Building a real-time model of
terrain from contour maps

Peter Gardner

Fourth Year Project Report
Computer Science
School of Informatics
University of Edinburgh
2009

Abstract

I explore various methods for recreating and rendering terrain from contour maps. Af-
ter a brief look at other methods such as linking contour lines with polygons I explore
the generation of height maps in detail. Then I perform image quality and performance
tests on 5 different algorithms comparing the run time and output images. Finally I
consider different ways to display the height map data in 3D using OpenGL.

Acknowledgements

Thanks to Edinburgh University Orienteering Club, Edinburgh Southern Orienteering
Club and Scott Fraser of Scotia Maps for providing all the OCAD map files used, Bob
Fisher for supervising my work and Simon Gardner for doing all the boring data entry.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(Peter Gardner)

Table of Contents

Introduction 1
1.1 Descriptionof the Problem 1
1.1.1 ContoursandMaps 1
1.1.2 Motivation 1
1.2 Objectives Achieved, 1
1.3 Pointersintothesis 2
Background 3
2.1 Orienteeringand Maps 3
2.2 OCAD andit’susein Orienteering 3
221 FileFormat 3
2.3 Previouswork 4
Dense surface reconstruction 6
3.1 Analysis of high level techniques 6
3.1.1 Trianglestrips 6
312 Heightmaps 7
313 Conclusion e 8
3.2 Detailed analysis of Height map generation methods 8
32.1 Pixelexpansiono 8
322 8wayintersection 9
323 Unexploredmethods 12
3.24 Computational complexity 12
3.2.5 Other optimisations and speed increases 13
3D Render & User Interface 15
4.1 3DRendering 15
4.1.1 Basicdisplayo 15
412 Advanceddisplay 16
4,13 Texturing 17
42 UserInterface 18
Evaluation 22
5.1 Performanceevaluation 22
5.1.1 Syntheticdata. 22
5.12 Realworlddata 22
5.2 ImagecompariSOn. v v v it v 23

D

E

5.3 Subjectiveevaluation
53.1 Heightmaps
532 3Dterrain

Conclusions

OCAD File Format

Al Reading
A2 Previous versionso

A Brief Analysis of Catching Features

B.1 Whatis Catching Features
B.2 Terrain Rendering Method
B3 ProsandCons

Sample maps and output images
Issues with automatically assigning contour heights

Pseudo code for height map generation algorithms

Bibliography

26

27
27
27

28
28
28
29

30

33

35

41

Chapter 1

Introduction

1.1 Description of the Problem

1.1.1 Contours and Maps

Contour lines are widely used to represent the height of underlying land on maps while
leaving space on a two dimensional representation for the other features. They are the
most commonly used method of representing height in maps in the western world to-
day. The International Orienteering Federation specifies a contour interval of 5 meters
for foot competition maps or 2.5 meters where extra detail is needed(4). However
contours are a lossy representation of the shape of the ground as they only display
horizontal slices through at defined heights. To create a three dimensional representa-
tion of terrain from a contour map it is necessary to attempt to reproduce this lost data
somehow.

1.1.2 Motivation

There are a number of reasons to try to create a computer mode] of an orienteering
map. GPS technology can be used to show the progress of competitors during an event
and a 3D display can make the map easier to understand for people not otherwise
familiar with the symbols. After an event, those involved could use the Internet to share
route choices' and an advanced graphical display would make post-race performance
analysis more thorough. In the run up to a race, competitors could use a 3D map to
familiarise themselves with an area they are barred from entering by the 2. There is also
the possibility of mappers using the created model to check their map against either
photographs or the real world in order to produce better maps.

1.2 Objectives Achieved

I analysed 3 techniques for creating height maps from contour maps for their quality
of visual output and execution time in an attempt to find a balance between the two. I

IRoutegadget: http://www.routegadget.net
2Catching Features: http://www.catchingfeatures.com

N

S

Chapter 1. Introduction 2

explored ways of optimising two of the techniques to increase their runtime efficiency
without compromising the output. I also investigated methods of displaying the height
maps in 3D, both with and without level of detail systems and discussed their suitability
for displaying real-time models of terrain on a modern home computer.

1.3 Pointers into thesis

The terrain drawing library provides a number of avenues for improvement. In its
current form it supports loading multiple height maps at different resolutions and scales
to generate a composite tree. Further work could be done into detecting areas of high
complexity on the input map file (or on the output image) and creating higher scale
output images for just those areas. This would allow for other mapped features such as
pits and small knolls to be added into the terrain. With some small modifications the
library could load these sub-maps on the fly or even generate them procedurally to save
memory and storage space. Another way to improve the visual quality of the output
would be to apply different textures to the terrain based on other details read from the
map (such as undergrowth type). Height map generation is also very suited to parallel
processing, either on a single, multi-processor computer or a distributed system.

From a purely graphical point of view, the current library suffers from popping.
This is where, as the level of detail changes, bits of terrain appear to pop into their
new positions. There are various ways of reducing the effect of this and all could be
added to the existing code. The flexibility of the algorithm would also allow real time
modification of the level of detail used in order to keep frame rate fairly constant.

On the generating of height maps there are a number of other avenues to explore.
It would be possible to use Bézier patches to create smooth surfaces, dealing with the
issue all the algorithms I implemented have with drawing peaks. There is also the issue
of finding heights for the contours as explored in Appendix D.

Chapter 2

Background

2.1 Orienteering and Maps

For a description of Orienteering it is probably best to quote the British Orienteering
website.

“Orienteering is a challenging outdoor adventure sport that exercises both
the mind and the body. The aim is to navigate in sequence between control
points marked on a unique orienteering map and decide the best route to
complete the course in the quickest time. It does not matter how young,
old or fit you are, as you can run, walk or jog the course and progress at
your own pace.”

The format of an Orienteering map is dictated by the International Orienteering
Federation(4). Usually for so called conventional races it will look something like the
examples in Appendix C and for the purposes of this project I will assume that all maps
are of a similar appearance. In order to fit as much detail in as possible, contour heights
are omitted and deciphering the actual structure of the terrain is left as an exercise for
the competitor.

2.2 OCAD and it’s use in Orienteering

OCAD! is a mapping tool developed by OCAD AG and is dominant in Orienteering at
the moment. Other, more general tools such as Adobe’s Illustrator have been gaining
in popularity recently due to pricing issues but the majority of maps in circulation
currently are OCAD maps and this is unlikely to change so long as the developers
continue to support the sport.

2.2.1 File Format
For a full discussion of the OCAD file format see Appendix A.

1OCAD Website: http://www.ocad.com

Chapter 2. Background 4

OCAD stores contours within its proprietary file structure® as Bézier splines, a
chain of cubic Bézier curves (the equation for which is shown below) where P3 of the
first curve is identical to Py of the second one and P; from curve 1 is collinear with P;
of the second, repeated along the chain. This produces a curve as shown in figure 2.1.

B(t)=(1—1)Po+3(1 —0)2tP +3(1 —1)’P, +3P5,r € [0,1]

Py P2 P

Po Pe
Py Py

(a) Cubic Bézier curve (b) 2 part Bézier spline

Figure 2.1: Cubic Bézier curve and spline

An OCAD map file stores all the symbol definitions within the file itself which can
sometimes mean that contours are defined with a different symbol ID from one file
to another. However finding the correct symbol is usually as trivial as scanning for a
string.

Orienteering maps traditionally do not have heights associated with contour lines
to reduce clutter, and even if a particular map does, the OCAD file format does not
associate the height label with the contour line in any useful way. While a trained
human being can easily determine what is up and down by looking at nearby features
such as cliffs, rivers and the general shape of the land, the number of variables involved
is so large that automatically determining what is up and down is beyond the scope of
this project. Even if a system to do so were developed it would need heavy supervision
and specific algorithms for different areas of the world. Instead it is far more practical
to have a human assign values to each, or a few contours in the file before processing.
A more complete discussion of the problems involved can be found in Appendix D.

Finally, an orienteering map is not always completely accurate. They are closer to
an artist’s representation of the real world, albeit one which is accurate enough to allow
people to navigate around the area in question. As a result it is impossible to produce
a one-to-one copy of the real world from such a map, however I would consider any
model that an experienced orienteer can navigate using the map it was generated from
a successful one.

2.3 Previous work

Gousie and Franklin(3) discussed trying to calculate intermediary contours in an at-
tempt to rebuild a dense surface as well as drawing gradient lines from local maxima to

2OCAD file format description: http://www.ocad.com/docs/OCAD9Format . txt

Chapter 2. Background

minima then interpolating elevations along the gradient lines using the contour height
values. Dakowicz and Gold(1) analysed various methods of generating the missing
ridges and peaks from contour data and the various problems and artifacts that result.

Chapter 3

Dense surface reconstruction

In order to determine how the 3D representation will be produced we need to look at
the potential uses of a solution and the hardware and software limitations they impose.
Most of those discussed above require some degree of user interaction which means
real time display and navigation are desirable. While modern home computers are ap-
proaching the point where they can perform real time ray tracing, most are optimised
for producing polygons. While voxel terrain rendering (effectively a low detail, soft-
ware ray tracing technique) gained popularity in the mid 90s, the rapid improvements
in graphics hardware made it obsolete. With the decision to use polygons there are a
number of techniques that can be explored.

3.1 Analysis of high level techniques

3.1.1 Triangle strips

adjacent contopiSdonnecting them with triangles (see figure 3.1) then storing this data
and displaying it as needed. This can be done reasonably quickly and the size of data
created will be small. However there are some issues. Deciding which contours are to
be connected is non-trivial, especially in regions where there are multiple candidates.
On top of this the algorithm must be careful to avoid artifacts where two adjacent tri-
angle strips do not line up, causing either gaps in the terrain (figure 4.3) or overlapping
polygons.

This method also requires an awareness of geographical features in order to pro-
duce the best results. For an example of this see figure 3.2. In this case the contour
lines represent a spur. A naive implementation might produce the output seen in 3.2(a)
resulting in what may be a very prominent feature in reality becoming a flat piece of
hillside in the model. A better way to handle this would be to insert an extra contour
line down the middle of the spur to create a ridge as seen in 3.2(b).

This method also produces static output. The terrain must be rendered at a fixed
level of detail no matter how complex or far away it is. Sections that are out of sight
can be omitted but anything visible must be drawn at the complexity that it was initially
computed.

One seemingly vious way to produce a 3D image of a contour map is to move along

Chapter 3. Dense surface reconstruction 7

10m 15m

Figure 3.1: Triangle strip between two contours

(a) Undesirable behaviour (b) Possible, geographically
aware behaviour

Figure 3.2: Potential triangulation of a spur

3.1.2 Height maps

A more flexible method of creating the 3D scene is to use an intermediate height map
from the contour lines. This can then be used to produce either a variable or fixed
level of detail render. The main disadvantage of this method is it will result in a large
volume of data being created when it is not strictly necessary. For example a relatively
flat, feature free area on a height map takes up the same space as a complex one. This
can be mitigated somewhat by using image compression algorithms such as PNG.

As you can see from figure 3.3 even a height map may not give an exact represen-
tation of the terrain because it is limited by the resolution of the map. In this case the
top of the hill is slightly off position from where the vector map says it should be. The
easiest way to avoid this is to use a higher resolution height map but there are practical
limits on the size mostly imposed by the memory capacity of modern computers.

Chapter 3. Dense surface reconstruction 8

10m

15m I
20m

[is
%

T

Figure 3.3: A possible height map of some concentric contour lines

3.1.3 Conclusion

For the purposes of this project I will be concentrating on height map based methods.
This is mostly due to their ability to produce varying levels of detail, but also because
the output is easily comparable by subtracting one image from the other. While the
correctness can only really be compared subjectively some techniques will give better
results than others. It is also trivial to compare height maps by displaying the pixels
that differ from one to the other, however this doesn’t give an objective measure of
correctness, only the difference between the compared techniques.

3.2 Detailed analysis of Height map generation meth-
ods

In this section I will discuss various methods of creating height maps from contour
data, including the pros and cons of each.

3.2.1 Pixel expansion

In the pixel expansion method firstly the contours themselves are drawn onto a grid
using the standard Bézier curve algorithm then the image is iterated over until all pixels
are done. If a pixel is set then all its neighbours are checked, if they are currently unset
then they are filled with the value of the pixel and the function continues. Once the
finish conditions are completed the algorithm loops over the grid once more to calculate
the resulting height and outputs a height map. Figure 3.4 shows a possible execution of
this method over the first 2 steps. In 3.4(c) there are 3 pixels in the middle of different
colour which are adjacent.

Chapter 3. Dense surface reconstruction 9

|

N L s N e

]
rI

==
il (i

=

| v ._-j _ i |

(a) Initial drawing of the con- (b) Map after first expansion (c) Map after second expansion
tour lines

Figure 3.4: Pixel expansion from contour lines

3.2.1.1 Closest neighbour

Finding the closest neighbour is the simplest form of the pixel expansion method.
Expansion stops when a pixel of any other value is reached and the value written to the
height map is the height of the contour we expanded from. This will produce a very
stepped image and is therefore not a very good solution. To some extent this can be
solved by running a blur function on the resultant map but by doing that data is lost.

3.2.1.2 Closest two

Similar to the closest neighbour method, here each spot on the grid can hold multiple
entries and both the contour value and the loop number are stored. Expansion stops
when it reaches any of the initial contour line pixels. To create the height map the
lowest two distance values are taken and a weighted mean is used on the two heights
they represent. Again this will produce a stepped output but instead of sharp corners
the steps will be smoother.

3.2.2 8 way intersection

8 way intersection computes the height of each pixel by taking an average of the heights
of the closest contours in each of the 8 compass directions weighted by distance. This
is illustrated in figure 3.5 for a general case. If the weighting is done correctly the re-
sultant value will be somewhere between the minimum and maximum of the 8 contours
that were found.

3.2.2.1 Using precise intersection

Perhaps the most obvious way to find the lines of intersection is to find any intersec-
tions between the compass direction vectors and the contour cubics then check if the
results lie within the bounds specified by the Bézier curve and the image. Because the
shape of Bézier curves are invariant under Euclidean translations this can be done by
rotating and translating the curve and the vector so that the vector lies along the origin.
Once that is done finding the intersections is simply a case of converting the control
values to a power basis by expansion and finding the roots.

Chapter 3. Dense surface reconstruction 10

10m
10m

v

AR I

A

Figure 3.5: Finding the closest contour in each of the 8 compass directions

y(t) =Ar +Bt* +Ct +d

Substituting in the following equations, where yp, y;, y2 and y3 are the Y compo-
nent of Py, Py, P, and P3 respectively.

A= —yo+3y; —3y2+y3

B = 3yp—6y1 +3y2
C=-3yo+3n
D=y

This will supply a list of all the intersections and the point along the curve they lie
on. Selecting the closest can be done by placing all the intersections of all the contours
into a list and sorting by distance.

A height map created using this method is reasonably accurate and smooth but it
has limitations. In figure 3.6 all the pixels inside the 15 meter contour will be the same
height because all the vectors will return the same height as their first hit. Calculating
roots is also very computationally expensive. For example creating a 512x512 pixel
image from a map with 100 contours, each with 10 Bézier segments requires over
2,000,000,000 non-trivial calculations (see section 3.2.4) and the scaling is not linear.

Fortunately there is a relatively simple optimisation that can be made. Instead of
calculating 8 vector/curve intersections for each pixel it is possible to pre-calculate all
the intersections needed and refer to these each time a pixel is analysed. All intersec-
tions along the vertical, horizontal and both sets of 45 degree lines are calculated and
stored in arrays. When a pixel colour is calculated the appropriate 4 sets of intersec-
tions are selected and iterated through until the correct two values are found. Using the
example values from above, the number of intersection calculations is reduced to just
over 2,000,000.

Chapter 3. Dense surface reconstruction 11

10m
15m

10m

Figure 3.6: The 8 way expansion method can not create peaks

3.2.2.2 Approximation by pixel

A lot of the heavy calculation of the above method can be avoided by working at a
pixel level rather than one of cubics and vectors. If the contour lines are first drawn
onto a grid this can be used to come to a reasonable approximation of the height map
created by precise intersection. When calculating the value of a pixel, the algorithm
iterates over the grid of drawn contours in each of the eight directions until it reaches
a filled square or the edge of the grid. Once all eight values are returned the height is
then calculated in the same way as before.

I"n_.

15m il
10m 1

am 10m

Y]] S

oo
I
b

Figure 3.7: 8 way expansion using pixel intersection

While this solves the speed issues presented by the above method, it does nothing
to help the other problems such as creating peaks and adds another issue on top. If
the algorithm that draws the contours onto the grid leaves gaps or one of the diagonal

Chapter 3. Dense surface reconstruction 12

expansion lines crosses a contour line at a diagonal it is possible that it may not detect
a pixel. How this affects the overall result depends on the resolution of the height map
and the positioning of the contours themselves.

This method can be optimised by using the same scan line method as the precise
calculations, however the algorithm is even simpler. Each scan line is followed in
reverse, incrementing a distance value and setting the current height as the height of
that pixel until a contour line is found. At this point the height value is updated to the
height of the newly found contour and the distance is reset to zero. Doing this for all
8 directions will produce 8 values per pixel which can then be averaged as usual to
create the composite value.

3.2.3 Unexplored methods

One method of producing height maps that I have not explored is to create new Bézier
curves along the horizontal or vertical scan lines, using points of intersection with
contours as the base points of the curve and extrapolating control points, either from
the previous intersections or using another method. On the face of things this would
appear to solve the issue of peaks. However, as can be seen from figure 3.8 where
the control points are set to be roughly 1/3 of the way between the base points of the
curve, in line with the previous points, there is substantial terracing. It may be possible
in future work to attempt to detect peaks in one of the other methods and apply this
technique just for that area of the map.

=== Value for height map

@ Contour intersection

Figure 3.8: A scan line with Bézier interpolation of contour intersections

3.24 Computational complexity

Table 3.1: Key for table 3.2

Symbol | Meaning | Example 1 | Example 2 | Example 3
x | Size of the image (X and Y dimensions) 1024 | 128 2048
n | Number of contours in the map 1000 | 1000 200
s | Number of segments per contour 10 !: 10 10

All calculations in table 3.2 are assuming the worst case and no further optimisa-
tions than discussed above. For the equation intersections it is assumed that each line

Chapter 3. Dense surface reconstruction 13

intersects every segment of every contour, making the sorting of intersections non-
trivial. For the expansion algorithms it is assumed that the number of iterations is
equal to the number of 45 degree diagonal scan lines in the image (the absolute worst
case being the contour drawing phase leaves a single pixel in one corner of the image).
However these values do not tell the full story, as the actual intersection calculations
are far more complex in both the precise equation methods than in any of the other
three. For Pseudo code for all 5 techniques see Appendix E.

Table 3.2: Computational complexity of the proposed height map generation algorithms

Algorithm

Complexity

Closest neighbour

Closest two

Precise intersection by equation

Precise intersection by equation (optimised)
Precise intersection by pixel

Precise intersection by pixel (optimised)

f(x,n,s) = 0(x%)
f(xan’s) = O(XZ)
f(x,n,s) = O(x%.n.s)
f(x,n,s) = O(x.n.s)
fx,n,5) = 0(x)
fx,n,s) = O(8x)

Table 3.3: Example numbers for the proposed height map generation algorithms

Algorithm Example 1 | Example 2 | Example 3

Closest neighbour 1048576 16384 4194304

Closest two 1048576 16384 4194304

Precise intersection by equation | 10485760000 | 163840000 | 8388608000

Precise intersection by equation (optimised) 10240000 1280000 4096000
Precise intersection by pixel | 1073741824 2097152 | 8589934592

Precise intersection by pixel (optimised) 8192 1024 16384

Based on these numbers, the optimised Precise intersection by pixel method should
be by far the fastest.

3.2.5 Other optimisations and speed increases

One very simple optimisation that could be made to the Bézier intersection algorithm
above is a box test. The line of the curve always lies within a box created by joining the
4 points used to create the curve. this means that instead of doing a full intersection for
each contour segment, those out of range can be discarded by intersecting those 4 lines
with the direction vector. The intersection of two lines is far more computationally
efficient than a full curve intersection so this would potentially save a lot of time in
real world applications (although not in the worst case situation).

Dividing the contours on the map into grid squares would also provide some ad-
vantages. In figure 3.9 the black pixel would check for intersections in its own grid
square, satisfying 2 of the directions. When the third returned nothing, it would check
the next square and find an intersection. This way only a small subset of the contours
need be checked for each pixel. The challenge would be finding a grid size where the
overhead of sorting each contour segment into a grid does not outweigh the benefits.

Chapter 3. Dense surface reconstruction 14

Figure 3.9: A contour map divided into a grid

A final area that could be considered is parallel processing. In almost every method
each pixel is calculated in isolation meaning it would be very easy to assign chunks of
the image to discrete processing units for computation. Again, the overhead cost must
be considered but with modern personal computers increasingly having more than one
core on their CPU this is something that could provide a substantial speed increase.

Chapter 4

3D Render & User Interface

4.1 3D Rendering

4.1.1 Basic display

The simplest way to display a height map in 3 dimensions is to plot a point in space
for each pixel of the height map. However, even modern computers have issues with
displaying a 1024x1024 image in this way and there is no real sense of viewing a
3D image as all that can be seen is a pure white pixel. Some of this can be solved
by stepping over the image in increments of greater than 1. Figure 4.1 shows this
technique used on a partial height map of Holyrood Park.

Figure 4.1: 3D point representation from a 1024x1024 source with 10px steps

Obviously this leaves a lot to be desired. The next logical step is to join the dots
with shaded and lit polygons to create a triangle strip as seen in figure 4.2, in this case
with a 9 pixel step between values. This produces a surface rather than discrete points
which can then be coloured in a number of different way. Simply overlaying the height
map as a texture projected from above is one option. An emboss texture can be applied
as described in section 4.1.3 or OpenGL lighting can be used to shade the vertices.

A full discussion of OpenGL lighting is beyond the scope of this report. Simply,
it works by calculating the angle between a vertex or face normal and shading as ap-
propriate. Using surface normals gives faceted shading whereas when vertex normals

15

Chapter 4. 3D Render & User Interface 16

are used, OpenGL blends the shading between each vertex of a face to create smooth
shading. To calculate a face normal, the cross product of two of the face’s edge vectors
is taken then normalised. A vertex normal is just the mean of all the face normals that
use said vertex.

&/

v

D

Figure 4.2: Joining height map points to create a triangle strip

It is possible to implement a very simple level of detail system in the above de-
scribed method. Areas closer to the camera can be drawn with a low pixel step and
those further away with a higher step (figure 4.3(a)). However this can cause tearing
problems at the edges of a detail level as shown in figure 4.3(b).

._._;I_ | | i D Tearing

|
| . High level of detall area

| | | | L . Low level of detall area

(a) Level of detail (b) Tearing

Figure 4.3: Level of detail with simple polygon strips and associated tearing issues

4.1.2 Advanced display

The ROAM algorithm(2) describes a method of drawing terrain that updates relative to
camera position and angle, as well as the complexity of the terrain to be rendered, all
in real time. It achieves this by splitting the area to be rendered into pairs of triangles

Chapter 4. 3D Render & User Interface 17

that form a square when placed base to base. The triangles are split down the mid-
dle until a desired level of accuracy is achieved then the whole structure is rendered.
Tearing is avoided by recursing into the triangle structure when the base neighbour of
a split triangle is courser than the resultant pair. This recursion forces a split on all the
triangles it encounters until a base pair is found with the same level of detail.

For the purposes of this project I have chosen to use an existing library which is
based very loosely on the ROAM algorithm(5). Instead of using triangles this method
divides squares into 4 each time more detail is required. It expands on ROAM by
actually storing the height values inside the quadtree to save memory and enabling and
disabling quads based on camera position. This means that the height map data can
be unloaded once it has been fully processed. It also allows extra detail to be added,
either from higher scale height maps or generated procedurally, to the base height map.
Initially I had been planning to implement the methods discussed myself, however with
the source code provided with the article being freely available for use it seemed rather
foolish so instead I have integrated the provided libraries into my work.

For examples of this library at work see figure 4.4. Note that in the wireframe
view areas of higher detail use more polygons, and areas of similar detail but which
are further away from the camera use fewer polygons. This is an example of how
this method differs from ROAM. The maximum level of terrain detail is pre-computed
when the height map is loaded but how much detail is shown is dependant on the range
from the camera.

4.1.3 Texturing

In order to emphasise the terrain features on the 3D display a simple emboss filter is
applied to a copy of the height map. When used as a texture this gives the illusion of
lighting in the scene without any of the complicated normal calculations that OpenGL
lighting requires. To apply the emboss filter, each pixel is run through the filter matrix
below once. The resulting value is then multiplied by factor, added to bias and the
mean of the red, green and blue values is taken. To make a green texture (representative
of grass) the calculated value is assigned to a RGB triplet with the red and blue values
being halved.

10 1.0 1.0 1.0 00
10 1.0 1.0 00 -1.0
1.0 1.0 00 -10 -1.0
10 00 -10 -1.0 -1.0
00 -1.0 -1.0 -1.0 -1.0

factor =1.0,bias = 128.0

The matrix and values above represent an emboss filter. The intensity of the filter
is determined by the size of the matrix used, so a 3x3 matrix would produce a less
pronounced 3D effect and a 10x10 matrix would make it more pronounced.

To add a grass effect, a tiled image of grass is loaded and combined with the gen-
erated texture with a bias of 0.25 to the grass and 0.75 to the emboss map. Examples

Chapter 4. 3D Render & User Interface 18

of all 3 stages on the Holyrood Park map can be seen in figure 4.5. However care must
be take not to dilute the lighting effect a little too much to the point where it no longer
highlights the shape of the terrain. Figure 4.5 shows the 3 stages of creating a texture
map.

4.2 User Interface

It quickly became obvious during development that having a user assign all the height
values individually for a map would be very time consuming. Add to that the fact
that contours are often ordered in the map file in an unintuitive way that relates more
to the process the mapper used than their actual position and the need for a graphical
interface is quite clear. The interface was built using Qt! due to it being available
for free under an LGPL and for cross platform development. There are 3 discrete
components combined under an MDI interface for ease of comparison, a contour view,
a height map view and a 3D view.

The contour view (figure 4.6(a)) displays the contours from a loaded OCAD file
with the contour ID and height (read from a separate file) along side. The main pur-
pose of this view is to allow the user to input contour height values. This is done by
dragging the mouse across the map to draw a vector. On releasing the mouse the vector
is intersected with all the contours in the map and the intersections are sorted in order
of distance. The height value of the first intersection is taken as the base and each sub-
sequent intersection in the ordered list has its height value set to base + (5. position).
This allows the height values in a map to be rapidly assigned.

The height map view (left side of figure 4.6(b)) is mostly for the user to check
accuracy but is also useful for comparing the output of two height map generating
algorithms. It can be useful when compared with the contour view for finding incor-
rectly assigned height values. The 3D view (right side of figure 4.6(b)) allows basic
navigation of the 3D world using the mouse to look and move around.

1Qt: http://www.qtsoftware.com

Chapter 4. 3D Render & User Interface 19

(a) Textured

(b) Wireframe

Figure 4.4: Advanced level of detail rendering

Chapter 4. 3D Render & User Interface

20

(a) Height map (b) Emboss map (c) Texture map

Figure 4.5: Generating textures from a height map

Chapter 4. 3D Render & User Interface

(RIS

SN

b, o |

(b) Height map and 3D views

Figure 4.6: User Interface

21

Chapter 5

Evaluation

5.1

Tables 5.1 and 5.2 show the execution times of all 5 implemented algorithms on a
512x512 image. The tests were performed on an Intel Core 2 Duo running at 3GHz
with 4GB of RAM on the Ubuntu Linux distribution.

Performance evaluation

5.1.1

All 3 synthetic contour patterns are made up of 50 contour lines at 5m intervals. The
Cone and Ripple patterns have 4 Bézier segments per line and the slope has 1.

Synthetic data

Table 5.1: Execution times for synthetic data sets

Algorithm Execution tirpe in seconds
Cone Ripples | Slope
Closest neighbour 3 3 1
Precise intersection by equation 482 412 147
Precise intersection by equation (optimised) | No result | No result 1
Precise intersection by pixel 4 5 4
Precise intersection by pixel (optimised) 3 3 1

The unoptimised equation methods failed to draw the cone and ripples correctly,
instead producing an odd, shaded square and the optimised method would not com-
plete.

5.1.2 Real world data

As well as demonstrating the algorithms with landmarks local to Edinburgh, these three
real world maps provide a decent spectrum of map styles. Holyrood has 781 contour
lines, Corstorphine has 107 and Blackford has 318. Holyrood is spread out evenly
over a large area of the image while Corstorphine is long and thin, and Blackford is
L-shaped. This means they provide radically different cross-sections for intersection
lines.

22

Chapter 5. Evaluation 23

Table 5.2: Execution times for real world data sets

Algorithm Execution time in seconds .
Holyrood | Blackford | Corstorphine
Closest neighbour 73 20 20
Precise intersection by equation | 11264 3584 3072
Precise intersection by equation (optimised) 11 4 3
Precise intersection by pixel 90 27 22
Precise intersection by pixel (optimised) 90 21 21

5.2 Image comparison

Image comparisons were done by loading both output files into the same window in
The GIMP and setting the upper layer’s overlay type to "Difference”. All comparisons
were done at 512x512 pixels using the Corstorphine map due to it’s low number of
contours. Both optimised methods produced identical height maps to the associated
unoptimised algorithm. This means the optimisations were well designed from an
image quality point of view.

(a) Corstorphine by equation (b) Corstorphine by expansion (c) Difference

Figure 5.1: Differences in equation and expansion output

Figures 5.1, 5.2 and 5.3 show the results of the difference test on all 3 combinations
of algorithm. The images don’t tell the full story as the stepping seen in the expansion
method only registers as a very small difference due to each contour being 5m apart.
It is obvious that the expansion method has far worse edge artifacts than the other two
methods, and that there are a number of large gaps in the "true” intersection method’s
output.

5.3 Subjective evaluation

5.3.1 Height maps

The closest neighbour method, as expected, gives a very stepped image, the other
two methods (assuming the optimised algorithms produce similar enough results to

Chapter 5. Evaluation 24

(a) Corstorphine by equation (b) Corstorphine by pixel (c) Difference

Figure 5.2: Differences in equation and pixel output

(a) Corstorphine by pixel (b) Corstorphine by expansion (c) Difference

Figure 5.3: Differences in pixel and expansion output

their unoptimised version to ignore) create what appears to be a very smooth height
map. However, on closer inspection there are still steps in the slopes which become
increasingly obvious when an emboss filter is applied. This could be fixed to some
extent by applying a blur to the image but that would result in a loss of detail. I
would consider the stepping to be acceptable though, as it only really shows on shallow
slopes. There are a lot of visual artifacts around the edges of all the height maps. These
are caused by the last contour not being at height zero.

Interestingly the precise intersection method produced less accurate results than
the one that used pixel level intersection. After some investigation I concluded that
this was due to gaps in the contour file causing some vectors to miss contours entirely.
When the mapper is creating the file they often make one contour out of several contour
lines and the ends may not quite meet. On the pixel intersection method these are
mostly eliminated by the process of drawing the contours onto the initial grid.

Chapter 5. Evaluation 25

5.3.2 3D terrain

The maps I used are on the small side for orienteering maps, only covering a couple of
square kilometres at the most. Neither of the 3D rendering methods I looked at could
really provide an adequate level of detail for someone to move around at foot level and
not notice the polygons. However, from a distance features were easily identifiable as
their real world counterparts. The advanced method suffered from difficulties render-
ing vertical areas of a height map, creating one polygon per height map pixel along the
vertical edge. This can produce a severe FPS hit, especially as many of the height map
generating techniques produce artifacts in the empty areas of the map. These usually
manifest in the 3D view as a straight line with vertical edges (figure 5.4). Performance
when these artifacts are off screen is smooth.

The level of detail issues could be resolved by creating larger scale height maps of
higher detail areas and adding them to the quadtree at load time, either detecting the
areas manually or automatically. If these two problems were rectified I would be fully
satisfied with the performance and image quality of the advanced 3D method.

(a) Height map (b) 3D view

Figure 5.4: Artifacts in the height map of Corstorphine Hill and their effect on the LoD
view

Chapter 6

Conclusions

Out of all the dense surface reconstruction methods analysed, the optimised pixel inter-
section method provided both the best image quality and a reasonable speed. Unfortu-
nately it still suffers from artifacts around the edges of the map where the last contour
is not at a height of Om. These slow down the 3D rendering algorithm and reduce
immersion. For the 3D display, neither of the methods looked at are really adequate
on their own. Even a height map of 2048x2048 pixels does not contain enough data to
make a realistic looking landscape when viewed from ground level, and using higher
resolution maps is impractical for reasons of both memory space and computational
time. In order to improve the quality of the 3D view more work is needed in the height
map generation stage to identify areas of high detail and remap them at a larger scale.

The failure of various algorithms when presented with synthetic data is cause for
concern, but is most likely faulty implementation rather than an error of the actual
method itself. Performance was roughly around that expected by analysing the Pseudo
code. The performance of the optimised equation based intersection algorithm was
very good, and if the image quality issues could be resolved this would be a very good
candidate for future use as the edge artifacts were generally less severe.

The height maps output from the synthetic data were almost all defective. Every
algorithm had at least one data set where there were large gaps in the height map
result. It appears that the surface reconstruction methods work better with data that
isn’t regular.

26

Appendix A

OCAD File Format

The OCAD file format is documented at (?). I will refer to structure names from the
linked file throughout this appendix.

A.1 Reading

The file consists of a number of different types of block of 255 items, each referenced
from the header and with a reference to the next block. The blocks that are of note
to this report are the symbol and object blocks. An OCAD file is interesting in that
there are no pre-defined map symbols in the application. Instead they are defined in
individual map files as a series of vectors and colours. This allows mappers to create
their own symbol sets and easily distribute them with their map files, however it makes
it harder than it would otherwise be to find contours, as the symbol may be in a different
place in each file. However, to find the contours in a file it is not necessary to read the
whole symbol information in.

Because contours are always line symbols, and all we are interested in is the ID and
symbol description the more complex types of symbol can be ignored. When iterating
through the symbol blocks it is only necessary to read a TBaseSym as this gives us
all the data we need. However some files have multiple symbol definitions for both
”Contour” and “Index Contour” so it is important to take that into account. Future
work should read in form lines as well.

Once the symbol IDs for the desired contour types are found the file reader iterates
over the object index blocks, reading in TElements until one of the recorded symbol
IDs is found. The actual Bézier patch points are stored within a TDPoly array at the
end of the TElement.

A.2 Previous versions

The file format described above is valid for OCAD9 and OCADI10 files (although
untested on OCAD10). Previous versions are incompatible and the reader I imple-
mented will not load them although it will make an attempt at OCADS files.

27

Appendix B

A Brief Analysis of Catching Features

B.1 What is Catching Features

Catching Features is a game designed to simulate the sport of Orienteering on a per-
sonal computer, either via online competition with other people or against an AL The
developer has made available tools to import OCAD maps into the game’s level format
so it covers some of the same areas as this project.

B.2 Terrain Rendering Method

Catching Features takes a different approach to rendering terrain than I have for this
project. All the polygons in the terrain are pre-calculated then a BSP tree is built to
determine what can be seen from where. The BSP tree is then saved to a file along
with texture and other model information. This allows the engine to only render the
area of ground that can be seen from any given point. Slight distortions such as paths
and pits are baked into the structure of the terrain. An example of the process used can
be seen in figure B.1.

Figure B.1: Catching Features terrain generation, taken from the game’s website

Appendix B. A Brief Analysis of Catching Features 29

B.3 Pros and Cons

The BSP tree method allows for a lot of the terrain processing to be done at build time
rather than in real time during rendering, offloading a lot of the work from the user’s
computer. It also handles occlusion so that terrain hidden behind other terrain is not
visible. The main downside is a lack of flexibility after the initial generation. There is
no varying level of detail other than that added at creation, and the heights can not be
modified without starting from scratch.

Appendix C

Sample maps and output images

i

J8 T
| Hax-.

| (<

/

=M=
=

Figure C.1: Holyrood Park orienteering map

30

Appendix C. Sample maps and output images 31

Figure C.2: Holyrood Park orienteering map showing just contours

Figure C.3: 3D view of Corstorphine

Appendix C. Sample maps and output images

Figure C.4: 3D view of Blackford

32

Appendix D

Issues with automatically assigning
contour heights

To create height maps from contour maps it is first necessary to determine the height
of the contours. OCAD maps do not provide this data so it must either be entered by a
user or computed from the provided data. In this appendix I will discuss some of the
possible methods of doing so and the difficulties involved.

AL WA AN

Figure D.1: Ambiguous contours

Figure D.1 shows a basic issue encountered when trying to automatically determine
which way is up on a contour map. The cross section represented by the black line
could produce either of the two patterns on the right. A human might realise that it is
more likely to be the single curve, but the wave pattern is equally valid. In isolation
it is only possible to assign a probability that one pattern or the other is correct. In
order to come to a more certain decision it is necessary to look at both the surrounding
contour patterns and the other map features. Water usually lies at a local minima so by
extending gradient lines outwards from water features such as lakes, marshes or rivers
a good idea of what is up can be determined. It is also possible to look at how features
usually sit next to each other on maps and attempt to use those patterns to determine
height.

However building the rules outlined above is non-trivial, and requires either a very
good knowledge of geographical features or a learning algorithm and large library of
maps with their height values already assigned. On top of all this, different parts of
the world will require different rule sets. For example in Southern Sweden it is very
common to find marshes in depresssions on top of small hills which would confuse a
system trained on or designed for steep Scottish hills.

33

Appendix D. Issues with automatically assigning contour heights 34

Even if all the above problems were solved, the result would still be a combination
of probabilities, and would need checking by a human being for correctness. This
process may well take longer than just having a human assign all or some of the values
by hand. Either way, implementing such a system is way outside the scope of this
project.

W N —

[» BN B o WV,

11
12
13
14
15
16
17

Appendix E

Pseudo code for height map
generation algorithms

Listing E.1: Closest neighbour

For each contour
For each contour segment
Draw curve to temporary array with the height value of the
contour
End
End

While array isn’t full
For each pixel
If pixel is set
Fill in all the unset neighbours with this pixel’s value
End
End
End

For each pixel
Copy array value to image
End

35

N —

O 00~ O A

10
11
12
13
14

15
16
17
18
19
20
21
22

23
24

Appendix E. Pseudo code for height map generation algorithms 36

Listing E.2: Closest two

For each contour

For each contour segment
Draw curve to temporary array with the height value of the
contour
Assign a distance value of 0 to each set height value
End
End
While any pixel has less than 2 height values
For each pixel

If pixel has one or more height values
For each neighbour
If neighbour has one or less height value
Copy height value to neighbour
Increment the distance value by 1 for each height value
just set
End
End
End
End
End

For each pixel
Calculate a value for the pixel by using a weighted average of the
two height values
Copy the calculated value to the output image
End

—_
OO0~ AW —

—_
BSOS I S

— —
A W

Appendix E. Pseudo code for height map generation algorithms

Listing E.3: Precise intersection by equation

For each pixel
For each of the 8 compass directions
Project vector V from the pixel to the edge of the image
For each contour
For each segment S
Intersect V with S
End
End

Sort the intersections by distance
Save the closest intersection
End

Calculate a value for the pixel by using a weighted average of
eight height values
Write the value to the image
End

37

the

O 00~V B W

WL 0L WWNNDNNRNDNEDNDDND m — o s o e e
PLUNLOOVONAUNMEWN—=OWVO-IAAWUNAWN=—O

W W
N L

Appendix E. Pseudo code for height map generation algorithms

Listing E.4: Precise intersection by equation (optimised)

For each image row
Create vector V along the row
For each Contour
For each segment S
Intersect V with §
End

Sort the intersections by distance
Save all the intersections
End
End

For each image column
As above

End

For each image diagonal (SW/NE)
As above

End

For each image diagonal (SE/NW)
As above

End

For each pixel
For each of the 4 above data sets
Find the closest value less than the pixel position
Find the closest value greater than the pixel position
End

Calculate a value for the pixel by using a weighted average
eight height values
Write the value to the image
End

38

of the

w N

—_
OOV oo~JN W B

11
12

13
14

Appendix E. Pseudo code for height map generation algorithms

Listing E.5: Precise intersection by pixel

For each contour

For each contour segment
Draw curve to temporary array with the height value of the
contour
End
End
For each pixel
For each of the 8 compass directions D
Traverse the array in the direction D until a value is found
End

39

Calculate a value for the pixel by using a weighted average of the

eight height values
Write the value to the image
End

