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Abstract

We present a method to detect maritime oil spills from Side-Looking Airborne

Radar (SLAR) sensors mounted on aircraft in order to enable a quick response

of emergency services when an oil spill occurs. The proposed approach intro-

duces a new type of neural architecture named Convolutional Long Short Term

Memory Selectional AutoEncoders (CMSAE) which allows the simultaneous

segmentation of multiple classes such as coast, oil spill and ships. Unlike previ-

ous works using full SLAR images, in this work only a few scanlines from the

beam-scanning of radar are needed to perform the detection. The main objec-

tive is to develop a method that performs accurate segmentation using only the

current and previous sensor information, in order to return a real-time response

during the flight. The proposed architecture uses a series of CMSAE networks

to process in parallel each of the objectives defined as different classes. The

output of these networks are given to a machine learning classifier to perform

the final detection. Results show that the proposed approach can reliably de-

tect oil spills and other maritime objects in SLAR sequences, outperforming the

accuracy of previous state-of-the-art methods and with a response time of only

0.76 s.
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1. Introduction

Oil spills are one of the main causes of marine pollution. In the past, major

ecological disasters have occurred on the coasts and oceans around the world.

Moreover, a large number of ships illegally clean their tanks at sea, worsening

this problem. Early detection of oil slicks is very important to limit pollution and5

mitigate the environmental damage caused by accidents and illegal discharges.

Nowadays, research focuses on the detection of spills and the boats that

cause them, as shown in recent works such as [1, 2]. It is known that re-

mote sensing technologies have been effective for oil spill monitoring and de-

tection [3], reducing the emergency response time from authorities and govern-10

ments. The European Maritime Safety Agency (EMSA) has an observation ser-

vice called CleanSeaNet which uses satellite-based observation (e.g., ENVISAT,

RADARSAT, SENTINEL, etc.) for oil spill monitoring and vessel detection.

The Spanish Maritime Safety Agency (SASEMAR) also uses 3 EADS-CASA

CN 235-300 aircraft to locate shipwrecks and vessels at sea, detect discharges15

into the marine environment, and identify the infringing ships. These airplanes

are equipped with a Millimetre-Wave Radar (MWR) on each wing, and they are

able to carry out maritime patrol missions with a maximal total range exceeding

3706 km, and up to more than 9 flight hours. The detection of possible targets

is done manually, as the SLAR signal is digitized as an image and analyzed20

by expert operators. To confirm the detections, marine samples are also taken

when necessary.

A variety of sensors are used for oil spill detection [4, 5]. Among them, the

best solution for wide area surveillance, during day or night and with rainy and

cloudy weather, is Synthetic Aperture Radar (SAR) and Side-Looking Airborne25

Radar (SLAR), as shown in [6, 7]. The main differences between them are

that SAR in general is installed on satellites while SLAR is usually mounted
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on airplanes, assembling two SAR antennas under the wings. This implies

that SLAR images, in contrast with SAR, contain artifacts caused by small

differences in alignment between both antennas or by return signal loss (reflected30

signal), showing a higher complexity in the representation of ground scenes.

Moreover, the size of these artifacts is variable and dependant on the flight

altitude and the ascent/descent speed. However, SLAR has the advantage of

being able to control an area with greater precision and at any time (without

having to wait for the satellite to be positioned).35

The basic principle on which the SAR and SLAR sensors are based to per-

form remote sensing is the emission of a microwave beam, where the received

signal is the reflection by the object back scatter features. Based on this response

the sensor builds a two dimensional image, where the brightness of the captured

image is a function of the properties of the target-surface. This brightness is40

related to the normalized radar cross section (NRCS) representing the power

of the backscattered radar signal. The possibility of detecting an oil spill in a

SAR or SLAR image relies on the fact that the oil film decreases the backscat-

tering of the sea surface resulting in a dark formation that contrasts with the

brightness of the surrounding spill-free sea [8]. In addition, oil slick features,45

such as thickness, shape or size, which are mainly dependent on weather, sea

or wind conditions, and the time since the spill, also determine the dark spot

appearance observed in the image.

However, dark areas (or areas of reduced NRCS values) do not always origi-

nate from oil spills, because they can also be originated by other ocean phenom-50

ena, named “lookalikes”, such as very calm sea areas, currents, eddies, different

weather conditions such as low wind, and may also have a biological origin such

as shoals of fish, seaweed and plankton. For this reason it is very difficult to

differentiate between mineral oil spills and effects caused by biogenic surface

films.55

Image processing techniques are commonly used for the extraction of textu-

ral, geometric and physical features along with segmentation methods in order

to identify the regions of oil slicks within an image. Then, supervised ma-
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chine learning classifiers can be applied to discriminate between oil slicks and

lookalikes. They can produce false positives in the detection process due to the60

similarity in appearance with the regions that represent spills.

The statistical distributions of dark spots and background can also be mod-

eled in order to differentiate between oil slicks and sea as in [9], applying a Gen-

eralized Likelihood Ratio Test (GLRT) [10], using spatial density features [11],

using strategies based on energy minimization such as Region Scalable Fitting65

(RSF) methods [12], Global Minimization Active Contour Model (GMACM) [13]

or Globally Statistical Active Contour Model (GSACM) [14], among others.

However, these approaches are very limited when there are environmental

changes and SLAR images contain artifacts—such as that caused by aircraft

maneuvers—which do not follow any statistical distribution and, therefore, it70

can be confused with oil slicks or other artifacts. To avoid this problem, Gil

and Alacid [7] presented a method to identify oil slicks from SLAR imagery

using an image processing technique to eliminate the artifacts regions caused by

maneuvers. Other authors applied a segmentation process guided by a saliency

map to identify the oil spills. For example, Li et al. [15] proposed a simplified75

graph-based visual saliency model to extract bottom-up saliency. The method

is able to detect oil slicks and exclude other salient regions caused by other

targets such as artifacts.

In general, the previously mentioned methods use image processing tech-

niques to segment candidate regions representing oil spills and/or to extract80

features. Then, they feed these features into machine learning classifiers to de-

tect oil slicks. Some of these methods (such as [16, 17]) use the geometry of the

image or the elements to be classified as features for oil spill detection. How-

ever, they are very dependent on the dataset used to select the most relevant

features, failing as soon as the characteristics of the image change and therefore85

losing generalization capabilities.

Unlike with SAR, in SLAR it is not convenient to define descriptors using

characteristics extracted from the whole image, as done in known state-of-art

methods. SLAR data are obtained as a set of scanning lines and each of them
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represents a time observation. Therefore, it is very difficult to extract spatial90

characteristics in a representative neighborhood that allow to design robust

descriptors for each target class.

Deep Learning and, in particular, Convolutional Neural Networks (CNN) are

recently being used to perform classification without applying any hand-crafted

feature extraction nor pre-processing techniques. They can also obtain reliable95

results in image segmentation and recognition tasks, in some cases showing a

performance close (or even superior) to the human level when working with

signals such as images, video, or audio [18]. Deep learning techniques are be-

ing applied to overcome the limitations from the traditional machine learning

methods that require extracting hand-crafted features from the input data.100

The kernels of the different convolutional layers of a CNN learn a numerical

matrix which allows to transform the input image they receive. Therefore, each

of these kernels learn to transform their input in a different way, highlighting

different elements that are relevant for the detection of the target class. Low

level features are learned in the first layers, since small kernels are applied over105

the entire image. These results are combined and passed through layer after

layer, until the last layers of the network, that extract highest level features.

In the case of deep learning approaches, there is previous research using a

CNN for oil spill detection task such as [19], or pixel-level segmentation tech-

niques [20] to identify dark spots representing oil spills as in [21, 22]. The latter110

work [23] successfully combined Resnet [24] and Googlenet [25] with Fully Con-

volutional Networks (FCN) [26] for this task.

Segmentation networks can be applied to SAR or SLAR images for the

detection of spills or other classes, as in [27], where a Selectional Auto-Encoder

(SAE) network was proposed. This architecture modifies the topology of a FCN115

to specialize it to the segmentation of one class (oil spills in this case) and to

return a probability distribution after which a threshold is applied to select the

pixels to segment.

Most existing methods for oil spill detection need to process the full image.

Therefore, their usage in environments that require a quick response may not120
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be feasible. In contrast with [27], which uses a SAE over the entire image of

the flight sequence, in this work we present a new approach to segment SLAR

images in real time. The proposed method uses a combination of Convolutional

Long Short Term Memory (ConvLSTM) networks [28] with a variation of the

SAE topology, in order to enable faster processing. The main reason for adding125

recurrent neurons (ConvLSTM) is to perform the segmentation using only the

current reading of the sensor along with a small amount of the previous readings.

In this way, it is possible to return a response during the flight time, without

having to wait for more readings to complete an image or obtain a larger context

of the area to be classified, which would generate a lag in the response. In130

addition, the proposed process simultaneously segments other elements of the

image such as ships, coast or the artifacts generated by the aircraft sensors, and

combines this information into a final classifier. The result obtained for these

additional classes is used to improve the segmentation oil spills and ships. In this

way, the final classifier can make a high-level decision by combining the result135

of the specialized classifiers, and thus discard, for example, the segmentation of

a ship or an oil spill when they are surrounded by coast or noise.

In summary, the main contributions of this paper are:

• A method designed to work in real time (flight time), in contrast to pre-

vious techniques such as [27] which can only be used offline (once all the140

scanlines are available). For this, a SAE topology was modified in order

to work directly with SLAR scanlines, and recurrent neurons were added

to take advantage of the information in the previous readings.

• The proposed method uses a parallel set of specialized supervised classi-

fiers for each of the classes, and finally combines their outputs to provide145

an answer. By combining the classifiers’ decisions, it is possible to consis-

tently improve the results, as demonstrated with statistical tests in Section

3.

• The model was evaluated using 51 different flight sequences with a total

of 5.4 flight hours, including a wide range of examples of the different150

6



elements to be classified as well as different meteorological and flight con-

ditions (altitude, flight speed, wind speed, etc.).

• The proposed approach is compared with other state-of-the-art methods,

reporting better results in both detection and segmentation tasks at the

pixel level, as well as better processing time.155

The rest of the paper is structured as follows. Section 2 describes the pro-

posed method and the data used for evaluation, Section 3 shows the results

obtained with the proposed method, Section 4 discusses the results and how

they can be interpreted in perspective of previous studies, and finally, conclu-

sions and future work are given in Section 5.160

2. Materials and Methods

This section first describes the materials used for the experiments. Then,

we introduce the proposed method, which uses a combination of ConvLSTM

networks with SAE to process the SLAR signals during flight.

2.1. Materials165

For the experiments with the proposed method, we have used a dataset com-

posed of 51 flight sequences supplied by SASEMAR. SASEMAR is the public

authority responsible for monitoring the Exclusive Economic Zones (EEZ) of

Spain whose procedures are based on reports of EMSA.

Figure 1 shows the scheme of the used EADS-CASA CN 235-300 aircraft with170

its data acquisition system. This aircraft has two TERMA SLAR-9000 antennas

under both wings pointing in a perpendicular angle to the flight direction. At

the average flight altitude of our dataset, they cover around 23 km on each side

of the aircraft. Each antenna scans the surface with an angle θ (or so called

off-nadir angle), returning two signals that are combined into a single scanline.175

This scanline is the data used as input at each time t for the proposed approach.
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Figure 1: Scheme of the aircraft data acquisition system during flight.

The flight sequences of the dataset have an average duration of 6.1 min (±0.9

min), making a total of 5.4 h of flight and 24,582 scanlines. They were captured

at an approximate altitude of 3100 feet (±1600 ft), with a flight speed of about

183 Kn (±30 Kn), and with a wind speed between 0 Kn and 32 Kn.180

For each flight sequence, the raw data of the SLAR sensor was stored. Sub-

sequently, these data were digitized as 8-bit integers (grayscale images) with an

image resolution of 1157 × 482 pixels due to the constraints of the monitoring

equipment installed on the aircraft. A scanline, as used in the rest of the paper,

is one row of this image, so each flight sequence consists of 482 scanlines. The185

area covered by each scanline on the ground depends on the altitude and on the

flight speed, which, at the average values, means approximately 47.3 × 69.6 m

per pixel. Therefore, a complete scanline (composed of 1157 pixels wide and 1

pixel high), at the average altitude, covers an average ground area of 54.8 km

wide and 69.6 m high (27.4 km wide per antenna).190

The scanlines of the 51 flight sequences were concatenated to give the 24,582

scanlines mentioned above. As ground truth, we have used a grayscale mask

for each SLAR image delimiting the pixels of the target classes (ship, oil spill,

lookalike, coast, central noise, lateral turns, and water) with a different gray

value. It is important to note that this labeling has been performed at the pixel195

level since we want to evaluate both the detection and the precise location of

the instances for each class in the digitized SLAR images.
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Figure 2 shows an example of a SLAR sequence (top) and its corresponding

ground truth (bottom) with the seven classes labeled using different colors. This

sample contains several instances of boats, coast, lookalikes, as well as the two200

types of noise generated by the sensor: The central noise, generated by the union

of the radar signals, and the noise caused by the aircraft turning maneuvers.

The central noise appears in the center of the image in light gray (coinciding

with the trajectory of the plane) and the maneuver noise is in the top area of

the image in dark gray. The instances of ships are marked with a circle in the205

left image. This image also contains some examples of lookalikes (in green color)

around the central noise, with elongated shapes very similar to those of current

instances of spills.
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Figure 2: Representative image of a Side-Looking Airborne Radar (SLAR) sequence from our

dataset (top) and its corresponding ground truth (bottom). Unlike in the previous work [27]

in which only oil spills were labeled, in this ground-truth seven classes are labeled: Ships in

fuchsia, oil spills in red, lookalikes in green, coast in blue, artifacts below the airplane in light

gray, artifacts caused by its turns in dark gray, and water in white. Ships are marked with

circles in the top image to help the reader to locate them.
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The lookalike class is very difficult to differentiate at first glance from an ac-

tual oil spill because sometimes they can have very similar shapes and intensity210

values. These classes were labeled by an expert flight operator (from SASE-

MAR) who was able to analyze the scene recorded in each sequence. Given

the difficulty of distinguishing oil spills from lookalikes, in case of doubts, it is

recommended (due to operational reasons) to notify an operator who can review

the data.215

Table 1 shows a summary with statistical information about the dataset,

including the number of instances of each class, the percentage of pixels that each

class occupies in total, the mean size of the samples considering the bounding

box that contains them, and the number of scanlines with information of each

class. As can be seen, the dataset has a significant number of samples of the220

main classes to be detected (ship and oil spills), whose sizes are also small with

respect to the total size. The lookalike and coast classes also have many samples,

although in this case they usually correspond to fragmented pieces of the same

spot or small portions of land labeled separately due to the noise caused by the

airplane maneuvers.225

Table 1: Statistics of the dataset including the number of instances of each class, the per-

centage of space they occupy, the average size (height × width) in pixels of the bounding box

(BB) that contains them as well as the number of scanlines with information of each class.

Class #Instances #Scanlines/Class % of Pixels (±σ) Avg. BB in px. (±σ)

Central noise 51 24,582 6.06 ±2.8 455.41× 74.78 ±109.6× 41.4

Maneuvers 93 2,091 8.18 ±10.3 19.48× 1115.58 ±15.7× 170.8

Ship 233 796 0.01 ±0.0 3.91× 3.17 ±2.2× 1.9

Spill 380 3,732 0.22 ±0.5 11.97× 14.09 ±36.8× 44.1

Lookalike 3452 3,351 0.38 ±1.6 5.09× 5.42 ±15.1× 10.4

Coast 493 4,798 6.69 ±13.9 13.99× 66.33 ±43.9× 172.8

Water 51 22,635 79.89 ±15.3 1157× 482 ±0× 0

Based on these data, it may seem that certain classes are easy to differentiate

simply by their size but, as can be seen, the standard deviation values are

very high, so the area does not allow us to differentiate an oil spill from a
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lookalike and not even from a ship. The shapes of the different classes are also

similar, for instance oil spills and lookalikes sometimes have similar shapes, as230

it happens with those of the ships and small islets. Therefore, it is not reliable

to differentiate between different classes only according to their size or shape.

To train and evaluate the proposed method, we used sequences of SLAR

scanlines with length s, hence we obtain a dataset containing a total of 24,582

− 51× (s− 1) scanlines (the algorithm cannot process the first s− 1 scanlines235

of each flight since it still does not have a complete sequence, that is, it is

necessary to have a minimum of s lines of context to return a response). For

example, if the length of the sequence is 20 scanlines, we would obtain 24,582

− 51× (20− 1) = 23,613 sequences for which a prediction can be calculated.

2.2. Method240

From the SLAR sensor signals, the aim of our method is to detect the pres-

ence of different objectives: ships, oil spills, lookalikes, coast, central noise,

aircraft maneuvers (which causes image artifacts), and water (or background).

Therefore, the proposed method receives as input a scanline digitalised from the

sensor signal and returns as output the pixel-level segmentation with the labels245

of the considered classes.

To perform this segmentation, we use an ensemble of ConvLSTM Selectional

AutoEncoders (CMSAE), which are SAE networks with Convolutional LSTM

layers as will be detailed in Section 2.2.1. This ensemble employs the strategy of

one against all. For each class, a CMSAE is trained to specialize in the segmen-250

tation of that class (positive class), considering all the other classes (including

water) as background (negative class). Then, we combine all the CMSAE re-

sults using another classifier to obtain the final segmentation. Figure 3 shows

the proposed architecture. As can be seen, all CMSAE networks can be run in

parallel. Therefore, in the inference stage the execution time will be equal to255

that of a single network.

11



CMSAE ships
CMSAE spills

CMSAE lookalike
CMSAE coast

CMSAE central
CMSAE turns
CMSAE water

C
la

ss
ifi

er

scan line

flight direction
tn

tn-1

Figure 3: Architecture of the proposed network. Each scanline is supplied to a series of

ConvLSTM Selectional AutoEncoders (CMSAE) networks to process each of the different

classes in parallel. The results of these networks are given to a final classifier which performs

the prediction.

We evaluated different topologies and parameter configurations for the CMSAE

networks as well as different machine learning methods for the final classifier.

The following sections describe in detail the architecture of the networks and

the classifiers evaluated.260

2.2.1. CMSAE

Autoencoders were proposed decades ago by Hinton and Zemel [29], and

since then they have been actively researched [30]. They consist of feed-forward

neural networks trained to reconstruct their input and are usually divided in two

stages. The first part (called the encoder) receives the input and creates a latent265

representation of it, and the second part (the decoder) takes this intermediate

representation and tries to reconstruct the input. Formally, given an input x,

the network must minimize the loss L(x, g(f(x))), where f and g represent the

encoder and decoder functions, respectively.

Some variations of autoencoders have been proposed in the literature to solve270

other kind of problems. For example, denoising autoencoders are an extension

trained to reconstruct the input x from a corrupted version (usually generated

using Gaussian noise) of it (denoted as x̂). Thus, these networks are trained to

minimize the loss L(x, g(f(x̂))), therefore they are not only focused on copying

the input but also on removing the noise [31, 32, 33].275

For the detection of each of the classes from the SLAR sensor data, we have

based our approach on the SAE architecture introduced in Gallego et al. [27].
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This type of architecture does not intend to learn the identity function as it

happens with autoencoders, nor an underlying error as in denoising autoen-

coders. Instead, it learns a codification that maintains only those input pixels280

that we select as relevant (i.e., the class to be segmented). This goal is achieved

by modifying the training function so that the input x is mapped to a ground

truth classification image. For this, we use the ground truth y of the pixels from

the input image that we want to select. Therefore, it is trained to minimize the

loss L(y, g(f(x))), learning a function η such that η : R(w×h) → [0, 1](w×h), or285

in other words, a probability map over a w × h image that preserves the input

shape and outputs the decision in the range of [0, 1] with the likelihood that

each of the pixels from the input image belongs to the target class.

We modified this topology in order to use only one sensor scanline, so, in

this case, w is the width of the image and h is set to 1. We also add a first layer290

with recurrent neurons to take advantage of the information from the previous

s − 1 (for various values of s) sensor readings (where s is the length of the

input sequence). Recurrent neurons are a special type of artificial neurons that

use an internal state to process sequences of inputs. These neurons process an

input sequence one element at a time, maintaining a state (or memory) that295

implicitly contains information about the history of all the past elements of the

sequence [18].

Figure 4 shows the scheme of the CMSAE network topology specialized for

the segmentation of oil spills. As can be seen, the first layer uses the ConvLSTM

recurrent neurons [28], followed by a Batch Normalization layer [34] and ReLU300

as the activation function [35]. The encoding part of the network consists of

a series of layers with three elements: Convolutions, Batch Normalization and

ReLU activation functions. These layers are replicated until the intermediate

layer, in which the encoded representation of the input is attained. Then, this

representation is followed by a series of transposed convolutions plus Batch305

Normalization layers, also with ReLU activation functions, which generate the

output image with the same input size (that is, with the same size of the data

that is supplied as input to the CMSAE network). In addition, we added residual
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connections from each encoding layer to its analogous decoding layer, which

facilitate convergence and improve the results. The last layer consists of a310

unique convolution with a sigmoid activation to predict a value in the range of

[0, 1], depending on the selectional level λ for the corresponding input.
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Figure 4: Scheme of the CMSAE network specialized for the segmentation of oil spills. In

this figure, the layer type is labeled with colors according to the side legend. The size of each

layer for convolutions and transposed convolutions is h× w, where h is the height and w the

width. The size for the ConvLSTM layer is s × h × w, where s is the sequence length. The

number of filters (f), the kernel size (k) and the stride value (st) applied for each layer are

also shown. The CMSAE networks used for the segmentation of the other classes follow the

same scheme, although their topologies vary.

The downsampling in the network encoder part is performed by convolutions

using stride, instead of resorting to pooling layers. Up-sampling is achieved

through transposed convolution layers, which perform the inverse operation to315

a convolution, to increase rather than decrease the resolution of the output.

ConvLSTM neurons [28] are an extension of the fully connected LSTM (FC-

LSTM) to contain convolutional structures in both the input-to-state and the

state-to-state transitions. It is demonstrated that ConvLSTM neurons capture

spatiotemporal correlations better, consistently outperforming the state of the320

art (FC-LSTM) in spatiotemporal data.

Batch Normalization layers [34] carry out a normalization process to the

weights learned by the different layers after each training mini-batch. They

help to perform faster training, reduce the overfitting, and improve the overall

success rate. We have chosen the Rectified Linear Unit (ReLU) [35] as the acti-325
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vation function because it is computationally efficient and enhances the gradient

propagation throughout the training phase, avoiding vanishing and exploding

gradient problems.

The topology of this type of network can be easily varied since we can mod-

ify the number of layers, number of filters, kernel size, etc. In addition, it is330

expected that, depending on the class to be detected, the appropriate configu-

ration may vary. For example, it is not the same to segment small ships, which

are represented by only a few pixels in the image, as contrasted with a coastal

area, whose size is significantly larger. To find the network architecture with

the best configuration of layers and hyperparameters, we have applied a grid-335

search technique [36]. Results of this experimentation are included in Section

3.1, although we report the best topologies found for each network in Table 2.

Table 2: Topology of each of the CMSAE networks used in the proposed algorithm.

Class
Input Size (px)

height×width

Sequence

Length (s)

# Encoder–

Decoder Layers
# Filters (f) Kernel Size (k)

Central noise 1×512 14 2 + 2 16 1×7

Maneuvers 1×128 20 3 + 3 128 1×7

Ships 1×1160 14 3 + 3 128 1×5

Spills 1×512 25 3 + 3 128 1×5

Lookalikes 1×512 15 3 + 3 64 1×7

Coast 1×512 15 3 + 3 64 1×7

Water 1×512 12 3 + 3 128 1×7

2.2.2. Classifier Integration

The segmentation result obtained from each of the networks is supplied to a

classifier. To do this, we extract the feature vector (neural codes or NC) of the340

penultimate layer of each network, we normalize them using `2 norm [37], and

concatenate them with the others forming a single vector of features that can be

supplied to a classifier. In previous experiments, we tried to use the intermediate

encoding of the auto-encoder, but worse results were obtained possibly because

the precision and position of the information was degraded or lost.345

Since the input size of the auto-encoder used for each class (and its corre-

sponding output size) is different (see Table 2), it is necessary to apply a process
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to normalize the sizes in order to combine this information. This process is per-

formed on the NC extracted from each network, which form a matrix of s× w,

where we have set s to 12 scanlines (which is the minimum common sequence350

length used), and w is the width of the output size. To this matrix, we apply

bi-cubic interpolation to adjust the network’s output size to obtain an s × 512

matrix, which is the precision with which the result of the classification will be

returned.

Once the sizes are normalized, we proceed to prepare the data to be supplied355

to the classifier, which has to predict one of the seven possible classes for each

of the input pixels. For this, we create a feature vector by combining the NC in

the neighborhood of each pixel. Specifically, a window of s×5 around each pixel

is taken, adding zero padding for the edge pixels. This information is extracted

for the NC of each of the seven networks, obtaining a vector of s× 5× 7 = 420360

features (with s = 12). Figure 5 shows a graphical representation of this process.

...

s

w
current scanline (tn)
previous 
scanlines }

feature vector

...
... ... ([tn-1,tn-s-1])

Figure 5: Representation of the feature vector extraction process to classify one pixel (marked

in red in the figure). From the t neural codes (NC) obtained for a class (using the current tn

and the previous [tn−1, tn−s−1] scanlines), the s×5 neighbors to the pixel to be classified are

copied to the feature vector. This process is repeated for the NCs obtained for the rest of the

7 classes, finally forming a vector of s× 5 × 7.

We evaluated different machine learning methods to choose the most suitable

one for this task (that is, classify the red pixel in Figure 5). Specifically, we

tested the following methods and parameter settings:

• k-Nearest-Neighbors (kNN) [38]: This classifier is one of the most widely365

used schemes for supervised learning tasks. It classifies a given input ele-

ment by assigning the most common label among its k-nearest prototypes

of the training set according to a similarity function. Different numbers
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of neighbors k ∈ [1, 9] have been evaluated in this work.

• Support-Vector Machines (SVM) [39]: It learns a hyperplane that tries to370

maximize the distance to the nearest samples (support vectors) of each

class. In our case, we use the “one-against-rest” approach [40] for multi-

class classification and a Radial Basis Function (or Gaussian) kernel to

handle non-linear decision boundaries. Typically, an SVM also considers

a parameter that measures the cost of learning a non-optimal hyperplane,375

which is usually referred to as parameter c. For these experiments, we

tuned this parameter in the range c ∈ [1, 20].

• Random Forest (RaF) [41]: It builds an ensemble classifier by generating

several random decision trees at the training stage. The final output is

taken by combining the individual decisions of each tree. The number380

of random trees has been established by experimenting in the range t ∈

[10, 500].

As a result of this evaluation (which will be detailed in Section 3.2), we

obtained the best results using a SVM with c = 15. Therefore, we chose SVM

as the final classifier of the proposed method.385

2.3. Training Process

CMSAE can be trained using conventional optimization algorithms such as

gradient descent. In this case, the network parameters were tuned by means

of stochastic gradient descent [42] considering the adaptive learning rate pro-

posed by Zeiler [43]. The loss function (usually called reconstruction loss in390

autoencoders) can be defined as the squared error between the ground truth

and the generated output. In the proposed method, we use the cross-entropy

loss function as the input is normalized to be in the range [0, 1].

In all of the experiments, we used an n-fold cross validation (with n = 5),

which yields a better Monte-Carlo estimation than when solely performing the395

tests with a single random partition [44]. Our dataset was consequently divided

into n mutually exclusive sub-sets, using the data of each flight sequence only in
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one partition. For each fold, we used one of the partitions for test (20% of the

samples) and the rest for training (80%). Besides, a validation sub-set with 10%

of the training samples was used in the grid search process (see Section 3.1).400

The training and testing processes were repeated n = 5 times, using different

partitions of the dataset and finally providing the average result along with its

standard deviation.

The data supplied to the networks during both training and inference was

normalized using standard normalization. For this, we apply the equation Z =405

(X − µ)/σ, where X is the input matrix containing the raw pixel values from

the training set, µ is the sample mean, and σ the standard deviation. For the

normalization of the test set we used the same mean and deviation calculated

in the training set. As seen in Gallego et al. [27], this kind of normalization is

suitable for this type of data, since in some cases the improvement reaches up410

to 25%.

In the dataset used for training and evaluation, nearly 80% of the pixels

are water, and the most relevant targets (oil spills and ships) are represented

by less than 0.25% of the pixels (see Table 1). As a consequence of that, the

dataset is unbalanced. To solve this issue, we relied on data augmentation415

techniques to balance classes adding samples. Consequently, for training each

of the CMSAE networks, the sequences of the positive and negative classes were

counted and then, samples of the minority class were artificially generated by

randomly applying different types of transformations to the original samples

of that class. These transformations include horizontal and vertical flips and420

horizontal translations in the range [−10, 10]% of the sample width.

3. Results

In this section, the proposed CMSAE architecture and the different classifi-

cation methods are evaluated. In order to quantitatively measure the obtained

results, we use the F-measure (F1) metric at the pixel level, which can be defined425
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as:

F1 =
2 · TP

2 · TP + FN + FP
(1)

where TP (True Positives) denotes the number of correctly detected pixels of

the positive class (or targets), TN (True Negatives) the number of incorrectly

detected targets, FN (False Negatives) the number of non-detected or missed

targets, and FP (False Positives or false alarms) the number of incorrectly de-430

tected targets.

Using this metric, we first evaluate the hyper-parameters of the CMSAE

networks. Then, we analyze the different classifiers considered for the last clas-

sification stage (described in Section 2.2.2).

3.1. Hyperparameters Evaluation435

To choose both a good network topology and good hyperparameters, we per-

formed a grid-search [36] using the training and validation sets. In addition, to

better adjust the CMSAE networks, the obtained results are analyzed indepen-

dently for each class. The appearance and size of the targets from the various

classes is variable, therefore it is expected that the same network topology will440

not be the most suitable for all target classes.

First, we analyze the results when varying the input size of the network from

1×32 pixels to 1×1160 pixels, that is, digitizing the scanlines at different widths.

To do this, we apply a bi-cubic interpolation, keeping the original labels for the

ground truth. To carry out this experiment, we started with a basic network445

configuration with 6 layers with 64 filters each, using a kernel size of 1×5 and a

sequence length of 10 scanlines. Figure 6a shows the results of this experiment.

In general, for all classes the results remain relatively stable for sizes of 1× 256

px or larger. Only the detection of the ship class seems to benefit from even

larger sizes (perhaps because they are very small objects). The maneuvers class450

seems to be better with small input sizes. Maybe this is because they are

objects that occupy the entire width of the SLAR image, and for small input

sizes the information is summarized better. To reduce the loss obtained in the

size normalization process, we decided to select the size 1 × 1160 px for ships
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in order to increase precision, 1 × 128 px for maneuvers (because they always455

occupy the entire width of the image, they do not suffer loss in normalization),

and 1× 512 px for the rest of classes.
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Figure 6: Comparison of the result obtained for each of the classes when varying: (a) The

input size of the CMSAE networks and (b) the number of scanlines used as input. See Table

5 for standard deviation of results based on the settings shown in Table 2.

Another important variable to be analyzed is the number of SLAR scanlines

used as input. The size of the input sequence has a direct impact on the result

obtained since, on the one hand, by adding more scanlines to the sequence, the460

method is able to use more spatial information (or more context) to calculate

the response, but on the other hand, to obtain a larger context in height it is

necessary to wait more time to obtain those scanlines, which would slow down

the method. For this reason, this variable is analyzed to determine the shortest

sequence length with which good results are obtained.465

To perform this experiment, we have started from the same base configura-

tion, but using the best input size previously found, and only varying the length

of the sequence used between 1 and 25 scanlines. Figure 6b shows the result of

this experiment. Overall it seems that all classes benefit from the use of a longer

sequence (more scanlines), especially the spills and the maneuvers classes, which470

need a greater context when dealing with more elongated or complex elements.

The optimum sequence length for LSTM is related to the size and direction of

the targets. For example, if the spill is parallel to the scanline of the SLAR, it
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would be easier to detect and would require a shorter sequence length. However,

given that it is not possible to know this information a priori, we selected the475

largest size with which a better overall result was obtained.

As can be seen in Figure 6b, the ship class improves up to a length of 14

scanlines, then stabilizes. The same happens with the lookalike class, which

has a major increase at the beginning. Finally, a sequence of 12 scanlines for

the background was selected, of 14 for ships and central noise, 15 for coast and480

lookalikes, 20 for maneuvers, and 25 for spills.

Next, we evaluated the rest of the parameters of the autoencoder topology.

For this, we start from the base configuration but setting the input size and the

sequence length to the previously found values, and then we introduce variations

in the number of layers (from 2 to 6), the number of filters per layer (between485

16 and 128), and in the kernel size of each filter (from 1 × 3 to 1 × 7). The

results of this experiment are shown in Table 3. Overall, it seems that almost

all networks benefit from the use of more layers, a greater number of filters and

a larger kernel size. For this reason, we used 6 layers, 64 or 128 filters, and a

kernel of 1×5 or 1×7 in most cases (see results marked in bold in Table 3). The490

only exception is the network used to process the central noise, which obtained

better results using 4 layers, 16 filters with a kernel of 1× 7. The final selected

configurations are shown in Table 2.
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Table 3: Results (F1%) of the grid-search process to determine the number of layers, filters

and kernel size of each of the CMSAE networks. In addition, the average results obtained are

included and the best result for each class is marked in bold.

# Filters/Kernel Size

16 32 64 128

Class # Layers 3 5 7 3 5 7 3 5 7 3 5 7 Avg.

Central

2 82.0 83.7 86.0 82.3 85.4 86.0 81.9 85.6 86.2 83.8 85.4 86.0 84.5

4 81.9 85.5 86.6 81.0 85.7 85.1 81.9 84.6 86.2 82.8 84.0 85.2 84.2

6 79.2 80.7 81.0 78.3 80.0 80.5 75.7 83.0 83.4 76.6 81.4 82.5 80.2

Avg. kernel 81.0 83.3 84.5 80.5 83.7 83.9 79.8 84.4 85.3 81.0 83.6 84.6

Avg. filters 83.0 82.7 83.2 83.1

Maneuvers

2 47.9 48.3 58.8 49.1 54.4 59.0 52.5 53.4 58.9 50.0 55.3 54.8 53.5

4 50.5 55.0 60.7 50.4 52.8 57.1 50.3 57.6 58.3 49.9 56.3 59.0 54.8

6 52.6 58.8 64.9 52.9 54.6 62.5 53.0 65.2 65.4 53.5 65.4 65.4 59.5

Avg. kernel 50.3 54.0 61.5 50.8 53.9 59.6 52.0 58.8 60.9 51.1 59.0 59.7

Avg. filters 55.3 54.8 57.2 56.6

Ships

2 45.2 49.7 42.4 42.2 47.2 48.5 42.7 47.8 49.5 46.4 48.4 47.4 46.4

4 42.8 45.2 45.5 42.4 44.7 48.0 47.1 48.7 51.0 47.1 47.2 48.1 46.5

6 46.2 49.8 49.5 51.2 53.8 54.1 49.2 55.9 54.9 53.7 57.8 56.1 52.7

Avg. kernel 44.7 48.2 45.8 45.3 48.6 50.2 46.3 50.8 51.8 49.0 51.1 50.5

Avg. filters 46.3 48.0 49.7 50.2

Spills

2 17.4 18.4 17.9 18.1 18.6 18.0 18.9 19.6 20.1 21.6 23.7 23.0 19.6

4 33.4 34.0 33.7 32.8 33.8 30.8 30.6 34.6 33.5 34.2 35.9 35.1 33.5

6 49.1 50.9 51.6 50.9 51.1 50.0 50.6 51.7 50.9 51.5 52.6 52.1 51.1

Avg. kernel 33.3 34.5 34.4 33.9 34.5 32.9 33.4 35.3 34.8 35.7 37.4 36.8

Avg. filters 34.1 33.8 34.5 36.6

Lookalikes

2 21.2 21.7 21.8 21.8 21.9 20.8 22.0 22.0 21.4 23.0 19.8 19.3 21.4

4 23.2 23.5 23.2 23.4 23.1 23.2 20.8 20.0 24.1 18.1 19.5 20.1 21.9

6 23.8 23.1 23.8 23.5 23.1 23.2 23.7 23.8 24.5 23.0 23.2 23.2 23.5

Avg. kernel 22.7 22.7 22.9 22.9 22.7 22.4 22.1 21.9 23.3 21.4 20.8 20.9

Avg. filters 22.8 22.7 22.5 21.0

Coast

2 71.4 76.6 79.8 71.9 77.7 79.6 72.5 79.8 80.1 74.2 78.9 82.5 77.1

4 72.3 77.6 79.8 72.7 75.6 80.5 72.6 78.0 81.6 73.4 77.5 79.7 76.8

6 75.3 75.9 80.1 74.8 78.1 79.7 73.2 77.9 82.9 75.7 80.0 82.1 78.0

Avg. kernel 73.0 76.7 79.9 73.1 77.1 79.9 72.8 78.6 81.5 74.4 78.8 81.5

Avg. filters 76.5 76.7 77.6 78.2

Water

2 94.1 93.7 94.4 94.0 94.4 94.2 94.2 94.4 94.7 93.9 94.3 94.7 94.2

4 94.0 94.3 94.6 94.1 94.5 94.5 94.1 94.5 94.9 94.1 94.4 94.7 94.4

6 94.1 94.5 94.2 93.8 93.9 94.7 93.8 94.8 94.7 94.2 94.3 95.0 94.3

Avg. kernel 94.1 94.2 94.4 94.0 94.2 94.5 94.0 94.6 94.8 94.0 94.3 94.8

Avg. filters 94.2 94.2 94.5 94.4
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To analyze the results in depth, the confusion matrix among the different

classes is calculated using the final selected configuration. Figure 7 shows the495

normalized confusion matrix at the pixel level for all classes. As can be seen, the

oil spill class is frequently confused with the lookalike class (9.23%) and with

the background (18.45%). The ship class is also confused with the background

(9.24%) and coast (16.81%), perhaps due to the presence of small islets. In

general, all classes are significantly confused with the background class, and500

some of them with the lookalike and coast classes. This result justifies the

proposed method, since the final classifier takes advantage of the information of

the other classes to improve the classification of the rest. For example, in this

case, since the background classifier is highly reliable, that information could be

used to reduce the error of the classifiers that are confused with the background505

class.

Figure 7: Normalized confusion matrix calculated for the seven classes considered at the pixel

level. Rows show the current label and columns the prediction given by the specific CMSAE

network for the class detection.

3.2. Final Classifier Evaluation

In this section, we evaluate the different types of classifiers used in the last

stage of our pipeline. As explained in Section 2.2.2, we have compared three

machine learning methods: k-Nearest-Neighbors (kNN) varying the number of510

neighbors k ∈ [1, 9], Support-Vector Machines (SVM) modifying the parameter
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c ∈ [1, 20], and Random Forests (RaF) evaluating different number of random

trees t ∈ [10, 500].

Table 4 shows the results of this experiment. For each method, the result

obtained with the best parameter settings is shown. As can be seen, the results515

for some of the classes improve by up to 2% with respect to the value obtained

by the CMSAE network. However, for other classes such as turns and water, the

result did not improve. For the kNN algorithm, the best results were obtained

using a value of k = 7, for SVM a value of c = 15, and for RaF t = 300. In

general, the best results were obtained using SVM with a mean c value of 15,520

so this configuration was selected for the final setup.

Table 4: Best results (F1%) obtained by the different classifiers considered for the last stage

of the algorithm. The best result obtained for each class is marked in bold.

Class CMSAE CMSAE+kNN CMSAE+SVM CMSAE+RaF

Central noise 86.60 87.11 87.92 87.32

Maneuvers 65.44 65.37 65.45 65.43

Ships 57.79 57.53 58.03 58.17

Spills 52.58 53.12 54.36 53.91

Lookalikes 24.49 26.37 26.54 26.61

Coast 82.90 83.45 83.92 83.51

Water 94.97 95.12 95.49 95.35

Average 66.40 66.87 67.39 67.19

Figure 8 shows the Receiver operating characteristic (ROC) curves calcu-

lated for oil spill and ship classes applying different threshold levels in order to

see how it affects the sensitivity and the specificity of the model. The ROC curve

is computed by plotting the True Positive Rate (TPR or sensitivity, equivalent525

to Recall) against the False Positive Rate (FPR, equivalent to 1-specificity) at

various threshold settings. The Area Under the Curve (AUC) is also calcu-

lated using the trapezoidal rule to measure the goodness of discrimination. The

higher the AUC index the better the discrimination performed by the method.

Specifically, and using the traditional academic point system, the AUC for the530
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oil spills curve is in the 0.8–0.9 range, showing a good accuracy, and the AUC

for the ship curve is in the 0.9–1 range, so it has an excellent accuracy.

Figure 8: Receiver operating characteristic (ROC) curves of the proposed method for ships

and oil spills classes.

Figure 9 shows two examples of the prediction done by the proposed method

for the spill class zooming in the area of interest. The first column shows the

original input SLAR images and the second column shows the prediction. In the535

images of the second column, black areas depict correct detections of oil spills,

red and blue pixels depict FP and FN of oil spills, respectively, and white areas

depict correct detections of the negative class. These figures help to visualize

the accuracy of the proposed approach and to understand where the errors of

each target class occur. As can be seen, wrong detections are typically made540

only at the contours of the spills.
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Figure 9: Results of processing two SLAR input images with the proposed method (zooming

in the area of interest). The first column shows the original SLAR images and the second

column shows the detection results. Black areas depict correct detections of oil spills, red and

blue pixels depict FP and FN of oil spills, respectively, and white pixels represents correct

detections of the background.

4. Discussion

As shown in the previous section, the proposed method (CMSAE+SVM)

obtains an average result of 67.39% for classifying the different targets at the

pixel level. Some classes, such as central noise, coast or water, obtain accurate545

results, 87.92%, 83.92% and 95.45%, respectively. For the two most relevant

classes, ships and spills, good results are also obtained (58.03% and 54.36%),

especially considering that the discrimination is done at the pixel level. The

worst result is obtained for the lookalikes class, since this class groups together

different types of noise that can be confused with oil spills, and that even for a550

human expert are very difficult to distinguish.

To better discuss these results and analyze how they can be interpreted in

perspective to other previous studies, we compare the results obtained using the

proposed approach with other state-of-the-art methods, which are as follows:
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• BiRNN [45]: The authors also proposed the use of recurrent neurons to555

process the sampling lines of the SLAR sensor in order to detect oil spills.

In this case, they use Bidirectional RNNs [46], thus, in this model, the

output at time t also depends on future elements.

• TSCNN [2]: This method employs a two-stage architecture composed of

three pairs of CNNs. Each pair of networks is trained to recognize a560

single class (ship, oil spill, or coast) by following two steps: a first network

performs a coarse detection, and then, a second CNN obtains the precise

localization. After classification, a postprocessing stage is performed to

improve the results.

• U-Net [47]: This CNN was developed for biomedical image segmentation.565

This network uses a FCN divided into two phases: a contracting path and

an expansive path. The feature activations of the contracting path are

concatenated with the corresponding layers from the expansive path. The

last layer uses a 1x1 convolution with a Softmax activation function to

output class labels.570

• SegNet [20]: It uses a fully convolutional neural network architecture for

semantic pixel-wise segmentation, containing an encoder network, a corre-

sponding decoder network, and a pixel-wise multiclass classification layer.

The architecture of the encoder network is topologically identical to the

13 convolutional layers in the VGG16 network [48].575

• DeepLabv3 [49]: It uses atrous spatial pyramid pooling to robustly seg-

ment objects at multiple scales with filters at multiple sampling rates to

explicitly control the resolution at which feature responses are computed

within Deep Convolutional Neural Networks. It also includes a image-level

feature to capture longer range information and uses batch normalization580

to facilitate the training.

• SelAE [27]: This approach uses a SAE network specialized in the segmen-

tation of oil spills. It returns a probability distribution over which they
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apply a threshold to select the pixels to segment.

The BiRNN and SelAE methods were originally proposed for the detection585

of oil spills, however in this experiment they are also applied for the detection

of the rest of the classes. For this, the originally proposed architectures were

used with the same configuration, but training and evaluating a network model

for each of the classes.

In the case of the U-Net, SegNet and DeepLabv3, we also used the original590

architectures but modifying the last layer to classify the seven classes from our

dataset. The TSCNN method could only be used for the classification of ships,

oil spills and coast, since this method proposed a specific architecture for these

three classes and in addition then it applied post-processing that combined the

information to improve the result. Therefore, it was not possible to extrapolate595

this method for the rest of the classes.

Table 5 shows the results of this comparison, giving the accuracy for each

of the classes as well as the average obtained by each method. In the case of

TSCNN, the average is not shown since it does not contain all the results. How-

ever, it can be seen that this method performs worse for these classes than other600

methods, such as SelAE or our proposal (CMSAE+SVM). The SegNet network

obtains the worst average result, because some classes have significantly low

accuracy, especially those that have very small or thin elements, such as ships

or lookalikes. The BiRNN, U-Net and DeepLabv3 methods obtain a slightly

better result, however, difficulties to detect small objects are also observed.605

Table 5: Mean F1 results of the 5-fold cross validation (F1% ±σ) obtained for each of the

classes using the different methods evaluated. Best results per row are shown in bold.

Class BiRNN TSCNN U-Net SegNet DeepLabv3 SelAE Our Method

Central noise 75.37 ± 2.5 – 85.64 ± 1.5 84.19 ± 0.9 85.95 ± 1.1 87.84 ± 0.7 87.92 ± 0.7

Maneuvers 50.32 ± 2.2 – 62.47 ± 2.1 60.20 ± 1.0 65.71 ± 1.3 65.55 ± 0.9 65.45 ± 0.8

Ships 26.50 ± 3.1 50.35 ± 1.1 27.02 ± 2.9 2.53 ± 1.4 46.56 ± 1.0 57.29 ± 0.9 58.03 ± 0.8

Spills 32.38 ± 3.0 53.86 ± 1.0 33.39 ± 2.6 12.08 ± 1.3 49.33 ± 1.8 54.52 ± 0.9 54.36 ± 0.9

Lookalikes 14.90 ± 3.3 – 15.13 ± 3.1 1.67 ± 1.8 13.32 ± 2.3 17.74 ± 1.3 26.54 ± 1.0

Coast 65.41 ± 2.8 72.99 ± 1.3 68.25 ± 1.6 68.95 ± 1.2 84.57 ± 1.2 80.20 ± 1.0 83.92 ± 1.0

Water 90.39 ± 1.3 – 94.24 ± 1.2 94.79 ± 1.0 94.84 ± 1.1 95.37 ± 0.9 95.49 ± 0.7

Average 50.75 ± 2.5 – 55.16 ± 2.1 46.35 ± 1.2 62.90 ± 1.4 65.50 ± 1.0 67.39 ± 0.9
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Comparing the results obtained by SelAE for the detection of oil spills with

those presented in the original paper [27], it can be observed that this method

has significantly worse results here, decreasing from 93.01% with the previous

dataset shown in [27] to 54.52% with the new dataset used in this work. How-

ever, it must be considered that many new sequences have been added in the610

new dataset, which include many examples of lookalikes, coast, more complex

representations of oil spills, and also some of the images are very noisy.

On average, the proposed method CMSAE+SVM is the one that obtains

the best results. The SelAE and DeepLabv3 algorithms obtain slightly better

results for three of the classes. However, the difference is not significant, 0.26%615

for maneuvers, 0.16% for oil spills, and 0.65% for coast, less than 1% in all cases,

with the standard deviation higher than this difference. Moreover, it should be

considered that the proposed method works using only a few scanlines, so the

execution time is much faster (as will be discussed in the next section).

To assess the significance of the result obtained by the proposed method620

in comparison with the second best result (the one obtained by SelAE), we

performed a statistical significance comparison using the paired sample non-

parametric Wilcoxon signed-rank test [50]. On average, the proposed method

(CMSAE+SVM) obtains a p-value of 0.0005, so this test reflects that this

method significantly outperforms the results obtained by SelAE.625

The results at the pixel level indicate the precision with which the method

detects the position and shape of each class. However, this metric does not allow

us to discern if all the objectives are actually being detected. For this reason,

the Intersection over Union (IoU) metric is also calculated to evaluate if all the

targets present in the image are correctly detected. In addition, we have also630

performed this process at the class level. To start, we calculate a binary mask

with the output of the network using a threshold of 0.5, and setting the pixels of

that class to 1 and the rest to 0. Then we apply a morphological opening filter

and then a closing operation with a circular kernel of 3×3 in order to eliminate

small gaps as well as isolated pixels. Finally, we calculate the blobs (we define a635

blob as a group of connected pixels with value 1 in the binary mask) from the
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network prediction (Bp) and we pair them with those ground-truth blobs (Bg)

with which they have a highest IoU using the following equation:

IoU =
area(Bp ∩Bg)

area(Bp ∪Bg)
(2)

where area(Bp∩Bg) indicates the intersection between the object proposal and

the ground truth blobs, and area(Bp∪Bg) depicts its union. The detection will640

be considered to be positive when the value of IoU exceeds a certain threshold

λ, which is set to 0.5 since it is the value normally used for this type of tasks.

Table 6 shows the results of this experiment. As can be seen, the proposed

method obtains the best result again, although using this metric the difference

with respect to SelAE is not so significant since both methods perfectly detect645

the central noise, maneuvers and water. Therefore, we can conclude that the

proposed method detects slightly better the presence of the different targets, but

with greater precision for detecting their shape and in significantly less time (as

will be seen in the next section).

Table 6: Results of the object detection of each class using the Intersection over Union metric

(IoU %). Best results per row are shown in bold.

Class BiRNN TSCNN U-Net SegNet DeepLabv3 SelAE Our Method

Central noise 100.00 – 100.00 100.00 100.00 100.00 100.00

Maneuvers 96.77 – 100.00 100.00 100.00 100.00 100.00

Ships 17.17 75.11 19.37 2.15 65.04 87.98 90.13

Spills 26.32 89.47 27.45 13.16 84.29 93.42 92.11

Lookalikes 43.45 – 45.63 1.30 41.12 56.49 59.39

Coast 76.06 86.21 80.21 81.14 95.67 93.31 94.32

Water 100.00 – 100.00 100.00 100.00 100.00 100.00

Average 65.68 – 67.52 56.82 83.73 90.17 90.85

All methods were trained and evaluated with the dataset described in Section650

2.1. As stated before, this dataset is composed of more than 5 h of flight

with varied missions, which allows an evaluation under different conditions.

The weights learned by networks are dependant on the data used for training,

however, to alleviate this fact, layers of Batch Normalization along with data

augmentation were used, which increase the generalization capabilities of the655
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method. Even so, it is possible that the proposed method would perform a wrong

detection in a particular situation. In this case, this sample could be included

in the training set so the weights will be updated to avoid a similar mistake.

Therefore, unlike hand-crafted methods, it is easily adaptable to unseen data.

4.1. Runtime Analysis660

It is also relevant to analyze the time required by each of the methods to

give a prediction. The SelAE, SegNet, U-Net and DeepLabv3 algorithms use a

complete image, so in principle it would be necessary to wait until a complete

image (requiring 6.1 min of flight) is recorded before yielding a result. However,

they could wait for that time at the beginning of the flight and then build new665

images incrementally as each scanline arrives. That is, add the new scanline to

the top of the image and eliminate the oldest data from the bottom in order

to always have a complete image and give results for every new scanline. This

would imply that the prediction at each time instant would be for the last

scanline, that is, the top row of the image. However, in the experiments carried670

out it has been observed that when using this technique the precision of the

results is halved, as there is no context. To maintain the same precision using

this technique, it would be necessary to wait 24 s to accumulate 32 scanlines

preceding each prediction. That is, in order to give a result for the current

scanline it is necessary to wait for the 32 future scanlines, which will produce a675

delay to get the current response (we will call this delay as “lag time”).

The TSCNN and BiRNN methods can be applied directly to a part of the

sequence. Specifically, TSCNN uses a sliding window with different window

sizes that can be applied horizontally to a set of scanlines. Since the largest

window size used is 50 × 50, and that the result obtained is for the central pixel680

of the same, it would be necessary to wait 19 s (25 scanlines) for each answer.

The BiRNN method, according to the specifications of the article, uses only 3

scanlines. However, as it is bidirectional, it would be necessary to wait 2.28 s,

as it needs to wait for the next scanlines to get the current prediction. With the

proposed method, it is possible to use only the previous information and obtain685
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a response at each time frame, therefore the response time would be only 0.76

s. A summary of these results is shown in the column “lag time” of Table 7.

Table 7: Comparison of runtimes (in seconds). The column lag time represents the time to

wait until the current scanline is classified. This lag is because many algorithms need to

use not only the current scanline and the previous ones, but also the following scanlines to

have more context. The runtime column shows the time that the algorithm takes to yield a

response once all the information is provided. The last column shows the sum of times, which

corresponds to the time perceived by the user in getting a response.

Method Lag Time Runtime Total Time

SegNet 24 0.2929 24.2929

DeepLabv3 24 0.1871 24.1871

U-Net 24 0.1044 24.1044

SelAE 24 0.0007 24.0007

TSCNN 19 0.0078 19.0078

BiRNN 2.28 0.0006 2.2806

Our approach 0.76 0.5259 1.2859

We have also added to this table the column “runtime” to compare the

execution times once all the necessary data (scanlines) are available. These

runtimes were obtained using a Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz690

with 16 GB DDR4 RAM and a Nvidia GeForce GTX 1070 GPU. The fastest

methods are BiRNN, SelAE and TSCNN, since these are networks with few

parameters and binary outputs. The processing time of our proposal is divided

between the time used by the CMSAE networks, which is 0.0039 s. on average,

and that used by the selected classifier, which for SVM with c = 15 is 0.5220 s.695

Since the CMSAE networks can be run in parallel, the average time spent by the

network with more parameters has been calculated. In this case these are the

networks with 6 layers, 128 filters and a kernel of 1× 7. While our proposal has

a slower runtime than the compared approaches, the perceived runtime (column

“Total time”) would be the smallest by far, and since the runtime is less than700

both the lag time and the time needed by the sensor to return each scanline, the
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method could be used for the realtime detection of oil spills and ships during

flight.

Having evaluated the classification performance and the runtime as stand-

alone measures of merit, we will now analyze them jointly from a Multi-objective705

Optimization Problem (MOP) perspective. Note that classification performance

and runtime could by opposing goals as improving one of them could deteriorate

the other. Figure 10 compares these two variables graphically for the ship and

oil spill classes. In this way, it can be clearly seen how the proposed method

is much closer to the target, being much more efficient and also obtaining the710

best result for these two classes.
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Figure 10: Comparison of the result obtained from a Multi-objective Optimization Problem

(MOP) perspective, comparing the result of the classification and the runtime for the ship

and oil spill classes.

5. Conclusions

In this work we propose a new architecture called Convolutional LSTM Se-

lectional AutoEncoders (CMSAE) to detect multiple targets such as coast, oil

spill and ships from SLAR images. By running multiple CMSAE networks in715

parallel and combining their outputs using a machine learning classifier (SVM),

the method can use only a few scanlines to obtain reliable results and also

provide a quick response during live aircraft flights.

Different configurations of the networks and final classifier were evaluated.

The best selected setup (CMSAE+SVM with c = 15) was compared to previous720
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methods from the state of the art (BiRNN, TSCNN, U-Net, SegNet, DeepLabv3,

and SelAE) using a dataset with 51 flight sequences (with a total of 24,582

scanlines).

The proposed approach obtained the highest pixel level average F1 (67.39%)

with the lowest lag time. This result was validated using statistical significance725

tests, showing that the presented method significantly outperforms the results

obtained by SelAE. In addition to the F1 evaluation at the pixel level, the

proposed approach also obtained the best results at blob level detection (90.85%)

using the Intersection over Union metric. One of the reasons why the proposed

approach obtains better results than the rest of the state-of-the-art methods730

is because it uses specialized classifiers. This allows the networks to learn the

particular characteristics of each class. Another reason is the use of a higher

resolution for the scanline amplitude, which benefits the detection of ships and

the more accurate detection of the edges for the different classes.

With respect to the time needed to process each scanline of the SLAR sensor735

during flight, the proposed method achieved the best result (1.28 s), far better

than the second algorithm with best classification results (SelAE, which takes

20 s).

Therefore, we can summarize that the proposed method (CMSAE+SVM)

obtains better average results when detecting the target objectives, with a higher740

precision for detecting their shape and requiring significantly less time.

With respect to the ship and spill classes, the proposed method detects

90.13% and 92.11% of these targets, respectively. It should be noted that SLAR

sensors generate a large amount of noise and, in our case, the dataset used

contains noise in all flight sequences. This noise prevents the detection of these745

classes and sometimes it can also be confused with them.

Based only on SLAR intensity data, the accuracy obtained from the state-of-

the-art algorithms, including the proposed method, is still low to rely exclusively

on them for ship and oil spill detection. However, they can be used to aid a

human operator that can visually inspect the candidate targets.750

Future work is intended to consider the metadata provided by the sensor
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and the aircraft to improve the results of the classification. Information such as

flight altitude, airplane speed or wind speed could help to better discriminate

between the true targets and the noise generated by the sensors.
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