
SOLVING GEOMETRIC CONSTRAINTS IN A PARALLEL NETWORK

Robert B. Fisher
Mark J. L. Orr

Department of Artificial Intelligence
Edinburgh University

ABSTRACT

We describe a network implementation of
the SUP-INF method of solving sets of inequali-
ties that has advantages over previous implemen-
tations. The cost of symbolic manipulation is
transferred to compile-time allowing speed up at
run-time due to parallel evaluation. Further,
allowing iteration in the network improves the
competence of the method when working with
non-linear expressions. We use the network to
implement a geometric reasoner for a computer
vision program and show that it meets the gen-
eral requirements for such a system.

1. INTRODUCTION

In a previous paper (Orr 1987a) we investi-
gated the general nature of a geometric reasoner
for computer vision, concerned more with
specification than implementation. Amongst the
conclusions we made, was that algebraic inequali-
ties were a suitable representation for constraints,
because it was a uniform mechanism for a variety
of model-data relationships, it represents both a
priori and observed relationships and easily
allows model variation. Constraints generally
involve unknown quantities not measured from
the image or specified in the models and for
which estimates are sought. To find estimates it
is necessary to combine related constraints and
this involves solving sets of algebraic inequalities.

This approach has already been demon-
strated by Brooks (Brooks 1981). A crucial part
of his constraint solving mechanism was a sym-
bolic manipulator for algebraic expressions. This
had drawbacks of a high cost for symbolic pro-
cessing and an inability to properly handle non-
linear constraints.

Acknowledgements
This work was performed under Alvey Grant
GR/D/1740.3.

Section 2 describes an implementation of the
SUP-INF method that does away with the need
for symbolic manipulation at run-time, has a
natural parallel structure and copes better with
non-linear constraints. In section 3 we show how
this implementation can be used for geometric
reasoning and how it meets the specifications out-
lined in our previous paper (Orr 1987a).

2. SOLVING CONSTRAINTS IN PARALLEL

The basic constraint solving method we use
is Bledsoe's SUP-INF algorithm (Bledsoe 1975),
later refined by Shostak (Shostak 1977) and
Brooks (Brooks 1981). Constraints are expressed
in the form:

or

where the x. are members of a set {x... x~....x }
of variables and f j and g. are values or expres-
sions involving some or aA of the x.. A solution
of the constraints would be a substitution of real
values for the variables that maintained the truth
of each inequality. The goal of the algorithm, for
a given set of constraints, is:

(1) to decide whether the set of possible solu-
tions is empty,

(2) to find bounds on the value that a given
expression (involving some or all of the x.)
can attain over a non-empty set of solu-
tions.

The algorithm is based on the recursive
application of the functions SUP and INF on the
expression to be bound and its sub-expressions.
SUP returns an upper bound (supremuxn) and
INF a lower bound (infimum). In Brooks' (Brooks
1981) program the simplification of constraints
and the application of SUP and INF was handled
by symbolic manipulation at run time. We
present a new implementation of the SUP-INF
method that has the following advantages:

87

(1) it transfers the cost of symbolic manipula-
tion from run-time to compile-time.

(2) it improves the performance of the algo-
rithm for non- linear constraints,

(3) it has a natural parallel structure.
The implementation has the structure of a

network with nodes and connections as described
below.

Structure of the network

The network consists of two types of nodes:
value nodes and operation nodes. The value
nodes acquire numerical SUP and INF bounds on
their associated algebraic variable or expression.
The bounds are computed from connections with
other value nodes or with operation nodes that
receive inputs from other value or operation
nodes. Each time new bounds are computed the
change propagates over the network causing other
nodes to acquire new bounds. The changes
become smaller as the bounds get closer and the
network converges asymptotically to a stable
state when the desired bounds on variables or
expressions of interest can be extracted from the
associated value nodes.

Network Creation
A network is constructed by linking

together several network fragments or modules.
Each module represents a particular instance of a
common constraint type and there may be more
than one module of the same type in the net-
work. The structure of modules is defined by an
off-line compilation process. Consequently, the
on-line program which uses the network, such as
the geometric reasoner described in section 3, only
has to connect instances of the appropriate
modules to solve the problem at hand.

A module is compiled from a list of alge-
braic inequalities such as:

+ 2

The inequalities are written by a human
programmer after due consideration of the 'prob-
lem' that the module 'solves'. An example from
geometric reasoning (section 3) is the problem of
relating two pairs of direction vectors with a
rotation when the relation between the paired
vectors is that one is the rotation of the other.
The relations between all the (scalar) variables
occurring in the problem are expressed as inequal-
ities. These give both exact relationships and
'heuristic' bounds. If an equality is encountered

then it is split into two inequalities:
x - expr becomes:

x ^expr & x ^expr

If a product is encountered, then it is split
into four inequalities involving the signed
reciprocal Csrecip") function:

x * y ^ z becomes:

x < z • srecip(y)

y < z • srecip(x)

x ^ -z * srecip(-y)

y ^ -z • srecip(-x)
This function has the definition:

srecip(x) - if x > 0 then 1/x
else 'undefined'

and consequently has the effect of turning off and
on constraints according to the sign of its argu-
ment.

Recursive constraints are allowed such as:

which becomes:

x > (1 - y 2) * srecip(x)

x < (y 2 - l) * s r e c i p (- x)
but are treated differently by bound
simplification (see below).

Symbolic manipulation
Before compiling the network, the list of

inequalities is checked for correct syntax,
simplified and processed by the functions SUP
and INF. In general this is a hard problem but
the constraint manipulation system (CMS) of
Brooks' program ACRONYM (Brooks 1981) at
least provides some competence. We have
extended this CMS to cope with square roots,
powers of variables, symbolic rather than
numeric bounds on products where appropriate,
the unsigned reciprocal function and the
undefined value (Fisher 1987b).

Simplification is only applied to non-
recursive constraints where the variable on the
left hand side of the inequality does not appear
anywhere in the right hand side. Recursive con-
straints are difficult to handle and usually get

reduced to the trivial:
-infinity Kx <+infinity

The CMS could be used directly (as in
ACRONYM) by the on-line program. Measure-
ments made by the program would add new con-
straints providing more scope for simplification
and eventually to bounds on variables and
expressions that are not measured directly. How-
ever, symbolic reasoning is computationally
expensive and not suited to wide scale parallel-
ism.

A more compelling reason for using a net-
work is that it can iterate to better bounds over
non-linear constraints than the single pass
method of the CMS. Consider the following
example.

x < 1 + 1/y

y > 1 + 1/x

0.1 10

0.1 < x <10

The CMS (somewhat simplified) finds:
SUKx) - 1 + l/INF(y)
- 1 + 1/(1 + l/SUP(x))

When it gets to the embedded SUP(x) it
uses the numerical bound 10 to produce:

SUKx) - 1 + 1/(1 + 1/10)
-1 .91

However the network computation iterates
to the (analytically) best bound:

SUP(x) - 1.62

Network Compilation
Value nodes are created for all variables

occurring in the constraint list. These are con-
nected by various operator nodes that extract
values from value nodes or other operators. The
connections are determined by the expressions
found in the constraints. The following is a list
of the actions taken by the compiler when it
encounters the specified expression type:

constant:
An operation node (with no inputs) is
created that supplies the given constant.

variable:
An operation node is created that extracts

the SUP (or INF) of the associated value
node.

plus: An operation node is created that adds the
results of the recursively compiled sub-
expressions.

max (or min):
SUP(max(list)) is compiled to be
max(SUP(list)) (analogously for INF and
'min'). Thus subfragments for each sub-
expression in the list are created and linked
to a series of connected binary 'max' (or
'min') nodes. Network evaluation is
different for max (or min) nodes created
from SUP or INF in their use of defaults
when not all arguments are evaluated
(which may arise from timing delays or
alternative expressions being undefined).
The INF max function returns a value if at
least one argument is evaluated; the SUP
max function only returns a value when all
arguments are evaluated.

times:
SUP(A*B) is expanded to:

max(INF(A)*INF(B).
INF(A)*SUP(B),
SUP(A)*INF(B).
SUP(A)*SUP(B))

and then compiled. The same for INF(A*B)
except 'max" is replaced by 'min'.

redp(E) (where E is an expression):
A test-case node is required for the recipro-
cal function. Test-case nodes select their
output according to a test defined at
compile-time and carried out at run-time. If
SUP is the desired bound, the test-case con-
struction is:

if INF(E)>0 or SUP(E)O

then 1/INF(E)

else plus_infinity
If INF is the desired bound then:

if INF(E)>0 or SUP(E)<0

then 1/SUP(E)

else minus_infinity

sredp(E) (where E is an expression):
This is the signed reciprocal function where:

89

srecipd) - if x > 0 then 1/x
else 'undefined'

If SUP is the desired bound, a test-case node
is created selecting:

if INF(E)X)

then 1/INF(E)

else 'undefined'
If INF is the desired bound then the test-
case construction is:

if INF(E) >O

then 1/SUKE)

else 'undefined'
vn (where v is a variable and n is odd):

A sequence of 'times' operation nodes are
created and linked to the SUP (or INF) of
the variable. The output of each 'times'
operation becomes the input to the next.

vn {where v is a variable and n is even):
If SUP is the desired bound then sequences
of 'times' nodes are created and linked to
both the INF and SUP of the variable and a
final 'max' node linked to the output of each
sequence. If INF is the desired bound then a
'test-case' node is created selecting:

if SUKv) < 0

then [SUKv)]n

else if INF(v) > 0

then [lNF(v)]n

elseO
square_root(E) (where E is an expression):

The positive square root is assumed. If SUP
is the desired bound then:

if SUP(E) > 0

then sqrt(SUKE))

else 'undefined'
If INF is the desired bound:

i fINF(E)>0

then sqrt(INF(E))

else 'undefined'

As the same expressions may be used more
than once in different constraints in the same
module, the recursive compiler uses a previous
compilation for a expression if one exists, thus
avoiding duplication. Another simplification is
the reduction of multiple constraints to a single
'min' or 'max' function:

, v - — becomes:

v ^min(Ej, Ey. ...)
A similar simplification is performed for lower
bounds using the 'max' function.

To illustrate the creation of a network
module, suppose we are interested in the 'prob-
lem':

A < B - C
which entails the further constraints:

C < B - A

This list of constraints would be the input
to the CMS (Fisher 1987b). that would have lit-
tle to simplify but would recursively apply the
SUP and INF functions symbolically to find:

SUP(A) - SUP(B) - INF(C)

INF(B) - INF(A) + INF(C)

SUP(C) - SUKB) - INF(A)
The compiler then produces the network

shown in figure 1. This is a trivial example that
even fails to compute both bounds on the param-
eters involved. In practice (see section 3)
modules are larger and more complicated.

Modularisation
The run-time program constructs and evalu-

ates its own networks according to the problems
it is presented with. We assume that problems
can be broken down into several parts each of
which can be managed by an instance of some
previously compiled module. Suppose we have
the following two constraints:

90

Figure 1: the network for A < B - C.

- z

y - w
A network for this problem would be con-

structed out of two instances of the module
defined above for the constraint type:

A < B - C
and connected as shown in figure 2. The modules
can be thought of as black boxes with connections
to the outside world. For the first constraint the
connections A->x, B->y and C->z are made,
while for the second constraint A->y, B->z and
C->w.

Network Evaluation
The values at each node are computed using

the values at the connecting nodes. The SUP
(INF) computation chooses the minimum (max-
imum) of each of its current bounds and its
current value. Including the current value in the
calculation ensures that bounds can only get
tighter. Thus if:

SUP(A) < a r SUP(A) <&2. ...

then:

SUP(At+1) - min(SUP(At). a r a^. ...)
is the updating function for the supremum of A
from time t to time t+1.

The networks of modules are designed to be
evaluated in parallel. The whole network could

Figure 2: two connected modules.

be evaluated synchronously or asynchronously in
a MIMD processor with non-local connectivity.
Ideally, each node would be stored in a separate
processor, continually polling its inputs and
updating its output if appropriate.

So far we only simulate the network seri-
ally. When the change at a node drops below a
preset threshold its dependent nodes no longer
require re-evaluation. When no more nodes need
to be evaluated, the network has reached a stable
state and processing can stop. The other way of
stopping the network is the detection of an incon-
sistency signaled by a pair of bounds crossing
over (the SUP of some value node becomes lower
than its INF).

3. GEOMETRIC REASONING FOR COMPUTER
VISION

We have previously (Orr 1987a) character-
ised the tasks carried out by a geometric reasoner
for computer vision as a small set of functions
that operate on and return certain types of
objects, amongst which was the type 'position'.
The five primitive functions needed are:
LOCATE:

deduces position constraints from pairings
of model features to image features,

MERGE:
integrates separate position estimates,

TRANSFORM:
transforms one position by another (ie.
given B relative to A and C relative to B find

91

C relative to A).

INVERSE:
transforms the position of A relative to B
into B relative to A.

PREDICT:
deduces what data should be present in the
image, given a position and a model feature.
We also noted that the position data type

was required to represent uncertainty because of
the inherent errors of image measurements.

That paper only addressed the question of
what must a geometric reasoner do. leaving open
the question of how it does it. We described
above an implementation based on networks of
algebraic constraints. In this section we will
describe specific networks that can be used for
geometric reasoning and show how the they meet
the requirements of our previous paper.

Underlying our implementation is the use of
algebraic constraints to represent knowledge
about the world. For example, to represent a posi-
tion requires specifying upper and lower bounds
on each of the six degrees of freedom. This
satisfies the requirement of representing uncer-
tainty because the true value of each parameter
can lie in a range.

The TRANSFORM function is implemented
as a network module. Looked at as a black box.
the TRANSFORM module has three sets of ports
to the outside world representing three positions
(18 parameters in total): the position being
transformed, the transforming position and the
resulting position. When operating in the context
of an evaluating network, if any two of the sets
of ports receive bounds from outside, the module
will reflect the new situation by setting new
bounds on the third set of ports. The INVERSE
function is implicit in the network through the
bi-directionality of all modules involving posi-
tions.

The MERGE function is carried out at the
nodes linking the ports from different modules.
Each port is 'saying something' about the bounds
on some variable and if two or more ports are
linked then they either agree (the bounds inter-
sect) or disagree. In the latter case, an incon-
sistency has been detected - precisely what the
MERGE function was designed to do. Further,
the intersection of the bounds also improves the
estimates of the variables.

The function LOCATE is implemented by a
series of network modules, one for each general

type of constraint derivable from the possible
pairings between model features and image
features. These features vary from one vision
system to the next and the corresponding con-
straints will also differ. In Brooks' ACRONYM
(Brooks 1981) the models were 3D volumetric
primitives while the image features were 2D. Our
own system. IMAGINE (Fisher 1986). is based on
3D models augmented by 2D viewpoint informa-
tion (Fisher 1987a) and 3D stereo images.

In our case, most pairings between a model
and an image feature can be reduced to a set of
pairings between 3D direction and location vec-
tors. The general constraint types are then dis-
tinguished by the numbers of location and direc-
tion pairings involved. Suppose we have the two
pairings:
(1) a straight model line with an image edge,

and
(2) a conical model surface with a similar image

surface
Each of these can be broken down into the

pairing of a direction vector and a point location
in the model with a direction and location in the
image. Even though the features involved are
completely different, they both present the same
general type of constraint and therefore can be
'LOCATEd' by the same type of network module.

Part of our vision system is a catalogue of
constraints (Orr 1987b) available from pairings
between feature types in our modeling scheme
and their corresponding image feature types.
Whenever the geometric reasoner encounters a
new hypothesis (feature pairing) it can look up
the type of pairing in the catalogue and find out:

(1) which data vectors to pair with which
model vectors, and

(2) which network modules to use.
This enables it to create new instances of the

modules and link them into the already existing
and evaluated network. This network reflects
constraints already integrated and may contain
many modules created from several previous
hypotheses. If the network was previously in a
consistent state but, after the introduction of the
new module, becomes inconsistent then the rea-
soner can deduce that something was amiss with
the new hypothesis. Otherwise, the new module
may help to decrease the uncertainty in the net-
work by pushing some bounds closer together.
Thus the geometric reasoner fulfills its role of
aiding image interpretation.

92

Every module implementing a LOCATE
function (where the input is from the image and
models and the output is a position constraint)
also implements a PREDICT function (where the
input is from a position constraint and the
models and the output is a constraint on some-
thing in the image). There is a symmetry between
the two functions because the network module
does not distinguish which of its ports are for
input and which are for output. It simply main-
tains a set of relations between the values current
at each of its ports.

Analysis of the geometric constraints used
so far has shown repeated patterns in their alge-
braic structure and hence that the constraints can
be constructed via the composition of six primi-
tive structures:

(1) I Sj - $2 I ^ threshold — two sealers are
close

(2) I Vj - Vj I < threshold — two direction vec-
tors are close

(3) II L - L, I ^ threshold — two points are close

(4) Pj(P2^ ™ P3 ~ * position transformed by a
position gives a position

(5) Ky^) - y_2 and PCy)̂ - v^ — a pair of
direction vectors transformed by a position
gives a pair of direction vectors (both rela-
tions need not be used, but are necessary for
completely deducing the position from the
paired vectors)

(6) POp - Lj. PQg) - L and PQj) - 1̂ - three
points transformed oy a position give three
points (again, only one or two points may
be used)

Thus, the constraint that says a transformed
model direction vector (m) must lie within a dis-
tance (t) of an observed data vector (dj

I P (m) - d J < t
can be decomposed into instances of modules 2
and 5 connected.

The network, modules are defined in terms
of the algebraic relationships between the inter-
face variables. When compiled, they mainly con-
sist of operation nodes. The sizes of the six
modules (in operation nodes) are:

module 1: 26 nodes
module 2: 826 nodes
module 3: 297 nodes

module 4: 2381 nodes
module 5: 1589 nodes
module 6: 1225 nodes

the following model direction vectors
m, - (-0.51.0.83,0.22)
m i - (0.68,-0.23.0.69)

are rotated rigidly by position P to give the vec-
tors P(jSj) and Kfflj). Then, assume we observe
two data vectors

d« - (-0.40,0.91.0.04)
j ^ - (-0.52.-0.67,0.51)

that are paired with m« and mj respectively.
(This pairing results from the model-based scene
analysis. An example pairing might arise from
using a 3D orientation discontinuity and the nor-
mal of a planar surface patch.)

The pairings are represented using an
instance of module 5 from above, linked to the
m. and d. vectors. Evaluating this simple net-
work, the following bounds are achieved on the
rotation (represented as a quaternion):

Low (0.729.0.249.-0.622.-0.141)
High (0.731.0.252.-0.618.-0.139)

where the true value is
(0.73,0.25.-0.62.-0.14)

The result required 46 network update cycles
with 3919 operation node evaluations, where all
evaluations in each cycle could be executed in
parallel. This gives the time necessary for values
to completely propagate through the layers of
simple function units several times before con-
vergence.

Now. suppose instead we anticipate that the
vectors d, are displaced from their true position
by some observational error of maximum magni-
tude E. We then know

We conclude this section with an example of
estimating an object's 3D orientation. Assume

I P C t t) ^ ! <E
so we can now use two instances of module two.

Evaluating this network with E - 0.05 pro-
duces the new bounds on the estimated rotation:

Low (0.615,0.149,-0.810.-0.220)
High (0.804.0.370.-0.438.-0.076)

which contains the correct rotation given above
(63 network update cycles involving 7591 node
evaluations).

An alternative to using module two entails
setting the bounds on the d- directly, which
allows for non-isotropic errors. More exact error
relationships could be represented algebraically
and linked by other modules.

If we make a third model-to-data vector
pairing, then we connect new instances of
modules two and five. This final network is
shown in figure 3. Suppose this new vector is
observed with E - 0.02. Then, the new estimated
rotation is:

Low (0.652,0.173.-0.805,-0.194)

93

High (0.799.0.341,-0.464,-0.097)
which has reduced variance (52 network update
cycles involving 12360 node evaluations). The
average estimated parameter value is:

(0.725.0.257.-0.634,-0.145)
which compares favourably with the true value.
Note that the bounds give the full range of
allowable variation, instead of a statistical esti-
mate.

This example demonstrates combining solu-
tions to several constraint problems to fully con-
strain a larger problem. In practise, as more evi-
dence is obtained, more network modules can be
connected to further refine parameter estimates,
especially as the pre-defined modules are usable
for a variety of geometric relationships.

4. RELATED WORK
The use of algebraic inequalities to represent

geometric constraints derives from Brooks'
ACRONYM (Brooks 1981). as does the symbolic
constraint manipulation methods. The network
computation is similar to the many relaxation or
constraint satisfaction algorithms that are suit-
able for parallel processing. However, it differs
from the relaxation algorithms in that it is not a
probabilistic labelling computation and from con-
straint satisfaction in that there is reduction of an
infinite continuous range of values rather than
selection from a finite set of discrete values.
While the network relies on connections between

Figure 3: object orientation from three pairs
of direction vectors

units, the computation is not in the distributed
connectionist form where the results are
expressed as states of the network. Instead, the
results are the values current at selected proces-
sors.

The work presented here differs significantly
from two other network based geometric reason-
ing systems. Hinton and Lang (1985) learned
and deduced positions of 2D patterns using a dis-
tributed connectionist network, whose intermedi-
ate nodes represented object position and gated
connections between iconic image and model
representations. Ballard and Tanaka (1985)
demonstrated a 3D reasoning network whose
nodes represent instances of parameter values and
whose connections represent consistency accord-
ing to model-determined algebraic relationships.
In both cases, patterns of network activity result,
with the dominant pattern accepted as the answer
(unlike here, where the result is explicit). Both
systems also simultaneously select a model,
which is treated separately in our analysis.

5. SUMMARY
The methodology we have investigated is

summarised here. We start with sets of algebraic
constraints associated with particular geometric
relationships (grouped into 6 primitive classes of
relationships). Image observables are represented
by variables at this stage. These constraints are
then processed by a CMS to produce symbolic
bounds on each variable. The bounds are com-
piled into a network where the structure of the
network reflects the structure of the expressions
for the bounds. When observable variables get
bound to measured values the other variables
(position or model parameters) are forced into
consistency by evaluating the network, which is
defined in a form suitable for parallel evaluation.
Defining the constraints and applying the CMS
can be done in advance. Then, at run time, net-
works solving particular problems can be built by
connecting instances of the compiled constraint
modules, according to the structure of the prob-
lem.

ACRONYMS CMS was optimal when pro-
ducing numerical bounds on single variables over
sets of linear constraints. Since we reproduce the
symbolic reasoning in the network, only substi-
tuting data values later, the network must have
the same performance over linear constraint sets.
Here, as the geometric constraints are mostly
non-linear, we cannot expect optimality. but our
extensions to the CMS and iterative evaluation in

94

the network improve the performance.
While the network structure is capable of

implementing many computations, we have used
it for geometric reasoning, showing how the stan-
dard reasoning functions and the use of 3D
models and 3D images require the definition of
various network modules. We demonstrated use
of the network to support geometric reasoning
with an example of estimating an object's 3D
orientation.

REFERENCES
1 Ballard. D. and Tanaka, H.. "Transforma-

tional Form Perception in 3D: Constraints.
Algorithms and Implementation", Proc. 9th
Int. Joint Conf. on Artif. Intel., pp 964-968,
1985.

2 Bledsoe, W.W., "A new method for proving
certain Presburger formulas", Proc. 4th Int.
Joint Conf. on Artif. Intel.. ppl5-21. 1975.

3 Brooks, R.A., "Symbolic reasoning among
3-D models and 2-D images", Artif. Intel.,
17. pp285-348, 1981.

4 Fisher, R.B., "From surfaces to objects:
recognising objects using surface information
and object models", PhD thesis. University
of Edinburgh. 1986.

5 Fisher. R.B., "SMS: a suggestive modeling
system for object recognition". Image and
Vision Comp., 5. pp98-104. 1987a.

6 Fisher, R.B.. "A PROLOG version of
ACRONYM'S CMS", Dept. of Artif. Intel.,
working paper •**, Edinburgh University,
1987b.

7 Hinton, G. and Lang, K., "Shape Recognition
and Illusory Conjunctions", Proc. 9th Int.
Joint Conf. on Artif. Intel., pp 252-259,
1985.

8 Orr, M.J.L., "Geometric reasoning for com-
puter vision", to appear in Image and Vision
Comp., August, 1987a.

9 Orr, M.JL, "Geometric constraints in 3D
computer vision". Dept. of Artif. Intel.,
working paper ***, Edinburgh University,
1987b.

10 Shostak. R.E.. "On the SUP-EMF method for
proving Presburger formulas*. J. Assoc.
Comp. Mach., 24. pp529-543. 1977.

95

