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Abstract

This paper evaluates an automatic technique for detection of
abnormal events in crowds. Crowd behaviour is difficult
to predict and might not be easily semantically translated.
Moreover it is difficult to track individuals in the crowd using
state of the art tracking algorithms. Therefore we characterise
crowd behaviour by observing the crowd optical flow and
use unsupervised feature extraction to encode normal crowd
behaviour. The unsupervised feature extraction applies spectral
clustering to find the optimal number of models to represent
normal motion patterns. The motion models are HMMs to
cope with the variable number of motion samples that might be
present in each observation window. The results on simulated
crowds analyse the robustness of the approach for detecting
crowd emergency scenarios observing the crowd at local and
global levels. The results on normal real data show the
effectiveness in modelling the more diverse behaviour present
in normal crowds. These results improve our previous work
[1] in the detection of anomalies in pedestrian data.

1 Introduction

In recent years computer vision and machine learning
techniques have been applied to modeling and recognition of
human activities and interactions. The application domains
for these techniques usually involve simple environments
such as offices [9], kitchens [4], cargo bays [7] and loading
docks [6] such that activity recognition is focused upon
modeling the actions and interactions of small groups of
people/objects. However, there have been a few attempts to
model larger groups of people, crowds, which are mostly
based on discriminative classifiers [13]. The analysis of
crowd movements and behaviour is of particular interest in
surveillance domain [8]. In scenarios where hundreds of
cameras are monitored by a few operators behavioural analysis
of crowds is useful as a tool for video pre-screening.

In order to model a crowd the model must cope with a
large variation in densities and motions present in a real
crowd. This requires a huge amount of data to enable a
good supervised/unsupervised learning for discriminative or
generative crowd models.  Moreover in the surveillance

domain usually there are few or no examples of the
emergency/abnormal events to be detected. Thus the first
assumption for our crowd modelling is that we are trying to
model the degree of similarity between the trained model and
the new unseen video data. Therefore the events are classified
as normal or abnormal behaviour without having any other
particular labels for them. This arrives from the fact that
crowds are difficult to treat semantically. In a real crowd scene
one can not beforehand easily specify or train particular labels
for behavioural analysis. This scene content labelling would
discretise the input space simplifying the analysis. However,
unsupervised learning techniques provide the means to learn
the typical labels (space-time behavioural patterns) and have
been applied for similar problems in video analysis [18]
[14]. In our work the analysis is based on the optical flow
patterns of scene. To reduce dimensionality we project the
input optical flow patterns on the principal components of the
training flow fields. This compressed feature set is used by
learning algorithms. The automatic model extraction involves
fitting an HMM for each video segment and performing
spectral clustering on the similarity matrix computed using
inter-segment likelihoods.  The resulting clustered video
segments are used to train a new set of HMMs which represent
the optical flow variations on the normal example set.
Abnormality detection is based on a threshold on the HMM
bank likelihood function. This framework is applied to detect
simulated emergencies in crowds. In addition we show an
example of the same technique applied to real data. However,
for the real scenes no emergencies are present and this data is
used to illustrate the framework modelling capabilities and the
lack of false positives.

This paper is organised as follows section 2 discusses the
related research. Section 3 details the methodology for
anomaly characterisation and detection. Section 4 presents
results on simulated and real data. Section 5 draws the final
comments and conclusions.

2 Related Work

The use of principal component analysis of optical flow fields
as features is demonstrated in [5], where principal components
of video sequences are used to construct a linear basis for
complex motion phenomena. Unusual events are analysed in a
similar contextin [7] and [17] where deviations from example
normal behaviour are used to characterise abnormality.
Spectral clustering using HMMs as similarity measures is used



for trajectory classification in [10]. In another related spectral
clustering application it is used to automatically determine
models for video sequence in [14]. Our approach is based
on the general concepts in these references and to the best of
our knowledge our work is the first combined application of
the techniques of optical flow, subspaces and HMMs to assess
similarity to the problem of abnormal behaviour detection in
crowds. This builds up on our previous work in [1] where
similar ideas of optical flow similarity based on HMMs were
used to analyse variations in the flow patterns of pedestrian
traffic. The current work allows for a more flexible model
which is in principle able to deal with a large range of people
density in the scene from sparse pedestrian traffic to dense
crowd flows.

3 Methodology

The characterisation of normal behaviour for the crowd
uses normal optical flow patterns to estimate the model
parameters. The modelling process involves four phases:
1) Preprocessing: background modelling and optical flow
computation; 2) Feature prototypes: principal components
analysis on the example flow fields, 3) Spectral Clustering:
automatic determination of the number of HMMs to represent
the flow sequences and 4) Bank of models: training of the
HMM models using the data of each cluster per model. The
analysis concentrates on identifying unusual events in the
crowd by comparing the new observation’s likelihood to a
detection threshold. Details of this are given in the next
subsections.

Preprocessing involves the construction of a Mixture of
Gaussians background model for the scene based on [12].
The background model produces a mask with the detected
foreground objects per frame. In parallel to foreground
extraction robust optical flow is computed for the whole frame
using the techniques described in [3]. Prior to the optical flow
computation the sequence is smoothed with a 5x5x5 Gaussian
filter (¢ = 0.8) to reduce acquisition noise. The resulting
optical flow is sub-sampled by median filter with a window of
size 8x8 applied independently to the horizontal and vertical
components. The combination of flow information with the
foreground mask allows the analysis to only consider flow
vectors inside foreground objects, reducing observation noise.
The motion parameters are encoded in a sample vector of the
form s = (u,v), where u and v are horizontal and vertical
optical flow components. Prior to the analysis the foreground
mask is superimposed on the optical flow output resulting in
the motion parameters for the detected foreground objects.
All values outside the foreground mask are set to zero to
characterise the static regions.

3.1 Video Segmentation

The assumption for video segmentation is that there is no
distinctive activity or periods of inactivity everywhere in the
training crowd video. Therefore all segments in the video
stream are equally important for prototype extraction. The
video sequence V is segmented into N video segments V. =
{v1,...,vn} Of equal length T frames, v, = {Fn1, ..., FuT}
asin [18], Fnt = (s1,...,sp), Where P is the number of flow
vectors in each frame. 7' = 100 frames (4 seconds) is assumed
in the experimental section to contain enough crowd movement
for comparison.

3.2 Feature Prototypes

The first step of the prototype extraction is to perform principal
component analysis (PCA) on the optical flow fields of each
frame Fnt = ((u1,v1),..., (up,vp)) in V. The first J
eigenvectors with the largest eigenvalues are selected to form
a basis for the projection. The projection reduces the input
feature dimensionality from the dimension of flow fields
samples 2 x P to the dimension of the selected eigenvectors
J. The resulting set of feature vectors for the n—th segment in
Vis:

W, ={Wn1, ..., WnT} Q)

where wyt is a vector representing the projection of the t-
th frame in the n-th segment over the selected eigenvectors,
defined as

Wnt = {gnth ---7gntJ} 2

where g..¢., is the weight associated with the m-th eigenvector.

3.3 Spectral Clustering

The derivation of the similarity measure of the video segments
for spectral clustering is based on likelihood of the observations
in the segments given by a Hidden Markov model. For that
a Mixture of Gaussian Hidden Markov Model (MOGHMM)
[11] is trained with the feature vectors for each video segment
inside the training set resulting in B,,n = 1..N models
(ie. one for each segment). We use the MOGHMM to
model the different patterns of optical flow inthe image. This
MOGHMM structure is ergodic with J states (same as the
number of selected eigenvectors) and M Gaussian emission
probabilities per state with diagonal covariance matrices in
order to reduce the number of samples needed to train the
MOGHMM (assuming independence in the input space of



eigenvectors projections). In the text below L( ) is the log-
likelihood of the model defined as the sum of the logarithm of
the scaling factors in the forward-backward procedure [11].

The measure of similarity between video segments is defined
as:

1

= 5 {L(W;[By) + L(Wi[B;)} ©)

The pairwise similarity values between the video segments
forms a similarity matrix S. The similarity matrix is subject
to spectral clustering using the algorithm described in [15] to
automatically find the number of groups in the video data. We
use this clustering method because it automatically selects the
number of natural clusters in the dataset using a local scaling
strategy, other methods of clustering may work if you could
estimate the number of clusters.

3.4 HMM Training

After spectral clustering the video segments are regrouped into
a more compact number of classes K. All the samples W, in
each class are used to train a new MOGHMM per class M.
The final model for the video sequence has the form:

L(WM) = mazy(L(W|My)) (4)

where W are the samples in the model bank observation
windows.

3.5 Event Classification

The classification of normal and abnormal events is based on
the comparison of the current observation’s likelihood given by
the bank of MOGHMM models and the detection threshold.
The observation of the n-th test video segment W2 (the
superscript o denotes new observations not used in training)
is considered abnormal if:

L(WRIM) < Thap Q)

The test video features W are extracted by projecting the test
flow fields on the J eigenvectors of the sub-space derived from
the training set.

3.6 Local Analysis

The previous subsections approach applied the analysis
framework to the whole frame and therefore this analysis is
called global.To detect small variations (which can be hidden
in the likelihood function oscillations of the globalmodel)
we describe the application of the same framework to small
areas of the original frame which we call local analysis.
IN this analysis the original optical flow frame is divided
in non-overlapping patches. For each one of the selected
patches of the original frame of width bw and height bh
the same subspace analysis is performed now taking only
the flow vectors in the training video set inside the patch to
compose a local basis. This local basis is used in the same
manner as in the global analysis now producing a local set
of MOGHMM models which encode more specifically the
optical flow variations inside the patch. Abnormalities are
checked in the same way by comparing the deviations of the
normal local model against a local detection threshold, which
can be adapted per frame patch.

The local model is applied to all blocks in the flow field.
To allow for on-line event detection the likelihood drops are
measured with a simple edge filter on the likelihood function.
Long lasting likelihood drops within the filter indicate the
abnormal events. The filter delays are adjusted to provide the
desired false alarm rate. The detection filter equation is:

Z;:t—VVS/Q L(1) _ fiz/fl/z L(l)
Ws/2+1 W,/2

(L) = | | (®

where ¢ is the current frame, W, = 200 (8 secs) is the
observation window and L(1) is the model log-likelihood for
the [-th frame.

4 Experimental Results

4.1 Simulated Crowd Data

There are three simulated data sets: normal flow, blocked
exit and person dropping on the floor. In the normal flow
simulation a crowd flows in one direction in the scene. In
the blocked exit simulation the crowd cannot leave the scene
and starts to press against the exit. In the person dropping on
the floor scenario when the person falls in the middle of the
crowd the others start to deviate to avoid steepping over the
fallen person. The simulation technique is described in [2].
The original frame size is 384x288 pixels and the optical flow
observations are subsampled, by the « and v median over 8x8
blocks, resulting in optical flow image of 48 x 36 (P=1728) flow
vectors. One normal simulated sequence with 2000 frames
is used for training. It is divided for clustering in N = 20



segments of size T = 100. K = 13 video segments clusters
is the mean number of clusters automatically selected by the
spectral clustering algorithm in 30 runs. For the test there are
10 simulations of the blocked exit event.

In the blocked exit scenario we have evaluated different HMM
topologies looking for the largest mean drop in likelihood
over the 10 simulated sequences as the criteria to choose
the best model topology for this emergency scenario. For
all the topologies with different number of states (@) and
input features (J) the number of Gaussians per state (M) is
constant and experimentally determined to be 3 using Mixture
of Gaussians fitting in the distributions of the eigenvectors
projections. These results are summarised in table 1 which
presents the likelihood drop after the event as a function of @
and J. Tables 2 and 3 present the variations of the likelihood
standard deviation before and after the event respectively. The
drop is highest for the topology with @) = 10 states and J = 10
features. We have chosen this topology for the detector test
although it was observed during training that as we add more
feature/eigenvectors we can obtain other models with similar
performance but requiring 4 to 5 times more features to present
the same drops. One of the eigenvectors of the simulated
normal optical flow fields used for training/feature extraction
is shown in Fig. 1, where we notice the regularity of the
unidirectional flow in the simulation.

The results for the detection of the blocked exit event for the 10
simulation runs are shown in Fig.2. There is a clear and quick
drop in the likelihood function less than 100 frames (4 seconds)
after the exit blocking. A threshold T'h 45 slightly larger than
three standard deviation of the normal flow (i.e T'h 4, = 3 X 6)
would guarantee the detection of this event within less than
200 frames with no false alarms. The size of the observation
window used to compute the likelihood in Fig. 2 is 50 frames.
Larger window sizes tend to smooth the likelihood function
reducing the sensitivity of the detector.

For the more subtle perturbation in the flow of the person
drop scenario we apply the local analysis by aggregating the
original flow field of size 48 x 36 flow vectors in blocks of
bw = 4 X bh = 4. This results in 108 blocks each having
its own model fitting and training procedure similar to the
global analysis described before See 3. We show here the
results for the person drop event only in the blocks close
to where the event occurred in the scene. The other blocks
do not show any significant deviation in likelihood after the
event and are not shown here due to space constraints. The
topology investigation for the models in the area of the event
is similar to the global analysis and for that the maximum
drop criteria has selected an MOGHMM with Q = 10 states
and J = 20 eigenvectors with spectral clustering determing
the size of models in the local MOGHMM to be K = 6.
Table 4 summarises the mean variations before and after the
event although there is a drop in the likelihood this variations
is obscured by the likelihood response oscillations (see Table
5). This justifies the use of the filter F3(L) to detect with a

delay (Ws = 200 frames,8 sec) the moment where the drop in
likelihood is more intense and use this event as the detection
criteria for the person fall in the crowd.

Fig. 4 shows the statistics of the temporal edge filter for all
10 runs of the person fall event. The filter is applied to the
likelihood response of each block around the area where the
person falls. The only noticeable increases in the response
are at the blocks close to the person falling and no other
detections above such levels are present in the other blocks
through the whole sequence, where people continue to move
in their normal way. Fig. 4 shows that this local emergency
is close to the detection limit for the flow based approach and
altought we are able to detect the flow alteration the detection is
not so reliable as for the global case mainly due to two factors:
i) the event scale (eg. about less than 1 block in size) is at
the resolution limit of the flow field observations and there are
still interferences of the surrounding flows (eg. people passing
close to the fallen person in their normal directions).

.

Figure 1 Eigenflows for the simulated normal training set
(elements in the first eigenvector).

mmmmmmmmmmm

Figure 2: Log-likelihood results for the blocked exit event.
Normal flow before frame 900, blocked exit after frame 900.
@ = 10 states, M = 3 gaussian per state, J = 10 eigenvectors
and K = 13 models. Error bars show one standard deviation.

4.2 Real Data

In order to illustrate the model applicability to real data two
real sequence of 5000 frames of normal crowd motion are
submitted to the global analysis framework. One is used to



Q/l 1 10 20 30 40 50
2 -5.04 | -36.10 | -36.72 | -34.00 | -38.58 | -47.38
3 -6.29 | -45.97 | -45.03 | -38.39 | -25.83 | -54.75
4 -6.91 | -49.77 | -47.16 | -47.14 | -53.22 | -60.50
5 -6.30 | -79.79 | -43.69 | -40.29 | -62.57 | -56.73
6 -7.54 | -60.68 | -53.77 | -49.61 | -71.49 | -62.37
10 | -7.73 | —80.38 | -62.75 | -57.50 | -73.56 | -77.66

Table 1: Drop of the mean likelihood from before to after block
event versus number of states (¢?) and number of input feature
eigenvectors(.JJ). M = 3 gaussians per state and K = 13 in the
model bank after training.

Q/J 1 10 20 30 40 50
2 1.82 | 159 | 259 | 290 | 3.61 | 5.38
3 1.83 | 1.85 | 3.25 | 4.07 | 219 | 7.36
4 287 | 192 | 3.24 | 552 | 6.36 | 8.26
5 295|299 | 3.76 | 559 | 823 | 815
6 3.16 | 2.38 | 469 | 6.89 | 9.87 | 9.53
10 | 4.64 | 456 | 6.75 | 9.48 | 11.26 | 13.55

Table 2: Mean standard deviation before block event
versus number of states (@) and number of input feature
eigenvectors(.JJ). M = 3 gaussians using max model output.
K = 13 models.

Q/J 1 10 20 30 40 50
2 13.33 | 15.46 | 16.20 | 15.05 | 17.08 | 20.33
3 16.04 | 19.82 | 19.47 | 17.34 | 10.92 | 24.09
4

5

2249 | 21.42 | 19.94 | 22.06 | 25.19 | 26.70
19.99 | 32.83 | 18.98 | 18.88 | 31.06 | 25.37
6 19.62 | 25.08 | 23.28 | 23.62 | 35.66 | 28.45
10 | 30.72 | 32.64 | 28.88 | 28.16 | 36.95 | 34.47

Table 3: Mean standard deviation after block versus number of
states (QQ) and number of input feature eigenvectors(J). M = 3
gaussians using max model output. K = 13 models.

Event Type

Interval | Block Position | normal | drop
Before Left 16.88 | 17.04
Event 15.00 | 15.47

Right 15.19 | 15.28

After Left 17.92 | 16.84

Event 16.18 | 10.05

Right 15.84 | 13.74

Table 4: Local analysis mean likelihood for @ = 10 states,
J = 20 eigenvectors, M = 3 gaussians and K = 6 models.

Event Type

Interval | Block Position | normal | drop
Before Left 2.69 3.01
Event 11.63 8.64

Right 6.33 5.65

After Left 9.23 6.79
Event 20.56 | 26.51

Right 20.32 | 19.58

Table 5: Local analysis standard deviation of likelihood for
@ = 10 states, J = 20 eigenvectors, M = 3 gaussians and
K = 6 models.

Figure 3: Local emergency detection. (L) and (R) blocks to the
left and right of the event respectively and (E) block where the
event occurs.
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Figure 4: Detection results for the local analysis. Top, drop
person event. Bottom, normal flow. Error bars show one
standard deviation.

train the model and the other one is evaluated against it. The
scene contains people moving about in different directions
in a train station. The first eigenvector of the optical flow
sequence is shown in Fig. 5, showing the most frequent flow
directions in the scene. The results for the trained bank of
models likelihood applied to the test sequence are shown in
Fig. 6 where the normal crowd motion is encoded with a
bank of models with @ = 10 states, M = 3 gaussians per
state, and J = 30 eigenvectors resulting in X' = 14 models.
The likelihood has a larger standard deviation (Mean =
21.377,Std.Dev. = 9.51) when compared to the normal
situation for the simulated crowd data and exemplifies the
complexity of event detection in real data, i.e. emergencies
to be detected should be outside the range of the normal model
fluctuations.

5 Conclusion

This work demonstrated a novel technique for automatic
detection of abnormal events in crowds. Using projections



Figure 5: Eigenflows for the real train station data (elements in
the first eigenvector).
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Figure 6: Log-likelihood results for the real scene data in the
train station (Q = 10 states, J = 30 eigenvectors, M = 3
gaussians and K = 14 models).

5000

of the eigenvectors in a sub-space spanned by the normal
crowd scene as an input feature the proposed technique applies
spectral clustering to automatically identify the number of
distinct motion segments in the sequence. The features in
the clustered motion segments are used to train different
MOGHMMs for the normal sequence, which compose
a bank of models for the training simulated video. The
experiments show that the bank of models is effective in
quickly detecting the simulated emergency situation in a
dense crowd (eg. less than 200 frames after the event for
the blocked exit scenario). In the fallen person scenario the
drop in the likelihood was well characterised by the local
model, however it presented a high variance before and after
the event detection requiring additional filtering to provide a
reliable detection. The investigation of the relation between
the number of eigenvectors, HMM topology and the model
likelihood variations before and after the event indicates
that optimal configurations should be tested to provide more
reliable results for a particular detection task. Our method adds
to the detection techniques in [13] allowing for a different
representation of the flow dynamics in the crowd.
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