
Depth Data Improves Skin Lesion Segmentation

Xiang Li1, Ben Aldridge2, Lucia Ballerini1, Bob Fisher1, and Jonathan Rees2

1 School of Informatics, University of Edinburgh, UK
x.li-29@sms.ed.ac.uk, lucia.ballerini@ed.ac.uk, rbf@inf.ed.ac.uk

2 Dermatology, University of Edinburgh, UK
ben.aldridge@ed.ac.uk , jonathanlrees@mac.com

Abstract

This paper shows that adding 3D depth information to RGB colour images
improves segmentation of pigmented and non-pigmented skin lesion. A region-
based active contour segmentation approach using a statistical model based on
the level-set framework is presented. We consider what kinds of properties (e.g.,
colour, depth, texture) are most discriminative. The experiments show that our
proposed method integrating chromatic and geometric information produces seg-
mentation results for pigmented lesions close to dermatologists and more consis-
tent and accurate results for non-pigmented lesions.

1 Introduction

Segmentation is the first step of computer-based skin lesion diagnosis and its im-
portance is twofold. First, the lesion boundary provides important information
for accurate diagnosis. Second, the extraction of other clinical features criti-
cally depends on the accuracy of the boundary [1]. Due to reasons such as low
contrast between the lesion and its background, artifact inference, etc., seg-
mentation is a very challenging task. In recent years, many methods have been
proposed for lesion boundary detection. Classic algorithms such as histogram
thresholding, region-growing, k-means are widely used to segment lesions into
homogeneous regions based on their intensity values. Xu et al. [2] introduced a
semi-automatric method based on thresholding. Experiment results showed an
average error that was about the same as that obtained by experts. Iyatomi
et al. [3] proposed a dermatologist-like lesion region extraction algorithm that
combined both pixel-based and region-based methods and introduced a region-
growing approach which aimed to bring the extraction results closer to those
determined by dermatologists. More recently, optimization based segmentation
methods, especially active contours, have been applied to segment lesion im-
ages and have become more popular as they can produce decent results [4, 5].
Tang presented a skin cancer segmentation algorithm using a multi-directional
gradient vector flow snake [6]. The performance of their algorithm is close to
human segmentation. Yuan et al. [7] proposed a novel multi-modal skin lesion
segmentation method based on region fusion and narrow band energy graph



partitioning. Comparisons showed that their method outperformed the state of
the art methods with a mean error rate of 12.41% for XLM (oil immersion
and cross-polarizaion mode of epiluminescence microscopy (ELM)) images and
12.28% for TLM (side-transillumination mode of ELM) images. They only used
intensity features and an extension to incorporate colour and texture features
was considered as future work. Unfortunately, most of these methods are devel-
oped for dermoscopy images and focus on pigmented melanocytic lesions (e.g.,
distinguishing melanoma from benign naevi). They are not suitable for the non-
pigmented lesions, including two other important skin cancers BCC (Basal Cell
Carcinoma) and SCC (Squamous Cell Carcinoma) for which early and correct
diagnosis is also of great importance. They are included in our work.

In this paper, we present a region-based active contour segmentation ap-
proach and apply it to both pigmented and non-pigmented lesion data including
2D conventional colour data and 3D topological (depth) data, which correlates
strongly with human visual assessment of lesion surface appearance. The skin
lesion data in this research is collected with a non-contact instantaneous dense
stereophotometry system (equipped with ring flash for consistent lighting and a
Macbeth colour chart), which outputs both dense 3D point cloud data and 1:1
aligned colour images [8]. An example of the image data is shown in Fig. 1 and
Fig. 2(e)

For the level-set formulation of active contour segmentation, partitioning
a given image is achieved by minimizing appropriate energy functions. Partial
differential equations are used to drive the contours, which are implicitly rep-
resented as the (zero) level line of some embedding function, to evolve in the
direction of a negative energy gradient [9]. Chan et al. proposed a region-based
segmentation model using the Mumford-Shah functional [10]. Our method is
inspired by another region-based level set segmentation using Bayesian infer-
ence [9]. It partitions the image domain by progressively fitting statistical models
to the properties in each of a set of regions. The probabilistic formulation of the
segmentation problem considers segmentation as a process of finding an optimal
partition P (Ω) of the image domain by maximizing the a posteriori probability
p(P (Ω)|I) for a given image I, integrating a regularity constraint.

2 Method

For active contour segmentation, an initial contour is needed as a first step of
segmentation. We use a semi-automatic strategy, in which the initial contour is
drawn roughly by hand. The level-set segmentation framework is used to refine
this initial contour according to the regional information of the lesions.

For binary segmentation, the level-set formulation [9] is expressed as

E(φ) =
∫
φ∈Ω
−H(φ) log p1(f)− (1−H(φ)) log p2(f) + ν|∇H(φ)|dφ. (1)

H(φ) denotes the heaviside step function, p1/p2 are the pdfs inside/outside the
contour. The first two terms in (1) model the areas inside and outside the contour



while the last term represents the length of the separating contour. Considering
the associated Euler-Lagrange equation for φ, the minimization of the energy
functional by a gradient descent of the embedding function φ is [11]:

∂φ

∂t
= −∂E(φ)

∂φ
= δ(φ)

(
νdiv(

∇φ
|∇φ|

) + log
p2(f(x))
p1(f(x))

)
. (2)

δ(φ) has value 1 at the lesion boundary and 0 elsewhere.
In the following, the two questions concerning the above function are ad-

dressed: 1) how to chose a probabilistic model to fit the density distribution of
properties and 2) which features or properties f(x) should be used.

2.1 Distributions

Parametric density functions p(f(x)|θ) are used to model distributions. For a
particular choice of parametric density, parameters θ modeling the distribution
depend on the associated regions and update with the evolution of the contour.

Gaussian mixture model extension Lesion regions usually do not have a
homogeneous content, especially for BCC and SCC (this is also the case for
the background normal skin region because of hairs and skin markings). Hence,
the density distribution of a property may have multiple peaks. This implies
that the commonly used single multivariate Gaussian or Poisson model might
not fit the data well. A multivariate Gaussian mixture model developed using an
expectation-maximization(EM) algorithm was the final selected representation,
shown in Fig. 1. The initial cluster parameters of components are determined by
k-means algorithm. The number of the clusters are determined by optimization
which chooses the largest average silhouette of the data (typically K = 2 to 3
for lesion region and K = 1 to 2 for skin region). The final evolution equation is

∂φ

∂t
= δ(φ)

(
νdiv(

∇φ
|∇φ|

) + log
pmixSkin(f(x)|µ1, Σ1, . . . , µK , ΣK)
pmixLesion(f(x)|µ1, Σ1, . . . , µK , ΣK)

)
. (3)

2.2 Image properties

One central question is which properties characterize lesions and distinguish
them from the background skin?
Colour Colour is the most direct and critical property for dermatologists to
assess and diagnose skin lesions, but which colour space or colour elements
should be used? Here, the colour representation of lesions combines the re-
sults from different channels of different colour spaces. It includes 1) the Sat-
uration of HSV , 2) a∗ of CIE Lab, 3) the normalized blue of RGB as le-
sions are often more prominent in this channel [1] and 4) the Hue of HSV .
Hence, each image position is associated with a colour-valued feature vector, as
f(x) = (Isaturation, Ia∗, Iblue, Ihue)T . As shown in Fig. 2, the lesion area, espe-
cially the right part which is similar to surrounding skin is enhanced compared
with the conventional RGB representation.



Relative depth Lesion surface appearance attributes can be grouped into two
major categories - chromatic and geometric attributes. The former has been ex-
tensively used. Little research has been done on geometric (or depth) properties
to lesion segmentation. Our stereo imaging system obtains depth information as
well as colour. We extract the relative depth Idepth between the current pixel
and a quadric surface fitted to the background [8] to account for local surface
shape, shown in Fig. 2(e). The texture of the depth data is also used.
Texture Texture is an important property for lesion diagnosis, since it differs
among different lesion types, as well as different locations of skin (e.g., lesion and
healthy skin). We assign a local texture signature to each image location. A well
known local representation is the gradient structure tensor which has good prop-
erties for texture discrimination and is widely used to represent texture [9]. It is a
matrix of first partial derivatives. For an intensity image, the structure tensor is

expressed as J =
(

I2
x1 Ix1Ix2

Ix1Ix2 I2
x2

)
. The associated texture properties at each im-

age location can be represented as f(x) = (J1, J2, J3) =
(
I2x1
|∇I| ,

2Ix1Ix2
|∇I| ,

I2x2
|∇I|

)T
.

The first derivatives (Ix1 and Ix2) of an image are not rotationally invariant. To
compensate, we adopted the steerable Gaussian filter proposed in [12] to calcu-
late the directional derivative Ix1 oriented at angle α with respect to the x-axis
and Ix2 at degree α + 90o. α starts at 0o degrees and increases by 15o until
90o. The texture property at each image location is the average. Next, we sum
the tensors of the individual channels. An adaptive anisotropic diffusion method
is applied to smooth homogeneous regions while inhibiting diffusion in highly
textured regions: ∂J

∂t = div[c(|∇J |)∇J ], J(t = 0) = J0.
We adopted the diffusion conductance proposed by Perona and Malik [13] as

c(x) = exp
(
− x2

P 2

)
. c varies as a function of the texture properties. It is small

where the gradient of the property image is large, resulting in lower diffusion
near the textured locations like boundaries [14]. Two modifications are applied
to improve the performance of the diffusion filter. First, the property image is
smoothed by a Gaussian filter with parameter σ decreasing at each iterations.
Second, we compute P adaptively as a function of time - higher at beginning and
lower gradually. The time duration for the evolution of the diffusion function is
determined experimentally as 20 iterations. The diffused structure tensor images
are given in Fig. 2 (f), (g), (h). The textural difference can be seen between the
lesion and its surrounding skin. The final property vector with colour, depth and
texture properties is

f(x) =

(
Isaturation, Ia∗, Iblue, Ihue, Idepth,

M∑
i=1

I2
ix1

|∇Ii|
,

M∑
i=1

Iix1Iix2
|∇Ii|

,

M∑
i=1

I2
ix2

|∇Ii|

)T
,

(4)
where M is the number of colour and depth images. Here, M = 5.
3 Results

To reduce the influence of artifacts like hair and intrinsic cutaneous features
(e.g., blood vessels, skin lines), image smoothing using 5 × 5 mean filtering is



Fig. 1. The univariate density models of the lesion region on the green channel. The
top-left shows the corresponding lesion - a SCC with dried exudate (The lesion region
is identified with the black curve).

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Colour properties of the lesion in Fig 1. (a) Saturation, (b) a∗, (c) Blue, (d)

Hue, (e) Stretched depth, (f)-(h)colour coded tensor elements
I2
x1

|∇I| ,
2Ix1Ix2
|∇I| and

I2
x2

|∇I| .

applied. After segmentation, post processing included hole filling, small segment
deletion and local region growing.

The 20 test images used in our comparison are randomly selected from our
lesion data-base, including 2 SCC, 4 ML (Melanocytic nevus), 7 BCC, 1 AK
(Actinic Keratosis) and 6 SK (Seborrhoeic Keratosis). Seven of them are pig-
mented lesions; while the other 13 are non-pigmented. These images are shown
in Fig. 3 along with our segmentation results and corresponding lesion types.
Manual segmentations given by 8 dermatologists from the Dermatology depart-
ment of Edinburgh University are used for performance evaluation. A standard
tumour area (STA) is defined as the region selected by four or more dermatol-
ogists.

The standard deviation (SD) of the area of manual segmentations is calcu-
lated for each lesion image and the value is normalized by the corresponding
STA. There are big variations between dermatologists. The average SD over
our 20 test images is 20.69%. There is more variation in clinical opinion of le-
sion boundaries for non-pigmented lesions (SD = 24.09%) than pigmented ones
(SD = 9.74%).

To evaluate computer-based segmentations, we used the popular segmenta-
tion evaluation criteria XOR measure (or Error rate) defined as:

XOR =
Area(AB

⊕
MB)

Area(AB +MB)
× 100%, (5)



Fig. 3. The 20 test images and our segmentation results.

where AB and MB are the binary images obtained by computer and the refer-
ence segmentation (STA), respectively.

⊕
denotes exclusive-OR and gives the

pixels for which AB and MB disagree; + means union.
Based on this quantitative metric, we performed a comparison study of our

method using different properties and the results are summarized as:

1. Our colour combination performed the best (average error rate of 11.14%)
compared to the commonly used CIE Lab colour space (11.71%).

2. Integrating colour and depth information reduces the error rate from 11.14%
to 10.74%. Similarly, the colour structure tensor results are reduced from
10.80% to 9.68% by being extended with depth as shown in Fig. 4.

Fig. 4. Segmentation comparison. The associated lesions are shown in Fig. 3. Red
◦ identifies non-pigmented lesions, black ∗ identifies pigmented lesions. Colour uses
components 1-4 of f(x), ColDepth uses 1-5, STcol uses 1-4, 6-8, STcoldepth uses 1-8.

We compared our method to both manual segmentations and a popular seg-
mentation method [10] using the Mumford-Shah functional (MS method). The
results are summarized in Table 1. The error rate of individual dermatologists
and its variation is calculated. Our method produces very close segmentation to
the dermatologists on pigmented lesions and more consistent segmentations on
most non-pigmented lesions. This improvement can be explained as the integra-
tion of depth information which cannot be visualized by dermatologists from 2D
colour images as well as complicated texture associated with depth information.



Fig. 5 shows contours obtained using different segmentation methods of several
non-pigmented lesions (e.g., case 6, where the error rate improves significantly
by integration depth and texture information, see Fig. 4).

Error Rate %(XOR) Dermatologists MS [10] Our method
Overall 11.37(8.22) 15.42(8.67) 9.68(5.90)

Pigmented 6.39(3.09) 10.46(7.9) 6.8(5.08)
Non-pigmented 14.05(6.13) 18.10(8.11) 11.23(5.89)

Table 1 Average segmentation error rates and their standard deviations

It is hard to directly compare our approach to other algorithms because most
other algorithms are designed for 1) other input modalities (e.g., dermoscopy)
and 2) only melanocytic lesions. We did evaluate the Skin Cancer Segmentation
software package [2], which is based on colour differences between the lesion
and the surrounding skin and the thresholding algorithm (here called the DT
method). Of our 20 test images, 12 failed totally, because the lesions did not
have significant pigmentation. We only compared the segmentation performance
on the remaining 8. Some results are shown in Fig. 5. (We tried to obtain the
best performance by tuning of the DT method’s 6 parameters.) Over the 8 usable
lesions, our method provides a smaller average error rate ( 5.50% versus 12.46%)
and for some cases, the error rate difference is significant (7.43% versus 34.75%
in Fig. 5 (a)).

(a) (b) (c)

Fig. 5. The contours (cases 1, 6, 7 in Fig. 4) obtained by the dermatologists, MS [10],
DT [2] methods and our methods based on colour (col) or colour and depth structure
tensor (STcoldepth) properties.

4 Conclusion and further work

A region-based probabilistic segmentation formulation using a statistical model
within the level-set framework is applied to isolate lesions from their background.
A multivariate gaussian mixture model is considered to be the best way to model
the density distribution of properties. Upon comparison, we conclude that both
depth and texture properties help to improve the segmentation result by reducing
error rate from 15.42%±8.67% to 9.68%±5.90%. Our method integrating colour,



depth and texture information produces the best results compared to those by
the MS method [10], the DT method [2] and dermatologists.

There are several potential improvements and follow-up work to be consid-
ered: 1) In addition to the structure tensor, other texture features should be
considered. 2) Better colour representation of lesion images is needed as well as
better preprocessing to reduce the influence of artifacts such as specular reflec-
tions. 3) We have not implemented weight selection between different kinds of
properties (i.e., colour, depth and texture) and just treat them equally.
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