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Abstract

Scene classification is a well-established area of computer vision re-
search that aims to classify a scene image into pre-defined categories such
as playground, beach and airport. Recent work has focused on increas-
ing the variety of pre-defined categories for classification, but so far failed
to consider two major challenges: changes in scene appearance due to
lighting and open set classification (the ability to classify unknown scene
data as not belonging to the trained classes). Our first contribution,
SceneVLAD, fuses scene classification and visual place recognition CNNs
for appearance invariant scene classification that outperforms state-of-
the-art scene classification by a mean F1 score of up to 0.1. Our second
contribution, OpenSceneVLAD, extends the first to an open set classifi-
cation scenario using intra-class splitting to achieve a mean increase in
F1 scores of up to 0.06 compared to using state-of-the-art openmax layer.
We achieve these results on three scene class datasets extracted from large
scale outdoor visual localisation datasets, one of which we collected our-
selves.
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1 INTRODUCTION

Scene classification aims to classify a scene image into a pre-defined scene cat-
egory (such as playground, beach and airport). It has applications for content
based image retrieval [1], robot navigation [2] and disaster detection [3].

Changes in visual appearance make scene classification challenging, particu-
larly outdoors where variations in lighting, weather and season are common-
place. However, until now this problem has remained unaddressed [4]. In
contrast, recent research into visual place recognition (VPR) has focused en-
tirely on appearance invariance [5] [6] [7]. VPR is traditionally formulated as
an image retrieval task [8] [9] [10] that compares a reference database of place
images to a set of query place images. Our first contribution takes inspiration
from contrastive learning [11] to fuse and partially retrain VPR [5] and scene
classification [12] convolutional neural networks for appearance invariant scene
classification.

Open set classification (OSC) is generally defined as recognising unknown
classes that are not included in the training dataset, but are present at test
time. Scene classification is inherently an open set problem because it attempts
to describe real world scenes which are unpredictable and vary infinitely. Evi-
dence for this can be seen in the growth of state-of-the-art scene classification
datasets to include up to 365 different scene classes [12]. OSC remains a very
challenging area of research [13] and therefore current approaches limit them-
selves to simple computer vision datasets such as CIFAR-10 and MNIST [14]
[15]. To our knowledge, this work is the first to consider a significantly more
challenging scene classification dataset. Our second contribution uses intra-class
splitting [14] to identify atypical training examples of our known scene classes
for learning open set scene classification.

For experimentation we identify four different scene classes amongst an open
set of unknown scene images in a variety of appearances across three large-scale
visual localisation datasets: Oxford RobotCar [16], Nordland [17] and a third
Edinburgh dataset we collected ourselves. In summary, our contributions are:

1. A visual localisation dataset we make publicly available covering a 20km
traversal of Edinburgh in three different visual conditions with GPS data
and labels for 4 scene classes (Section 3.1). We also make available labels
for 4 scene classes across three traversals of the Oxford RobotCar and
Nordland datasets (https://github.com/WHBSmith).

2. A combined scene classification and visual place recognition CNN ‘SceneVLAD’
trained for appearance invariant scene classification (Section 3.2).

3. An investigation into the significance of open set scene classification as a
problem and an extension ‘OpenSceneVLAD’ to our second contribution
using intra-class splitting specifically for this (Section 3.3).

https://github.com/WHBSmith


Figure 1: Examples of Oxford (top), Nordland (middle) and Edinburgh (bot-
tom) scene classes, showing the appearance variation within datasets. Class
specific areas are outlined in red.



2 BACKGROUND

2.1 Scene Classification

Convolutional neural network (CNN) features used for state-of-the-art scene
classification [18] [4] can be grouped into the five categories explored below.

Global features typically use a generic CNN trained on a task such as ob-
ject detection and then fine tuned for scene classification [12]. These features
provide enriched spatial information and global scene properties, but are more
vulnerable to background noise [19].

Spatially invariant features usually extract multiple local patches [20] using
VLAD or Fisher encoding [21]. These approaches are efficient, but perform
poorly when scenes include objects with variable sizes or aspect ratios.

Semantic features use object detection to identify salient contextual regions
within a scene [22]. However, the lack of detailed scene labels and the compu-
tational requirements of searching these regions [23] limits these approaches.

Multi-layer features combine different resolution features from different CNN
layers [24]. For example, DAG-CNN [25] integrates features from different lev-
els of a CNN in a directed acrylic graph. Feature fusion is necessary for this
approach and can be done early by extracting multi-layer features and merg-
ing them into a comprehensive feature, or late by using supervised learning to
ensure features remain sensitive to each target scene class [26].

Multi-view features from multiple complementary CNN models trained on
different datasets can be used to create comprehensive scene representations.
For example, FOSNet [27] introduces scene coherence loss to fuse object and
scene data while Sun et al [28] separately extracts three complimentary represen-
tations using object semantics, contextual information and global appearance.

For the base of our SceneVLAD approach we use two global CNN feature
networks from Zhou et al’s work [12]. ‘365’ is taught to classify 365 scene classes
from the Places datasets [12] and ‘1365’ is taught to classify Places and the 1000
ImageNet classes [29]. These CNNs were selected because of their performance
on a wide variety of scene classes, the availability of their pre-trained weights
and the ease with which their architecture allowed integration of NetVLAD [5]
descriptors.

2.2 Visual Place Recognition

VPR descriptors are used in visual localisation and are designed to be invariant
to viewpoint [30] [31], environmental [32] [33] and long-term appearance [34]
changes. They are largely CNN-based with the most successful using triplet
learning [35] [36] to learn a similarity metric for image retrieval and improve
relevant feature selection for VPR [37]. VPR descriptors trained specifically
for image retrieval are not directly comparable to features extracted from an
intermediary layer of a CNN trained on classification, hence our distinction
between the use of ‘descriptor’ and ‘feature’.



NetVLAD has been shown to generalise well to a variety of environments and
remains the backbone of state-of-the-art VPR descriptors [7]. For this reason
we use it to provide the appearance invariance for our network. NetVLAD [5]
appends a VLAD layer to a partially frozen VGG16 network pre-trained on the
ImageNet dataset and re-trains it for appearance invariant VPR using triplet
learning.

2.3 Open Set Classification

Although the task of open set scene classification has yet to be addressed, open
set classification (OSC) has been explored more generally. Geng et al’s survey
[13] of this emerging field distinguishes between a number of different OSC
scenarios, the closest to our own is ‘open set recognition’: the classification of
test images as members of the closed or open set. However, we further this in
OSC by simultaneously classifying the individual closed classes and the open
class. Geng et al broadly categorize deep neural network approaches for OSC
as discriminative or generative.

Deep neural network classifiers typically use a softmax cross-entropy loss
which is inherently closed set because of its normalised output. Discriminative
approaches try to find an empirical threshold to identify low confident outputs
as an open class [38]. Bendale and Boult [39] replace the softmax layer in
a deep neural network (DNN) with an openmax layer. Once trained normally
using cross-entropy, each class is represented as a mean activation vector (MAV)
based on correctly classified samples and fitted to a separate Weibull distribution
and used to compute a pseudo-activation for each class, plus an open class. Oza
and Patel [40] use an encoder to learn closed set classification and a decoder to
learn OSC by reconstructing the input, conditioned on class identity.

Generative methods attempt to synthesize and then classify likely examples
of an open class. Generative OpenMax [15] uses generative adversarial networks
(GANs) to synthesize unknown classes and then explicitly estimate probability
over them. Encoder-decoder GANs are also used to create synthetic open set
images for training that lie on the opposing side of the true decision boundary,
between the known classes and the open set [41]. Recently Schlachter et al
[14] suggested intra-class splitting which trains a classifier on the closed set
problem. Unlearnt training data and correctly learnt training data classified
with a low confidence threshold are relabelled as an open set for re-training the
network. We adopt this approach for our task because implementation of GANs
for creating scene class data is very challenging [42].

3 METHOD

3.1 Scene Class Labelling

As this is the first specific attempt at appearance invariant scene classifica-
tion, there are no datasets readily available for use. We therefore source our



scene class images from three large outdoor visual localisation datasets. These
datasets cover large geographical areas in different appearance conditions (Fig-
ure 1) making them perfect for extracting scene classes in a variety of different
conditions and providing a challenging open set of unlabelled scene images.

Figure 2: Examples of Oxford (top), Nordland (middle) and Edinburgh (bot-
tom) open set scene classes from the same traversals as Figure 1

Table 1: Dataset, appearance condition traversals used for training and testing
with average number of frames per scene class, per traversal.

Dataset Traversals Scene Class Frames
Oxford Overcast (train) Pedestrian Crossing 170

Night (test) Bus Stop 129
Sunny (test) Four-way Junction 152

T-junction 103
Open Set 2739
Total 3293

Nordland Spring (train) Bridge 81
Winter (test) Level Crossing 87
Summer (test) Station 292

Tunnel 186
Open Set 3970
Total 4626

Edinburgh Overcast (train) Pedestrian Crossing 53
Evening (test) Roundabout 135
Sunny (test) Bus Stop 46

Bridge 47
Open Set 843
Total 1124

The first dataset is the 9km urban Oxford RobotCar dataset. The three



traversals we use are: 2015-07-03-15-23-28 (overcast), 2014-12-16-18-44-24 (night)
and 2015-03-24-13-47-33 (sunny). The second dataset is Nordland, a 763km
train journey through rural Norway. The traversals we use are: spring, win-
ter and summer. The final Edinburgh dataset we collected from three traver-
sals of 20km of urban, rural and motorway environments: 20210524 (overcast),
20210526 (evening) and 20210804 (sunny) using a dash-mounted OnePlus 7T
recording 4k video at 30fps and a GPS logger app. Each dataset was sam-
pled using a minimum distance between consecutive frames of 0.1 (Oxford), 80
(Nordland) and 2 (Edinburgh) meters to prevent oversampling single scenes, for
example when the raw video data stops at a pedestrian crossing.

For each dataset we hand-labelled four scene classes in each traversal based
on how frequently and evenly they occur in the dataset and their potential sig-
nificance for tasks such as visual navigation and collected the remaining images
into the open set (Figure 2). We then randomly chose one traversal for train-
ing/reference and the other two for testing and fix these for all experiments,
as summarised in Table 1. Note, some scene frames represent multiple views
of a single scene instance. For example, two scene frames may represent the
approach and then traversal of a single roundabout. All possible efforts were
made to select the labels reasonably and consistently.

3.2 SceneVLAD: Appearance Invariant Scene Classifica-
tion

3.2.1 Basic Idea

Successful VPR descriptors are based on a learned similarity metric that repre-
sents place images consistently despite changes in their appearance. However,
because VPR descriptors are designed for visual localisation each place is rep-
resented uniquely, not as belonging to a scene class. Our hypothesis is that,
despite this, they can be used to improve appearance invariance for scene clas-
sification.

3.2.2 Architecture

To combine two neural networks, one taught for classification and the other for
descriptor generation, we take inspiration from recent work on supervised [43]
and self-supervised [11] contrastive loss.

Contrastive loss is a distance-based loss function that can be used to partially
train a network on a ‘pretext task’ to represent data in a way that would be
helpful as input to a later part of the network taught on a ‘downstream task’,
such as classification. Usually the pretext task and downstream task would be
the same, but in this case we want to combine the knowledge from two different
tasks so we use NetVLAD pre-trained for VPR using triplet loss, a variation of
contrastive loss, rather than scene classification. A downstream classifier would
normally then be appended and trained on the task, but as our pretext and
downstream tasks are different we fuse it with the higher levels of an entire



scene classification network and then partially re-train the entire fused network
for scene classification.

We therefore have two inputs to our network. Firstly, we pass an image to
‘365’ or ‘1365’ networks pre-trained on scene classification and freeze the top
16 layers to produce a 365 or 1365 dimensional output. Secondly, we pass the
same image through NetVLAD, but add a small, trainable 1x1 convolutional
layer rather than NetVLAD’s native PCA layer to reduce the output dimen-
sions from 4096 to 256 and allow a linear weighting of the most useful features
to be learnt, rather than assuming the PCA features are the most useful for our
task. Finally, we concatenate the two outputs and pass them through two fully
connected layers of size 4096 to a 4-class softmax classification layer (Figure
3). This architecture forces SceneVLAD to learn scene classification with re-
spect to NetVLAD’s appearance invariant image descriptors, thereby improving
appearance invariance for scene classification.

We optimized the number of filters used for dimension reduction, the number
of final fully connected layers and their width using a grid search. We found that
freezing the top 16 layers for re-training 365/1365 produced the best results in
all cases. Additionally, we explored using Khosla et al’s supervised contrastive
approach [43] to explicitly re-train NetVLAD for our task. However, NetVLAD
is only taught for appearance invariance down to the conv5 layer so re-training
these layers significantly compromised its performance for the task. We also
varied the width of the NetVLAD dimension reduction layer for multiplication
of the two networks’ output rather than concatenation, as suggested in [24], but
this did not improve performance.

Figure 3: SceneVLAD network architecture fusing of scene classification and
visual place recognition for appearance invariant scene classification.



3.3 OpenSceneVLAD: Open Set, Appearance Invariant
Scene Classification

3.3.1 Basic Idea

Intra-class splitting [14] was selected to extend SceneVLAD for open set scene
classification (OpenSceneVLAD) because we hypothesised it could leverage as-
sumptions about likely open set scene images from training images, such as
position of the ground plane and orientation of ambient scenery for improved
OSC performance.

3.3.2 Identify Atypical Class Examples

Firstly, SceneVLAD is trained for closed set classification onN number of classes
using scene images xi and the corresponding closed set labels yi,cs. The trained
network is then used to classify the training images. A user defined proportion
of images per class, in this case 30% [14], that cannot be classified correctly,
or are classified with the lowest confidence softmax output values are identi-
fied as ‘atypical’ examples. We deviate slightly from the original technique by
identifying atypical images proportionally across all training classes. This was
necessary because of the small and imbalanced classes.

3.3.3 Generate Open Set Labels

A new set of scalar labels is then generated yi,os. For every image, xi, if deemed
atypical yi,os = N + 1, otherwise yi,os = yi,cs. Relabelling misclassified or
unconfidently classified images allows an open set to be generated using only
closed set images.

Figure 4: OpenSceneVLAD network architecture demonstrating intra-class
splitting on an atypical image.

3.3.4 Create OpenSceneVLAD and Re-train

Two separate softmax layers are used as network outputs (Figure 4), one with
N outputs trained for closed set regularization using cross-entropy loss Lcs



(Equation 3), the other with N + 1 outputs trained for OSC also using cross-
entropy loss Los (Equation 2). OpenSceneVLAD is then trained using both
losses with the corresponding labels of each image. Closed set regularization
helps maintain a high closed-set accuracy by forcing the atypical samples to be
correctly classified to their original classes.

3.3.5 Test

At test time the closed set regularization is removed and output from the re-
maining open set layer is used for open set classification.

3.3.6 Loss Functions

The objective of intra-class splitting is a joint optimization problem (Equation
1) consisting of two individual loss terms for the open set layer and closed set
layer

L = Los + γ ∗ Lcs, (1)

where Los is the loss function for the open set layer and Lcs is the loss
function for the closed set layer. γ is a hyperparameter to tune the focus on
closed set regularization.

Let B be the minibatch size during training. Moreover, 1yi∈y(n) is an indica-
tor function which returns 1 if a given sample xi with a scalar label yi belongs
to the class y(n) and otherwise returns 0. Based on these notations Los is a
simple (N + 1)-class categorical cross-entropy loss

Los = − 1

B

B∑
i=1

Nos∑
n=1

1yi∈y(n) log[P (ŷi ∈ y(n))] (2)

where Nos = N + 1 and P (ŷi ∈ y(n)) denotes the predicted probability that
sample xi belongs to the class y(n), i.e. the value of the n-th element of the
network’s output vector. Lcs is an N -class categorical cross entropy loss

Lcs = − 1

B

B∑
i=1

Ncs∑
n=1

1yi∈y(n) log[P (ŷ ∈ y(n))], (3)

where Lcs shares the same notation as Los and Ncs = N is the number of
the given known classes.

4 EXPERIMENTS

The experiments in this section comprise an extended ablation study. We begin
with two CNNs that make up SceneVLAD and systematically add functional-
ity, demonstrating improvements in appearance invariance and then open set
classification.



4.1 SceneVLAD: Appearance Invariant Scene Classifica-
tion

The purpose of this experiment was to confirm whether our SceneVLAD fusion
of NetVLAD VPR descriptors with scene classification networks 365 or 1365
improves appearance invariance for scene classification.

4.1.1 Baselines

For a baseline we train the VPR and scene classification networks (NetVLAD,
365 and 1365) individually to classify the scenes in each of our datasets from
Section 3.1. Each network has the same architecture as they do in SceneVLAD
(Figure 3) before the concatenation layer, simply with a softmax layer appended.

4.1.2 SceneVLAD

We create two versions of SceneVLAD using the architecture described in Sec-
tion 3.2.2, each based on scene classification networks 365 and 1365 combined
with NetVLAD to create SceneVLAD365 (Sc.VLAD365) and SceneVLAD1365
(Sc.VLAD1365). For SceneVLAD and the baseline networks the top 16 layers
of networks 365 and 1365 were frozen for training and NetVLAD was frozen up
to its final normalization layer.

4.1.3 Training

All 5 networks were trained to classify the four scene classes from the train-
ing traversal of each dataset using the same approach: image augmentation
(featurewise normalisation, width and height shifting, horizontal flipping and
brightness changes), a minibatch size of 8, a learning rate of 1e-5 and a strati-
fied training/validation split of 80/20. Training was done for 100 epochs with
early stopping using a patience of 20 by monitoring validation classification ac-
curacy. For each dataset we repeated the above training five times and averaged
the model results.

4.1.4 Testing

We test our classifiers on the scene classes from the remaining two traversals
of the same dataset. The actual scenes therefore remain largely constant. This
allows any increase in performance to be attributed solely to improved appear-
ance invariance. For evaluation we use the F1 score to compensate for the
class imbalance. The change in F1 scores from SceneVLAD and the other base
networks designed for scene classification are highlighted in Table 2.

4.1.5 Does SceneVLAD Improve Appearance Invariance for Scene
Classification?

The results in Table 2 show a mean increase in F1 scores of up to 0.1 across a
variety of scenes when VPR descriptors and scene classification are combined



Table 2: Results of ablation study comparing our SceneVLAD’s (Sc.VLAD)
fusion of VPR and scene classification with its constituent parts all trained on
appearance invariant scene classification. Changes in mean F1 scores (∆) are
Positive and negative.

Oxford RobotCar Nordland Edinburgh Dataset
Ped. Bus Four T Lvl. Ped. Bus Class
Cross Stop Junct. Junct. Bridge Cross. Station Tunnel Cross. Round. Stop Bridge Mean

NetVLAD 0.66 0.69 0.67 0.47 0.78 0.81 0.96 0.95 0.04 0.66 0.13 0.05 0.57
365 0.65 0.59 0.64 0.49 0.58 0.55 0.93 0.93 0.24 0.84 0.57 0.48 0.62
Sc.VLAD365 0.66 0.70 0.65 0.58 0.83 0.87 0.98 0.96 0.51 0.83 0.61 0.47 0.72
∆ 0.01 0.11 0.01 0.09 0.25 0.32 0.05 0.03 0.27 -0.01 0.04 -0.01 0.10
1365 0.58 0.43 0.64 0.42 0.68 0.68 0.94 0.93 0.37 0.89 0.58 0.65 0.65
Sc.VLAD1365 0.67 0.53 0.67 0.66 0.83 0.86 0.97 0.96 0.48 0.89 0.59 0.60 0.73
∆ 0.09 0.10 0.03 0.24 0.15 0.18 0.03 0.03 0.11 0.00 0.01 -0.05 0.08

in SceneVLAD. This experiment’s results demonstrate 365 and 1365, despite
being taught in exactly the same way, are outperformed by SceneVLAD’s fu-
sion of them with NetVLAD in all but three results. As the main difference
between SceneVLAD and the baseline networks is the fusion of scene classifica-
tion with VPR descriptors this confirms our hypothesis that combining the two
does improve appearance invariance for both base scene classification networks.

SceneVLAD specifically outperforms alternatives on scenes most vulnerable
to appearance change regardless of underlying class. For example, Oxford’s
bus stops are typically characterised by only a single bus stop sign and yellow
signage on the road, whereas in Edinburgh they often include a large bus shelter
(Figure 1). This helps to explain the greater increase in performance for Oxford’s
bus stop sceneclass with the addition of NetVLAD and further confirm our
hypothesis.

4.2 OpenSceneVLAD: Open Set Appearance Invariant Scene
Classification

The purpose of this experiment was to examine how scene classification is af-
fected by an open set classification scenario and to examine whether intra-class
splitting used in OpenSceneVLAD could improve OSC performance.

4.2.1 Baseline

For this experiment we use the best base scene classification network from the
previous experiment (135) and compare it against its SceneVLAD (Sc.VLAD1365)
and OpenSceneVLAD (Op.Sc.VLAD1365) derivatives. For further comparison
we also add a state-of-the-art openmax layer to 1365 and SceneVLAD (+O) [39]
introduced in Section 2.3 for open set classification.

We take 10% of the stratified test images as a validation set for each dataset
trial and use these to calculate a confidence threshold optimized to maximize
the dataset class mean F1 score. Therefore, networks with outputs equal to
the closed set number of classes (1365 and Sc.VLAD1365) predict an open
set image if the prediction confidence is below the calculated threshold. Net-
works with an output that includes the open set (1365+O, ScVLAD1365+O



and Op.Sc.VLAD1365) predict an open set image if the open set is predicted,
or the prediction is below the calculated threshold. We also consider 1365 and
SceneVLAD networks with a threshold of 0 (-base), which are unable to classify
any open set images but are included to examine how confidence thresholding
affects classification of the closed set classes.

4.2.2 OpenSceneVLAD

We create an OpenSceneVLAD network using 1365 and NetVLAD, per Section
3.3. As before, the top 16 layers of 1365 were frozen for training and NetVLAD
was frozen up to its final normalization layer.

4.2.3 Training

We trained all 3 networks (1365, SceneVLAD and OpenSceneVLAD) following
the same procedure in our previous experiment (Section 4.1.3), the only change
being that OpenSceneVLAD was trained using intra-class splitting per Section
3.3, with 30% of training images being selected as ‘atypical’.

4.2.4 Testing

Testing was exactly the same as in Section 4.1.4 with one major difference:
the test set now included all the open set images from each dataset’s traversal
that were unlabelled, as seen in Table 1. Note, we report the individual class
F1 scores, but only for completeness as all approaches, other than ‘-base’, are
heavily affected by the choice of threshold. For example, ‘1365+O’ is reported
with only the open class having a non-zero F1 score, but there are several values
of the threshold that generate higher F1 scores for the closed set classes, but
result in a lower dataset class mean.

Table 3: Results of ablation study for open set scene classification compar-
ing 1365 and SceneVLAD (Sc.VLAD) with or without openmax layers (+ O)
against our OpenSceneVLAD (Op.Sc.VLAD). Best mean F1 score is highlighted
in Green.

Oxford RobotCar Nordland Edinburgh Dataset
Ped. Bus Four T Open Lvl. Open Ped. Bus Open Class
Cross Stop Junct. Junct. Set Bridge Cross. Station Tunnel Set Cross. Round. Stop Bridge Set Mean

1365 - base 0.15 0.12 0.14 0.23 0.00 0.14 0.05 0.47 0.23 0.00 0.07 0.36 0.20 0.21 0.00 0.16
1365 0.10 0.12 0.18 0.32 0.27 0.34 0.07 0.51 0.35 0.00 0.13 0.34 0.12 0.26 0.17 0.22
1365 + O. 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.86 0.18
Sc.VLAD1365 - base 0.16 0.16 0.23 0.38 0.00 0.21 0.13 0.32 0.43 0.00 0.20 0.66 0.09 0.46 0.00 0.23
Sc.VLAD1365 0.16 0.23 0.33 0.37 0.47 0.29 0.09 0.61 0.49 0.40 0.17 0.65 0.07 0.32 0.35 0.33
Sc.VLAD1365 + O. 0.19 0.13 0.40 0.38 0.78 0.37 0.14 0.59 0.56 0.70 0.04 0.60 0.06 0.00 0.82 0.38
Op.Sc.VLAD1365 0.15 0.15 0.33 0.33 0.82 0.47 0.14 0.67 0.74 0.80 0.27 0.67 0.15 0.28 0.66 0.44

4.2.5 How Big a Challenge is Open Set Scene Classification?

The results in Table 3 show a significant decrease in F1 classification score of
even known classes compared to Table 2, confirming our hypothesis that the
introduction of open set scene images makes this task very challenging due to
false positives. OSC has more effect on some classes than others. For example,



Nordland level crossings are classified only slightly less accurately in closed set
classification than tunnels, however in OSC they are clearly much more chal-
lenging, because they are more vulnerable to false positive classifications. Inter-
estingly, SceneVLAD (Sc.VLAD1365) on its own significantly improves mean
F1 scores for OSC in comparison to 1365.

4.2.6 Does OpenSceneVLAD Improve Open Set Scene Classifica-
tion?

Confidence thresholding is shown to improve the mean F1 score for both 1365
(0.06) and SceneVLAD (0.1) with very little effect on classification of known
classes compared to the base networks. However, adding the openmax layer, to
1365 (1365+O), results in the open and closed classes becoming indistinguish-
able and every test image being classified as part of the open set, reducing the
mean F1 score by 0.04. Applying openmax to SceneVLAD (Sc.VLAD1365+O)
resulted in a large increase in OSC accuracy but was at the expense of the closed
classes, in particular for the Edinburgh dataset where its F1 score on the closed
classes was the second worst but the change in dataset class mean F1 score was
an increase of 0.05.

Using intra-class splitting to train OpenSceneVLAD (Op.Sc.VLAD1365) in-
creases mean scene classification F1 scores by 0.06. This result is particularly
significant given that the training data and majority of the underlying network
architecture is the same used for SceneVLAD. Specifically OpenSceneVLAD
outperforms SceneVLAD with an openmax layer (Sc.VLAD1365+O) on every
class of the Nordland dataset, most likely because the scene classes we selected
include man-made features amongst a largely rural dataset which intra-class
splitting was able to exploit effectively for OSC. For the Edinburgh dataset it
also finds the best balance between F1 scores on the closed and open classes.

4.2.7 Additional Classes

Although we use a wide variety of scene classes for evaluation the total class
number is strictly constrained by the available data. However, SceneVLAD and
OpenSceneVLAD could be applied to more classes. NetVLAD and 365/1365
are based on networks originally taught to classify hundreds of different classes
indicating a large remaining model capacity. Intra-class splitting was originally
used for 10 classes and we speculate that increasing the classes and therefore the
open set data, may improve performance further, but we leave this for future
work.

5 CONCLUSIONS

This paper presents a contribution towards appearance invariant and open set
scene classification. Fusing VPR descriptors with scene classification in our
network SceneVLAD increases average appearance invariance F1 classification
scores by up to 0.1. SceneVLAD also improves open set scene classification,



which is shown to be a very challenging task for current approaches. Extending
SceneVLAD to OpenSceneVLAD with intra-class splitting achieves the best
mean increase in open set F1 scores of 0.06, compared to using a state-of-the-
art openmax layer.
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