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Abstract: Tracking moving targets in video image data is a common ap-
plication of computer vision. In situations where the video camera position is
stationary, moving objects can be distinguished by comparing new frames with
a representation of the background scene. This representation is referred to as
the background model. Various target detection techniques exist which uniquely
model the background. In general, existing work uses only a single detection
technique to identify target locations. Four unique target detection algorithms
are implemented. A system is developed which allows the stages of target de-
tection and tracking to be executed in a modular manner. The system accepts
the data from the four techniques as input, and utilises five strategies of data
combination. The results are evaluated, to investigate which strategy provides
the most accurate performance, and to ascertain whether multiple combination
technique provide more accurate results than the component methods. Results
are obtained for five combination strategies, and four individual detection meth-
ods. It is seen that the combination strategies evaluate as more accurate than
any of the component methods.
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1. Introduction

Tracking moving targets in video image data is a common application of com-
puter vision. In situations where the video camera position is stationary such as
in surveillance footage, moving objects can be distinguished by comparing new
frames with a representation of the background scene. This representation is
referred to as the background model.

Various methods may be used to produce the background model, and the method
and features used will affect the accuracy of target detection. Producing a suc-
cessful background model requires adapting to or tolerating changes to the scene
and analysing whether these changes represent moving objects worthy of detec-
tion and classification. Changes to the background may happen at a small (local)
scale or at a large scale encompassing the whole scene (global). These changes
may be gradual, such as the slow change in lighting caused by the movement of
the sun in an outdoor scene, or immediate, such as the switching off of a light in
an indoor scene. There may be local motion caused by the movement of objects
such as branches or blades of grass swaying in a breeze, and there may be global
motion as the camera is shaken by the wind or a passing vehicle.

In addition to these problems, difficulties may be caused by shadows moving due
to changes in lighting direction or foreground object position, or by objects be-
ing removed from or added to view, and becoming part of the background after
being stationary for a extended period of time. Many differing Background Mod-
elling Techniques have been proposed that attempt to surpass these problems and
adapt to these changes, which rely on modelling features such as pixel intensity
(brightness), edges, or block correlation.

Each of these approaches varies in how well they deal with the previously men-
tioned changes and problems in the scene, and work in this field typically sug-
gests extensions of existing techniques, or the development of new background
modelling systems. This project aims to contribute to the field by exploring
the potential of combining multiple existing background modelling techniques to
produce a system which detects targets with greater accuracy than any of it’s
component systems.

There is the potential to combine these individual approaches in many ways. In
this project, we investigate several strategies and evaluate their success.

1



2 1. INTRODUCTION

1.1 Project overview

The primary goal of the project was to construct a target detection system ca-
pable of supporting multiple foreground detection methods, and with the ability
to combine their output in multiple ways, and at multiple stages of the target
detection and tracking process.

The system structure developed was highly modular, and allowed combination
methods to combine data at any level of the system hierarchy. The component
algorithms developed performed functions that included Foreground Detection,
Foreground Cleaning, Bounding Box Extraction, Tracking of Targets and Merg-
ing of Tracks. Five routes in the system were constructed, each with a unique
combination strategy, and each taking four background modelling techniques as
input, namely: Static Background Subtraction, Frame Differencing, the Mizture
of Gaussians method, and Nonparametric Kernel Density Estimation.

The performance of the system was evaluated by inputing multiple image se-
quences, and comparing the data output to a ground truth data set for the
appropriate test case scenario. Measures of accuracy were decided upon, and a
series of tests was run, producing an extensive results set.

In the course of this project the goal is to gather evidence to either support or
refute the hypothesis that using combination strategies (as previously described)
will give greater performance than any of the individual component techniques.
Improved performance is expected to be possible but the degree of improvement
cannot be ascertained until the results of combination experiments are collected
and evaluated.

1.2 Hypotheses of the project

This section explicitly states the claims of the project and evidence needed to
support them. The goal of this project is to investigate the performance of a
system employing a combination of multiple background modelling and target
detection techniques.

1.2.1 The primary hypothesis
Combining detection methods gives more accurate results than the
component methods do individually.

This hypothesis may be tested by producing results for the combination methods
and for the individual detection methods, for a wide range of parameters.
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1.2.2 Main conclusion summarised

The conclusion gathered from the results of the system built is that the combina-
tion produces good results, but definite superiority of the combination strategies
over the individual methods is called into question.

1.3 Structure of this document

To provide background on the project, we first present a literature review of
related research papers, found in Chapter 2. This related research largely consists
of a number of background modelling and target detection methods. The third
Chapter describes the image data used in the project, comprising of the CAVIAR
and BEHAVE data sets. Chapter 4 provides an overview of the implemented
system, describing it’s structure and the data combination strategies it makes
possible, and Chapter 5 describes the algorithms developed for the system in
detail.

Chapter 6 then details the methodology employed in testing the performance of
the system, and the implementation of the algorithms neccessary to do so. The
results produced by this performance testing methodology are given in Chapter
7, which also contains analysis of this data. The final chapter discusses the work
undertaken, suggesting conclusions which may be drawn, and further work which
may be carried out in the future.
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2. Related Research

This Chapter details relevent work in the area of the project. The majority of
work in the field typically suggests extensions of existing background modelling
techniques, or the development of new background modelling systems.

2.1 Background detection methods

The related work in this area centres on developing models of the background of
a scene from image data. The most basic possible method that would achieve
this is to choose a frame of the scene with no foreground objects contained in the
image. New frames could be compared with this ’empty frame’ by subtracting
the colour values of the current image frame from the static empty background
frame, and finding the absolute difference between the two for each pixel. If the
difference is greater than a specified threshold value, then that pixel is judged to
be in the foreground, otherwise it is judged to be in the background. Another
simple background modelling method uses the previous frame, or the nth previous
frame as the background image, and performs the same thresholding technique
as previously mentioned. This crudely accounts for changes to the background
model.

A slightly less basic technique that accounts for changes in the background is
the N-frame median background model. This dynamically records the previous
n frames, and then the background model is generated from the median colour
value for each pixel in these n frames. Therefore the colour for each pixel is the
most common colour seen in that location.

A more advanced technique called the Basic Gaussian Model also keeps track of
a certain number of frames, and the pixel intensity values for each frame. This
model is used in ”Pfinder: Real-time tracking of human body” by C.R. Wren, A.
Azarbayejani, T. Darrell, and A. P. Pentland[9], and assumes ’a relatively static
situation such as an office, and a single moving person ’. In this model, noise,
or background movement in the image is represented by a zero mean Gaussian
distribution with a full covariance matrix, where colour values are recorded as
Y, U,V values. The statistics for the average value for each pixel a recursively up-
dated using a simple adaptive filter, which allows for gradual changes in lighting
and (the authors claim) movement of objects in the scene.
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An extension of this method was proposed by W. E. L. Grimson, C. Stauffer,
and R. Romano in ”Using adaptive tracking to classify and monitor activities in
a site”[3]. They assert that a pixel is best modeled by a mixture of n Gaussians,
rather than the single Gaussian distribution suggested by the Pfinder paper. They
state that multiple processes are likely to be observed at a particular point in a
scene over time, and use the examples of an area of swaying tree branches, where
sometimes the pixel will observe the branch, and sometimes it will observe the
scene behind the branch. Alternatively, an area of rippling water may sometimes
reflect the sky, sometimes reflect the horizon, and sometimes appear the colour of
the water. This approach has also been utilised in ”Image segmentation in video
sequences: a probabilistic approach” by N. Friedman and S. Russell[2]. In this
paper, the Mixture of Gaussians method is used to model pixels in a scene show-
ing cars on a motorway, and a supervised technique they describe as an ’efficient
incremental version of EM (Expectation Maximum Algorithm) finds estimates
for the maximum likelihood of parameters in probabilistic models.

In situations such as the camera watching a motorway, the pixels can be re-
alistically determined as being in only several classes, such as 'Car’, ’Shadow’
and ’Background’. In ”A probabilistic background model for tracking,” by J.
Rittscher, J. Kato, S. Joga, and A. Blake[7], their representation is based on a
Hidden Markov Model, where the hidden states of the model denote foreground,
background and shadow. In this model however, the states have to be included
manually. The authors claim a unique benefit of Hidden Markov Models is that
a temporal continuity constraint is imposed. This effectively means that is a
pixel is identified as being in the foreground, it is expected to stay as part of
the foreground for a certain period of time before it reverts to the background.
Another related technique, known as the Hidden Markov Model Using Multiple
Global States can be seen in ”Topology free hidden markov models: Application
to background modeling” by B. Stenger, V. Ramesh, N. Paragios, F. Coetzee,
and J. Bouhman/8].

Another method that is often used is the detection of edge features. This is
an interesting technique in that illumination changes in the scene don’t affect
the outcome of the technique to any great extent. This is described in detail in
Y.-H. Yang and M. D. Levine’s "The background primal sketch: An approach
for tracking moving objects”[10], and also in "Detection and location of people in
video images using adaptive fusion of color and edge information” by S. Jabri,
Z. Duric, H. Wechsler, and A. Rosenfel[4].

Several other advanced techniques exist, such as block-based approaches, as sug-
gested by T. Matsuyama, T. Ohya, and H. Habe, in ”Background subtraction
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for nonstationary scenes”[6). Another advanced technique which is often used is
Nonparametric kernel density estimation, as described in ”Background and Fore-
ground Modelling Using Nonparametric Kernel Density Estimation for Visual
Surveillance” by A. Elgammal, R. Duraiswami, D. Harwood and L.S. Davis(1].

2.2 Summary

From the previous literature review, it can be seen that a variety of well-established
detection methods exist, but no existing work was found that attempted to bring
together multiple background modelling techniques to produce a single output.
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3. Test Case Scenarios

This Chapter describes the Test Case Scenarios used to evaluate the system. In
this context, Test Case Scenarios are image sequences containing interactions of
targets in a scene. In the Test Case Scenarios used, human targets are used. The
Test Case Scenarios also contain a set of Ground Truth data, which is a set of
hand-labelled data, giving locations and orientations of targets in the scene on
a frame-by-frame basis. The Ground Truth data is seen as the ’gold standard’
of results: the closer a detected target matches to the ground truth target, the
more accurate a result it is judged to be. To gain a confident overall performance
assessment of a detection method, it is desirable to input image sequences from
multiple sources, in order to evaluate the accuracy under a variety of conditions.
Differing conditions may be provided by different physical locations of the scene,
differing lighting conditions, or different recording/encoding settings, for example.
The following sections describe the image data used by the system.

3.1 CAVIAR

EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

The following information, quoted from the page above, describes the images
sequences from CAVIAR used as input data in this project.

The first section of video clips were filmed for the CAVIAR project
with a wide angle camera lens in the entrance lobby of the INRIA
Labs at Grenoble, France. The resolution is half-resolution PAL stan-
dard (384 x 288 pixels, 25 frames per second) and compressed using
MPEG?2. The file sizes are mostly between 6 and 12 MB, a few up to
21 MB.

The second set of data also used a wide angle lens along and across
the hallway in a shopping centre in Lisbon. For each sequence, there
are are two time synchronised videos, one with the view across and
the other along the hallway. The resolution is half-resolution PAL
standard (384 x 288 pixels, 25 frames per second) and compressed
using MPEG2. The MPEG file sizes are mostly between 6 and 12
MB, a few up to 21 MB.
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3.2 BEHAVE

EPSRC Funded BEHAVE project GR/S98146, found at URL:
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/.

The following information, quoted from the page above, describes the images
sequences from BEHAVE used as input data in this project.

The dataset comprises of two views of various scenario’s of people
acting out various interactions. The data is captured at 25 frames per
second. The resolution is 640x480. The videos are available either as
AVT’s or as a numbered set of JPEG single image files.

In contrast to the CAVIAR data, which contains only indoor scenes, the BEHAVE
image data is exclusively outdoor scenes.




4. System Overview

This purpose of this Chapter is to give an overview of the structure of the system,
as comprised of its component algorithms. These algorithms are briefly explained
(full explanations follow in the next Chapter), and the possible routes through
the system structure are listed and briefly described.

4.1 Structure of the system

The system is structured in a modular nature, with the ability to individu-
ally execute the component stages of the target detection process. The iden-
tified stages are: Foreground Detection(Detector), Foreground Cleaning(Clean),
Bounding Boz Extraction(BBox), Tracking of Targets(Track) and Merging of
Tracks(Trackmerge).

Combination of data may occur at five stages of the process. The possibility
of combination occuring at five stages means that these are five possible routes
through the system, which in turn means that there are five possible combina-
tion strategies. Although there are five routes through the system when combin-
ing data, there are only three Combination Methods(CombineA, CombineB, and
CombineC). The reason for this is that for two of the routes, combination oc-
curs at the foreground image stage (CombineA), one route combines data at the
bounding box stage (CombineB), and the remaining two routes combine data at
the track stage (CombineC).

The following diagram visually depicts the structure of the implemented solution.
Each box shown represents an algorithm in the system. Boxes with rounded cor-
ners, and the 1. .4 suffix represent algorithms that are run four times, once on
each data set produced by a detector. There were four detection algorithms im-
plemented, so there are four data sets to operate upon. Therefore, these boxes
receive multiple inputs, and produce multiple outputs. The boxes with dashed
borders are exclusively Combination Methods, and receive multiple inputs to pro-
duce a single output. The final class of box has square corners, and this represents
an algorithm that receives a single input, to produce a single output.

11



12 4. SYSTEM OVERVIEW

[ Detector 1..4 J

[ Clean 1.4 J E Combine A ;

— S '

[ BBox 1..4 : Combine A \\ Clean
[ Y J\ ------------------ Y
(Tmck;mgel..q Combine C\ [

!
' Combine C |
s - Trackmerge

4.2 Possible routes

As previously explained, there are five possible routes through the system struc-
ture, which provide five strategies of data combination. Each route will be dis-
played visually, and a brief description will be provided.
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4.2.1 Route 1l

| Combine A - Clean -  BBox et Track s Trackmerge
[ I

This combination strategy runs the four Detector algorithms, returning four bi-
nary images containing the foreground pixels from each detector. CombineA in-
puts these foreground images, and combines them to output a single foreground
image. Noise in this foreground image is removed by Clean, and bounding boxes
are then extracted from the result using the BBox function. Once the system
has completed running these algorithms on a complete set of frames, the Track
function goes through the bounding box data and creates tracks from overlapping
frames. Trackmerge is finally used to link together the resulting tracks.

4.2.2 Route 2

_________

| Detector 1..4}»[ Clean 1.4 \ Combine A \=  BBox et Track - Trackmerge

This combination strategy is similar to the last, but here, the foreground images
from each detector are cleaned individually before being combined by CombineA
to produce a single foreground image.

4.2.3 Route 3

_________

[Dctcctm: 1&»[ Clean 1.4 }»FBBOx 1.4 , Combine B bl Track - Trackmerge
1 |

This combination strategy combines the data after extracting four sets of bound-
ing boxes, one for each foreground image. This requires a new combination
algorithm, CombineB, and produces a single set of bounding boxes, which are
then tracked and merged.
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4.2.4 Route 4

—_—— m m == =

[Detcctor 1..4}»[ Clean 1.4 }»[ BBox 1.4 }—FTrack 1.4 ]—: Combine C - ‘Trackmerge
' '

This combination strategy combines the data one stage later again, producing a
set of tracks for each detection method, and then using the final combination
algorithm, CombineC, to produce a single set of tracks which are then merged.

4.2.5 Route 5

—_—— = = e =

{Detectnr 1..4}»[ Clean l‘j»[ BBox 1.4 H Track 1.4 H'l'mckmcrgc 1..4}—: Combine C :
| m e e e 2 = = |

The final combination strategy executes the entire tracking operation, up to the
Trackmerge stage before the combination algorithm is used. As in the previous
route, the CombineC function is used.




5. Algorithms Used in System
Implementation

This Chapter describes in detail how the system and all the functions operate.
All the component algorithms in the system are described, including individual
Foreground Detection methods, Foreground Cleaning, Bounding Boz Extraction,
Tracking of Targets and Merging of Tracks. All functions are implemented in
MATLAB5]

5.1 Detection methods

Four Foreground Detection methods were chosen for combination in our system:
Static Background Subtraction, Frame Differencing, the Mizture of Gaussians
method, and Nonparametric Kernel Density Estimation.

5.1.1 Static background subtraction

In this method, a static representation of the background image is found by
reading frames of the background scene, and finding the median colour value at
each pixel location. In the implementation, colour values are represented in the
RGB space.

Foreground regions are identified in input frames by subtracting the median back-
ground image from the new frame, and finding the absolute difference between
the two. If the difference at a pixel location is above a threshold value, that pixel
is identified as being foreground.

Parameters

The only variable parameter of this technique is an integer threshold value.

5.1.2 Frame differencing
This method is similar to the Static Background Subtraction technique, in that
it also subtracts a static background image from input frames, thresholds the

absolute difference, and identifies pixels as foreground if the threshold is exceeded.

15



16 5. ALGORITHMS USED IN SYSTEM IMPLEMENTATION

The background model differs in that it does not remain static, but is dynamically
chosen as the nth previous frame.

Parameters

This technique has two parameters: the integer subtraction threshold value, and
an integer value which determines by how many frames the input image and the
background image will be separated.

5.1.3 Mixture of gaussians

The Mizture of Gaussians model is initialised over a series of training frames,
containing no foreground targets. These frames allow this method to store a
background history for the RGB channels of every pixel in the scene. The his-
tory of color intensities is stored in a histogram, with frequency of result on the
Y-axis, and channel brightness on the X-axis. A Simple Gaussian Model fits a
single Gaussian distribution over the histogram, whereas the Mizture of Gaus-
sians model fits an arbitrarily pre-defined number of gaussians over the histogram
values, allowing the model to cope with multi-modal background models. These
combinations of gaussian distributions give the background Probability Density
Function. All weights are updated each frame. If the current pixel value is within
a certain distance of the PDF, it is regarded as background and used to update
the background model. Otherwise, it is regarded as foreground and added to the
foreground representation. The gaussian classifier implemented is based upon a
classifier written by Seth Benton.

Parameters

Parameters include the number of Gaussians to use, the initial values of a Gaus-
sian when it is first created, and the color distance threshold value.

5.1.4 Nonparametric kernel density estimation

As with the Mizture of Gaussians model, the Nonparametric kernel density esti-
mation model is initialised by loading in a sequence of training frames to produce
a background model. The Nonparametric kernel density estimation method takes
50 background samples, after converting the training images into Chromaticity
coordinates. The Chromaticity colour space represents colours without a lumi-
nance value, and thus is able to better adapt to targets walking into shade, for
example.
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Once 50 background frames have been collected, each pixel is assigned a Sigma
value. This value is found by calculating the median change value from frame
to frame. The detection method allows more variation in areas of high sigma,
and this accomodates areas of the image that are more sensitive to vibration, for
example.

Once the model has been initialised, detection may be performed. During detec-
tion, the background history is maintained (the method stores the last n values
classified as background for a given pixel). First, the lightness of a new pixel is
divided by the lightness value of every history value for that location, and the
number of history values for which the result is within a set range is counted (set
range may be 0.8 to 1.2 for example). If no pixels are counted then the pixel is
foreground. If pixels are counted, the probability of the pixel being background
is calculated.

To estimate probability of background, Bayes Theorem is used. We can calcu-
late the probability of a particular colour value occuring, given that the pixel is
background. We also make estimates on the overall probability of a pixel be-
ing foreground (0.99) and the probability of a particular colour being foreground
(0.001). Using the Bayes Theorem, the probability of a pixel being background
can then be calculated. If the probability is above a certain threshold (suggested
value approx. 0.05) then the pixel is classified as foreground. The Nonparametric
kernel density estimation detector implemented is based upon a classifier written
by Professor Bob Fisher.

Parameters

Three parameters control the Nonparametric kernel density estimation model.
Two of these parameters are the upper and lower bounds of the lightness ratio
range (e.g. 0.8 and 1.2). The final parameter is the probability threshold on
whether a pixel is classified as foreground.

5.2 Foreground cleaning techniques

The result of the detection methods is a binary image, with background pixels
holding a value of ’0’ and foreground pixels holding a value of ’1’. This image
inevitably contains noise, appearing as stray pixels scattered through the image,
caused by minor variations in the scene or visual noise produced by the recording
device. It is desirable to remove this noise to produce a more accurate representa-
tion of the large targets in the image. The foreground cleaning techniques used in
the implementation consist of a dilate operation followed by an erode operation.
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The dilate operation extends the borders of foreground regions by a set number
of pixels, and the erode operation does the opposite, shrinking the borders of a
foreground region inwards. Used in sequence, the dilate operation closes up gaps
inside regions or between very close regions, and the erode function takes the
result, and shrinks the regions to their original size. A slighly larger parameter
chosen for the erode function causes very small regions to be removed entirely,
eliminating noise.

Parameters

The Clean algorithm has two parameters, one which dictates by how many pixels
the foreground should be dilated, and one which dictates by how many pixels the
foreground should be eroded.

5.3 Bounding box extraction

The Bounding Boz extraction algorithm operates on a binary image representing
foreground regions. The algorithm uses MATLAB library functions to isolate
all the islands of foreground pixels, and extract their properties. The included
property labeling function has the ability to extract statistics on the area of a
foreground region, as well as other properties, such as the location of its Bounding
Box coordinates. A bubble sort operation is applied, in order to sort the regions
in order of descending size. These regions are then saved to an array. We iterate
through this array, and while the area is larger than a supplied minimum threshold
value, the relevent Bounding Boxes are saved as foreground targets. .

Parameters

The only parameter availible is the threshold to determine the minimum size of
a target. Any regions containing less pixels than this threshold value will not be
saved as targets.

5.4 Tracking of targets

This algorithm is designed to find overlapping targets in a series of frames, and
connect them up into an ordered track. This can represent the movement of a
target through time.



5.5. TRACK MERGING 19

the Track algorithm is given a cell array of targets as input. Each cell of the
array corresponds to a frame number, and within the cell for a particular frame,
is a list of targets in that frame. Since the tracking process occurs after target
detection is completed, we can easily iterate through the target data, comparing
targets in frame n with targets in frame n-1. The overlap percentage is calculated
for each pair of tracks in different frames. If both targets overlap each other by
at least the threshold value (in the system, a 20 % overlap threshold is used),
then append the new frame to whatever track the previous frame belongs to. If
the new target does not satisfactorily match any track in the last frame, then the
new target is given its own new track.

Parameters

The only parameter is the overlap percentage threshold previously discussed.

5.5 Track merging

The purpose of this algorithm is to merge together multiple tracks, which are
seperated by a few empty frames, to produce longer tracks. Tracks are merged
together if their end and start points are similar enough in frame index and
location in the image. The merge operation includes filling in missing targets in
frames, by interpolating between the location it was last seen and the location it
was seen next.

Th input to this algorithm is a list of tracks. Each track is compared to all other
tracks in the list. For each comparison, a degree of joinability is evaluated. If
the two tracks are judged to be joinable, then join the tracks together, save the
combined track, and delete the component tracks from the list.

The joinability is calculated by first ensuring that the tracks do not overlap, and
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then calculating how close the ends of the tracks are to each other. If the ends
of the two tracks are within 10 frames of each other (or similar threshold), then
check distances between centrepoints of the ends of the tracks. If the distance is
less than 25 (or similar threshold) then the tracks are joinable.

The join operation is performed by filling in the missing frames between the ends
of the two tracks. This is achieved by finding the coordinates of each target, and
then linearly interpolating between the four porner points to create new target
locations.

Parameters

The parameters of this algorithm are the minimum frame difference threshold,
and the distance threshold, as previously described.

5.6 Combination methods

As previously detailed in the System Overview, there are three Combination
Methods which operate on five possible routes in the system. CombineA takes
binary images as input, CombineB takes sets of targets as input, and CombineC
takes tracks as input.

5.6.1 Combination method A

CombineA takes a set of binary images as input, with each image representing
the foreground regions extracted by a particular detection method. These four
images are combined together and thresholded to produce a single combined
binary image, with combined foreground regions. .

Routes containing combination method

: Combine A :-» Clean =] BBox bt Track = Trackmerge
[ [ 1

- ———_—— = = —

[Detector 1&»[ Clean l..4j->: Combine A = BBox + Track Trackmerge
1 [}
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Description of method

Combination method A reads in collection of images, stored in 3 dimensional
array, with each value of the 3rd dimension refering to an individual image. Sum
the images along the 3rd dimension and then divide by the number of images to
get a mean image, where a value of ’'1’ indicates that all the detection methods
chose that pixel as foreground, a value of 0.5’ indicates that exactly half of the
detection methods, and so on. This mean image may be thresholded over a set
value, for example ’0.3’ to produce a combined image.

NN/ |
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Choosing values of '1’ or '0’ for the threshold will return pixels that all the
detectors chose, or one-or-more detectors chose respectively.

Parameters

The only parameter in this function is the threshold value.

5.6.2 Combination method B

CombineB takes multiple sets of targets as input, with each set representing the
foreground targets extracted by a particular detection method. These four sets
are combined together and thresholded to produce a single combined set of fore-
ground targets.

Routes containing combination method

-_———— = — -~

[Dctector 1&' Clean 1.4 }>[ BBox 1.4 }—: Combine B r»  Track - ‘Trackmerge
[ B N I
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Description of method

First, a blank combination image is created. The algorithm iterates through
sets of targets returned by each detector, and for each detector, creates a blank
image. The bounding box coordinates are extracted for each detector, and for
all the area covered by target bounding boxes, that area of the image is assigned
a value of 1. After performing these operations on all sets of targets, the result
is a set of binary images, one for each detector. Combined in a similar way
to combination method 1, the pixel values are summed, divided by the number
of detectors used, and then thresholded. This produces a binary image of the
overlap of the bounding boxes from each detector. The bounding box operation
is then run on this foreground image again, as if it were the foreground returned
by an individual detection method at the first stage of the system.

ey
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Parameters

The only parameter in this function is the threshold value, and it is most likely
approx. the same value as in combineA, if a fair comparison is desired.

5.6.3 Combination method C

Combination method C operates on tracks, and tests if there is overlap between
them. If there is a sequence of frames where two tracks have targets in similar
locations (with a given distance threshold) then this constitutes overlap. Where
overlap occurs, the two tracks are combined into one, which may be longer than
one or both of the tracks individually.
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Routes containing combination method

_________

[Dctcctor 1..4]—»(Clcan 1..4}[ BBox l..4j-—[ Track 1.4 }»: Combine C :——- Trackmerge
[ S |

Description of method

Combine method C does not compare tracks from the same detector against each
other, it only compares tracks produced by seperate detection techniques. The
algorithm goes through all the tracks in turn, starting with those produced by
the first detector. Each track is compared to all the tracks produced by other
methods, and the contents of a ’combined tracks table’, which is initially empty.
If the two compared tracks are similar then a combination of the two tracks is
produced. This new combined track is added to the combined tracks table and
the two component tracks are deleted.

Similarity is calculated by function. The first test performed checks if the frame
ranges (the start and end frames) of the two compared tracks, overlap by a min-
imum number of frames (this is refered to in the code as the frame threshold),
and if this test is passed, the 'closeness’ of the two tracks is calculated by finding
an average distance from one another. This is evaluated on each frame by find-
ing centrepoints of each target, and finding the distance between the two using
Pythagoras’ Theorem. By summing these distances, and dividing by the number
of overlapped frames, the mean distance may be calculated. If this distance is
below a threshold value then the two tracks are judged to be similar.

The track combination function imputs two overlapping tracks, and outputs a
single combination track. The combination is achieved by finding the longer
track, and extending it using the shorter track if possible. If one track overlaps
the entirety of the other track, then the output is simply the longer track.

Parameters

The parameters of this algorithm are the threshold of the mean distance, and the
minimum no. of frames overlap, as previously described.

_—— = = —— —
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6. Performance Testing
Methodology

6.1 Ground truth and image sequences

To evaluate accuracy of the system, we must measure the system output against
actual results. The ground truth is, as was described before, the gold-standard
of results, and specifically, target locations. We assume that the ground-truth
results are of extremely high accuracy, as they were produced by labelling the
data manually.

In order to compare the ground truth with the target data, the ground truth must
first be imported into MATLAB. This required some work, as the original ground
truth files from the CAVIAR and BEHAVE datasets were encoded in a custom
XML language, which allowed many features of the targets to be recorded. The
only information needed by our system was bounding box positions however. The
data was imported by writing a series of parsers in the Python language, to read
in the custom XML file and output a set of comma-separated values files (CSV),
which are readable by matlab. This data was then read into Matlab and saved
as .mat files, which can be saved and loaded into memory as needed.

All the frames in each sequence were not used, it was decided to limit the selection
to five sequences of 100 frames. The sequences were chosen to be relevant to the
project, which means studying sequences with only one moving human target to
detect, with minimal occlusion, because maintaining identities is not a goal of
this project.

Clips were therefore chosen where targets were walking individually. In several
cases, other targets were walking or standing in other areas of the scene. It was
therefore necessary to be able to select a subset of the ground truth and select
a region of an image, so that unimportant target information could be ignored.
This is achieved by filtering ground truth results by target ID (where each ID
refers to a different human in the scene), and by using functions that limit the
area of the image where foreground pixels are detected.

Training frame ranges were also chosen within each data set, to serve as the
source of the background model training data for the detecttion methods.

For the Kernel Density and the Mizture of Gaussians methods, the background
model requires a set of history frames to be stored. This process takes several
minutes and the resulting data takes up approx. 100 MB (uncompressed RGB

25
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X 50 frames) for each image sequence. So save time, once the background model
for a scene has been constructed, it is saved to another .mat file, so that can be
easily loaded when needed. Further to this, additional information such as custom
parameters are stored on each sequence clip and loaded by the setsequence(n)
function. The setsequence(n) function is executed before any detector can
evaluate sequence n.

6.2 Measures of accuracy

The ultimate measure of accuracy of the system, is the degree to which a tracked
target is ’hit’ by the detection process. In some detection and tracking systems,
it is important to assign the correct identity to a target. In this case, because
only one human target appears in the clips chosen (due to restricted input data),
success is judged by how well that single track is covered by the detector, or
multiple detectors used.

Whatever route is chosen, the output of the system (as seen earlier) is a set of
tracks. It was also shown that a track is represented by a sequence of target
coordinates with corresponding frame numbers.

For each target in the detected track, a decision is made on whether it matches the
ground truth target in the same frame. This binary classification is performed
by comparing the target coordinates from the detection system to the target
coordinates in the ground truth, and calculating the percentage of overlap of
the two boxes. This percentage overlap is tested against the overlap threshold
(both ways, overlap of both targets). The custom parameters loaded by the
setsequence(n) function, allows custom thresholds for a clip. For example,
some clips contain more easily-detectable targets than others. If even the least
suitable detection method and parameters can easily match targets, then it is
desirable to make targets harder to match. This can be achieved by asking for a
higher overlap before a match returns positive.

Analysing a track means: counting the number of True Positives (targets that
matched the Ground Truth) and counting the number of False Positives (targets
that did not match the Ground Truth. Using True Positives and False Positives
doesn’t use all the availible information though, as we can also calculate informa-
tion that tells us how many targets in the ground truth were not detected (False
Negatives). This is done by appending a column of '0’s to the ground truths data,
and if a target is ’hit’ by the detection system, that appended cell is set to ’1’.
For a 100 frame sequence with one ground truth target per frame, the number of
False Negatives equals 100 - the sum of all the appended column.

Instead of comparing True Positives and False Positives, we can also use the False
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Negatives data by plotting Precision/Recall points.
Precision = TruePositives/(TruePositives + FalsePositives)
Recall = TruePositives/(TruePositives + FalseNegatives)

The ideal value to return for each is 1. Running the detection system on a
sequence with a set of parameters, will give a precision/recall results value. We
can run many tests on a detector and get many resultant Precision/Recall values.
These can be plotted as points to produce a Receiver Operating Characteristic
(ROC) curve.

6.3 Testing Parameters

Finding suitable parameters to use during testing must be motivated by the
purposes and goals of the system. In our system, the same detector is to be input
the five image sequences, and the parameters are to be kept the same for each
clip. The goal is to find all-round well-performing values for the parameters of
each detector.

To fully test the combination of the detectors, all permutations of parameters
and detectors must be computed. That is to say, that all parameters tested on
one detector must be combined with all parameters of the 2nd detector, and the
3rd, and the 4th. So if there are p sets of parameters, and d detectors, on %
image sequences, and with ¢ combination methods, the number of combinations
to compute is cip?. In the system developed, ¢ =5, ¢ =5 and d = 4. So 25p*
equals the number of times each detector must evaluate an image sequence of 100
frames.

Therefore it is a prudent to choose a low number of params for each d. There are
3 distinct locations of clips chosen, each with distinct characteristics. Specifically
there are three physical locations, the outdoors car park, the mall, and the foyer.
In light of this, three well-performing sets of parameters are chosen for each
detection method.

So therefore 2523% = 2025 evaluations of sequences must be performed.

6.4 Optimisation

Evaluation speed is slow with two of the detection methods: Kernel Density
and Mizture of Gaussians. Kernel Density takes approx. 30 seconds per frame!
Therefore to save execution time when running all 2025 tests, the foregrounds



28 6. PERFORMANCE TESTING METHODOLOGY

extracted with these two methods were saved for all parameters, and quickly
loaded when the detection methods were to be combined.

3252100 = 1500 image files were saved for each of the two detectors.

So in testing, all routes are given all 81 combinations of detection parameters,
and the result of executing one route of the system will output a set of tracks, as
previously described. The frames of each track will be tested against the ground
truth, and the mean Precision, Recall value will be computed for that set of
tracks.



7. Results

7.1 Routes

This section of the Chapter displays results pertaining to individual routes of the
system. For clarity, the original description of each route is repeated here.

7.1.1 Route 1

| Combine A - Clean =  BBox bt Track e Trackmerge
N, |

This combination strategy runs the four Detector algorithms, returning four
binary images containing the foreground pixels from each detector. CombineA
inputs these foreground images, and combines them to output a single foreground
image. The image is cleaned, bounding boxes are extracted, and once the system
has completed running these algorithms on a complete set of frames, tracks are
created from overlapping frames. Trackmerge is finally used to link together the
resulting tracks.

The following graphs in this Chapter plot Precision on the x-axis and Recall on
the y-axis. The image on the left plots a point for each combination of detection
parameters, by averaging the results for that parameter over all five sequences.
The graph on the right is a heat plot which displays all the results obtained by
this route. Where points overlap, the colour value is incremented, and a custom
colormap is used due to the high concentration of results in certain areas of the
graph (i.e. (1,1) and (0,0)).

The table data contains a set of Mean Values of Precision x Recall for each
sequence, and the Standard Deviation from the mean. The purpose of evaluating
Precision * Recall is to calculate a single number which represents accuracy in
target detection. The best possible result is 1, the worst is 0.
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7. RESULTS

Data Set Mean Value Standard Deviation
Sequence 1 0.1235 0.1972
Sequence 2 0.1241 0.1471
Sequence 3 0.8920 0.1675
Sequence 4 0.8594 0.1453
Sequence 5 0.9561 0.0821

| Average 0.5910 0.4122

7.1.2 Route 2

W\l o€
ad> /X

—_—— = = ==

[Detcctor 1..4]—»[ Clean 1.4 }>: Combine A :-—
0 I

BBox

e

Track

> ‘Trackmerge

This combination strategy is similar to the last, but here, the foreground images
from each detector are cleaned individually before being combined by CombineA

to produce a single foreground image.

The graphs below plot Precision on the x-axis and Recall on the y-axis.
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Data Set Mean Value Standard Deviation
Sequence 1 0.1300 0.2395
Sequence 2 0.1199 0.1496
Sequence 3 0.8913 0.1625
Sequence 4 0.8062 0.1678
Sequence 5 0.8888 0.1592
Average 0.5673 0.4041
7.1.3 Route 3
(Detector lﬂ-V[ Clean 1.4 }»[ BBox 1.4 \ Combine B r»t  Track - Trackmerge

This combination strategy combines the data after extracting four sets of bound-
ing boxes, one for each foreground image.
algorithm, CombineB, and produces a single set of bounding boxes, which are

then tracked and merged.

This requires a new combination

The graphs below plot Precision on the x-axis and Recall on the y-axis.
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Data Set Mean Value Standard Deviation
Sequence 1 0.1448 0.2511
Sequence 2 0.1411 0.1541
Sequence 3 0.8008 0.2151
Sequence 4 0.7493 0.2080
Sequence 5 0.8098 0.1888
Average 0.5291 0.3770

7.1.4 Route 4

[Dctcctor 1..4}»( Clean 1.4 }»[ BBox 1.4 ]-—[ Track 1.4 }—: Combine C o] Trackmerge
1 I

This combination strategy combines the data one stage later again, producing
a set of tracks for each detection method, and then using the final combination
algorithm, CombineC, to produce a single set of tracks which are then merged.

The graphs below plot Precision on the x-axis and Recall on the y-axis.
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Data Set Mean Value Standard Deviation
Sequence 1 0.3676 0.3998
Sequence 2 0.3110 0.2928
Sequence 3 0.9158 0.1827
Sequence 4 0.9230 0.0718
Sequence 5 0.9510 0.0909

| Average 0.6937 0.3772

7.1.5 Route 5

The final combination strategy executes the entire tracking operation, up to the
Trackmerge stage before the combination algorithm is used. As in the previous
route, the CombineC function is used.

The graphs below plot Precision on the x-axis and Recall on the y-axis.
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Data Set Mean Value Standard Deviation
Sequence 1 0.3854 0.3976
Sequence 2 0.2248 0.2405
Sequence 3 0.8729 0.2197
Sequence 4 0.9230 0.0718
Sequence 5 0.9142 0.1755

| Average 0.6641 0.3852

7.2 Individual Detection Methods

7.2.1 Static Background Subtraction

> Wy W}j

Data Set Mean Value
Sequence 1 0.1384
Sequence 2 0.1028
Sequence 3 0.6735
Sequence 4 0.6120
Sequence 5 0.6975

| Average 0.4448
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7.2.2 Frame Differencing

Data Set Mean Value
Sequence 1 0.0000
Sequence 2 0.0000
Sequence 3 0.1714
Sequence 4 0.4746
Sequence 5 0.2579

| Average 0.1808 |

7.2.3 Mixture of Gaussians

Data Set Mean Value
Sequence 1 0.1723
Sequence 2 0.2036
Sequence 3 0.4852
Sequence 4 0.5466
Sequence 5 0.3214

Average 0.3250 |

7.2.4 Nonparametric kernel density estimation

Data Set Mean Value
Sequence 1 0.0247
Sequence 2 0.0033
Sequence 3 0.6541
Sequence 4 0.3136
Sequence 5 0.6291

| Average 0.3458

35



36 7. RESULTS
7.3 Analysis of Results

7.3.1 Comparison of all detection techniques

Detection Technique Mean Value Over All Data
Route 1 0.5910
Route 2 0.5673
Route 3 0.5291
Route 4 0.6937
Route 5 0.6641
Static 0.4448
FD 0.2579
MixGauss 0.3250
Kernel 0.3458

7.3.2 Discussion

The comparison of all detection techniques results above show all the combination
routes implemented to be outperforming any of the individual detection methods.
This is a promising statistic, but it is important not to read too much into this,
as there is always the possibility that the system implemented has a bias towards
a particular function.

When viewing the results of the different routes seperately, it is clear that there
is a large disparity between the routes containing CombineA and CombineB, and
the last two routes containing CombineC. When looking at the heatmap graph for
routes 4 and 5, it is clear to see that there were a large number of results at (1, 1)
influencing the overall averages. The apparent advantages of these combination
methods may possibly due to unfair advantages afforded by CombineC. Specifi-
cally, the combination function implemented looks for nearby tracks to combine
with one another, and aggressively throws away tracks that do not strongly over-
lap with another. These features are unique to CombineC, and may have affected
the results.

When comparing combination methods, it is important not to give advantages
to particular methods, as it is only with a level playing field that the superior
combination method will be revealed.



8. Conclusions

8.1 What was discovered

It was discovered that it is possible to produce a system that combines image
detection methods in a number of ways, and the results will be at least com-
parable with the component methods. In fact, in the results obtained here, the
combination methods produced more accurate results than any of the detection
methods did individually.

It was hoped that compelling evidence would point to the superiority of a par-
ticular system route, but either due to the parameters and detection methods
chosen, or the unfair advantage given to certain routes, no system route emerged
as an obviously superior candidate.

8.2 Future Development

There is also great scope for the investigation of more intelligent combination
techniques. Currently the methods are simply each given a vote, and this vote is
always weighted equally. More intelligent combination techniques would favour
background modelling methods based on observed video features. For example if
the system detected a large global illumination change, it would be able to select
the technique best suited to cope with this.

It is also suggested that combining Detection methods which vary more widely
in their background modelling techniques would provide better input data. The
more complex methods used here both model a curve over a histogram of the
background history, and one detector is unlikely to be able to offer new informa-
tion for the other. It is postulated that combining edge detection, or gradient
based image detection techniques with a kernel based method would provide new
information, and provide better data with which to see differences in the combi-
nation method more easily.
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