=2
cC) _._/“' / v Graph 100
o 20 5 P - R Graph 200
@ R T .
2L 15 N
= 10

5

O T T 1

64 128 256 512
Image Width

Figure 4.2: A graph showing the relative per pixel performance of the Hierarchical
methods with various parameters.

the number of nodes passed to the RHG algorithm, although this has not been
empirically shown here. Once again the Region Grower based method is out
performed by the K-Means based approach for larger images.

4.3.2 Subjective Comparison

To compare the subjective performance of the Graph based and the K-Means
based hierarchical methods, the two have been used to segment an artificial image
in which the hierarchy is obvious and a real image where is is not so. In order
to visualise the hierarchy of the graph based approach two new shading methods
are used. One which highlights in false colour all segments which form region
sets in the RHG and one that goes further by highlighting those at equal depths
also.

To visualise the output of the K-Means based approach the sliced images at each
resolution are given in tandem with the composite image obtained from painting
all of the leaf segments to one image.

Graph Based Region Growing Method

e ————

66 _ 4. HIERARCHICAL METHODS

A source image is show in the top left with the false colour segmentation result
of the region growing process on the top right. The bottom left image shows
the regions which have been grouped together by the RHG algorithm into region
groups and the bottom right colours these groups by depth. It can be seen
that the method correctly groups the objects which contain the smaller shapes.
This is most noticeable in the section of overlapping rectangles where the central
rectangle is not solely contained by either of the surrounding regions. The depth
hierarchy shows each of the regions to be grouped as one would expect, with all
of the object within the background at the same depth and the children of those
regions at the same depth.

4.3. EVALUATION 67

The four images provided here show the same information as before. Example
top left, segmentation result top right, region groups bottom left and depth graph
bottom right. Here we can see that the process has had a far harder job obtaining
any meaning full hierarchical information from the image. The boat and elements
of the birds are correctly children of the background lake area, however, the only
children of these sections are tiny details. In this a human response to assigning
a hierarchy would likely involve the concept of objects within the scene which
are not available to the program. For example a human observer may indicate
that the head is part of the person which is in the boat. If the human observer
is constrained not to use any such knowledge it is debatable whether a more
concrete hierarchy could be obtained.

Hierarchical Two Phase K-Means

ul

68 4. HIERARCHICAL METHODS

The images shown here are for the same example image as for the graph based
method. The top left shows the results of the first level of segmentation upon the
smallest scale image. All the images here have been scaled to the same size for
clarity but the top left images source size is only 128 x 128. The top left image
shows the second layer of the output at 256 x 256 where areas which contain no
information have been filled with a grey chequerboard pattern to differentiate
them from grey regions. These areas without information correspond to areas
where recursion upon the region at the level above has been terminated. The
bottom left shows the lowest layer of the image at the full 512 x 512. Finally the
composite of the leaves of the tree structure are shown in the bottom right.

It is immediately clear that this process is not extracting the same level of infor-
mation as the graph based segmenter. In fact all of the useful information from

4.3. EVALUATION 69

this hierarchy is gained at the highest level of abstraction. All further levels only
generate small regions to compensate for the blocky nature of the segments from
layers above.

Again the layout here is the same as above with the first three images (top left,
top right and bottom left) showing the process at the scales 128, 256 x 256 and
512 x 512 respectively and the composite of the leaves in the bottom right. Here
the type of information that this process is able to extract can be seen. At the top
levels the regions correspond to large scale features. As the resolution of the scale
increase the features picked out at each level increases in detail. T his distinction
highlights about the fundamental difference in the operation of the graph based
technique and the K-Means based technique. The graph based technique provides
a hierarchy based on surrounding of regions based from the edge of the image,

70 4. HIERARCHICAL METHODS

whereas the K-Means based approach provides a hierarchy based on the scale of
detail for different regions of the image.

S

A e)

rr=

5. Conclusion

The Two Phase K-Means Segmenter produced in the course of this project proved
to be a highly effective flat segmentation technique, highly configurable with good
runtime, producing a small number of significant regions. A number of quality
improving measures were introduced which successfully increase the significance
and connectedness of the output produced by the procedure. Using suitable & and
a suitable subset of these quality improving measures the runtime of the algorithm
can be altered to fit a range of specified time budgets. The Two Phase segmenter
as it stands is not without its problems. For example the current implementation
still includes inefficient code converting internally from ID arrays to vectors of
segments. Further more in the nature is the Two Phase K-Means is a lack of
predictable results and the production of non connected regions.

The Region Growing algorithm by contrast is deterministic in its output and
generates connected regions by definition. Though the use of the SNN filter the
procedure can be made more robust to noise and a significant reduction in the
number of regions can be achieved. The region grower is still prone to generating
large numbers of segments for any given image unless the threshold is set to a
point where details are lost.

Two hierarchical extensions of these flat techniques have been developed to tackle
the different issues of generating hierarchies that represent a notion of contain-
ment and hierarchies that capture different scales of detail in an image.

The Graph based approach has been demonstrated to produce reasonable hier-
archies representing containment based upon the notion of a Regional Hierarchy
Graph. An algorithm for converting from a standard Regional Adjacency Graphs
(RAGs) to these RHGs was presented although the speed of the algorithm is poor
for large numbers of nodes and remains to be proven.

The Hierarchical Two Phase K-Means process can capture scale in an image at
different levels of abstraction although the hierarchy strictly represents different
scales of detail these details are often associated with regions that contain then
rather than the objects in the scene that they are associated with. Despite the
complications of recursively applying the Two Phase Process to an iamge at
many different scales, the runtime of the algorithm is comparable with the flat
Two Phase K-Means due to the application of recursion termination conditions.

All of the work performed in this project was worked upon the native RGB
environment for compatibility with computing and imaging devices. This does
not necessarily make it the best colour space to work in for object identification.
Much good work has been performed on distance measures based on the HSV or

il

e

S

72 ' 5. CONCLUSION

HSI spaces. An none of the techniques here rely on a specific measure this work
could be applied with relatively little effort to the techniques provided here.

Although the adjusted WSCM goes some way toward an independent comparison
of the quality of two segmentations a more concrete statistical method would add
rigour to notions of one segmenter out performing another.

Further optimizations can always be applied to improve the performance a proce-
dure and there is still plenty of room for improvement in the JAVA code produced
for this project. A C coding of the methods provided here might also provide a
better basis for comparison with previous work.

T T s ———.

Appendix A. Generzﬂ Appendix

A.1 Proof of Modulo Arithmetic Traversal

f(p) = 3*p mod 2™

The moduluo arithemtic traversal function for input position p

The claim is that each p maps uniquely onto one output value for f(p). U f(p) =7

then the relationship can between p and 7 can be expressed as:

For some k, n, g ENU{0} with p,r € [0,2*").
Proof: '
Assume that 3p,p' € [0,2°"), p# ' st.

3kp =2%g+7r
3kpl = 22nql 47
Therfore:
3kp o 22nq - 3kpl - 22nql
3*(p—p)=2"(¢—4)

Let M = 3*(p—p') = 2°*(¢—¢) then as (q—q'), (p—7') €Z, M is clearly divisible
by both 3 and 92n A 2 and 3 are both prime, then by the uniqueness of prime

factorisations M = N3F22" for some N € NU{0}. Therefore:

M = N3*2’" = 3(p - p')
N2 = (p-p)
p= N22n +pl

As p < 22" and p' > 0 then N = 0 which implies p = 7.

Contradiction: However in our assumptions it is stated that p # p’. Therefore
we must conclude that there exist no such p and p' and that each p uniquely

specifies a particular 7.

73

— T ——— e

s

74

APPENDIX A. GENERAL APPENDIX

A.2 Results of the Flat Methods Speed Tests

The full results of the Region Growing and flat Two Phase K-Means speed tests.
For more deatials about the setup used in the test please refer to Section 3.3.1.

Threshold SNN | Test Set | 64 x 64 128 x 128 256 x 256 512 x 512
50 Oft BW 44.57 183.01 769.57 3820.30
Col 61.95 215.75 847.81 3900.98
50 On BW 44.25 179.58 772.59 3825.51
Col 58.76 215.95 845.98 3904.07
100 Oft BW 40.70 180.80 794.56 4150.02
Col 53.12 192.46 788.34 4101.36
100 On BW 38.10 174.63 785.10 4178.53
Col 92.46 187.61 803.68 4112.64
200 0)i3 BW 38.47 173.31 846.55 4150.02
Col 58.75 212.02 924.69 5161.32
200 On BW 36.92 169.24 844.84 4923.71
Col 58.07 210.10 934.64 5028.14

The timings of the Averaging Region Grower run upon two sets of images with
various parameters. All timing given are in ms.

ID Filter NS Merge S Merge | Test Set | 64 128 256 512
Off Off Oft BW 51.61 194.92 713.01 2975.21
Col 73.85 224.93 773.80 2989.03
Oft 1500 Oft BW 51.61 194.10 714.92 2968.38
Col 66.58 222.32 767.32 2994.27
Off Oft 2000 BW 61.04 245.84 891.43 3739.42
Col 86.54 286.68 972.80 3753.51
Off 1500 2000 BW 61.10 245.69 892.49 3683.08
Col 03.37 276.32 948.07 3742.68
2px, 0% 1500 2000 BW 61.52 255.42 913.94 3918.47
Col 01.83 307.22 1008.00 3937.58
3px, 33% 1500 2000 BW 61.35 245.69 902.88 3730.71
Col 01.14 270.86 953.71 3752.46

The timings of the Two Phase K-Means segmenter run upon two sets of images
with k = 6, separated seeding and various other parameters. All timings given
are in ms.

A.3. RESULTS OF SPEED TEST OF VARYING K 75

A.3 Results of Speed Test of Varying k

The results of running Two Phase K-Means upon the HIPR image library with &
ranging from 1 to 20. For these runs spatial merging was set to 2000, non spatial
merging 1000 and ID filtering was set to a radius of 2 pixels and 0% threshold.

% | Colour Time (ms) Greyscale Time (ms) Mean Time (ms)
1 3536.16 3581.76 3556.57
2 3626.24 3632.88 3616.72
3 3745.51 3787.95 3762.68
4 3840.96 3870.59 3848.03
) 3950.58 3973.80 3952.34
6 4065.16 4071.42 4053.59
7 4192.43 4215.90 4193.41
8 4305.35 4342.90 4316.56
9 4420.38 4433.36 4412.48
10 4523.65 4583.54 4550.94
11 4631.63 4728.15 4686.29
12 4748.20 4842.53 4800.73
13 4863.17 5006.83 4952.68
14 4944 .46 5129.20 5064.83
15 5061.73 5207.39 5151.96
16 5150.81 5353.08 5283.66
197, 5231.84 5486.51 5404.13
18 5316.27 5627.90 5531.46
19 5429.34 5736.34 5640.56
20 5812.22 5560.22 5597.60

A.4 5 Hand Segmentations

Test Images 1 to 5 and thier defined hand segmentations.

S e —

APPENDIX A. GENERAL APPENDIX

I~

I—

A.4. 5 HAND SEGMENTATIONS

e e e ————

78 APPENDIX A. GENERAL APPENDIX

A.5 Results of the WSCM Tests

WSCM Values The WSCM values for different runs of Two Phase K-Means
and Region Growing. Note the Two Phase K-Means was run with non spatial
merging of 1000 and spatial merging of 2000 with ID filtering set to radius 2
pixels and threshold 0%. Each was repeated 20 times and averaged.

Method Image 1 Image 2 Image 3 Image4 Imaged
KMeans k = 6 0.77 0.40 0.36 0.55 0.45
KMeans k=12 | 0.72 0.48 0.53 0.60 0.48
KMeans k=18 | 0.62 0.45 0.60 0.63 0.45

Reg 50 0.70 0.73 0.93 0.75 0.72
Reg 100 0.95 0.65 0.66 0.52 0.38
Reg 200 0.49 0.43 0.18 0.18 0.20
Reg 50 SNN 0.69 0.69 0.93 0.74 0.68
Reg 100 SNN 0.94 0.53 0.66 0.50 0.36
Reg 200 0.48 0.36 0.19 0.19 0.20

Segments Produced

Note integer values are left as, all others are given to 2dp.

—— e m———

A.5. RESULTS OF THE WSCM TESTS

Method

Image 1 Image 2 Image 3 Image 4 Image d

KMeans k=6
KMeans k =12
KMeans k =18
Reg 50

Reg 100

Reg 200

Reg 50 SNN
Reg 100 SNN
Reg 200

5.95
8.40
10.15
2146
629
95
1080
267
34

8.70
17
20.55
5819
785
63
2457
264
30

10.95
26
39.60
5306
1396
539
3528
1008
426

11.35
18.45
22.50
2067
353
118
1099
273
85

8.40
11.15
12.20

4377
1157
620
2644
693
303

Testing Crystal Segmenter WSCM values

For comparison the crystal segmenter was set t0 the same number of segments
produced by each procedure and run upon each image to gain a basis for com-
parison. The WSCM values are give below:

Method Image 1 Image 2 Image 3 Image 4 Image d
KMeans k = 6 0.35 0.21 0.31 0.15 0.34
KMeans k=12 | 047 0.32 0.48 0.21 0.34
KMeans k=18 | 0.49 0.35 0.57 0.21 0.38
Reg 50 0.93 0.91 0.94 0.76 0.94
Reg 100 0.88 0.71 0.90 0.55 0.88
Reg 200 0.76 0.42 0.84 0.41 0.84
Reg 50 SNN 0.91 0.79 0.93 0.67 0.92
Reg 100 SNN 0.83 0.57 0.89 0.51 0.85
Reg 200 0.63 0.38 0.84 0.36 0.79

Relative WSCM values

These values are the WSCM values produced by each process divided by the

WSCM produced by the crystal segmenter to produce a comparable value.

Method Tmage 1 Image 2 Image 3 Image 4 Image 5
KMeans k = 6 2.20 1.88 1.16 3.56 1.31
KMeans k=12 | 1.54 1.51 1.10 2.86 1.40
KMeans k=18 | 1.27 1.30 1.05 2.98 1.19
Reg 50 0.75 0.81 0.99 0.98 0.78
Reg 100 1.08 0.92 0.73 0.95 0.43
Reg 200 0.65 1.02 0.22 0.45 0.24
Reg 50 SNN 0.76 0.88 1.00 1.10 0.74
Reg 100 SNN 1.14 0.93 0.75 0.98 0.43
Reg 200 0.77 0.95 0.23 0.54 0.25

T

80 APPENDIX A. GENERAL APPENDIX

A.6 Results of the Hierarchical Speed Tests

The results of the runs of the Hierarchical Two Phase K-Means and Graph Based
Segmenter upon the HIPR2[7] image set.

Technique Image Size Col Time (ms) Grey Time (ms) Mean Time(ms)

HTPK-Means k =6 64 99.8 65.61 73.45
128 307.19 276.79 282.88

256 1023.34 1166.94 1128.23

512 4366.46 5305.65 5061.8

| HTPK-Means k = 12 64 269.24 202.22 217.29
128 449.83 409.41 417.35

256 1607.75 1622.27 1612.31

512 7467.05 8097.34 7915.48
Grapher 100 SNN 64 91.51 58.65 66.2
128 291.61 249.26 258.3

256 1418.63 2146.16 1965.16

512 17047.03 12738.66 13708.36
Grapher 200 SNN 64 73.49 54.54 58.81
128 260.39 233.4 238.86

256 1228.75 1144.86 1160.14

512 6588.54 6195.46 6263.72

Appendix B. Code Appendix

B.1 KMeans

package javaseg.segmenter;

import javaseg.image.*;
import javaseg.image.color.*;
import javaseg.filter.x;

import java.util.*;
public class KMeans extends Segmenter implements ReSegmenter{

//The integer relating to the mean a pixel is allocated to

public int[] id;

//The colour and position values of the means

protected double[][] mean;

protected double[] [oldmean;

//The number of points in this mean

protected int[] size;

protected int k, iteratioms, idFilterSize, meanSeparationDistance;

protected boolean segmentColor = true;

protected boolean filterlds = true;

protected double idFilterThreshold = 0.5d;

protected int meanSetupType = 0;

public KMeans(ImageData image, TreeMap settings){
super(image,settings);

}

public KMeans(ImageData image) {
super (image) ;

}

public KMeans(){
super();

}

public KMeans(int x, int y){
this(new LinearImageArray(x,y));
}

public String getName O{
return "Basic KMeans";

}

public TreeMap getDefaultSettings(){
TreeMap set = super.getDefaultSettings();
set.put("ITERATIDNS","3");
set.put("K","6");
set.put ("SEGMENT COLOR", "true");
set.put("ID FILTER","true");
set.put ("ID FILTER SIZE","7");
set.put("ID FILTER THRESHOLD","0.5");
set.put ("MEANS SETUP (sep/rnd)","sep");
set.put ("MEAN SEPARATION DIST","100");
set.put ("COLOR COLLAPSE THRESHOLD; ", "4000") ;

return set;

81

=

e —————————

82

}

public void loadSettings(TreeMap settings){
super.loadSettings(settings);
iterations=getSettingInt("ITERATIONS");
k = getSettingInt("K");
segmentColor=getSettingBoolean("SEGMENT COLOR") ;
idFilterThreshold=getSettingDouble("ID FILTER THRESHOLD");
filterlds = getSettingBoolean("ID FILTER");
jdFilterSize = getSettingInt("ID FILTER SIZE");
String setup = getSettingString("MEANS SETUP (sep/rnd)");
if (setup.equals("sep"))
meanSetupType=1;
else if(setup.equals("rnd"))
meanSetupType=0;
meanSeparationDistance= getSettingInt ("MEAN SEPARATION DIST");
}

public void setImageData(ImageData image){
this.image=image;

}

protected void setUpVars () {

mean=new double(k][5];

oldmean=new double(k][5];

size=new int[k];

segments = new Vector();

for(int i=0;i<k;i++){

segments.add (new PlainColorSegment());

}

//Note id setup moved from setImageData

setUpIds(image.getWidth()*image.getHeight());
}

private void setUpIds(int max){
id = new int[max];
for(int i=0;i<id.length;i++){
idfi]=-1;
}
}

protected void setUpMeans O{
switch(meanSetupType){
case 0:
setUpRandomMeans () ;
break;
case 1:
setUpSeparatedMeans () ;
break;
}
}

protected void setUpRandomMeans (){
for(int i=0;i<mean.1ength;i++){
mean[i][0]=(int)(Math.random()*256);
mean[i][1]=(int)(Math.random()*256);
mean[i][2]=(int)(Math.random()*ZSS);
mean[i][3]=(int)(Math.random()*image.getWidth());
mean[i][4]=(int)(Math.random()*image.getHeight());
for(int j=0;j<5;j++){
oldmean (i} [j1=mean[il [j];
}
}
}

APPENDIX B. CODE APPENDIX

B.1. KMEANS 83

protected void setUpSeparatedMeans(){
int attempts = 100;
for(int i=0;i<mean.length;i++){
setRandomImagePointMean(i);
}
boolean done = false;
while(--attempts>=0){
done = true;
for(int i=0;i<mean.length;i++){
double dist = 1000;
double meanid = -1;
for(int j=0;j<mean.length;j++){
if((j!=1) &k getDistance(mean[i],mean[j])<meanSeparationDistance){
setRandomImagePointMean(i);
done=false;
}
}
}
if(done) break;
}
}

private void setRandomImagePointMean(int m){
int x = (int) (Math.random()*image.getWidth());
int y = (int) (Math.random() *image .getHeight ());
int[] ¢ = image.getColor(x,y);
mean [m] [01=c[0];
mean[m) [1]1=c[1];
mean [m] [2]=c[2];
mean [m] [3]=x;
mean [m] [4]=y;
}

protected void colorCollapse(int colorCollapseThreshold){
for(int i=0;i<(mean.length-1);i++){
if(size[i]!=0){
for (int j =i+ 1; j < mean.length; j++) {
if (getDistance(mean[i], mean{jl) < colorCollapseThreshold)
collapseMeans(i, j);
}
¥
}
}

protected void spatialColorCollapse(int colorCollapseThreshold){
int width = image.getWidth();
for(int i=id.length-1;--i>=0;){
if(ialil!=-1 &k id[i+1]!=-1 && //Check that neither of the values are not assigned
jd{i}'=id[i+1] && //If the tvo adgacent IDs are not equal (otherwise there is no point)
(Ci+1)%width!=0) && // and we are not at the edge of a row
(getDistance(mean[id[i]].mean[id[i+1]])<colorCollapseThreshold)){
//and the distance between them is sufficiently small
collapseMeans(id[i],id[i+1]);
}
if ((i+width)<id.length &&
id[i)!=-1 &k id[i+width]!=-1 &&
id[i]!=id[i+width] &&
(getDistance(mean[id[i]],mean[id[i+width]])<colorCollapseThreshold)){
collapseMeans(id[i],id[i+width]);
}
}
}

private void collapseMeans(int i, int i)
for(int a=0;a<5;a++){

84 APPENDIX B. CODE APPENDIX

mean[i] [a)=(mean(i] [a]l+mean[j] [al)/2;
}
size[il+=size[j];
size[j]=0;
replaceID(j,1);
}

private void replaceID(int replace, int with){
for(int i=id.length;--i>=0;){
if (id[i)==replace) id{il=with;
}
}

public void resegment(Segment s){
this.loadSettings(settings);
setUpVars();
setUpMeans () ;
setUplds(s.getSize());

while(iterations>0){
iterations--;
iterate(s);
update0ldMeans();
}

for(int i=0;i<id.length;i++){
PlainColorSegment stemp = (PlainColorSegment) segments.elementAt(id[il);
int[] xy = s.getPixel(i);
stemp.addPixel (xy[0],xy[1],image.getColor(xy[0],xy[11));
stemp.color=new int[}{(int)mean(id[i]][0],
(int)mean[id[i1][1], (int)mean[id[i]1][2]};
3

}

private void updateOldMeans(){
double diff = O;
for(int i=0;i<k;i++){
diff+=ColorComparator.euclidianNDistance(mean[i],oldmean[i]);
for(int j=0;j<5;j++){
oldmean([i] [jJ=mean(i] [j];
} F
}
//if (dif£<50){
//System.out.println("Convergence below 50 detected, early finish.");
//break;
1/}
}

protected void iterate(Segment s){
int[] xy = new int[2];
int[] c¢ = new int[3];
int m;

for(int i=0;i<id.length;i++){
xy = s.getPixel(i);
¢ = image.getColor(xy);
m = findClosest(c,xy);
updateMean(m,c,xy,1i);

1

public void segment(){

B.1. KMEANS

System.out.println("KMeans seg called");
setUpVars();
setUpMeans();
while(iterations>0){
iterations--;
iterate();
update0ldMeans();
¥

if (filterIds)
id = IDFilter.linearIdModeThresholdFilter(id,image,
k,idFilterSize,idFilterThreshold);
colorCollapse(4000);

writeIdsToSegments();
}

protected void iterate(){

int[] xy = new int[2];

int[] ¢ = new int[3];

int m;

for(int i=0;i<id.length;i++){
Xy = image.getXYPosition(i);
¢ = image.getColor(xy);
m = findClosest(c,xy);
updateMean(m,c,xy,i);

}

}

//Given a particular colour and posistion value returns the integer relating
// to the mean it most closely resembles.
protected int findClosest(int[] ¢, int(d xy){

double[] point = new double[1{c[0],¢c[1],cl2],xy[0],xy[1]1};

double dist = getDistance(point,mean[0]);

int pos= 0;

for(int i=1;i<mean.length;i++){
double @2 = getDistance(point,mean[i]);
if (d2<dist){
dist=d2;
pos=i;
}
}
return pos;

Y

protected double getDistance(double[] a, double[] b){
if (segmentColor){
return ColorComparator.sumOquuares(a,b);
Yelse{
double x = a[3]-b[3];
double y = a[4]-b[4];
return x*x+y*y;
}
}

protected void updateMean(int m, int[] ¢, int[] xy, int linpos){

int[] point = new int[1{c{0],c[1],c[2],xy[0],xy[11};

if (sizefm]==0){ //If this is the first element allocated to the mean
for(int i=0;i<5;i++){

mean[m] [i]=point[il; //Set the value of the mean to that of the point

}
size[m]=1;

}else{ //Otherwvise
for(int i=0;i<5;i++){

(2]

e

86 APPENDIX B. CODE APPENDIX

mean{m] [i] = (double) (size[m] * mean[m][i] + point{i}) /
(double) (sizel[m] + 1); //Update new mean
}
size[m]++; //Increment the new id size
}
int pointid=id([linpos];
if (pointid!=-1){ //If the point was allocated to another id
for(int i=0;i<5;i++){
mean [pointid) [i]=(double) ((size[pointid]+1)+mean[pointid] [i]-point [i])
/(double)size[pointid]; //Update old mean
}
sizel[pointid]l-~; //Decrement the old id size
}
id[linpos)=m;//Update the id
}

public void print(String s){
if (Math.random()<0.01)
System.out.println(s);
}

protected void writeSegmentsToIds(){
setUpIds(image.getWidth()*image.getHeight());
int width = image.getWidth();
for(int i=segments.size();--i>=0;){
Segment s = (Segment)segments.elementAt(i);
for(int j=s.getSize();--j>=0;){
int{] pix = s.getPixel(j);
id [pix [0]+pix [1]*width]l=i;
}
}
}

protected void writeSegmentsToMeans(){
addSetting("K",""+segments.size());
loadSettings();
mean=new double[k] [6];
oldmean=new double[k] [5];
size=new int[k];
for(int i=segments.size();--i>=0;){
Segment s = (Segment)segments.elementAt(i);
for(int j=s.getSize();--j>=0;){
int[] pix = s.getPixel(j);
int[] ¢ = image.getColor(pix);
mean[i] [0]+=c[0]; mean[i] [11+=c[1]; meanl[i) [2]+=c[2];
mean[i] [3)+=pix [0]; mean[i] [4)+=pix[1];
size[il++;
}
mean{i] [0]/=size[i]; mean[i] (1]/=size[il;
mean[i} [2}/=size[i]; mean[i] [3]/=size[i];
mean[i] [4]/=size(i];
}
}

protected void writeIdsToSegments(){
segments = new Vector();
System.out.println("Addin "+k+" fresh segments");
for(int i=0;i<k;i++){
segments.add(nev PlainColorSegment());
}
for(int i=0;i<id.length;i++){
if(id[ilt=-1){
PlainColorSegment s = (PlainColorSegment) segments.elementAt(id[il);
s.addPixel (image.getXYPosition(i) [0], image.getXYPosition(i)[1],
image.getColor (image.getXYPosition(i) [0], image.getXYPosition(i)[11));

B.2. TWOPHASEKMEANS

s.color = new int{] {(int) mean[id[i]][0], (int) mean[id[11] (1],

}
}
}

protected void scrubEmptySegments () {
Vector out = new Vector();
for(int i=segments.size();-—i>=0;){
Segment s = (Segment) segments.elementAt(i);
if (s.getSize () !1=0){
out.add(s);
}
}
segments = out;

}

B.2 TwoPhaseKMeans

package javaseg.segmenter;
import javaseg.image.*;
import java.util.;

public class TwoPhaseKMeans extends KMeans{
int spacialCollapseThresh;

public TwoPhaseKMeans() {
super();

}

public TwoPhaseKMeans (ImageData i){
super(i);

}

public TwoPhaseKMeans (ImageData i, TreeMap settings){
super(i,settings);

}

public String getName(}{
return "Two Phase KMeans";

}

public TreeMap getDefaultSettings(){
TreeMap set = super.getDefaultSettings();
set.put ("SPACIAL COLOR COLLAPSE","2000");
return set;

}

public void loadSettings(TreeMap settings){
super.loadSettings(settings);

spacialCollapseThresh=getSettingInt(“SPACIAL COLOR COLLAPSE"

}

public void resegment(Segment s){
addSetting("SEGMENT COLOR", "true™);
super .resegment(s);
secondPhase();

3

public void segment(){
//System.out.println("Phase 1:");
addSetting("SEGMENT COLOR", "true");
super.segment();
//System.out.println("Phase 2:");

(int) mean[id[il][2]};

88 APPENDIX B. CODE APPENDIX

secondPhase() ;

}

protected void secondPhase(){
Vector colorsegs = this.getSegments();
Vector finalsegs = new Vector();
Vector tempsegs = new Vector();
addSetting("SEGMENT COLOR", "false");

for (int i = 0; i < colorsegs.size(); i++) {
Segment s = (Segment) colorsegs.elementAt(i);
super.resegment(s);
finalsegs.addAll (getSegments());
segments = new Vector();

}

addSetting("SEGMENT COLOR", "true");

segments.addAll(finalsegs);

processSegments();

} N

private void processSegments(){

this.scrubEmptySegments();

if (spacialCollapseThresh!=0){
this.writeSegmentsToIds();
this.writeSegmentsToMeans();
this.spacialColorCollapse(spacialCollapseThresh);
this.writeIdsToSegments();
this.scrubEmptySegments();

B.3 HierarchicalTwoPhaseKMeans

package javaseg.segmenter;

import javaseg.image.*;
import javaseg.graph.*;
import javaseg.filter.*;
import javaseg.gui.*;

import java.awt.*;
import java.awt.image.*;
import java.util.*;

public class HierarchicalTwoPhaseKMeans extends TwoPhaseKMeans{
SegmentTreeNode tree;
ImageData[] pyramid;
TwoPhaseKMeans[] kmeans;
int levels;

public HierarchicalTwoPhaseKMeans(){

}

public HierarchicalTwoPhaseKMeans(ImageData im, TreeMap set) {
super (im) ;
loadSettings(set);
setImageData(im);

1

public String getName(){
return "Hierarchical Two Phase KMeans";

}

B.3. HIERARCHICALTWOPHASEKMEANS

public void setImageData(ImageData in){
super.setImageData(in);
pyramid = Sampler.getUpsideDownSmoothedPyramid(in,1evels);
tree = new SegmentTreeNode(getFullSegment(),0);
kmeans = new TwoPhaseKMeans [levels];
for(int i=0;i<levels;i++){
kmeans [i]=new TwoPhaseKMeans (pyramid[i],settings);
}
}

public TreeMap getDefaultSettingsO{
TreeMap set = super .getDefaultSettings();
set.put("LEVELS","S“);
return set;

}

public void loadSettings(TreeMap settings){
super.loadSettings(settings);
levels=getSettingInt(“LEVELS");
}
public void segmentO){
//System.out.println("HTPKMeans running..");
int d=100;
processNode(tree,d);
//System.out.println("Actually processing as completed here!");
}

public Imagel] getImagePyramid () {

Image[] imm = new Image[levels+1];

System.out.println(tree);

for(int i=0;i<levels+1;i++){
imm[i]=new BufferedImage(512,512,Buffered1mage.TYPE_INT_ARGB);
segments = tree.getDescendants(i);
SegmentPainter.paintFalseColor(imm[i].getGraphics().segments);

}

return imm;

}

protected void processNode (SegmentTreeNode node, int maxdepth){

//System.out.println("Processing seg [“+node.getSegment().getSize()+"]");

if (node .depth==maxdepth) return;

// Stop recursing if the predecribed depth has been reached
if (node.depth==1evels) return;

// Or if the stop condition has been met

if (stopCondition(node)) return;

kmeans[node.depth].addSetting(“K",“"+k);
//xmeans [node.depth] . segment () ;
kmeans[node.depth].resegment(node.getSegment());
Vector segs = kmeans [node . depth] . getSegments() ;
//System.out.println(" Children produced: n+segs.size());
if (node.depth==(1levels-1)){
for(int i=0;i<segs.size();i++){
node . addChild ((Segment) segs.elementAt (1));
}
}elsel
for (imt i = 0; i < segs.size(); i++) {
node . addChild (upSizeSegment((Segment) segs.elementAt (i),
node.depth + 1)};
}
}

for(int i=0;i<segs.size();i++){

89

90 APPENDIX B. CODE APPENDIX

processNode (node.getChild(i), maxdepth);
}
}

protected boolean stopCondition(SegmentTreeNode t){
//Simple size check to start;
if (t.getNumber0fChildren()==1){
//System.out.println("Stopping due to single child class");
return true;

}
int pixels = pyramid(t.depth].getWidth();
pixels*=pixels;

if (t.getSegment () .getSize()<pixels/(k*k/5)){
//System.out.println("Cutting due to size condition!");
return true;

}

return false;

}

protected Segment upSizeSegment(Segment s, int depth){
PlainColorSegment out = new PlainColorSegment();
double[] cav = new double[3];
for(int i=0;i<s.getSize();i++){
int[] px = s.getPixel(i);
px [0]*=2;
px[11%=2;
int[J ¢ = pyramid[depth].getColor(px);
cav[01+=c[0];cav[1]+=c[1];cav[2]+=c[2];
out.addPixel (px[0],px[1],¢c);
¢ = pyramid[depth].getColor(px[0]+1,px[1]);
cav[0]+=c[0];cavi1])+=c[1];cav[2])+=c[2];
out.addPixel (px[0]1+1,px[1],c);
¢ = pyramid[depth] .getColor(px[0],px[1]+1);
cav[0])+=c[0];cav[1}+=c[1];cav[2]+=c[2];
out.addPixel (px[0],px[1]+1,¢);
¢ = pyramid[depth].getColor(px[0]+1,px[1]1+1);
cav[0)+=c{0];cav[1]+=c[1];cav[2]+=c[2];
out.addPixel (px[0]+1,px[1]+1,¢);
//out.addPixel(px[0],px{1],c);
//out.addPixel (px[0]+1,px[1],¢c);
//out .addPixel (px[0],px[1]+1,c);
//out.addPixel (px[0]+1,px[11+1,¢);
}
cav[0]/=s.getSize() ;cav[1]/=s.getSize();cav[2]/=s.get8ize();
cav[0])/=4;cav[i1]/=4;cav{2]/=4;
out.setColor((int)cav[0], (int)cav(1], (int)cav[2]);
return out;
}
private Segment getFullSegment(){
PlainColorSegment s = new PlainColorSegment();
for(int x=0;x<pyramid(0].getWidth();x++){
for(int y=0;y<pyramid[0].getHeight();y++){
s.addPixel(x,y,pyramid[0].getColor(x,y));
}
}

return s;

B.4. REGIONGROWER 91

B.4 RegionGrower

package javaseg.segmenter;

import java.util.*;

import javaseg.image.¥;
import javaseg.image.color.*;
import javaseg.graph.*;
import javaseg.filter.*;

//SRegionGrower using mod 3 selection of positions in array

public class RegionGrower extends Segmenter{
public int[1[] id;
public EdgeGraph graph = new EdgeGraph();
int threshold;
int count = 0;
int pos = O;
boolean snn = false;

public RegionGrower({
super();

}

public RegionGrower(ImageData i){
super(i);

}

public RegionGrower(ImageData i, TreeMap settings){
super(i, settings);

}

public String getName(){
return "Region Grower: Mod 3 selection";

}

public TreeMap getDefaultSettings(){
TreeMap set = super.getDefaultSettings();
set.put(“THRESHOLD","100“);
set.put ("SNN FILTER","false");
return set;

}

public void loadSettings(TreeMap set){
super.loadSettings(set);
threshold = getSetcingInt(“THRESHDLD");
snn = getSettingBoolean(“SNN FILTER");

}

public void setImageData(ImageData i){
if (son) {
super.setImageData(EdgePreserving.symetricNearestNeighbour(i));
}else{
super.setImageData(i);
}
segments=newv Vector();
id = new int[image.getWidth()][image.getﬂeight()];
for(int x=0;x<image.getWidth();x++){
for(int y=0;y<image.getﬂeight();y++){
id [x] [yl=-1;
}
}
}

public void segment(){

92 APPENDIX B. CODE APPENDIX

segments = new Vector();
int seg=1;
while(count<(image.getWidth() *image.getHeight())){
segments.add(doOneSegment (seg++)) ;
}
}

protected void incrementSeedPixel(){
int xpos= getX();
int ypos = getY();
while(id[xpos] [ypos] I=-1){
//pos+=177147;
pos+=59049;
if (pos >= id.length*id[0].length) {
pos’=id.length*id [0].length;
}
xpos= getX(); ypos = getY();
}
}
private int getX(){
return pos’,image.getWidth();
}
private int getY(){
return pos/image.getWidth();
}

protected Segment getNewSegment(int segid){
return new BasicSegment (segid, threshold);
}

protected Segment doOneSegment(int segid){

Segment seg = getNewSegment (segid);

Vector agenda = new Vector();

incrementSeedPixel();

int[] pix = new int[J{getX(),getY()};

agenda.add(pix);

while(!agenda.isEmpty()){
pix = (int[])agenda.remove(0);
if(seg.addPixel(pix[0],pix[1],image.getColor(pix[0],pix[1]))){

count++;
id [pix[0]1] [pix[1]]=segid;
agenda.add(new int[]{pix[0]-1,pix[11});
agenda.add(nev int{J{pix[0]+1,pix[1]1});
agenda.add(new int[1{pix[0],pix[1]-1});
agenda.add(new int[]{pix[0],pix[1]1+1});
}
}
return seg;

}

private class BasicSegment extends PlainColorSegment{
int maxdiff;
int segid;
public BasicSegment(int id, int threshold){
maxdiff=threshold;
segid=id;
}
public boolean addPixel(int x, int y, int[] ¢){
if(x<0 || y<0 || x>=image.getWidth() || y>=image.getHeight()){
graph.addEdge (new int[] {0, segidl});
return false;

}

B.5. AVERAGINGREGIONGROWER 93

1f (id[x] [yl 1=-1){
graph.addEdge (nev int[] {segid, id[x1[yI});
return false;

}

if (pixels.size()==0){

color=c;

pixels.add(nev int (1{x,y});

return true;
}
if(ColorComparator.euclidianDistance(color,c)>maxdiff){
return false;

}
pixels.add(new int [1{x,y});
return true;

}

}//End of Basic Segment class
}

B.5 AveragingRegionGrower

package javaseg.segmenter;

import javaseg.image.*¥;
import java.util.*;
import javaseg.image.color.*;

public class AveragingRegionGrower extends RegionGrower{
public AveragingRegionGrower (ImageData i, TreeMap settings) {
super (i,settings);
}
public AveragingRegionGrower(ImageData i){
super(i);
}
public AveragingRegionGrower O {
super() ;
}
protected Segment getNewSegment (int segid){
return new AveragingSegment(segid,threshold);
>

public String getName O {
return "Averaging Region Grower: w/Mod 3 and SNN";

}

private class AveragingSegment extends PlainColorSegment{
int maxdiff;
int segid;
double[] col = new double[3];

public AveragingSegment(int id, int threshold}{
maxdiff=threshold;
segid=id;
}
public boolean addPixel(int x, int y, int(] e){
//1f the location is outside of the image add a RAG entry for the O region
1£(2<0 |1 y<0 || x>=image.getWidth() |1 y>=image.getHeight 0){
graph.addEdge (new int[] {0, segid});
return false;

}

==

94 APPENDIX B. CODE APPENDIX

//1f the pixel is allready part of another region then add a RAG entry to the
// id of that region.
if (id{x] [yl !'=-1){

graph.addEdge(new int[] {segid, id[x}[yl});

return false;

}

//If this is the first pixel we have seen then set the average colour of this
// region to that of this first pixel
if (pixels.size()==0){

coll[0]=c[0];

coll1)=c[1];

col[2]=c[2];

pixels.add(new int[J{x,y});

return true;

i

//0therwise if the pixels colour is not sufficiently similar then return false. I
color[0]J=(int)col[0];

color[1]=(int)col[1];

color[2)=(int)col[2];

if (ColorComparator .euclidianDistance(color,c)>maxdiff){
return false;

}

//0therwise add the pixel to the region
pixels.add(new int[1{x,y});

//Then update the mean colour
col[0]*=(double) (pixels.size()-1);
col[0]+=c[0];
col[0]/=(double)pixels.size();
col[1]*=(double) (pixels.size()-1);
col[1]+=c[1];
col[1]/=(double)pixels.size();

col [2] *=(double) (pixels.size()-1);
col[2]+=c[2];
col[2]/=(double)pixels.size();

return true;

}

}//End of Basic Segment class

——

Bibliography

[1] R. Fisher. http:// www.inf.ed.ac.uk/teaching/modules/ av/. Advanced Vision
Course, 2004.

[2] R. Fisher[Ed]. http:/ /homepages.inf.ed.ac.uk/rbf/cvonline/ . CVonline: On-
Line Compendium of Computer Vision [Online], 2004.

[3] K.S.FuandJ. K. Mui. A survey on image segmentation. Pattern Recognition
Vol 13, pages 3-16, 1981.

[4] M. Vetterli H. Radha, R. Leonardi and B. Naylor. Binary space partitioning
(bsp) tree representation of images. Journal of Visual Communication and
Image Representation, Sep 1991.

[5] T. Balch J. Bruce and M. Veloso. Fast and inexpensive color image segmenta-
tion for interactive robots. In Proceedings of the 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Pittsburgh, PA 15213, 2000.
School of Computer Science, Carnegie Mellon University.

[6] A. Ikonomopoulos M. Kunt and M. Kocker. Second genera,tion-image coding
techniques. Proceedings IEEE, vol. 78, Apr 1985.

(7] A. Walker E. Wolfart R. Fisher, S. Perkins.
http:/ /homepages.inf.ed.ac.uk/rbf/hiprZ/. The Hypermedia Image Pro-
cessing Reference (HIPR2), 2004.

95

