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Abstract

To enable a mobile manipulator to perform human tasks from a single teaching demon-
stration is vital to flexible automation. We call our proposed method MMPA (Mobile Ma-
nipulator Process Automation with One-shot Teaching). Currently, there is no effective and
robust MMPA framework which is not influenced by the mobile base’s parking precision. The
proposed MMPA framework consists of two stages: collecting data (mobile base’s location,
environment information, end-effector’s path) in the teaching stage for robot learning; letting
the end-effector repeat the nearly same path as the reference path in the world frame to
reproduce the work in the automation stage. More specifically, in the automation stage, the
robot navigates to the specified location without the need of a precise parking. Then, based
on colored point cloud registration, the proposed IPE (Iterative Pose Estimation by Eye &
Hand) algorithm could estimate the accurate 6D relative parking pose of the robot arm base
without the need of any marker. Finally, the robot could learn the error compensation from
the parking pose’s bias to modify the end-effector’s path to make it repeat a nearly same
path in the world coordinate system as recorded in the teaching stage. Hundreds of trials
have been conducted with a real mobile manipulator to show the superior robustness of the
system and the accuracy of the process automation regardless of the parking precision. For
the released code, please contact AI@amigaga.com.
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1 Introduction

Mobile manipulators (def: a mobile platform carrying a robot arm) have attracted much interest
in universities and industry because of the combination of flexible locomotion and dexterous ma-
nipulation (Ramasubramanian et al., 2022; Yang et al., 2019a). A mobile manipulator is able to
undertake multiple different tasks in a large workspace (rather than at a fixed workstation), and
can be widely used in many flexible tasks, such as quality inspection in factories, workpiece loading
and unloading in workshops, and painting. It is cumbersome and time-consuming to reprogram
for each robot application. Thus, it is vital for flexible automation to minimize the human effort
spent on teaching the robot, and to ensure the mobile manipulator is able to automate and redo
multiple desired tasks in a large workspace flexibly with one-shot teaching from a human opera-
tor. This one-shot teaching and automation pipeline of a mobile manipulator for flexible tasks is
referred to as Mobile Manipulator Process Automation with One-shot Teaching (MMPA)1.

Current TMMA (short for traditional mobile manipulator automation) approaches (e.g. Nair
et al. (2019)) consist of two stages: in the first stage the mobile base’s location and the robot arm’s
path are recorded; in the second stage the mobile manipulator will park at the same location and
replay the arm’s path as recorded in the first stage. Such approaches rely heavily on precise
parking of the robot base and are easily affected by ground conditions. As the robot arm’s path is
replayed in the exact same manner as recorded in the teaching stage, a minor error of the parking

1All the abbreviations in this manuscript are listed in Appendix C. List of Abbreviations.
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Figure 1: A typical workshop example with harsh conditions and our mobile manipulator. 1
The mobile manipulator is required to perform complex manipulation in 3D space with priori
knowledge such as how to switch the valve rather than simple workpiece loading and unloading.
2 The ground consists of not only 2D plane but also 3D speed bump where a working robot parks
on. 3 The guard bars and pipes are not suitable to stick any marker for error compensation.

position will lead to an incorrect robot arm manipulation. However, parking precisely is hard
to achieve in the real world. For example, a rough, cratered, slippery ground will affect robot
control accuracy2 definitely (Li et al., 2018b; Nampoothiri et al., 2021; Nie et al., 2021; Wang
et al., 2022). Additionally, the localization accuracy from SLAM (Simultaneous Localization And
Mapping) (Bai et al., 2021, 2022; Grisetti et al., 2007; Hess et al., 2016; Khan et al., 2021; Nubert
et al., 2022; Van Nam and Gon-Woo, 2021) is not high enough for precise parking in MMPA.
Matching the 2D template marker’s images from the teaching and automation stages (Meng et al.,
2021) could provide a relative 3D pose for parking error compensation but can only be used to
move the robot base on a 2D plane rather than a 3D surface. Lastly, there is no existing 6D pose
recovery algorithm (Ao et al., 2021; Gu et al., 2022; Huang et al., 2022, 2021; Junior et al., 2022;
Liu et al., 2021; Myronenko and Song, 2010; Park et al., 2017; Pu et al., 2018; Wu et al., 2021;
Yang et al., 2015; Zeng et al., 2017; Zhou et al., 2016) that provides an accurate and robust 6D
pose estimation (The 6D pose is [translation on x axis, translation on y axis, translation on z
axis, roll, pitch, yaw]) for parking pose error compensation to meet the requirement of MMPA. As
described above, Figure 1 shows a real typical workshop example with a harsh environment where
our developed robot is working. The two articles (Wong et al., 2017, 2018) give a good overview of
the design of the autonomous robotics system against the harsh environment in real-life settings.

The proposed MMPA method is capable of dealing with the problem of bad ground condi-
tions with a novel iterative pose estimation approach to compensate for the error introduced by
imprecise parking. The proposed MMPA framework has two stages, a one-shot teaching stage
and an automation stage. In the one-shot teaching stage, a human teaches the mobile manip-
ulator to perform a specific task. Information such as the location of the robot base, working
environment information and the path of the robot arm’s end-effector are collected, to allow for

2Note: on the market, a mobile base with high control accuracy (millimeter level) is 10+ times more expensive
than a regular mobile base (centimeter level) we use.
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the reproduction of the task in the automation stage. In the automation stage, the robot first
navigates to the specified location without the need of precise parking. Then, based on the global
colored point cloud registration, the proposed IPE (Iterative Pose Estimation by Eye & Hand)
algorithm provides an accurate relative 6D parking pose without the need of any marker. Finally,
the mobile manipulator uses the relative 6D parking pose to calibrate and adjust the path of the
robot arm’s end-effector for performing complex tasks taught by the human operator during the
one-shot learning stage. In this work, hundreds of trials have been conducted with a real mobile
manipulator to show that our proposed MMPA framework and IPE algorithm are capable of cali-
brating and adjusting the path of the robot arm end-effector to compensate for the parking error
and guarantee the robustness of the system and the accuracy of the process automation without
worrying about ground conditions and parking precision.

The proposed MMPA could bring much benefit to robot developers and customers who need the
joint automation of flexible locomotion and dexterous manipulation. Currently, robot developers
need to spend much time in programming robots for various tasks, which limits the robot appli-
cation development efficiency and increases the development fee drastically. With the proposed
MMPA, robot developers could develop simple robot automation tasks with human demonstration,
which is also important to the customers without professional knowledge of robotics. The cus-
tomers could adapt the mobile manipulator flexibly to a new task by themselves without the need
of professional on-the-spot service, which reduces the maintenance fee and waiting time. With
the proposed MMPA technique, one mobile manipulator could replace at least three workers3

day and night, which decreases the labor cost. Additionally, compared to human workers, robot
workers do not require human resource management and can work in hazardous environments,
reducing the management burden for managers. Currently, the proposed MMPA technique could
be used to develop many real applications in various areas. For example, currently welding large
components still requires human work because fixed robot arms for welding have limited working
range and the traditional mobile manipulator automation TMMA (Nair et al., 2019) could not
meet the accuracy requirement, but the proposed MMPA technique could solve this defect in the
welding factories. The mobile manipulator equipped with the proposed MMPA could also be used
to load or unload the workpiece or electronic components and convey them to different designated
places in some semi-conductor factories or machining workshops. In an e-commerce warehouse,
the mobile manipulator with the proposed MMPA could be used to fetch different goods on the
shelves, pack them and deliver them to the postmen. In a hospital, the mobile manipulator with
the proposed MMPA could be used to dispose the harmful medical waste and convey it to an
appointed place without any intervention from humans. Many more real applications are being
developed on the way.

The remainder of this paper is structured as follows. Section 2 presents previous research
about MMPA’s progress, MMPA’s impact factors, and 6D pose recovery algorithms. Section 3
presents the proposed algorithm for mobile manipulator process automation by one-shot teaching.
Section 4 demonstrates the robustness of the system and assesses the accuracy of the process
automation regardless of the ground conditions and parking precision based on hundreds of trials
using the real mobile manipulator. Section 6 presents a summary of the work.

Contributions in this paper:
(1) An accurate 6D pose estimation algorithm: IPE (Iterative Pose Estimation by Eye &

Hand);
(2) An adaptive online path learning method to calibrate the end-effector’s trial in 3D space

effectively;
(3) An effective and robust MMPA framework that is able to compensate for the errors caused

by ground conditions and low parking precision;

3The robot could work 24 hours a day while a human worker only works for 8 hours a day
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2 Related Works

Mobile manipulators combine the advantages of both the mobile base’s mobility (Fragapane et al.,
2021) and the articulated arm’s dexterity, which makes it an ideal tool to perform multiple manipu-
lation tasks that cover different locations in a large workspace. Research into mobile manipulators
has a long history, dating back to the last century (Khatib et al., 1996; Mason et al., 1999; Ya-
mamoto and Yun, 1992). The most recent surveys (Ramasubramanian et al., 2022; Yang et al.,
2019a) give an explicit progress overview of the mobile manipulator’s hardware system, software
system and new applications. One of the interesting advanced techniques is mobile manipulator
process automation because it requires the robot to autonomously reproduce the work taught by
humans. Currently, the main ideas to realize mobile manipulator process automation in a large
workspace are: (1) In the teaching stage, record the mobile base’s location data and the arm’s
manipulation path data into the database. (2) In the automation stage, let the mobile base navi-
gate and park at the location from the teaching stage with high accuracy (e.g.: position accuracy
on the x, y axis ¡ 0.2 cm, orientation accuracy ¡ 0.1◦) first; then let the robot arm replay the pre-
viously recorded manipulation path data from the database to reproduce the work that humans
taught. Given the actuation accuracy of most economic collaborative robot arms is not above 0.1
mm, parking the mobile platform extremely accurately is the key to mobile manipulator process
automation.

To make the robot base park precisely, the researchers have to deal with many aspects within
the robot system, such as: sensor calibration (Ali and Mailah, 2019; Bai et al., 2021, 2022; Li et al.,
2018a), localization (Bai et al., 2021, 2022; Grisetti et al., 2007; Hess et al., 2016; Khan et al., 2021;
Nubert et al., 2022; Van Nam and Gon-Woo, 2021), control accuracy (Li et al., 2018b; Nampoothiri
et al., 2021; Nie et al., 2021; Wang et al., 2022), error compensation (Meng et al., 2021; Yan et al.,
2019). Single sensor calibration could rectify the output value by using a noise model to make it
more accurate. For example, the researchers (Li et al., 2018a) improve the accuracy of the odometer
(which can provide the velocity or mileage of a vehicle) through the use of Coriolis effects from three
perspectives (scale factor, misalignment and level arm with inertial measurement unit). Multiple
sensor calibration (Ali and Mailah, 2019; Bai et al., 2021, 2022) provides the relative pose among
multiple different sensors for sensor fusion to improve the accuracy, such as using preintegration
theory for IMU (Inertial Measurement Unit) and odometer self-calibration (Bai et al., 2021, 2022),
calibrating gyroscope and magnetometer for data fusion (Ali and Mailah, 2019). However, sensor
calibration could slightly reduce the error given the sensor’s inherent properties or mounting
positions. Thus, it contributes little to precise parking. In order to park accurately, mobile base
localization is important. Currently, there are many popular SLAM algorithms, especially, the
Lidar-based SLAM (Grisetti et al., 2007; Hess et al., 2016). The main feature of the Lidar-based
SLAM (Khan et al., 2021; Van Nam and Gon-Woo, 2021) is that it uses Lidar scanner to input
the position data for mapping and localization. The Lidar-based SLAM consists of two main
categories: 2D Lidar SLAM (e.g.: Gmapping (Grisetti et al., 2007), Cartographer (Hess et al.,
2016)) to generate a 2D map for localization (usually) indoors and 3D Lidar SLAM (e.g.: Lego-
loam (Shan and Englot, 2018)) to generate a 3D map for localization (usually) outdoors. In order
to get a more robust and accurate localization, it is a trend to fuse data from multiple sensors
(e.g.: lidar, odometer, imu, etc.) using Kalman Filter (Urrea and Agramonte, 2021; Welch et al.,
1995), Graph-based methods (Bai et al., 2021, 2022; Nubert et al., 2022) etc. . Nevertheless,
their final localization accuracy is still limited to centimetre-level, which is still too large to meet
the requirements of mobile manipulator process automation. Besides the above sensor calibration
and localization, the mobile platform’s control accuracy in the workspace is vital as well. Much
research (Li et al., 2018b; Nampoothiri et al., 2021; Nie et al., 2021; Wang et al., 2022) about it
has been done in recent years. For example, some researchers studied the terrain property (Li
et al., 2018b; Nampoothiri et al., 2021) for the robot’s control to handle the robot’s slide etc. Some
researchers proposed different improved control methods, such as fuzzy control (Nie et al., 2021),
impedance control (Wang et al., 2022), etc. However, it is challenging to model the errors of the
driving mobile base on different unknown terrain in a uniform way to ensure a robust and accurate
control accuracy. Thus, parking precisely is hard in real-world scenarios where the environmental
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situation is unknown, which limits the mobile manipulator process automation’s reliability.
Even if the mobile manipulator drives on a well known plane with high control accuracy, the

localization accuracy still might not meet the requirements of the mobile manipulator process au-
tomation. In order to detect the localization’s system error, iterative-learning error compensation
methods (Meng et al., 2021; Yan et al., 2019) have been proposed recently. In this research (Meng
et al., 2021), the researchers developed an extra eye-in-hand vision system to assist the mobile
platform’s localization. More specifically, they put an RGB camera at the end of the robot arm for
perception and attached a QR (Quick Response) code on the workbench. In the teaching stage,
the eye-in-hand vision system (the RGB camera on the arm) takes a photo of QR code using
a fixed arm pose. In the automation stage, the mobile manipulator reaches the workbench and
takes a photo of the previous QR code again using the previous same fixed arm pose. By matching
those 2D QR code templates, the mobile base’s relative 3D pose (position bias on the x, y axis
and orientation angle) could be estimated. Then, the new relative 3D pose was used to rectify the
mobile base’s parking pose to make it park more precisely. Matching 2D QR code templates and
rectifying the parking pose in an iterative way could make the mobile manipulator park precisely
enough for a process automation. However, this method (Meng et al., 2021) suffers from two big
problems. Given the pose from 2D QR code template matching has only 3 degrees of freedom, the
mobile manipulators could only be moved on a good 2D plane terrain rather than a cratered 3D
surface. The second problem is that the condition of the 2D plane for robot base moving should
be good enough for accurate robot base control in order to park precisely.

To solve the two problems mentioned above (Meng et al., 2021), we use a depth sensor (stereo
vision camera) on the arm to estimate the relative 6D pose of the mobile base by point cloud
matching (Huang et al., 2021), which enables the estimation of the robot’s pose, even on a rough
3D surface. By changing the robot arm end-effector’s working path based on the relative 6D pose
of the mobile base, our method does not require the robot base to park precisely, which eliminates
the need of high control accuracy of the robot base and good quality ground condition.

Currently, there are three categories of point cloud registration algorithms for estimating the
relative 6D pose. The recent survey (Huang et al., 2021) introduces the taxonomy of the point
cloud registration methods and their progress. A new cross-source point cloud benchmark (Huang
et al., 2021) is developed to evaluate the point cloud registration algorithms to solve cross-source
challenges. The first category of methods(e.g.: (Gu et al., 2022; Junior et al., 2022; Park et al.,
2017; Yang et al., 2015)) is based on ICP (Iterative Closest Point) (Besl and McKay, 1992), which
estimates the rigid relative 3D pose between two point clouds in different views by minimizing
the Euclidean distance between the corresponding points. Exact point-to-point correspondences
seldom exist, which leads to the low accuracy of the ICP-based methods. The second category
is feature-based methods (Ao et al., 2021; Wu et al., 2021; Zeng et al., 2017; Zhou et al., 2016),
which extract the local descriptors from two point clouds first and then match them to recover
the relative pose of the two point clouds. These methods are sensitive to strong noise and low
density of the point clouds. That is, the noise and density of the point cloud influence the local
descriptors’ extraction and can even cause the algorithm to crash if the noise is too strong or
the density is too low. The third class uses probabilistic models (Huang et al., 2022; Liu et al.,
2021; Myronenko and Song, 2010; Pu et al., 2018) for point cloud registration. The probabilistic
models are used to represent the structure of the point cloud, encoding the geometry distribution
of the point cloud in 3D space. By calculating the maximum likelihood of the two probabilistic
models, the relative pose can be estimated. This category of methods is more robust and accurate
than the first and second category but its computation efficiency is low and limits many real-time
applications. Although those three categories of point cloud registration algorithm can estimate
the relative pose from different views, accuracy and robustness decreases with the increase of the
initial rotation and translation error between the two point clouds, which might not be able to
meet the requirement for the high accuracy in the mobile manipulator process automation. In
order to solve this problem, we propose a method called IPE:Iterative pose estimation by eye &
hand in Section 3.2.2.

Path planning, also known as motion planning, is an optimization problem that aims to find a
valid collision-free trajectory to move the robot end-effector from a start point to an end point while
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satisfying certain constraints. Path planning problems are commonly solved using probabilistic
sampling based algorithms such as rapidly exploring random tree (RRT*) (Karaman and Frazzoli,
2011), probabilistic roadmap (PRM) (Kavraki et al., 1996). Advance in path planning algorithms
has allowed robotic arms to perform more complex and flexible tasks (Schulman et al., 2014;
Sucan et al., 2012). Traditionally, the operation path of industrial robot arms within a factory is
manually taught or programmed by a human with a dedicated teach pendant, which is tedious
and time-consuming. In recent years, there has been an increase in interest on applying path
planning algorithms to eliminate the time consuming manual teaching process. Path planning
is typically used for manufacturing applications that involve processing industrial products with
complex 3D geometry. Such applications include welding(Zhou et al., 2022), painting(Chen et al.,
2020), grinding(Lv et al., 2020), polishing(Mohsin et al., 2017), cutting(van Sosin et al., 2019), and
inspection(Alexis et al., 2016). Coverage path planning is a type of path planning problem, which
aims to determine a collision-free trajectory that uniformly passes through all points of an area or
volume of interest while minimizing travel time, energy, and other costs(Galceran and Carreras,
2013). Manufacturing applications that require coverage over a specific area of interest include
painting(Chen et al., 2020), grinding(Lv et al., 2020), and inspection(Engemann et al., 2021).

3 Methodology

The main goal of our proposed MMPA is to ensure that the robot arm’s end-effector repeats the
same path recorded during the teaching stage in the world coordinate system to reproduce the
desired task even if the parking precision is low. A simple practical demo video to show
the pipeline (teaching stage and automation stage) is available: https://youtu.be/

N5EQNMO_vJ8. The whole pipeline consists of two stages: (1) data collection by one-shot teaching
(Section 3.1) to make the robot learn to perform a specific task; (2) replaying the newly-learned
data by the mobile manipulator process automation (Section 3.2) to enable the robot to finish the
task successfully and flexibly on its own.

Figure 2 shows different coordinate systems4: mobile base coordinate system XY ZOMB , robot
arm base coordinate system XY ZOB , depth camera coordinate system XY ZOC , world coordinate
system XY ZOW , the joint coordinate system from XY ZO1 to XY ZO6.

3.1 One-shot Teaching

To realize mobile manipulator process automation in the automation stage, the mobile platform’s
location information in the pre-built map, the working environment information (colored 3D point
cloud of the workbench, tools, etc.) and the robot arm’s end-effector path information are collected
in real-time through one-shot teaching in this stage in this sub section.

In a known workspace (that is, the navigation map has been built beforehand by some SLAM
algorithm, such as Gmapping (Grisetti et al., 2007), Cartographer (Hess et al., 2016) and so on),
the mobile manipulator is controlled to finish a task denoted by tki(i = 1, 2, 3, ...). Each task tki
contains the mobile platform location information Li(vehicle), the initial working environment
information - a colored 3D point cloud Xi(O) and the robot end-effector’s path Pathi(O) when
performing the task tki. The location information Li(vehicle) is recorded only once, which consists
of the position and Euler angle of the mobile platform in the world coordinate system XY ZOW .
The colored 3D point cloud Xi(O) is acquired by the depth sensor mounted on the robot arm in
its depth sensor coordinate system XY ZOC . The recorded path information5 Pathi(O) consists
of multiple sample points containing information of the pose of the end-effector. The path is
recorded with a time frequency of fi(O) Hz. The position and Euler angles of the end-effector are
recorded in the robot arm’s base coordinate frame XY ZOB .

4All the symbols in this manuscript are listed in Appendix D. List of Symbols.
5We perform one-shot teaching of the desired path by making a human operator manually guide and apply force

on the end-effector on the robot arm. Collaborative robot arms have a zero gravity compensation mode, where the
robot exerts just enough torque to compensate for the force applied by gravity. Under this mode, a human operator
is able to move and guide a robot by applying force directly on the robot body.
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Figure 2: The figure shows the various coordinate frames in a mobile manipulator.
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After collecting the above data for task tki only once, the one-shot teaching comes to an end.

3.2 Mobile manipulator process automation

In the current stage, to finish the task tki, the mobile manipulator process automation needs to
accomplish the following four steps: (1) Firstly, the mobile platform navigates to the location
Li(vehicle) and finally parks at the location L̃i(vehicle) autonomously (Section 3.2.1). (2) Then,
the IPE algorithm calculates the relative 6D parking pose between the location Li(vehicle) and
L̃i(vehicle) in the robot arm’s base coordinate frame (Section 3.2.2). (3) Next, the adaptive online
path learning part learns the difference in pose and modifies the initial robot end-effector path

information Pathi(O) into the new one P̃ athi(arm) in the robot arm’s base coordinate frame6

(Section 3.2.3). (4) Finally, the mobile manipulator carries out the task tki using the newly-learned

path P̃ athi(arm) (Section 3.2.4).

3.2.1 Robot navigation

During the automation stage, the mobile manipulator will attempt to navigate to the desired park-
ing location autonomously Li(vehicle). However, due to errors within the system, the robot will
eventually park at a different location L̃i(vehicle) that is close to Li(vehicle). Due to the uneven
ground, slippery floor, dynamic obstacles or some other random factors in the real working envi-
ronment, the mobile platform usually cannot park precisely at the location Li(vehicle). Previous
work using the 2D QR code template matching (Meng et al., 2021) could only provide the mobile
platform’s relative 3D parking pose between the location Li(vehicle) and L̃i(vehicle). Given the
acquired pose from the 2D QR code template matching has only three degrees of freedom, the
pose could only be applied to the mobile platform to move on the 2D plane, which couldn’t be
used to calibrate the robot arm’s path in 3D space. To get the extremely-accurate robot arm
base’s relative 6D pose between the location Li(vehicle) and L̃i(vehicle), the iterative 6D pose
estimation by eye & hand interaction will be proposed in the following part.

3.2.2 IPE:Iterative pose estimation by eye & hand

Figure 3 shows the iterative process when performing the IPE algorithm. The robot arm’s base
coordinate system is XY ZOBi when reaching the location L̃i(vehicle). The robot arm will move
the mounted depth camera iteratively to search for the initial sampling pose from the teaching
stage. After kth movement of the robot arm, the camera coordinate system becomes XY ZOCk

.
Figure 4 illustrates the flowchart of the proposed IPE algorithm. When the mobile manipulator
reaches the working place in the automation mode, the IPE algorithm starts. The robot arm’s
new sampling pose is set to the initial one in the robot arm base coordinate frame when sampling
the working environment’s colored 3D point cloud in the one-shot teaching stage. Taking the
system safety into account, if the new sampling pose of the end-effector is unreachable by the
robot arm, the IPE algorithm will exit with the ”False” execution flag. If the new sampling pose
of the end-effector is available, the robot arm will move the end-effector to the new sampling pose
to sample the working environment’s colored point cloud Xi(k), k = 1, 2, 3, ... (k represents the
kth movement of the robot arm in IPE). Then we calculate the relative 6D pose [∆RCk

, ∆tCk
]

between the sampled point cloud Xi(O) from teaching stage and the sampled point cloud Xi(k)
in the current view in the automation stage through the colored point cloud global registration
algorithm (See II Method: colored point cloud global registration for more details). Then
we will update the relative 6D parking pose [∆RB(k), ∆tB(k)] of the robot arm’s base (For more
details, see I Justification: dynamic pose update in different coordinate systems).
According to the updated relative parking pose [∆RB(k), ∆tB(k)], the next new sampling pose
is set. If the pose difference [∆RCk

, ∆tCk
] is below the threshold α, IPE will exit and return

the relative 6D pose [∆RB(k), ∆tB(k)] in the robot arm’s base coordinate system with a “True”

6Pathi(O) and P̃ athi(arm) are nearly the same in the world coordinate system.
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Figure 3: The iterative process by eye-hand interaction to search for the same sampling pose in
the teaching stage in world frame.
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execution flag. If the pose difference [∆RCk
, ∆tCk

] is above the threshold α and the loop count
is below the threshold β, IPE will run into the next loop and check if the new sampling pose is
reachable or not. If the loop count is above the threshold β, the IPE algorithm will exit with the
”False” execution flag.
I Justification: dynamic pose update in different coordinate systems

IPE performs iterative pose estimation multiple times, which adjusts the sampling pose of the
mounted depth camera incrementally by moving the robot arm to match the initial sampling pose
of the camera in the one-shot teaching stage in the world frame. IPE relies on a unique property,
that is, if the new sampling pose of the depth camera in the automation stage is closer to the
initial sampling pose of the depth camera in one-shot teaching stage in the world frame, the newly
sampled point cloud in automation stage will be more similar to the initial sampled point cloud
in the one-shot teaching stage. It means there will be more common features for the colored point
cloud registration to match thus achieving a higher matching accuracy. Thus, in IPE algorithm,
the robot arm tends to move the depth camera in an eye-hand iterative style7 for multiple times to
position the depth camera in its initial sampling pose in the one-shot teaching stage. Experiments
(see Figure 9) show that with each iteration, the IPE rotation and translation errors gradually
decrease. The result from the final iteration is more accurate than the result obtained from the
first iteration.

Due to the eye-hand dynamic iteration process, the robot arm has to change its configuration
to reposition the depth camera constantly, therefore the spatial relationship between the depth
camera and robot arm’s base is constantly changing. In this part, given the dynamic camera pose
and robot arm’s dynamic movement, we will deduce the robot arm’s base relative 6D pose between
the teaching stage and the current automation stage.

Figure 5 shows the relative 6D pose between different coordinate systems. RCo

Bo
and tCo

Bo
rep-

resent the rotation and translation matrix from the camera coordinate system to the robot arm’s
base coordinate system when sampling the working environment’s colored point cloud in the one-
shot teaching stage in task tki. R

Ck

Bk
and tCk

Bk
represent the rotation and translation matrix from

the camera coordinate system to robot arm’s base coordinate system after the kth, k = 1, 2, 3, ...
movement of the robot arm in IPE. SCo

represents one 3D point in the camera coordinate system,
which corresponds to the 3D point SBo

in the robot arm’s base coordinate system, in one-shot
teaching stage. SCk

represents one 3D point in camera coordinate system, which corresponds to
the 3D point SBk

in robot arm’s base coordinate system, after the kth movement of the robot arm
in the automation stage. ∆RCk

and ∆tCk
represent the camera’s relative rotation and translation

matrix between the teaching stage and the current automation stage after the kth movement of
the robot arm. ∆RBk

and ∆tBk
represent the robot arm base’s estimated relative rotation and

translation matrix when sampling the working environment’s point cloud in one-shot teaching
stage and after the kth movement of the robot arm during the iterative adjustment process.

RCo

Bo
SCo

+ tCo

Bo
= SBo

(1)

RCk

Bk
SCk

+ tCk

Bk
= SBk

(2)

∆RCk
SCo

+ ∆tCk
= SCk (3)

∆RBk
SBo

+ ∆tBk
= SBk

(4)

From equation (1) and (2) we get

SCo
= RCo−1

Bo
SBo
−RCo−1

Bo
tCo

Bo
(5)

SCk
= RCk−1

Bk
SBk
−RCk−1

Bk
tCk

Bk
(6)

Substitute SCo
and SCk

in equation (3) with equation (5) and (6). We get

7Eye-hand iterative style means doing registration and moving the mounted camera by the robot arm iteratively.
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Figure 4: Flowchart of the proposed iterative pose estimation by eye-hand interaction approach
(IPE).
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Figure 5: The figure illustrates how the relative parking pose of the robot arm’s base can be
calculated given the spacial relationship of the camera and base and the relationship between
different camera poses.

12
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Reformulating the equation (7) by multiplying RCk

Bk
on the both sides, we get:

RCk

Bk
∆RCk

RCo−1
Bo

SBo
+ (−RCk

Bk
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RCo−1
Bo

tCo

Bo

+RCk

Bk
∆tCk

+ tCk

Bk
) = SBk

(8)

Comparing equation (8) and equation (4), we get:

∆RBk
= RCk

Bk
∆RCk

RCo−1
Bo

(9)

∆tBk
= −RCk

Bk
∆RCk

RCo−1
Bo

tCo

Bo
+RCk

Bk
∆tCk

+ tCk

Bk
(10)

II Method: colored point cloud global registration
In order to get the mounted camera’s relative rotation matrix ∆RCk

and translation matrix
∆tCk

, the colored point cloud global registration method8 is proposed in this part by simply
combining the fast global registration (Zhou et al., 2016) and the local colored point cloud reg-
istration (Park et al., 2017) with some improved engineering techniques (e.g.: point cloud pre-
processing, parameter fine-tuning, multi-scale matching, etc.). More specifically, the coarse global
pose from the fast global registration (Zhou et al., 2016) is fed into the colored point cloud reg-
istration (Park et al., 2017) algorithm to avoid the local minimum during the registration. The
local algorithm (Park et al., 2017) takes not only the geometry information but also the color
information into account to achieve a better registration accuracy. The proposed method with
the simple strategy above provides a robust and accurate 6D pose estimation for IPE framework,
which meets the mobile manipulator process automation’s localization requirement.

3.2.3 Adaptive online path learning

The robot end-effector’s path for performing task tki is recorded in the robot arm’s base frame
during one-shot teaching. When the robot reaches the same working place again in the automation
stage, the robot arm base’s pose will differ from that of the one-shot teaching stage because of
motion or system errors or some other random factors. To ensure the robot end-effector follows
the desired path in the world frame to finish the manipulation task tki, the robot has to learn to

adjust the reference path Pathi(O) obtained in teaching stage to the new path P̃ athi(arm) in the
robot arm’s base coordinate frame in the automation stage.

Considering a sampled point SBo
from the recorded path Pathi(O) in the teaching stage, the

position of the end-effector is transferred from the teaching stage to the automation stage in the
robot arm’s base coordinate system using the following equation

∆RBk
SBo

+ ∆tBk
= SBk

(11)

where ∆RBk
and ∆tBk

could be calculated using equation (9) and equation (10). The sampled

point SBk
is from the new execution path P̃ athi(arm) in the automation stage.

3.2.4 Task Execution

After obtaining the newly-adjusted robot end-effector path P̃ athi(arm), some motion planning
algorithm (e.g.: RRT* (Karaman and Frazzoli, 2011), PRM (Kavraki et al., 1996)) could be used
to compute the trajectory containing the target joint angles which are used to control the robot
joints during execution. The acceleration, torque, velocity, and position limits of the robot joints
are taken into account by the motion planning algorithm. If the motion planning algorithm could
compute a valid trajectory, the robot will execute the task. If not, the robot will abandon this
task.

8Readers could also use other 3D point cloud registration algorithms to replace the colored point cloud global
registration in this part as well.
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Figure 6: Experiment configuration. (a) shows the experiment environment. The mobile manip-
ulator will conduct experiments at site 0, site 1, site 2, site 2’ (site 2 and site2’ are in the same
location). (b) shows the robot executing a task. (c) shows the executed path’s accuracy test
using a needle. (d) shows a speed bump installed at the parking place to emulate uneven terrain.
(e) shows the pre-built map for robot navigation. The black lines or dots in the occupancy map
represent obstacles (”occupied”). The red lines or dots represent the laser scan which is used for
localization. ’0’, ’1’ and ’2’ represent site 0, site 1 and site 2.

4 Experiment

4.1 Experiment Configuration

The mobile manipulator ”Gagabot DR-03”9 is the platform to demonstrate the performance of
the proposed method. Gagabot DR-03 consists of a two-wheeled differential mobile platform and
a 6-DOF (Degree of Freedom) robot arm. A depth camera ”Intel Realsense D435” is mounted
at the end of the robot arm to perceive the environment. Inside Gagabot DR-03, an integrated
industrial computer (Nvidia AGX Xavier) is used for the complex computation (e.g.: navigation,
perception, planning, control, etc.). The Nvidia AGX Xavier (105 mm x 105 mm x 65 mm) is
equipped with a 512-core Volta GPU, a 8-core ARM v8.2 64-bit CPU and 32GB memory. All the
experiments in this paper were conducted with the Nvidia AGX Xavier (See Figure 6). Figure 6,
(a) shows an image of the lab where we conduct the experiments. The robot will navigate from
Site 0 to Site 1, Site 2, Site 2’ to perform the experiments (Site 2 and Site2’ are in the same
location). (b) shows an example of the robot executing a task. (c) shows the executed path’s
accuracy test by using a needle. (d) shows a speed bump installed on the parking position to
emulate uneven terrain. (e) shows the pre-built map from Gmapping (Grisetti et al., 2007) for the
robot navigation.

The experiments are divided into 3 groups given different working sites (Site 1, Site 2, Site
2’). Three different kinds of experiments and analysis are conducted for each group: 1) parking
pose accuracy in Section 4.2, 2) IPE performance in Section 4.3 and 3) executed path’s accuracy
in Section 4.4. Site 110 emulates a plant extract workshop to make the robot perform complex
manipulation with a flat floor, such as switching the valve, fetching and returning the cup. Site
211 emulates a quality inspection center in a factory with a flat floor to test the liquid products

9For more details, please refer to http://www.amigaga.com/en/index.php?id=111
10Site 1 consists of cups, big liquid containers with valves, small bottles containing different liquid, desks, logos

and letters printed on the tape.
11Site 2 consists of glass and plastic reagent bottles (containing sodium hydroxide, hydrochloric acid, phenolph-

thalein, ferrum, seperately) , droppers, a waste disposal container, test tubes, a test tube stand, a desk, logo and
letters printed on the tape.
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Table 1: Number of Different Experiment Trials

Factor Site 1 Site 2 Site 2’
parking
pose
accuracy

30 times 30 times 30 times

IPE per-
formance

30 times 30 times 30 times

executed
path’s
accuracy

30 times 30 times 30 times

by chemical reaction. Site 1 and Site 2 consists of only flat floor. However, in the real world,
there are many harsh working environments where the floor is uneven. Taking real-world floor
conditions into consideration, a speed bump12 is installed at site 2 to emulate uneven terrain. The
new site is denoted as site 2’. Thus, we could get various 6D parking poses on a 3D surface for
the experiments. We define this group of experiments with a speed bump to park on (see Figure 6
d) are at Site 2’. Each experiment is conducted 30 times. For an explicit overview of all the
experiments, please see Table 1. We have used two formats to describe the 6D pose. The first
way is using a 6D vector [tx, ty, tz, r, p, y] (short for [translation on x axis, translation on y axis,
translation on z axis, roll, pitch, yaw]). The unit is meter for tx, ty, tz and degree for r, p, y.
We use the difference between the estimated 6D vector and the ground truth to describe the 6D
pose’s error. The second way is using rotation matrix R and translation matrix t. The equations
for estimating the accuracy of the 6D poses are from (Huynh, 2009):

ER = ||I −RgtR
−1
est||F (12)

Et = ||tgt − test||F (13)

where test, Rest are the estimated values and tgt, Rgt are the ground truth respectively. || • ||F
is the Frobenius norm. Readers should know that: Although the error estimation methods and
their error values for the two formats above are different, they all could describe the 6D pose’s
accuracy.

4.2 Parking Pose Accuracy

Analysis is performed to observe if there is any relationship between the parking pose’s accuracy
and IPE performance. In each experiment, the robot will be required to navigate to a specified
location. To get the ground truth of the relative parking pose, the end-effector is pointed to a fixed
point with a fixed pose when the mobile base parks at the specified location. The transformation
matrix from the robot arm’s base to the fixed point is T0. When the mobile base navigates to
the specified location again, we let the end-effector point to that fixed same point with that same
pose. The current transformation matrix from the robot arm’s base to the fixed point is T1. Given
the robot arm is extremely accurate with a repeatability of 0.1mm, we use the product of those
transformation matrixes T0T

−1
1 to represent the ground truth of the relative parking pose.

We designate the position (2.0415, -1.375, 0.0) with orientation (0.0, 0.0, -0.2970, 0.9548)
(represented by unit quaternion) as Site 1 in the map ( See Figure 6 e ). We specify the position
(0.1251, -0.7638, 0.0) with orientation (0.0, 0.0, -0.8785, 0.4776) (represented by unit quaternion)
as Site 2. The starting point’s position (site 0) is (-0.3498, 0.9449, 0.0) with an orientation (0.0,
0.0, -0.5367, 0.8437). The mean and standard deviation of the relative parking pose are listed in

12The speed bump’s shape is a triangular prism, with the size 1000mm∗350mm∗50mm (length∗width∗height).
It weighs 11 kg and has a surface with uneven 3D texture for increased friction.
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Table 2 by using the 6D vector [tx, ty, tz, r, p, y] format. If we use Equation (12) and Equation (13)
to describe the error, the mean rotation error is 0.0617 at Site 1, 0.0614 at Site 2, 0.2910 at Site
2’. The standard deviation of the rotation error is 0.0418 at Site 1, 0.0433 at Site 2, 0.2213 at Site
2’. The mean translation error is 0.1018 m at Site 1, 0.0799 m at Site 2, 0.1304 m at Site 2’. The
standard deviation of the translation error is 0.0176 m at Site 1, 0.0316 m at Site 2, 0.0594 m at
Site 2’. Note that this is the uncorrected initial base positioning error.

Table 2: Initial Parking Pose Accuracy

Factor Site 1 Site 2 Site 2’
tx / (m) 0.0011 0.0505 0.0779
σtx / (m) 0.0281 0.0287 0.0569
ty / (m) -0.0995 0.0539 0.0261
σty / (m) 0.0179 0.0287 0.1060
tz / (m) -0.0012 -0.0011 -0.0042
σtz / (m) 0.0013 0.0014 0.0054
r / (deg) 0.2151 0.1155 0.0079
σr / (deg) 0.1593 0.0784 1.2595
p / (deg) -0.0036 -0.1733 0.7932
σp / (deg) 0.1439 0.1295 2.6967
y / (deg) 0.0023 1.6706 -1.9701
σy /
(deg)

2.9214 2.7079 14.7211

4.3 IPE Performance

From Equation 9 and Equation 10, the relative parking pose (∆RBk
, ∆tBk

) and the relative
camera pose (∆RCk

, ∆tCk
) could be deduced or calculated from each other. Thus, we will only

test the accuracy of the relative parking pose (∆RBk
, ∆tBk

) in this part. The method for obtaining
the ground truth of relative parking pose is the same in Section 4.2. A threshold has to be set
to indicate convergence. We set the convergence threshold α of the sampling pose difference
(x, y, z, roll, pitch, yaw) as (0.002m, 0.002m, 0.002m, 0.5◦, 0.5◦, 0.5◦). The maximum iteration
number β is set as 5 for Site 1, Site 2 and 10 for Site 2’ because the situation at Site 2’ is harder
than those at Site 1, Site 2. This is because the uneven terrain emulated by the speed bump
will introduce more changes for point cloud matching in the z axis, roll and pitch orientation,
compared to the flat terrain case of Site 1 and Site 2.

Figure 7 shows one example of the IPE matching. In Figure 7, (a) - (c) show the point clouds
(from the depth camera) after kth movement of the robot arm in IPE. (d) is the point cloud
sampled during the teaching stage. (e) shows the scene before matching the point cloud (a) and
(d). (f) shows the scene before matching point cloud (b) and (d). (g) shows the scene before
matching the point cloud (c) and (d). Note the improved alignment. (h) is the RGB image of the
scene. (i) - (l) are the local patches from (e) - (h). With each iteration k, the scene [(a), (b) (c)]
gets closer to the original (d). That is, the current depth camera pose gets closer iteratively to the
sampling pose from the teaching stage. With each additional iteration of the IPE, the registration
result [(e),(f),(g)] gradually improves. (i) - (k) shows the details of the registration’s accuracy.
Compare the word ”AMIGAGA TECHNOLOGY” in (j) and (k), some parts are missing in (j).

In Table 3, the mean [∆tx,∆ty,∆tz,∆r,∆p,∆y] and standard deviation [σ∆tx, σ∆ty, σ∆tz, σ∆r, σ∆p, σ∆y]
of the error between the IPE estimation (∆RBk

, ∆tBk
) and ground truth are given. While using

the rotation matrix and translation matrix criteria shown in Equation (12) and Equation (13) as
error measures, the mean rotation error between IPE estimation and ground truth is 0.0169 at
Site 1, 0.0183 at Site 2, 0.0225 at Site 2’. The standard deviation of the rotation error is 0.0074
at Site 1, 0.0063 at Site 2, 0.0103 at Site 2’. The mean translation error is 0.0049 m at Site 1,
0.0054 m at Site 2, 0.0089 m at Site 2’. The standard deviation of the translation error is 0.0025
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Table 3: The error of IPE’s estimation (∆RBk
, ∆tBk

)

Factor Site 1 Site 2 Site 2’

∆tx /
(m)

0.0001 0.0000 -0.0004

σ∆tx /
(m)

0.0004 0.0002 0.0005

∆ty /
(m)

0.0009 0.0010 -0.0005

σ∆ty /
(m)

0.0010 0.0009 0.0007

∆tz / (m) 0.0007 -0.0009 -0.0010
σ∆tz /
(m)

0.0012 0.0008 0.0010

∆r /
(deg)

0.0190 -0.0106 0.0088

σ∆r /
(deg)

0.1472 0.0123 0.0469

∆p /
(deg)

0.0495 -0.1218 -0.1046

σ∆p /
(deg)

0.1317 0.1119 0.1090

∆y /
(deg)

-0.1338 -0.1423 0.0311

σ∆y /
(deg)

0.1413 0.1221 0.0744

m at Site 1, 0.0019 m at Site 2, 0.0044 m at Site 2’. From the results above, it can be seen that
IPE exhibits high accuracy.

Figure 8 shows the error relationship between the actual parking pose and IPE’s estimation.
Figure 8 (a) shows the error relationship between the actual parking’s rotation and the estimated
rotation from IPE. Figure 8 (b) shows the error relationship between the actual parking’s rotation
and the estimated translation (unit: m) from IPE. Figure 8 (c) shows the error relationship between
the actual parking’s translation (unit: m) and the estimated rotation from IPE. Figure 8 (d)
shows the error relationship between the actual parking’s translation (unit: m) and the estimated
translation (unit: m) from IPE.

Generally, when doing point cloud registration, with every increment of the initial rotation
and translation misalignment, the 6D pose estimation error will increase as well. However, with
IPE, this is not the case. From Figure 8, we find that the initial rotation and translation change
resulting from the parking pose doesn’t influence the IPE estimation (i.e. no linear relationship).
No matter what the initial rotation and translation is, the IPE’s translation estimation error is
always below 0.02m and its rotation estimation error is always below 0.02. Note that the IPE
error is considerably smaller than the ‘Parking’ error in Section 4.2. The reason is that IPE has
used an iterative way to move the robot arm to sample multiple point clouds at different views
until the sampling pose is nearly the same with that at the teaching stage. The final accuracy
of IPE will be influenced by the 6D pose estimation method inside IPE (e.g.: we use the colored
point cloud registration in this paper). Given that the colored point cloud global registration is
proposed in other work (Park et al., 2017; Zhou et al., 2016) and is not the contribution of this
paper, experiments for testing the performance of the global colored point cloud registration are
omitted. Readers could be directed to the original two papers (Park et al., 2017; Zhou et al.,
2016) for more information. From this part, the experiment shows the IPE’s strong robustness
and accuracy, which is not influenced by the initial rotation and translation.
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Figure 7: IPE process. (a) - (c) show the point clouds (from the depth camera) after kth movement
of the robot arm in IPE. (d) is the point cloud sampled during the teaching stage. (e) shows the
scene before matching the point cloud (a) and (d). (f) shows the scene before matching point
cloud (b) and (d). (g) shows the scene before matching the point cloud (c) and (d). (h) is the
RGB image of the scene. (i) - (l) are the local pathes from (e) - (h).(Readers are encouraged to
view the electronic version of the paper for clearer visual details.)

Figure 8: Error Relationship between Parking and IPE.
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Figure 9: IPE performance within each iteration.
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Figure 9 shows the performance of the IPE algorithm at each iteration. Figure 9 (a) - (c)
shows the IPE’s estimated rotation error at each iteration for Site 1, Site 2, Site 2’. (d) - (f) shows
the IPE’s estimated translation error at each iteration for Site 1, Site 2, Site 2’. (g) - (i) shows
the distribution of the number of iterations to convergence at Site 1, Site 2, Site 2’. (j) - (l) shows
the average running time for registration at kth iteration. From (a) - (f), we find that with every
increasing iteration, both the mean and standard deviation of the rotation error and translation
error gradually decreases, indicating an increase in accuracy and robustness. The reason is that
IPE adjusts the sampling pose of the mounted depth camera incrementally by moving the robot
arm to match the initial sampling pose of the camera in the one-shot teaching stage in the world
frame. Thus, the newly sampled point cloud in the latest iteration in the automation stage will
be more similar to the initial sampled point cloud in the one-shot teaching stage. It means there
will be more common features for the colored point cloud registration to match to get a higher
matching accuracy. From (g) - (i), we find that IPE needs at least 2 iterations to converge and
the majority of the experiments converge by iteration 3-5. The result from the final iteration
(in which IPE converges) is more accurate than the result obtained from the first iteration. It
proves that the eye-hand iterative strategy in IPE could efficiently reduce the pose estimation error
by incrementally positioning the depth camera closer to its initial sampling pose in the one-shot
teaching stage. From (j) to (l), we find that the average running time of each registration is
stable, usually ranging from 1.5s - 1.7s. It shows IPE’s strong robustness against the rotation and
translation perturbation. In future work, GPU-based acceleration could be implemented to speed
up the point cloud registration algorithm inside IPE in each iteration.

All the experiments on Site 1, Site 2, Site2’ are successful and don’t exit from IPE algorithm
with failure (see Figure 4, ”Execution flag = False” ) because the robot arm’s operating range
(radius = 0.8 m) is big enough to compensate for the parking error. If the robot parks too far
away from the taught position (e.g. ¿ 0.8 meter) and the robot arm fails to find a feasible solution
to move the depth camera to the desired pose in the next iteration, IPE will abort with failure
definitely. If the colored point cloud global registration could not get converged to make the
pose difference fall below the threshold α even when the IPE’s loop count exceeds the maximum
iteration number β, IPE will abort with failure as well. Given that the colored point cloud
global registration is proposed in other work (Park et al., 2017; Zhou et al., 2016) and is not the
contribution of this paper, experiments for testing the performance of the global colored point
cloud registration are omitted. The two original papers (Park et al., 2017; Zhou et al., 2016) have
given their performance (robustness and accuracy) against noise, density, occlusion, overlapping
rate, rotation and translation perturbation of the input point clouds.

4.4 Executed Path’s Accuracy

Table 4: The position accuracy of the end-effector’s path (unit: milimeter)

Site 1 Site 2 Site 2’
Name TMMA Ours TMMA Ours TMMA Ours

mean distance bias 85.1 mm 1.0 mm 67.6 mm 1.1 mm null 1.2 mm
SD of the distance bias 22.0 mm 0.5 mm 32.0 mm 0.5 mm null 0.6 mm
maximum distance bias 118.3 mm 2.0 mm 130.8 mm 2.4 mm null 2.8 mm

In this part, the position accuracy of the end-effector’s path P̃ athi(arm) will be tested. A
needle is attached to the end-effector (See Figure 6 c). The needle tip is pointed at a specified
point on the paper (recorded by a red dot) during the teaching stage and the needle tip is required
to point to the same point during the automation stage. The bias of the needle tip’s position
(recorded by a black dot at each trial) from the specified target point (recorded by a red dot)
over 30 trials during the automation stage is used to show the accuracy of the executed path’s
position. Figure 10 records the needle tip’s positions in different trials. Because the recorded dots
crowd in a very small area (e.g.: a small circle with 2 - 3 mm radius) it is not easy to calculate
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Figure 10: The record of needle tip’s positions at different sites. (10x magnification) (Readers are
encouraged to view the electronic version of the paper for clearer visual details.)

the distance between each black dot and the red dot accurately enough. Thus, we only measure
the maximum distance bias, the mean distance bias and its standard deviation (SD) to describe
the position accuracy of the point on the executed path in a rough and approximated manner.
According to the experiment results (maximum distance bias is 2.0 mm at Site 1, 2.4 mm at Site
2, 2.8 mm at Site 2’; mean distance bias is 1.0 mm at Site 1, 1.1 mm at Site 2, 1.2 mm at Site 2’;
standard deviation of the distance bias is 0.5 mm at Site 1, 0.5 mm at Site 2, 0.6 mm at Site 2’),
the end-effector’s position accuracy could meet the accuracy requirement of the most applications
in daily life. The factors that contribute to the executed path’s high accuracy are the high pose
estimation accuracy of IPE and the high repeatability of the collaborative robot arm (±0.1mm).
This experiment only measures the position accuracy of the executed path, because the orientation
of the end-effector13 is not as important as the position for many manipulation tasks.

Currently, the traditional mobile manipulator automation TMMA (Nair et al., 2019) consists
of two stages: in the first stage the mobile base’s location and the robot arm’s path are recorded;
in the second stage the mobile manipulator will park at the same location and replay the arm’s
path as recorded in the first stage. Compared with TMMA (Nair et al., 2019) using the same
experiment setting above, our proposed method achieves much better performance and Table 4
lists the maximum distance bias, the mean distance bias and its standard deviation (SD) using
TMMA (Nair et al., 2019) and Ours. Given that the parking place on Site 2’ is not even, using the
TMMA (Nair et al., 2019) to replay the arm’s recorded path without any correction is dangerous
(e.g. the robot arm would collide with the desk possibly). Thus, we gave up the TMMA trials
on Site 2’. After reviewing Section 4.2 and Table 4, we could find that the position accuracy of
the end-effector’s path using TMMA is positively correlated with the initial base parking error.
Using more expensive and accurate lidar scanners or motor controllers for the base localization or
control would boost the parking accuracy, which will increase the TMMA accuracy (Nair et al.,
2019) but will also increase the hardware cost drastically in return. Our proposed MMPA method
is able to achieve high accuracy and robustness without increasing the hardware cost.

5 Discussion

The core mechanism of MMPA framework is: making the mobile manipulator’s end-effector in
the automation stage repeat a nearly same path of the end-effector as recorded in the teaching
stage in the world coordinate system. Thus, the working environments and the IPE algorithm’s
performance are the most important factors while implementing MMPA applications in the real
world. In Appendix A we did an ablation study to test the IPE’s robustness and accuracy with

13Except the position of the end-effector, the rest parameters of the robot arm’s joints are not fixed and calculated
by some motion planning algorithm (e.g.: RRT* (Karaman and Frazzoli, 2011), PRM (Kavraki et al., 1996)).
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the change of different related factors in the real world. In Appendix B we reviewed various
environments in the real world, and pointed out the difficulty and feasibility of designing real
MMPA applications.

Besides the two most important factors above, there are several other factors below, which
would help improve the robustness, accuracy and flexibility of the proposed MMPA framework
and are left as future work.

In this work, we collect human demonstration data for one-shot teaching through kinesthetic
guidance, i.e. guiding the robot through physical contact (Zhu and Hu, 2018). Recent advance in
deep learning and imitation learning has allowed the robot arm to learn to perform manipulation
tasks by extracting knowledge from human demonstration within videos, eliminating the need
of a human to teach the robot through physical contact, thus increasing efficiency and safety
(Yang et al., 2019b; Yu et al., 2018). In the future, we will further improve our one-shot teaching
procedure by exploring state-of-the-art deep learning and imitation learning approaches.

The colored point cloud registration used in the proposed IPE algorithm for recovering 6D
parking pose is accurate but slow. Furthermore, the cheap ”Intel Realsense D435” depth sensor
used in the paper is sensitive to the ambient lighting and temperature, which will have a negative
impact on the retrieved point cloud’s quality, resulting in bad point cloud registration results. In
future work, a faster and more robust 6D pose estimation algorithm will be explored. Depth fusion
algorithms (e.g. (Pu and Fisher, 2019; Pu et al., 2019)) will be explored using a cheap depth sensor
(e.g.: Intel Realsense D435) rather than the expensive sensors (e.g.: Pickit 3D, Zivid) to improve
the input point cloud’s quality as well. Additionally, the proposed framework in this paper will be
further tested in more realistic environments that accurately resemble real-world scenarios such
as factory manufacturing, food servicing, quality inspection, etc..

Obstacle avoidance is necessary for the robot arm to work in unpredictable dynamic environ-
ments where safety is crucial, such as environments with constant human-robot interaction(Lin
et al., 2017). The work in this paper focuses on unmanned controlled environments such as auto-
mated factories. Considering that there is little human interaction within these environments, the
environments remain unchanged throughout the operation. As long as the trajectory is planned
and executed properly, it is unlikely for collisions to happen. Thus, collision avoidance was not nec-
essary and therefore not the focus of this work. Additionally, the robot arm has collision detection
functionality built-in within the controller as a safety mechanism by the robot arm manufacturer.
Whenever the robot arm senses a collision with an object, it will perform an emergency stop to
prevent damage (Haddadin et al., 2017). For future work, collision avoidance can be implemented
to allow the mobile manipulator to operate in environments that have uncertain changes over
time due to human interactions, such as restaurants. Further hardware upgrades will be done
to include more depth cameras, as the current depth camera mounted on the robot arm is not
able to construct the real-time 360◦ 3D map of the surroundings needed for collision avoidance
algorithms.

A proper physical gripper is important for a successful manipulation of the rigid or non-rigid
items. In the real-life setting, the engineers have to design the proper grippers for different kinds of
items which need to be manipulated. The manual design process is time-consuming and expensive.
In future work, we will explore the possibility of developing algorithms to autonomously design
the physical grippers given the 3D model of the target items.

6 Conclusions

This paper presents a framework for flexible automation that allows a robot to redo multiple
tasks at different sites in a controlled environment, after one-shot teaching by a human operator.
The framework consists of two stages: the teaching stage and the automation stage. During the
teaching stage, the location of the robot base and the path of the robot arm’s end-effector have
been recorded. During automation stage, the aim is to make the robot arm’s end-effector repeat
a path as same as the reference path in the world frame. The key for mobile manipulator process
automation is the accurate estimation of the relative 6D parking pose between the teaching stage
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and the automation stage, which is used to adjust the path of the robot arm end-effector. Thus, we
propose the IPE algorithm to estimate an accurate relative 6D pose by registering to the camera’s
initial sampling pose (at teaching stage) in the world coordinate system iteratively.
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Appendix A. Ablation Study

In this part, we will test the impact on the IPE’s performance from the pose difference threshold α,
the IPE’s maximum iteration number β and the point clouds from the scenes used in IPE. In each
trial, the experiment setting is the same as that in Section 4.3 except for the following factors that
are to be compared: the pose difference threshold, the IPE’s maximum iteration number, and the
point cloud for registration from the scene. Equation (12) and Equation (13) are used to evaluate
the rotation and translation error briefly rather than the mean and standard deviation of the 6D
pose vector [tx, ty, tz, r, p, y] (short for [translation on x axis, translation on y axis, translation
on z axis, roll, pitch, yaw]). We define that successful trial as a trial whose final pose difference
is below the pose difference threshold α and whose total iteration number does not exceed the
IPE maximum iteration number β. We use the success rate suc to represent the rate between
the number of the successful trials (which have converged successfully) and the total number of
the trials. The average iteration number L represents the average iteration number required for
the successful trials. ER and σER

are the mean and standard deviation of the rotation error
only considering the successful trials. Et and σEt

are the mean and standard deviation of the
translation error (unit: meter) only considering the successful trials.

A.1 The pose difference threshold α

In this module, the threshold α of the pose difference (x, y, z, roll, pitch, yaw) will be set as α1 =
(0.001m, 0.001m, 0.001m, 0.25◦, 0.25◦, 0.25◦), α2 = (0.0015m, 0.0015m, 0.0015m, 0.375◦, 0.375◦,
0.375◦), α3 = (0.002m, 0.002m, 0.002m, 0.5◦, 0.5◦, 0.5◦), α4 = (0.0025m, 0.0025m, 0.0025m,
0.625◦, 0.625◦, 0.625◦), α5 = (0.003m, 0.003m, 0.003m, 0.75◦, 0.75◦, 0.75◦). The α original
setting is α3 = (0.002m, 0.002m, 0.002m, 0.5◦, 0.5◦, 0.5◦) in Section 4.3. On each site, we have
done 30 trials for each α setting separately. Table A.1, Table A.2 and Table A.3 show how α
affects the IPE performance. With α increasing, the success rate suc will increase and the average
iteration number L will decrease. The IPE accuracy increases when α decreases. Considering the
tradeoff among the success rate, average iteration number and accuracy, the optimal value should
be α3 = (0.002m, 0.002m, 0.002m, 0.5◦, 0.5◦, 0.5◦).

A.2 IPE maximum iteration number β

In this module, the threshold β of IPE’s maximum iteration number will be set as β1 = 3, β2 = 4,
β3 = 5, β4 = 6, β5 = 7 for site 1 and site 2. The threshold β of IPE’s maximum iteration number
will be set as β1 = 8, β2 = 9, β3 = 10, β4 = 11, β5 = 12 for site 2’. The β original setting is 5 for
site 1, site 2 and 10 for site 2’ in Section 4.3, which is equal to β3 on the corresponding site. On
each site, we have done 30 trials for each β setting separately. Table A.4, Table A.5 and Table A.6
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Table A.1: The factor α ablation study for Site 1

Factor α1 α2 α3 α4 α5

suc 0.8333 0.9667 1.0000 1.0000 1.0000

L 4.0800 3.8276 3.5667 3.2667 2.9667

ER 0.0168 0.0168 0.0169 0.0199 0.0215
σER

0.0074 0.0075 0.0074 0.0104 0.0115

Et /
(m)

0.0048 0.0049 0.0049 0.0050 0.0052

σEt

/
(m)

0.0024 0.0025 0.0025 0.0026 0.0027

Table A.2: The factor α ablation study for Site 2

Factor α1 α2 α3 α4 α5

suc 0.8667 0.9667 1.0000 1.0000 1.0000

L 3.5385 2.9310 2.8000 2.5000 2.3667

ER 0.0175 0.0177 0.0183 0.0185 0.0186
σER

0.0063 0.0064 0.0063 0.0065 0.0065

Et /
(m)

0.0054 0.0054 0.0054 0.0055 0.0055

σEt

/
(m)

0.0018 0.0019 0.0019 0.0020 0.0022

Table A.3: The factor α ablation study for Site 2’

Factor α1 α2 α3 α4 α5

suc 0.9667 0.9667 1.0000 1.0000 1.0000

L 5.8966 5.1379 4.8000 4.1667 4.0000

ER 0.0224 0.0224 0.0225 0.0227 0.0228
σER

0.0102 0.0103 0.0103 0.0105 0.0106

Et /
(m)

0.0088 0.0088 0.0089 0.0089 0.0090

σEt

/
(m)

0.0042 0.0044 0.0044 0.0045 0.0045

show how β affects the IPE performance. With the increase of β, the success rate suc will increase.
The average iteration number L will increase drastically from β1 to β3 and stay steady from β3

to β5 (Note: suc = 1 for β3, β4 and β5). IPE’s accuracy stays nearly the same from β1 to β5

because they use the same α setting and α controls the convergence accuracy. Considering the
tradeoff among the success rate, average iteration number and accuracy, the optimal value should
be β = β3. It should be noted that increasing β does not guarantee correct convergence. There
may exist a case where the IPE is unable to converge correctly (e.g.: in the scene - a plane of pure
color), increasing β in such a case will only waste time.

24



Table A.4: The factor β ablation study for Site 1

Factor β1 β2 β3 β4 β5

suc 0.9000 0.9000 1.0000 1.0000 1.0000

L 2.8148 3.2593 3.5667 3.5333 3.6000

ER 0.0172 0.0170 0.0169 0.0168 0.0169
σER

0.0080 0.0073 0.0074 0.0074 0.0073

Et /
(m)

0.0052 0.0050 0.0049 0.0048 0.0048

σEt

/
(m)

0.0029 0.0025 0.0025 0.0024 0.0023

Table A.5: The factor β ablation study for Site 2

Factor β1 β2 β3 β4 β5

suc 0.8667 0.9333 1.0000 1.0000 1.0000

L 2.5385 2.6429 2.8000 2.8333 2.8000

ER 0.0184 0.0183 0.0183 0.0183 0.0183
σER

0.0065 0.0063 0.0063 0.0064 0.0063

Et /
(m)

0.0056 0.0054 0.0054 0.0054 0.0055

σEt

/
(m)

0.0021 0.0020 0.0019 0.0018 0.0018

Table A.6: The factor β ablation study for Site 2’

Factor β1 β2 β3 β4 β5

suc 0.9333 0.9667 1.0000 1.0000 1.0000

L 4.3929 4.6207 4.8000 4.8333 4.8333

ER 0.0226 0.0225 0.0225 0.0225 0.0225
σER

0.0104 0.0104 0.0103 0.0102 0.0103

Et /
(m)

0.0091 0.0090 0.0089 0.0089 0.0088

σEt

/
(m)

0.0046 0.0044 0.0044 0.0044 0.0044

A.3 The point clouds from the scenes

In this module, more scenes have been used to test the robustness and accuracy of IPE by consid-
ering the geometry and color of the scene. In Figure A.1: (a) Scene A.1 shows the scene containing
a single plane with single pure color; (b) Scene A.2 shows a scene based on the Scene A.1 with
a minor variation of the color using a red dot (which is printed on a thin paper); (c) Scene A.3
shows a scene based on Scene A.1 with rich color and textures (which are printed on three pieces
of thin paper); (d) Scene B.1 shows the scene with more geometry features but still with pure
color; (e) Scene B.2 shows a scene based on Scene B.1 with a minor variation of the color by using
a red dot (which is printed on a thin paper); (f) Scene B.3 shows a scene based on Scene B.1 with
rich color using many textures (which are printed on three pieces of thin paper); .

There are 6 groups of experiments where each group of experiments corresponds to a scene.
Experiment group Ex A.1, Ex A.2, and Ex A.3 correspond to Scene A.1, A.2, A.3 respectively.
Experiment group Ex B.1, Ex B.2, and Ex B.3 correspond to Scene B.1, B.2, B.3 respectively.
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Figure A.1: More Scenes for Test.

There are 2 additional groups of experiments where the color of the scene is not used in IPE14.
We remove the color information of the point cloud from Scene A.1 and Scene B.1, and treat
the corresponding data in Experiment group Ex A.0 and Ex B.0 respectively. Each group of
experiments consists of 10 trials. α = (0.002m, 0.002m, 0.002m, 0.5◦, 0.5◦, 0.5◦), β =5. Table A.7
lists the performance result of IPE with different point cloud inputs from various scenes. Ex A.0
- Ex A.2 shows the performance of IPE will collapse when the geometry feature is too poor and
there is no or little colorful texture. Ex A.3 shows IPE could work when there is rich colorful
texture but poor geometry feature. The reason why the success rate is low in Ex A.3 is that the
global point cloud registration (Zhou et al., 2016) in IPE breaks down when the geometry features
are poor. If the global registration algorithm could not provide an initial transform to the local
colored point cloud registration algorithm (Park et al., 2017), the colored point cloud registration
algorithm is easy to fail when the initial transformation between the two registered point clouds
is big. Ex B.0 - Ex B.3 shows rich geometry features contribute to a higher success rate. The rich
colorful texture contributes to a higher precision.

Table A.7: IPE performance on different scenes

Factor Ex A.0 Ex A.1 Ex A.2 Ex A.3 Ex B.0 Ex B.1 Ex B.2 Ex B.3
suc 0 0 0 0.5000 0.8000 0.9000 0.9000 1.0000

L Null Null Null 3.6000 3.7500 3.5556 3.6667 3.6000

ER Null Null Null 0.0160 0.0217 0.0204 0.0206 0.0155
σER

Null Null Null 0.0078 0.0118 0.0089 0.0073 0.0072

Et / (m) Null Null Null 0.0047 0.0048 0.0049 0.0047 0.0046
σEt

/ (m) Null Null Null 0.0023 0.0025 0.0026 0.0025 0.0023

14Given the input point cloud has no color and the colored point cloud registration algorithm (Park et al., 2017) is
not capable of dealing with it, we replace the colored point cloud registration algorithm used in IPE with ICP (Besl
and McKay, 1992).
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(a) Robot Chef (b) Chemical Test Robot

(c) Sampling Robot (d) Fetching Robot

Figure B.1: The figure shows some real applications equipped with the proposed MMPA in un-
manned controlled environments. (a) shows a mobile manipulator for fast food cooking in a small
unmanned kitchen. (b) shows a mobile manipulator for the acid-base test of the liquid in a qual-
ity inspection room of a chemical plant. (c) shows a sampling robot for Covid-19 in one office
of the customs. (d) shows a mobile manipulator for fetching and delivering the materials inside
a chip-making factory. Please notice that the unmanned environments in these applications are
controlled and all the objects related to MMPA are set to fixed positions.

Appendix B. Various Real Environments

Given that the proposed MMPA technique could be applied to various scenarios, we will discuss
the required environment characteristics when implementing the proposed MMPA applications
in this part. The environment could be classified into two categories: controlled environment
and uncontrolled environment. Figure B.1 shows some controlled environments where we could
implement the proposed technique. Figure B.2 shows the uncontrolled environments in which
the proposed MMPA technique would fail. There are three essential conditions or rules for the
proposed MMPA applications.
• Rule 1: Ensure that the mobile base could remain steady (not slippery or shaky) on the ground
when the robot arm is moving or manipulating objects.
• Rule 2: Ensure that IPE could work in that environment (The IPE’s ablation study about the
environment is shown in Appendix A.3).
• Rule 3: Ensure that the positions of the manipulated objects are fixed.

Figure B.1 shows some possible applications in the environments which could meet those three
rules above. Here are two short demos to show the mobile manipulators working in an unmanned
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(a) Sand Factory (b) Vegetable Factory (c) Chicken Raising Factory (d) Wooden Factory

Figure B.2: The figure shows some uncontrolled environments which would fail the proposed
MMPA technique.

kitchen, a quality inspection room of a chemical plant, an office of the customs. The demo video for
Figure B.1 (d) in the chip-making factory is not released because of the confidentiality agreement.
Sampling robot demo in the office of the customs: https://youtu.be/6OrD1i11RyE. Robot chef
and chemical test robot demos could be viewed here: https://youtu.be/mkWIWoaqAAI. In the
demo videos, all the rest tasks are finished by the proposed MMPA technique, except for the
recognition and segmentation of the dumplings to be grasped and the goods to be sampled.

Figure B.2 shows some uncontrolled environments which break the three rules required by the
proposed MMPA. In Figure B.2 (a), there is a lot of sand on the ground, which will make the
robot base slip when the robot arm is moving or manipulating (against Rule 1). In Figure B.2
(b), the lighting will change color (which is unknown to the robot) and the geometry is repetitive
and similar, which will collapse the IPE algorithm (against Rule 2). In Figure B.2 (c), the eggs
are not fixed and their final positions are unpredictable, which makes the mobile manipulator fail
to collect the eggs by the proposed MMPA technique (against Rule 3). In Figure B.2 (d), the floor
is slippery because of the sawdust (against Rule 1), the scenes related IPE change constantly and
unpredictably because of human activities (against Rule 2), and the tools for robot manipulation
are moved constantly by human (against Rule 3).

In conclusion, real environments are complex, therefore making a mature commercial robot
application requires a set of advanced techniques including MMPA, instance segmentation, intel-
ligent object grasping and manipulation, etc. The proposed MMPA is one of the basic techniques
to make the robot finish various tasks autonomously in a large space and does not require the
users to know much professional knowledge of robotics.

Appendix C. List of Abbreviations

MMPA Mobile Manipulator Process Automation
with One-shot Teaching

TMMA Traditional Mobile Manipulator Automation
SLAM Simultaneous Localization And Mapping
IPE Iterative Pose Estimation by Eye & Hand
ICP Iterative Closest Point
IMU Inertial Measurement Unit
QR Quick Response
DOF Degree of Freedom
RRT* Rapidly Exploring Random Tree
PRM Probabilistic Roadmap
SD Standard Deviation
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Appendix D. List of Symbols

XY ZOMB Mobile Base Coordinate System
XY ZOB Robot Arm Base Coordinate System
XY ZOC Depth Camera Coordinate System
XY ZOW World Coordinate System
XY ZOn Coordinate System for nth Robot Joint
tki Task i
Li(vehicle) Mobile Platform Parking location for

Task i in Teaching Stage
Xi(O) Colored 3D Point Cloud for Task i

in Teaching Stage
Pathi(O) Robot Arm Path Information for Task i

in Teaching Stage

L̃i(vehicle) Mobile Platform Parking location for
Task i in Automation Stage

Xi(k) Colored 3D Point Cloud for Task i
in kth Iteration in Automation Stage

P̃ athi(arm) Adapted Robot Arm Path for Task i
∆RCk

, ∆tCk
Camera’s Relative Rotation and
Translation Matrix between Teaching
Stage and kth Iteration in Automation Stage

∆RBk
, ∆tBk

Robot Arm’s Estimated Relative Rotation
and Translation Matrix between Teaching
Stage and kth Iteration in Automation Stage

RCo

Bo
, tCo

Bo
Rotation and Translation Matrix from
Coordinate XY ZOC to XY ZOB

in Teaching Stage

RCo

Bk
, tCk

Bk
Rotation and Translation Matrix from
Coordinate XY ZOC to XY ZOB

after kth Iteration Automation Stage
SCo

One 3D Point in Coordinate XY ZOC in
Teaching Stage

SBo One 3D Point in Coordinate XY ZOB in
Teaching Stage

SCk
One 3D Point in Coordinate XY ZOC in
kth Iteration Automation Stage

SBk
One 3D Point in Coordinate XY ZOB in
kth Iteration in Automation Stage

test, Rest Estimated Translation and Rotation Matrix
tgt, Rgt Ground Truth Translation and Rotation

Matrix
ER Rotation Error
Et Translation Error
αn Pose Difference Threshold for Test Case n
βn Pose Difference Threshold for Test Case n
suc Success rate
L Average Iteration Number Required for Success
ER, σER

Mean and Standard Deviation of the Rotation
Error Considering Only Successful Trials

Et, σEt Mean and Standard Deviation of the Translation
Error Considering Only Successful Trials
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