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Abstract

A new application for real-time monitoring of the lack of movement in
older adults’ own homes is proposed, aiming to support people’s lives and
independence in their later years. A lightweight camera monitoring sys-
tem, based on an RGB-D camera and a compact computer processor, was
developed and piloted in community homes to observe the daily behavior
of older adults. Instances of body inactivity were detected in everyday
scenarios anonymously and unobtrusively. These events can be explained
at a higher level, such as a loss of consciousness or physiological deterio-
ration. The accuracy of the inactivity monitoring system is assessed, and
statistics of inactivity events related to the daily behavior of older adults
are provided. The results demonstrate that our method achieves high
accuracy in inactivity detection across various environments and cam-
era views. It outperforms existing state-of-the-art vision-based models in
challenging conditions like dim room lighting and TV flickering. How-
ever, the proposed method does require some ambient light to function
effectively.

1 Introduction

The proportion of older adults living alone is increasing globally as the aging
population grows [8, 22]. According to the Office for National Statistics in 2019,
more than 3 million people over the age of 70 lived alone in the UK [11]. Even
if they are living alone, more than 90% of older adults express a strong desire to
remain independent – they predominantly prefer to continue living in their own
homes rather than relocating to nursing homes or other care facilities [13, 16].
However, older adults living alone face more difficulties in daily life and have
higher medical needs [8], [4]. Meanwhile, new or worsening symptoms related
to chronic health problems or sensory impairments may not be noticed [13].
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Figure 1: Real-time system for monitoring older adults in common home sce-
narios (inactivity monitoring of routine seating areas). Anonymous monitoring
uses a compact system consisting of an RGB-D camera and a small computer
processor. Anonymity is maintained by discarding captured images after pro-
cessing.

Mobility problems, which encompass a spectrum of limitations including
complete immobility (immobility syndrome) and reduced ability to move, can
arise when someone experiences a prolonged period of reduced movement. These
limitations are particularly prevalent in older adults and can contribute to func-
tional decline, an increased risk of needing long-term care after hospitalization,
and various medical complications. Examples include deep vein thrombosis,
urinary incontinence, pressure sores, joint contractures, cardiac deconditioning,
and muscle weakness [20]. As these complications often develop gradually, our
focus lies on monitoring and analyzing behavior in older adults with long-term
mobility limitations.

Smart technologies and AI solutions are accelerating the pace of change in
healthcare in many areas [24], [28], [18], [31]. Unobtrusive sensors can work 24/7
in the long term, providing faster, more accurate analysis in a user-focused man-
ner. In recent years, many studies have been conducted to monitor older adults
in their homes using camera sensors. Stone et al. [28] detect falls using the per-
son’s vertical state and motion features. Using a depth imagery sensor (Kinect)
can largely eliminate the interference of lighting and shadows for visual percep-
tion. A patient monitoring system is used to lessen the workload of the nurses:
two RGB cameras were placed for monitoring patients, one for bed view and
the other for room view, to detect bed occupancy, self-extubation, and falls [18].
The above systems have achieved good accuracy in detecting events, however,
one of the major concerns with camera-based systems is privacy [7]. This issue
must be addressed when convincing people to use such a camera-based system.
Other challenges of real-world home camera monitoring include effectiveness
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and adaptation. That means accurate detection of anomalous human events in
backgrounds for different scenarios, moving objects and pets in the house, and
changing lighting conditions, such as sunlight, low light, and TV lighting.

In this study, a new application of real-time monitoring of older adult peo-
ple in home scenarios is presented. Specifically, the application detects the
prolonged inactivity of a person sitting in a standard home location (e.g., on a
favorite chair). A compact system consisting of an RGB-D camera and a small
computer is deployed, which monitors the person at a specific location. The sys-
tem is camera-based, but completely anonymous, with no internet connection,
no image/video is saved, and only inactivity statistics text logs are kept. The
abnormal inactivity events can be related to medical conditions, such as lost
consciousness, or long-term decreased physical ability. An example is shown in
Fig. 1.

The application was designed for homes where a single aging adult lives, so
this is the test scenario that is evaluated. The results show that the system has
good accuracy, sensitivity, and robustness in different environmental settings,
enabling long-term anonymous monitoring of older adults in their own homes.

This paper introduces a new visual monitoring system that has the following
advantages:

(1) A new camera system automatically tracks older adults’ inactivity at
home, even in difficult situations like dim light, pets around, or TV flickering.
It works in real-time and keeps identities anonymous. This system is more
accurate than other state-of-the-art vision algorithms for inactivity detection.

(2) The system was piloted in community homes to unobtrusively detect in-
stances of body inactivity in everyday scenarios, revealing the behavior patterns
of older adults, such as their daily routines and motion habits.

(3) This affordable, reliable, and zero-interacting system could be used to
monitor older adults suffering from frailty and other long-term physical deteri-
oration, as well as detect critical situations, making it a useful tool for everyday
health monitoring.

2 Related Work

Many sensors have been investigated for detecting human behavior in indoor
scenarios [30]. Individual inactivity is closely associated with hospitalization
in older adults [36]. However, few works specifically focus on detecting the
inactivity of the human body.

Wearable sensors offer high-accuracy human motion detection. For exam-
ple, a belt-worn kinematic sensor demonstrated 100% recall in detecting human
motionless events, such as several seconds of walking, standing, sitting, or lying,
in a lab environment [37]. However, wearable sensors can be intrusive and may
require users to wear them continuously, which might not always be acceptable
for older adults. Ambient sensors are non-intrusive and capable of detecting
various indoor human movements, including whole-body motions, limb move-
ments and chest breathing movements, even in complete darkness. For instance,
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Wi-Fi-based human motion sensing [19] can accurately recognize five typical hu-
man activities with a 96.6% accuracy; and subtle motions, such as simulated
hand tremors, with 95.7% accuracy [5]. Passive Infrared (PIR) sensors [1] have
achieved an accuracy of 93% in predicting human relative locations, including
stationary individuals. Radar-based sensors [17] have achieved a classification
accuracy of over 95% for four basic types of human motion. However, ambient
sensors can be triggered by household pets, leading to an increase in data noise
and a decrease in the overall predictability of human mobility [32]. Camera-
based systems are widely used due to their cost-effectiveness and non-redundant
nature in modern buildings. Cameras are less intrusive for long-term monitor-
ing compared to wearable sensors and provide multifunctional and semantically
explainable capabilities. They can distinguish between human and non-human
movement and identify which body part is moving, and motion scale/speed;
they can also efficiently identify and track humans, pets, and various objects.
Moreover, the same camera-based system can be used to process different tasks,
where ambient motion sensors can only detect some unspecified motion in the
environment. For instance, Kinect-based body motion signals have shown mod-
erate to excellent accuracy, with root mean square errors (RMSE) ranging from
20 mm to 89 mm [3]. In video-based pose estimation, mean absolute errors for
gait analysis are as low as 0.02 seconds for temporal gait parameters and 0.04
meters for step lengths compared to motion capture technologies [27].

For human inactivity detection, accurately detecting the person is typically
the initial step in monitoring behaviors. Xia et al. [34] proposed a model-based
approach for indoor person detection using a Kinect sensor to capture a side
view of the person. Initially, all 2D circular shapes are localized as head can-
didates, and then these candidate regions are fitted to a learned 3D human
head shape. Most deep learning-based detectors are designed for oblique or
front views, but Cho et al. [6] trained convolutional neural networks to segment
heads using top-view depth data. A side view of the person can be more intru-
sive, as individuals are aware of the camera’s presence. Depth-imaging-based
methods are recognized for their superior performance and robustness in detect-
ing humans across various poses, rotations, and lighting conditions. However,
they often come with higher computational costs, which can be a limitation in
applications requiring real-time processing, such as healthcare applications.

To monitor a person’s inactivity while sitting in a preferred location, camera-
based motion detection methods can be applied. There is a range of motion de-
tection algorithms designed to address various real-world challenges [15]. One
fundamental method is background subtraction [2], which creates a background
model and identifies foreground objects by comparing the current frame to this
model. Another technique, frame differencing [25], involves comparing the cur-
rent frame with a reference frame to track the number of differing pixels. How-
ever, these methods are sensitive to noise and environmental changes, such as
variations in lighting, the presence of shadows, and moving objects. Parametric-
based methods, like the Gaussian Mixture model [26], tend to be more robust
in the face of noise and artifacts [33]. Non-parametric methods [9], fitting a
smooth probability density function to pixel values over a temporal window,
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considering both self-similarity and similarity to neighboring pixels. This en-
hances robustness against camera jitter or minor background movements [15].
When compared to other traditional motion detection methods, non-parametric
techniques have shown superior performance in eliminating minor background
movements [21]. Common challenges for cameras in achieving accurate human
inactivity detection include dealing with complex background noise, coping with
fluctuating lighting conditions (including low environmental lighting and abrupt
changes, such as TV light flickering), meeting high sensitivity requirements for
detecting small body movements (e.g., finger movements), and distinguishing
human movements from non-human movements (e.g., pets). The method pro-
posed below can cope with these difficult issues, as demonstrated below.

3 Unobtrusive Monitoring Methodology

The goal is to detect inactivity accurately and sensitively within a home environ-
ment where the resident spends a significant amount of time. This environment
may include areas for reading, resting, or watching television. An inactivity
event is defined as the absence of movement in any body part for a duration
exceeding one second1. This allows us to record motionless periods relevant
for data analysis, particularly in creating long-term mobility profiles. Inactiv-
ity events initiate inactivity monitoring, which may reset upon the detection of
motion, or may trigger an alert if inactivity persists for too long. Depth-based
foreground extraction and color-based motion detection are used to detect if the
person has stopped moving.

(i) Foreground detection
When monitoring people sitting in a room, the background can be complex,
and the subjects can be in the region actively or inactively for long periods.
A robust foreground detection method is applied. A background model is first
constructed from a series of depth frames for the first few seconds when no one is
present in the view. Each depth frame is smoothed by a median filter. Then, for
each new depth frame, foreground pixels are detected by comparing them with
the background model using a non-parametric method [10]. The non-parametric
method fits a probability density function to the depth values at each pixel over
a time window and detects changes. For every pixel at time t, the probability
density function that this pixel has a depth value dt is calculated relative to
previous background depth values di at the same locations in n recent frames,
as:

Pr(dt) =
1

n

n∑
i=1

Kσ(dt − di), (1)

where K is a 1d Gaussian with parameter σ. The pixel is considered as a fore-
ground pixel if the probability is less than the threshold. Each pixel is compared
with several pixels at the same location in several recent background frames to

1While ignoring tiny pauses (shorter than one second) between consecutive motions, as
these might be inaccurate due to the limited frame rate (3 – 5 fps).
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enhance the robustness of foreground detection to small noise or vibrations in
the background (e.g., leaf motion [10] or depth estimation errors). To speed up
the calculation on a small computer by avoiding the exponential computation
for each pixel, the log of (1) is approximated by the quadratic function:

f(dt) = − log
√
2πσ2 − 1

2nσ2

n∑
i=1

(dt − di)
2. (2)

The foreground (matrix) is derived as

FGt = D
(f(dt)<ρ)
t . (3)

In the implementation, ρ is set to −6.907, and σ is set to M
0.68

√
2
[10], where M is

the mean of the absolute value of pixel differences from successive depth frames
in the background model. Once the foreground pixels are detected, the tradi-
tional post-processing procedures (size filter, tracking, and open processing) are
applied to the foreground mask to remove noisy areas. The two most recent
foreground regions are also saved (as a binary mask for privacy) for reference in
the following misdetection suppression process.

Background frame pixels are selectively updated for every loop, excluding
foreground pixels, since some observed body parts may not have any motion for
a long time and should not be updated to the background for inactivity detection
purposes. The latest background frame is updated and added to the background
model sequence, and the oldest frame is removed. For the latest background
frame at time t, the foreground area is not updated, it is directly copied from
the background frame at time t − 1, whereas the previous background area is
updated with the corresponding pixels from the current depth frame Dt, as:

BGt = BG
(FGt)
t−1 +BG

(¬FGt)
t−1 · (1− α) +Dt

(¬FGt) · α, (4)

where α is the background update ratio.
(ii) Motion detection

Motion is detected using a color difference method, by subtracting the color
of each pixel in the current frame from the color of the corresponding pixel in
the previous frame, taking the absolute value, and comparing it to a threshold.
This basic method is sensitive to detect small true motions of the human body
(e.g., fingers) and insensitive to slow changes in natural light; however, it is
susceptible to small image artifacts and noise. For example, sudden lighting
changes when watching TV at home, especially at night when the room light is
dim. Sudden changes in TV light reflected on the human body can be mistaken
for movement.

Fig. 2 shows an example of color value changes of a pixel in a video that was
recorded under the low light condition of a person in the living room watching
TV: (a) In the absence of human motion under constant lighting, pixels at the
same image location have very small differences in color values between frames;
(b) In this sort of environment, when the TV light changes, peaks of the pixel
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Figure 2: RGB value difference of one color pixel (selected on the human chest)
in consecutive frames under the following conditions: (a) no human motion un-
der constant low light; (b) same environment, without human motion but with
TV light changes; (c) human movement only. (d) The threshold for distinguish-
ing noise (a) from true body motion (c), see main text for details. (Scene Luma
Rec. 601 [12] Y ′ is 20.5).

color difference in one color channel often appear and disappear in a short
period; (c) If it was true human motion, the pixel difference usually showed
large peaks in all color channels and lasted longer.

Therefore, to enhance robustness when classifying the changes as human
motion, the change of intensities in all channels of the color pixels should be
above a threshold, as:

mv = FG [Rdiff ≥ θ ∩ Bdiff ≥ θ ∩ Gdiff ≥ θ] , (5)

where mv is the movement pixels and FG is the foreground region, Rdiff is the
absolute value of the difference of pixel values between consecutive frames.

The distribution of the pixel value differences in condition (a) in RGB chan-
nels over 300 frames was calculated. Since there is no movement, the difference
value is considered as noises (ideally it should be 0). Moreover, in low lighting,
the noise is usually larger than in good well-lit environments (i.e., upper bound
of such noise). θ was increased to find the lower bound of losing any small
movements (recall of 20 times finger movements, as illustrated in Fig. 6), and
choose the proper threshold θ that can remove the noise while keeping the true
small motions.

In the experiments, a single threshold θ for all RGB channels is set at 20
(pixel value range 0-255). This threshold corresponds to the upper bound of
image noise typically observed in low-light conditions. Fig. 2 (d) shows the
distribution of pixel value differences of the RGB channels in the no-motion
condition over 300 frames from both low-light and well-lit environments. Since
there’s no movement in these conditions, the differences ideally should be 0,
with the values of this distribution indicating the noise level. Note that noise
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levels are higher in low-light conditions (m = 2.23, σ = 2.29) compared to
well-lit environments (m = 1.75, σ = 1.27). To identify the threshold where
motion detection starts to miss small movements, The detection of small finger
movements (over 20 trials) was investigated. From this, the detection threshold
was increased to θmax = 25, to effectively remove noise while preserving true
small motion detections.

A temporal median filter with a window size of 5 frames was then used to
mitigate the effects of TV flickering and other sudden illumination changes. The
temporal length of TV flickering was calculated across 40 trials. The average
temporal length was 1.6 frames (σ = 0.74). This suggests that sudden illumi-
nation changes are usually less than 0.5 seconds. Furthermore, considering the
spatial and temporal size of the true motion of the human body (i.e., larger
than a square centimeter, usually more than 0.5 seconds), a 2d spatial median
filter (5 × 5 pixels) is applied to the foreground regions to further eliminate tiny
isolated noise pixels.

(iii) Misdetection suppression
The motion regions detected using the depth-based method in (i) above are
often disconnected when the person adopts some poses, such as reclining or
lying on a couch. This is because, in these poses, the depth values of the
background (e.g., couch) are very close to the depth values of the body parts,
and most detection methods that calculate the difference between foreground
and background depths may not be able to distinguish the small differences
given inaccurate camera measurements (< 2% depth error at 2 meters). An
example is shown in Fig. 3.

To deal with this incomplete foreground, the detected foreground is grown by
referencing its depth and spatial locations on the image. An enlarged bounding
box (10% of image width) is set around the foreground area to grow within. The
mean (m) and standard deviation (σ) of foreground depth values are calculated
as growth reference values. For any pixel adjacent to a foreground region in the
enlarged bounding box, if its depth value d is close to the foreground mean m,
as:

|d−m| < 2.8σ, (6)

then this pixel is treated as a foreground inlier and will grow into the foreground.
If the nearby background regions are not close to the foreground, there will be
no region growth. If multiple foreground regions are detected, only the regions
that are close to the most recent foregrounds in size and depth are grown.

Human/Pet detector: Large objects in the background, such as chairs or
tables that may shift when a person leaves their seat, are sometimes detected
during monitoring and remain in the foreground. These objects cannot be
eliminated through selective background updates. To address this, an object
detector (pre-trained YOLOv5, including humans and pets) is employed. Since
object detectors are computationally expensive for real-time processing and may
not always perform reliably with complex backgrounds and with various human
poses, the detection occurs every 10 seconds. The system aggregates multiple
observations and votes for human or non-human. After a minute, if the vote
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(a) Before region growing (b) After region growing

Figure 3: A person sitting on a couch. The grey area shows the foreground
detected using the depth map (a) before the region growing and (b) after the
region growing. Real human motion (red) is not detected in the incomplete
foreground before the region growing.

result (≥ 80%) indicates ‘not human’, the system updates the foreground region
to become part of the background.

Pets, which are often present in the homes of single older adults, may move
around humans even when the human is motionless, and this can introduce
unwanted motion detections. When both humans and pets are present, the de-
tector runs frame by frame, subtracting the detected pet region (bounding box)
from the foreground region. Motion is then detected only within the remaining
foreground region, effectively excluding pet motion, as shown in Fig. 4.

3.1 Behavior Statistics and Models

For inactivity detection, if no human motion is detected in the foreground,
a timer will start counting the inactivity period in seconds. Once motion is
detected in the foreground (and excluding the pet region), or if the foreground
is recognized as non-human, the timer will reset. Periods of inactivity (≥ 1
second) and their occurrence times are saved in a log. Median, maximum, and
minimum inactivity periods, by time of the day, are extracted from the log data.

Fitting distributions to the data was investigated to enable long-term com-
parison within the same subjects or among multiple subjects. The number of
movement occurrences over a period of time (e.g., 1 minute, 1 hour) can be
modeled with a Poisson distribution if one assumes that movements occur in-
dependently. Then the inactivity period between any consecutive movement
events can be modeled with an exponential distribution as:

f(x;λ) = λe(−λx);x >= 0, (7)

where the maximum likelihood estimate of the parameter λ is the inverse of the
mean of the data as λmle = 1/x̄.
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(a) Pet motion only (b) Removed pet motion

(c) Failed to detect pet (d) Failed to remove pet mo-
tion

Figure 4: Object detector helps remove pet motion. (a) Pet movement occurs
while humans are inactive. (b) The pet is successfully detected, and the relative
region is removed from the foreground, allowing the human inactivity count to
continue. (c) The pet is not detected by the object detector. (d) Pet motion is
not removed, resulting in the cessation of the human inactivity count.

4 Results

4.1 System Configuration

The RGB-D camera is an Intel RealSense D415 [23] with an ideal range of 0.5
meters to 3 meters. A USB cable connects the camera to the processor, a Jetson
Nano [14], which requires a minimum of 4.75 volts and operates on as little as
5 watts. The overall dimensions of the system are less than 20 cm × 10 cm ×
15 cm (excluding power cables). The camera captures color and depth imagery
at a resolution of 640 × 480. The images are processed by the processor in real
time, extracting the foreground and motion features. For the detection task,
both depth and color images are used. 5 fps was observed when no one was
present, and 3.5 fps was observed when someone was in view. The process is
efficient and has no lag; inactivity events will be reported within 1 second (see
details in Section 4.3: Temporal Sensitivity).

Privacy-preserving: The monitoring is camera-based, but the video frames
are only temporally loaded in the RAM for on-the-fly analysis and then dis-
carded. No images or videos are stored or transferred anywhere. Currently, the
device has no internet connection, so there is no risk of hacking or people view-
ing the subject, not even the researchers (see the detailed discussion in Section
5). All that is stored about the recorded events are when someone is seen at
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the monitored location, and how often they move. Detected events are stored
anonymously in the form of text event logs. It is assumed that these logs will
be analyzed on the home device, with the results available to visiting health
workers.

4.2 Experimental Methodology

As an anonymous and privacy-preserving monitoring method, obtaining the
ground truth for evaluation is challenging. Therefore, controlled experiments
were conducted in a variety of environments to evaluate the accuracy of the
system. Images were saved, and the ground truth was manually labeled. 116
videos were recorded across 12 indoor scenarios. This accuracy evaluation of
the system included the following aspects: (I) Motion detection, (II) Spatial
and temporal sensitivity, (III) Robustness in low light conditions and against
TV light, and (IV) Robustness against pet motion. Two state-of-the-art mo-
tion detection methods are compared. One is a kinetic-based pose estimation
method, ViTPose [35]; the other is an optical flow-based method, RAFT [29].
Both methods are pre-trained on transformer-based deep neural networks. The
pre-trained coefficients of the networks were used and then tuned both methods
to small motion sensitivity levels while keeping the upper bound of the noise
threshold to remove as much noise as possible. The results are presented in
Section 4.3.

Subsequently, our system was tested in a real-life deployment to capture the
inactivity patterns of older adults. The monitoring system was deployed in four
older adult households within the community, as an ethically approved study.
In this home monitoring, no video or image data was saved, and no ground
truth of the detected inactivity events was obtained. The results are presented
in Section 4.4.

4.3 Accuracy Evaluation

(I) Motion detection. To evaluate the detection accuracy, video capture
sessions with controlled motion and no-motion behaviors were conducted. A
person started with continuous movement (about 30 seconds), then went to no
movement at all (about 10 seconds), and then started continuous movement
again (about 20 seconds). This process was repeated 70 times and 70 short
videos were recorded in laboratories, offices, and homes, as illustrated in Fig. 5.
The ground truth for these events, i.e., humans appear/disappear, movement
starts/ends) is labeled manually as frame numbers in the videos.

Four types of errors are evaluated frame-wise. Human detection false posi-
tives (HuFP) and false negatives (HuFN), and motion detection false positives
(MoFP) and false negatives (MoFN), are shown in Table 1. 2 To calculate
the motion FN, it was assumed that during continuous movement periods, all
frames are motion positive, although there are sometimes short pauses (≪1s)

2From seventy video recordings with controlled motion/no-motion behaviors.
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Figure 5: Examples of inactivity detection evaluation in different scenarios (front
view in office, lab, and homes). The top row shows people in motion, and the
bottom row shows people remaining inactive. Detected humans are marked with
blue boxes, and areas with detected motion are highlighted in red pixels.

in transitions of body movement. During periods of complete motionlessness,
all frames are labeled as motion-negative.

The results show that MoFP has a low error rate in all scenarios - from 0.48%
to 0.00% when the temporal matching tolerance increases from ±0 to ±5 frames
for the beginning/end moment of the completely no motion periods. This shows
that, although a few frames of mismatch are tolerated at the beginning/end of
the inactivity period, every no-motion frame is correctly detected in periods of
inactivity, where the detection is insensitive to noise, i.e., the detection method
can filter out all types of background noise or fake motion caused by lighting
changes. MoFN is at 4.31% to 3.66% (±0 to ±5), indicating that several frames
of true motion during continuous motion periods were missed. HuFP is 1.46% to
0.97% (±0 to ±5) in all frames and HuFN is 3.59% to 3.23% (±0 to ±5), which
shows that the human detector (pre-trained YOLOv5) is more likely to miss
real people than detecting background regions as humans in these experimental
environments. In this experiment, there are many short (mostly < 1 second)
periods of no detected motion during the intervals labeled in the ground-truth
as having motion. These are the frame-wise MoFN errors. However, when
considering the motion instance level that fuses motion across these brief gaps,
all motion and non-motion instances are correctly detected.

(II) Spatial and temporal sensitivity. To evaluate the spatial sensi-
tivity of our method, a subject performed five physical movements repeatedly
and was monitored by a side-view camera 2.6 meters away. Fig. 6 illustrates
the sensitivity of detecting human movements under different motion patterns.
The movement ground truth was: body, wrist, finger, foot, each repeated 20
times (10 to the left, 10 to the right), and 40 head movements (20° each in
four directions). The results in Table 2 demonstrate that our method has good
sensitivity, with a true positive rate of 1.0 for detecting four motion types, in-
cluding both large movements (such as sitting) and small movements (such as
finger lifting). The true positive rate for detecting small head motion is 0.95,
where all head motions were detected, however, few (2 out of 40) happened too
quickly (2 frames or less) and were removed by the temporal filter. Whereas
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Table 1: Error rates for inactivity detection. The error types are: HuFP: de-
tected background region as human, which usually starts the inactivity time
counter, resulting in false inactivity events. HuFN: missed real human de-
tection, which causes the person to be updated into the background and reset
the timer, resulting in missing inactivity events; MoFP: detected no motion as
true motion, which falsely resets the timer, causing both missed and fewer true
long-period inactivity events; MoFN: missed true human motion which causes
a failure to reset the inactivity time counter and extends the count period, caus-
ing false long-period inactivity events. Because of potential mislabeling in the
ground truth, a given number of frames of mismatch Tolerance is allowed in the
bottom three rows.

Tolerance HuFP HuFN MoFP MoFN
(frames) (10e−2) (10e−2) (10e−3) (10e−2)

±0 1.46 3.59 4.8 4.31
±1 1.31 3.47 1.7 4.10
±3 1.15 3.31 0 3.82
±5 0.97 3.23 0 3.66

Table 2: Recall (R) and Precision (P) Under Different Body Motion Patterns
(Motion Detection Accuracy)

Lab (Y ′107)
ViTPose[35] RAFT[29] MISO
R↑ P↑ R↑ P↑ R↑ P↑

body 20/20 20/20 20/20 20/20 20/20 20/20
head 25/40 25/25 40/40 40/40 38/40 38/38
wrist 20/20 20/20 20/20 20/20 20/20 20/20
finger 0/20 0/0 19/20 19/19 20/20 20/20
foot 20/20 20/20 20/20 20/20 20/20 20/20

the ViTPose pose-based model [35] missed all of the finger motions and 25%
of the head motions since it only estimated the main body joints, and was not
as fine-grained as the RAFT optical-flow-based method [29] nor our proposed
method.

To evaluate the temporal sensitivity, 30 video clips of inactivity events (≥
5s) were collected in a well-lit laboratory, manually noted the beginning and
end moment of each event as ground truth, and then compared these with the
detected log. The temporal accuracy of the inactivity detection result is ±1.4
frames (at 3 to 5 fps), which indicates that the inactivity events will be reported
promptly within 1 second.

(III) Robustness in low light conditions and against TV light flicker.
Motion detection assessments were then performed under varying lighting con-
ditions. The cameras recorded the subjects’ activities with an oblique view at
1.5 meters, as illustrated in Fig. 7. The detection performance is then evalu-
ated by the number of motions missed given 20 ground-truth movements under
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Figure 6: Examples of spatial resolution of human motion detection under good
lighting conditions in the laboratory (side view, Luma Y ′ 107). Five body
movements were performed, 20 repetitions each (the head 40 repetitions for 20°
rotation). Recall rates: Head (1.0), Body (1.0), Wrist (1.0), Fingers (1.0), Feet
(1.0).

each lighting condition. The lighting condition has 5 levels from high to low,
as daylight (Rec. 601 Luma Y ′ 97), night light (Y ′ 75), low light (Y ′ 36), dim
light (Y ′ 24), and dark (Y ′ 4). The results (Table 3) show that under the first
four lighting conditions (Y ′ 24 to 97), 1 or 2 out of the 20 movements were
not detected (error rate 5% to 10%); whereas in the darkest environment (Y ′4),
the misdetection rate of true motions was 40% (8 out of 20 events were not de-
tected). This indicates the limitation of our detection method under extremely
low-lighting environments.

As mentioned previously, watching TV is a common activity for older adults,
especially in dimly lit rooms, where the light from the TV can easily scatter col-
ors onto people to affect the chromatic-based detection methods. To test the
robustness of the motion detection against changes in TV lighting, an experi-
ment was conducted under different room lights and at different distances from
the TV. Examples are shown in Fig. 8. Subjects sat at 0.7 meters and 1.5 me-
ters from the TV under 4 different room lighting conditions and then changed
the TV light by changing the TV channel, 20 times at each environment setting
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Table 3: Recall (R) and Precision (P) Under Different Lighting Conditions
(Motion Detection Accuracy)

Room Lighting
ViTPose[35] RAFT[29] MISO
R↑ P↑ R↑ P↑ R↑ P↑

day (Y ’97) 16/20 16/17 16/20 16/17 19/20 19/19
night (Y ’75) 19/20 19/21 17/20 17/17 18/20 18/18
low (Y ’36) 20/20 20/200* 19/20 19/39 19/20 19/19
dim (Y ’24) nanˆ 15/20 15/210* 18/20 18/18
dark (Y ’4) nanˆ nanˆ 12/20 12/12

ˆ : Excessive noise led to many false positives.
* : Approximated by the average ratio of the number of FP instances to each TP instance.

Table 4: Human Motion False Positive(FP) Under TV Light Flickering Condi-
tions

Lighting TV Dis.
ViTPose[35] RAFT[29] MISO

FP↓ FP↓ FP↓

Y ’90 0.7m 0/20 3/20 0/20
1.5m 0/20 5/20 0/20

Y ’41 0.7m 3/20 6/20 0/20
1.5m 0/20 8/20 0/20

Y ’14 0.7m 14/20 nanˆ 0/20
1.5m 19/20 nanˆ 0/20

Y ’4 0.7m 15/20 nanˆ 0/20
1.5m nanˆ nanˆ nan*

ˆ : Excessive noise led to many false positives.
* : The human detector failed in the dark environment.
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Figure 7: Performance comparison in low lighting conditions (top view). From
left to right: VitPose[35], RAFT[29], and our method. Detected motion is shown
in green, blue, and red, respectively, for the methods.

as ground. The results in Table 4 show that the false positive rates 3 are 0%
in all settings, except in the darkest and furthest condition (1.5 m, Luma Y ′4),
where the person detector often failed to identify a person sitting in the scene.
Although a few changes in TV global illumination were detected (see Fig. 8),
they were not classified as true motion by our method, as these changes only
occurred briefly (less than 0.5 seconds and thus were removed by the temporal
filter). On the other hand, the pre-trained deep neural network models both per-
formed worse in low-light and TV flickering conditions compared to our method
(see Table 3 and Table 4). The optical flow-based method exhibited significant
false positives in non-human regions under low-light conditions, whereas the
pose-based method could detect the human joints but also detected substantial
jitters, even when the person remained inactive, as illustrated in Fig. 7.

(IV) Robustness against pet motion. To test our detection method
against pet motion, two subjects participated in three inactivity trials in a
home scenario with a cat present (see Fig. 4). Each inactivity trial lasted
approximately 10 minutes, resulting in a total inactivity duration of about 30
minutes (10,898 frames). The object detector runs frame by frame to detect the
cat’s region and remove it from the foreground.

The recall rate4 for the true human inactivity duration, is presented in Table

3Detection accuracy is represented by the false positive rate. False positives occur when
the TV light reflected onto the body is classified as motion.

4The rate is calculated as the ratio of recalled inactivity seconds to the total inactivity
seconds.
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5. Without removing the pet region, an average of 63.7% of the true human
inactivity duration was recalled. When the pet moved around, it introduced
random motions that significantly affected the accuracy of human inactivity
detection. With the removal of the pet region during inactivity detection, the
recall rate for the true human inactivity duration improved to 82.4% for our
method. For comparison, the flow-based method was easily affected by both pet
and background movement, whereas pose-based methods detected only human
joints and achieved comparable performance with our method. The primary
reason for this limitation was the pre-trained object detector’s failure to detect
the pet under certain conditions, such as specific poses or when the pet was
moving quickly (resulting in motion blur), as illustrated in Fig. 4 (c) and
(d). Enhancing the pet detector could help address this problem, but this falls
outside the scope of the current study.

Table 5: Average Recall (%) of Human Inactivity when Pets are Around

Trial
MISO (without MISO (with

ViTPose[35] RAFT[29]
pet removal) pet removal)

T1 59.8% 74.6% 94.30% 52.60%
T2 69.4% 85.5% 97.70% 47.90%
T3 60.3% 85.8% 60.5% 68.10%

4.4 Field Study

The monitoring system was deployed in four households in the older adult com-
munity. Residents ranged in age from 65 to 80 years old, with two male older
adults and two female older adults. For each participant’s house, the system
captured data over a period of approximately three days. For the inactivity de-
tection, all cameras were in the living room on a tripod, two observed a couch,
one observed a chair, and the last one viewed both a chair and a couch. In total,
23,393 log events of inactivity (≥1s) were recorded.

Table 6 summarizes the inactivity statistics of four older adult participants
on a chair or couch in the living room. A median of 2.0 to 2.9 seconds for periods
of non-movement was detected across all participants, with the minimum 25%
intervals of 1.0 to 1.5 seconds. When the maximum 25% periods of inactivity
periods are considered, the duration varied between participants, ranging from
7.5 seconds to 15.6 seconds. This demonstrated that a person tends to remain
completely still for only very short periods of time when they are awake. Fig.
9 shows the statistics.

Table 7 presents the overall percentages of inactivity periods in different time
ranges among all participants, showing that more than 90% of the inactivity
instances were under 10 seconds, and approximately 99% of the instances were
under 30 seconds. On the other hand, several periods of inactivity over 100
seconds and one over 800 seconds were observed from Participant 1, who was
napping on the couch at the time. Fig. 10 shows an example of monitoring
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data for Participant 4, where the participant’s presence was between 10 am and
22 pm, with a peak inactivity duration at 19 pm. Meanwhile, the exponential
distribution fits all the inactivity data well (see also Fig. 11 for Participants
1-3).

The authors acknowledge that one cannot make strong claims on the basis
of only 4 participants, but it is hoped that the similarity of the inactivity dis-
tributions in Figures 9, 10, and 11 across the four volunteers suggests that it
is possible to discriminate between normal short periods of inactivity and more
serious longer periods.

Table 6: Average Duration (seconds) of Inactivity for Four Older Adult Partic-
ipants

Median Max25% Min25%

P1 2.07 15.61 1.37
P2 2.90 13.76 1.26
P3 2.30 7.58 1.43
P4 2.40 9.31 1.12

Mean 2.42 11.57 1.30
SD 0.30 3.25 0.12

Table 7: Percentage of Inactivity Duration for Different Time Ranges

Time range (s) [1,2) [2,5) [5,10) [10,30) [30,60) [60,200) [200,500) 500+

P1 44.74% 33.22% 11.60% 8.08% 1.75% 0.55% 0.03% 0.03%
P2 35.46% 35.28% 15.64% 12.33% 1.15% 0.13% 0.02% 0.00%
P3 44.66% 37.86% 11.65% 5.83% 0.00% 0.00% 0.00% 0.00%
P4 39.33% 38.80% 14.02% 7.45% 0.35% 0.04% 0.00% 0.00%

Mean 41.05% 36.29% 13.23% 8.42% 0.81% 0.18% 0.01% 0.01%
SD 3.49% 1.96% 1.52% 2.15% 0.61% 0.20% 0.01% 0.01%

Cumulative 41.05% 77.34% 90.57% 98.99% 99.80% 99.98% 99.99% 100%

5 Discussion

In this study, the MISO was proposed, a camera-based system for monitoring
inactivity among single older adults in home environments during daily activ-
ities. The zero-interaction system offers advantages over the wearable, which
requires constant wearing or charging. Additionally, compared to ambient sen-
sors, our system is multi-functional. The same device can perform various tasks
using different algorithms. Furthermore, it provides high-level features that are
semantically meaningful. For instance, it can understand fine-grained motion
(such as which part of the body is moving) and interpret environmental context
and interactions.
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For inactivity detection, non-parametric-based methods in depth maps and
motion detection methods in RGB are good for environmental adaptivity. There
is no need to retrain to adapt to new environments. The proposed method is
fast enough to be used in a compact processor in real-time as well. The sys-
tem was tested in different scenarios, and TV conditions at different distances,
and the results remain constant in indoor scenarios for motion detection. The
results show that compared to SOTA pre-trained models, our method excelled
in accurately detecting small body motion, demonstrated robustness in low-
light conditions, as well as resistance to environmental factors such as TV light
flickering and the presence of pets.

The recorded anonymized data can reveal the activity characteristics of older
adults, such as daily habits of body movement patterns while staying at their
favorite home places. It offers real-time tracking, enabling timely detection of
excessive inactivity events. Additionally, because the approach saves longer-
term inactivity statistics, it supports the analysis of chronic mobility issues.

Currently, the real-time text data is captured and stored locally for privacy-
preserving, without the need for an internet connection. This facilitates long-
term mobility records, such as weekly or monthly inactivity distributions. The
system can also be configured to provide local user reminders, for example, a
blinking light on the device to encourage older adults to stay active. However,
for emergency situations involving critical inactivity events like falls or loss of
consciousness, future internet connectivity would be necessary to enable identi-
fication and localization of the user. This integration would necessitate careful
consideration of infrastructure safety and privacy concerns.

The final decisions regarding how the monitoring data is used will depend
on factors outside the scope of this paper, such as the target user’s behavior
context, medical conditions, stakeholders, and relevant healthcare policies.

6 Conclusion

A system for inactivity detection in older adult residents’ homes using an RGB-
D camera and a small computer processor was presented. Collecting several
days of data from each local household characterized the device’s performance
under real-home conditions. The method was tested in different living environ-
ments and various lighting conditions. Data processing for analysis is carried
out in real-time. The system runs the inactivity detection task at 3–5 frames per
second. The devices are small, data is anonymous, unobtrusive, and low-cost,
which can be distributed well at homes for long-term use. A lack of motion is
unlikely to be missed (a 0% false positive rate with ±3 frames temporal toler-
ance), and a 3% false negative rate of missing true body motion on controlled
short-term experiments. True lack of motion is likely to be long-term and this
will be noticed.

The main limitation of the described method is its performance in extremely
dark environments, where the object detector often fails to detect a person or a
pet. Additionally, the study faces constraints related to the small dataset and
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the lack of ground truth for real-life data.
Future work should focus on enhancing detection methods, capturing long-

term personalized behavioral profiles of individual older adults to identify slowly
deteriorating conditions, and designing decision rules based on historical pat-
terns to provide warnings about potentially dangerous medical situations.
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Figure 8: Examples showing motion detection is robust to TV light changes
at different person-to-TV distances (0.7m or 1.5m) and four different lighting
conditions (top-to-bottom, Luma Y ′ are 90, 90, 41, 41, 14, 14, 4, 4). False
positive rate (top-to-bottom): 0/20, 0/20, 0/20, 0/20, 0/20, 0/20, 0/20, nan.
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(a)

(b)

Figure 9: Inactivity detection statistics for four participants. (a) Average inac-
tivity time of each participant (Median, Max 25%, Min 25%). (b) Percentage
of inactivity duration for each different time range (seconds).
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(a) Inactivity time of day

(b) Inactivity duration distribution

Figure 10: Example of inactivity statistics (Older Adult Participant 4).
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(a) Inactivity time-of-day (b) Inactivity distribution

Figure 11: Inactivity statistics (Older Adult Participants 1-3).
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