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ABSTRACT

The aim of this work is to propose an automatic fish classi-
fication system that operates in the natural underwater en-
vironment to assist marine biologists in understanding fish
behavior. Fish classification is performed by combining two
types of features: 1) Texture features extracted by using
statistical moments of the gray-level histogram, spatial Ga-
bor filtering and properties of the co-occurrence matrix and
2) Shape Features extracted by using the Curvature Scale
Space transform and the histogram of Fourier descriptors of
boundaries. An affine transformation is also applied to the
acquired images to represent fish in 3D by multiple views for
the feature extraction. The system was tested on a database
containing 360 images of ten different species achieving an
average correct rate of about 92%. Then, fish trajectories,
extracted using the proposed fish classification combined
with a tracking system, are analyzed in order to understand
anomalous behavior. In detail, the tracking layer computes
fish trajectories, the classification layer associates trajecto-
ries to fish species and then by clustering these trajectories
we are able to detect unusual fish behaviors to be further
investigated by marine biologists.
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1. INTRODUCTION

Usually, marine biologists establish the existence and quan-
tities of different types of fish using methods such as casting
nets in the ocean, human underwater observation and pho-
tography [15], combined net casting and acoustic (sonar) [4]
and, more recently, human hand-held video filming. These
methods have two main shortcomings: first, they are inva-
sive, hence not able to capture normal fish behaviors, and
second, the quantity of collected data is not enough to de-
scribe the observed environment. In order to overcome such
limitations in acquiring biological data of fish in their natural
environment, in recent years embedded video cameras have
been widely used. For instance, in the Taiwanese Ecogrid
project’, ten underwater cameras have been located at the
Third Taiwanese Power Station for undersea coral reef and
marine life observation. Currently, these videos are manu-
ally analyzed by marine biologists to find useful information.
This procedure, of course, is very tedious, since it requires a
lot of time and human concentration. It is also error prone
since it is not realistic to fully investigate all the informa-
tion in the acquired videos. In fact, an operational camera
generates about 2 Terabytes of images (20 million frames)
per year and it is estimated that one minute’s video process-
ing requires about 15 minutes for manual classification and
annotation. Therefore, to fully analyze all existing videos,
generated by the ten cameras over the past six years, would
take approximately 900 man years. Hence, there is the ne-
cessity to develop automatic video processing methods to
convert this huge bulk of data in accessible information for
the marine biologists. In order to accommodate this need,
a hybrid semantics - and planning-based approach within
an integrated workflow framework has been developed by
Nadarajan et al. in [12] and in [13]. In these works an au-
tomatic system supporting marine biologists’ activity is de-
veloped by using video and image processing ontologies for
representation and to provide a basis to enable an ontology-
based planner to support workflow executions. Clearly, such
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a system for intelligent underwater video analysis requires
methods for fish detection, fish classification and behavior
understanding. In this paper we propose an automatic sys-
tem for fish species classification and tracking followed by a
system for clustering fish trajectories and behavior under-
standing. As far as we know, so far, not much research has
been carried out on fish species classification, especially in
their natural environment. In fact, most of existing works
for automatic fish image classification either use databases
of dead fish, e.g. in [7] and [14], or work on constrained ar-
eas, e.g. in [11]. The other methods that operates directly
in underwater environments classify only a few species of
fish: for instance, Benson et al [3] proposed a Haar detec-
tor and classifier for the Scythe Butterfly fish achieving a
performance rate of 89% on a database with about 3500
images, Edgington et at. in [5] developed a a classification
system for the Rathbunaster Californicus using visual atten-
tion with an accuracy of 90% on a dataset with 6000 images,
whereas Rova et al. in [16] developed an automatic classi-
fication system for the Striped Trumpeter and the Western
Butterfish based on 2D textural appearance obtaining an
average performance of 90% on a database with 320 images.

Abbasi and Mokhtarian [1] developed a system for re-
trieval of marine animal images, introducing for the first
time curvature scale space analysis combined with affine
transformation, with an accuracy of about 85% using a data-
base with 1100 images.

All these systems share the use of global appearance shape
descriptors, which are negatively affected by affine transfor-
mation and also leave out the use of texture features when
shape descriptors are used.

The challenges that differentiate our proposed work when
compared with other traditional methods are: 1) we com-
bine texture features with shape descriptors preserved under
affine transformation, 2) the images are taken in the fish nat-
ural environment and 3) fish trajectories are automatically
extracted. Concerning automatic fish behavior understand-
ing, so far, only one system has been proposed by Soori in
[17], who proposes an automatic video segmentation tech-
nique to study fish schooling characteristics.

In addition to fish classification, fish trajectory dynamics
analysis is carried out in order to understand fish behavior
and to detect rare events, which may represent the cue of
interest for marine biologists. Fish behavior understanding
is performed by means of 1) a tracking system to extract
fish trajectories, 2) a classification system that associates
fish species to these trajectories and finally, 3) a system for
trajectory clustering for each fish species (see fig.1). The
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Figure 1: Fish Trajectories Analysis System

analysis of trajectory’s clusters, therefore, allows us to high-
light unusual events, potentially of interest for marine biol-
ogists, as, for instance, one or more trajectories that don’t
belong to the clusters that describe normal behaviors or two
clusters of trajectories where one of them contains only one
trajectory may point to interesting events.

The remainder of the paper is as follows: section 2 briefly
describes the tracking algorithm for fish trajectories extrac-
tion, whereas section 3 shows the texture and shape features
used for fish description. Section 4 describes the classifica-
tion system and its performance and section 5 describes the
fish trajectory analysis system. Finally, concluding remarks
are reported.

2. FISH TRACKING SYSTEM

The first step of the proposed system aims at extracting
trajectories by tracking fish over consecutive frames. The
tracking system, proposed by the authors in [18], first auto-
matically detects fish (see fig. 2) by means of a combination
of the Gaussian Mixture Model and Moving Average algo-
rithms, then tracks fish by using the Adaptive Mean Shift
Algorithm. The obtained accuracy for both fish detection
and tracking is about 85%. The output of the detection sys-
tem is shown in fig.2, where a bounding box is drawn around
the fish.

Figure 2: Output of the detection system

The tracking system allows us to extract fish trajectories.
Fig. 3 shows the trajectories of two fish for a video sequence
of 30 sec.

3. FISH DESCRIPTION

In order to associate fish species to the computed trajec-
tories, a fish species classification system that works on the
bounding box identified by the detection module, is carried
out by a 2D affine object recognition method using invariant
information from the boundary and from the texture of fish.
We use affine invariants features, such as affine curvature
[2] and Fourier descriptors, because they are independent of
the object’s position, orientation, scale and slant and usu-
ally fish can be at any position and orientation relative to
the camera.

3.1 Fish Affine Transformation

In order to build a reliable classification system we use a
fish affine transformation since it is necessary to represent
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Figure 3: Output of the tracking system

3D fish shape that describes the different views while fish
move in the water. An affine transformation between two
planes m and 7’ can be described as:

(v )=(ea) G )+(h) o

where a, b, c,d, h, k are real numbers that determine space
rotation and translation. By choosing a = d and ¢ = —b we
obtain a similarity transformation. Moreover, a degree of
affine deformation + is introduced, so that each parameter
can range between 1 — v and 1+ 7.

Fig. 4 shows some affine transformations with v = 0.3 for
the 7‘Pseudochilinus Hexataenia™ specie.

Original Image

Affine Transformation 1 Affine Transformation 2

‘T.' ™~
e
AN

Affine Transformation 3 Affine Transformation 4

Figure 4: Affine transformation of Pseudochilinus Hez-
ataenia species contour.

In our system, we use 18 affine images for each fish to
describe the arbitrary views that a fish may assume in a
video sequence. To describe each fish we use two types of
affine invariant features: 1) texture features and 2) boundary
features.

3.2 Texture Features

The first step for describing a fish image consists of tex-
ture feature extraction. In detail, we use features derived
from the grey level histogram, from the Gabor filters and
from the grey level co-occurrence matrices (GLCM). The 8
features extracted from the grey level histogram are: mean,
standard deviation, third moment and fourth moment (that
respectively describe slope and flatness of the histogram),
Contrast C, Correlation Cr, Energy F and Homogeneity

Figure 5: Fish Contour

H [6]. Afterwards, Gabor filters are applied to obtain the
G — Maps. A two dimensional Gabor function g(z,y) can
be described by the following formula:

224~2.42

9@y, o ) =e 2 cos(my £4)  (2)

where A, 1,0, are respectively the orientation, the scale,
the mean and the standard deviation of the considered Ga-
bor filter. Given an image I(z,y), the Gabor transform is
obtained by a convolution between the image I and the func-
tion g. We use 6 scales and 4 orientations, thus obtaining 24
complex images. Then, we compute the mean and the stan-
dard deviation of the magnitude of each of these complex
images. Finally, gray level co-occurrence texture features
are extracted by using the grey level co-occurrence matrix
(GLCM), which describes the frequencies at which two pix-
els occur in the image. Once the GLCM has been created,
we extract the following statistics: Energy, Correlation, In-
ertia, Entropy, Inverse Difference Moment, Sum Average,
Sum Variance, Sum Entropy, Difference Average, Difference
Variance, Difference Entropy, Information measure of cor-
relation 1, Information measure of correlation 2, Maximal
Correlation Coefficient. Therefore for each identified fish we
obtain a vector consisting of 70 elements (24x2 from the Ga-
bor Filters, 8 from the gray level histogram, and 14 from the
GLCM) that describe the texture features.

3.3 Boundary Features

This step aims at extracting the information about con-
tour features from the detected fish. First of all, contours
of fish have been extracted (see fig.5) by means of morpho-
logical operations to adjust the contour where it appears
interrupted, jagged or thicken.

The extracted boundary can be expressed as a sequence
of coordinates s(k) = [z(k), y(k)], where z(k), y(k) are the
coordinates of the points of the boundary. Each pair of co-
ordinated can be considered a complex number, i.e. s(k) =
z(k) + 7 - y(k). The discrete Fourier transform (DFT) is:

alw) = & Z s(k) e P/ (3)

for u=0,1,2...K, where K is the number of points belong-
ing to the identified boundary. The complex coefficients a(u)
are the Fourier descriptors and provide a means for repre-
senting the boundary of a two-dimensional shape. Since it
is not feasible to use all the Fourier descriptors in the classi-
fication step due to their high number, in order to describe
the frequency variability of the shape we use a histogram
of their modulus with 30 values. The histogram of Fourier
descriptors is invariant to affine transformation as shown in
fig.6.

After the Fourier descriptors computation, curvature anal-
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Figure 6: Histogram of Fourier Descriptions when
Affine Transformations are applied

ysis is carried out. We compute the CSS (Curvature Scale
Space) image, according to [10], by iteratively smoothing
the curve until the number of points where the curvature is
zero (zero crossing points) is equal to zero. The CSS image
represents curvature zero crossings during shape evolution
in the plane (u, o), where u is the normalized arc length be-
tween consecutive zero crossing points and o is the width of
Gaussian kernel used for shape smoothing. The curvature is
defined as the changing rate of curve slope, according to the
formula (the notation is the same of the original approach
proposed in [2]):

(w) Y(u) — #(u) Y(u)
(@(u)? +Y(u)?)?

k(u) =

(4)

where u is the curve formed by the computed boundary.
To find the CSS image, we iteratively smooth the extracted
boundary. Let g(u,o) be a 1 — D Gaussian kernel of width
o, then the components of the evolved curve A, may be rep-
resented by X (u, o) and Y (u, o) according to the properties
of convolution:

X(u,0) = z(u) * g(u, o)

Y (u,0) = y(u) * g(u,0)

where (%) is the convolution function. The derivatives are:

Xu(u,0) = z(u) * gu(u, o)

Xuu(u,0) = z(u) * guu(u, o)

where gy (u, o) and gy (u, o) are, respectively, the first and
the second derivative of the gaussian function. The same
holds for Yy, (u, o) and Y, (u, o). The curvature of the evolved
digital curve is:

Xou(u,0)Yuu(u, 0) = Xuu(u,0)Yu(u, o)
(Xu(u,0)2 + Yy (u,0)2)3/2

As o increases, the shape of A, changes. Thus, we have
to calculate several times the curvature zero crossing points
of A, during the curve evolution, until when the number of
such points will be zero. For each iteration (value of o) the

k(u,0) =
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Figure 7: CSS images for the contour of Pseudochili-
nus Heztataenia species for 4 different affine transfor-
mations.

arc length between consecutive zero crossing points is plot-
ted in the CSS image. Fig. 7 shows the CSS images for the
contour of a fish when the affine transformation is applied.
As feature vector we extract the first 20 local maxima (that
are curve length values) of the CSS image, normalized by
the fish contour length.

In conclusion the total number of extracted shape features
is 50.

4. FISH SPECIES CLASSIFICATION

The texture and shape features extraction produce a vec-
tor consisting of many values, therefore principal compo-
nent analysis to reduce the number of features is required.
This process is used to distinguish planes that separate fish
classes. Starting from 120 components, PCA allowed us to
select only the 24 features creating new data for the further
classification step.

4.1 Data set: Ecogrid Images

The images used for the evaluation were acquired from an
ecological source in Taiwan and are made accessible to ma-
rine biologists via the Ecogrid project, coordinated by the
National Center for High Performing Computing (NCHC),
Taiwan. The project is a joint effort between NCHC and
several local and international research institutes which pro-
vides a Grid-based infrastructure for ecological research.
These images are acquired using 10 cameras, located at 3
sites, live streaming of bioactivities goes from the reef com-
munities to marine scientists’ desktop and is available at the
link hitp://eco055.nche.org.tw/lsi/. Our system was applied
on 10 different fish types: Bodianus mesothoraz, Chaetodon
trifascialis, Chromis viridis, Dascyllus albisella, Dascyllus
aruanus, Dascyllus reticulatus, Gomphosus varius, Hemi-
gymnus fasciatus, Plectorhinchus lessonii and Pseudocheil-
inus hexataenia. For each fish we used 14 images acquired
from the live streaming and 18 images obtained by affine
transformation. In total we used 32 images for each species.
Therefore, the total size of our database was of 320 images.

4.2 Classification with Discriminant Analysis

The Discriminant Analysis consists of a sequence of method-
ologies that, given a k-dimensional set X partitioned into p
subsets X7, ..., X, assigns a generic observation = to one of
the p subset. To calculate the expected risk when a large
amount of data are considered, the K-fold cross-validation



method was used. Using N = 320 labels for the data that
represents the observations, we divide them into K subsets:

e K-1 subsets are used as training sets (learning);
e the remaining subset is used as the test set.

This operation is repeated leaving out each k subset, with
k = 1,2,, K and the final risk is obtained from the com-
bination of the k intermediate estimates. To evaluate the
effectiveness of the classifier K = 5 was chosen, while Cor-
rect Rate (CR) and Error Rate (ER) was chosen to estimate
the accuracy. Table 1 shows the obtained results in terms of
CR and ER, while K varies from 1 to 5.

K-Iteration CR (%) ER (%)
1 92.34 7.66
2 98.01 1.99
3 99.05 0.95
4 91.21 8.79
5 96.30 3.70

Table 1: Obtained Results in terms of CR and ER

After that, we tested our system for each type of fish by
using 10 test images (not included in the training set) from
each species, obtaining the results shown in table 2 with an
average performance of 92%.

Fish Name Correct Rate (%)
Bodianus mesothoraz 100
Chaetodon trifascialis 90

Chromis viridis 80
Dascyllus albisella 100
Dascyllus aruanus 100
Dascyllus reticulatus 90
Gomphosus varius 90

Hemigymnus fasciatus 90
Plectorhinchus lessonii 90
Pseudocheilinus hexataenia 90

Table 2: Test Results for each type of fish carried
out on a test set that contains 10 images for each
fish

For Chromis viridis we obtained a lower accuracy. This
was mainly due to the smooth texture that characterizes the
species, in fact, under some light conditions fish appears just
white.

S. FISHTRAJECTORY ANALYSIS SYSTEM

The classification system allows us to associate fish species
with the extracted trajectories; for example, fig. 8 shows the
trajectories of fig. 3 associated with two species: Chromis
viridis and Dascyllus aruanus.

The first step of the the fish trajectory analysis system is
the trajectory preprocessing, which aims at producing a suit-
able trajectory representations for clustering. Indeed, the
difficulty in this case is represented by the different lengths
of the trajectories. In order to ensure a comparison be-
tween different trajectories we subsample the input vectors
to reduce the number of points according to the Douglass-
Peucker algorithm[8]. The next step is the trajectory clus-
tering which is performed by means of I-kMeans algorithm

Trajectories associated to Fish Species
T T

= Chromis virdis
m=Dascylus anianus

Figure 8: Trajectories of two fish (Chromis viridis and
Dascyllus aruanus) in a video sequence of 5 sec.

[9] since it works in real-time and the choice of number of
clusters is unsupervised. Once the scene model has been
constructed, fish behaviors can be analyzed. In detail, we
consider interesting events, cases when a clustering iteration
produce clusters with few elements with respect the total
number of trajectories for a fish species in a whole video.
For instance, let us consider the trajectories, shown in fig.
9-b, of the eight detected Dascyllus reticulatus (9-a) in the
above video sequence. By applying the unsupervised clus-
tering we find three clusters 9-c: the first with 6 elements,
and the other two with one trajectory each. The two clus-
ters with one element each represent, of course, a potential
events of interest to be investigated. Therefore, we were
able to detect that for a specific video sequence two Dascyl-
lus reticulatus fish had a different behavior with respect to
the others.

6. CONCLUDING REMARKS

In this paper we propose a classification system for un-
derwater video analysis. The proposed classification system
defines a new method to recognize a large variety of un-
derwater species by using a combination of affine invariant
texture and shape features, providing accurate results (more
than 90% of 10 different fish species). Future work for fish
classification will regard: 1) the use of color features for a
better fish description, 2) the improvement of the perfor-
mance in classifying fish with smooth texture by integrating
fish behavior. Moreover, the classification system aims at
supporting fish behavior understanding that work on fish
trajectories providing as output the events where fish show
an unusual behavior. Future work will aim at establish-
ing a probabilistic model of typical behavior by analyzing
trajectories and also at modeling the scene and at corre-
lating the computed trajectories with this model. This, of
course, will represent a challenging task in object behavior
understanding since it will work on real unconstrained en-
vironments where objects can move along three directions.
Furthermore, since the behavior of a fish is often correlated
to the behavior of another fish (e.g. predator fish chasing
small fish) we are working to integrate in our framework
a level which correlates temporal and spatial events among
different fish species.
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