
A Distributed Blackboard System for Vision Applications

Malcolm D. Brown* and Robert B. Fisher
Dept. of Artificial Intelligence, University of Edinburgh

5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom
email: rbf@uk.ac.edinburgh.edai

fax: 31-225-9370
telephone: 31-667-1011 x2553

Abstract

This paper describes an implementation of a distributed
parallel blackboard system that runs on a Meiko multi-
transputer system. The blackboard is split up amongst
the transputers to allow for distributed local processing,
yet the access of the blackboard is transparent to the
user processes, irrespective of whether the data is local
or remote. Multiple expert processes are invoked as pro-
cessing resources become available and task dependen-
cies are resolved. The implementation allows both task
and data parallelism. A Canny edge detector implemen-
tation achieved a speedup of 21 times on 64 transputers.

1 Introduction

Blackboard systems provide a powerful mechanism for
solving complex vision problems by using multiple do-
main expertise, implemented as independent knowledge
sources (KS). The system described in this paper is
a distributed memory blackboard system implemented
on the Edinburgh Concurrent Supercomputer - a multi-
transputer system. The distributed blackboard system
applies both task and data parallelism to vision problem
solving.

The increasing size and complexity of vision problems
has resulted in the development of blackboard systems
as a problem solving technique. Typically, specialist vi-
sion systems consist of large amounts of knowledge stored
and used in one way. This is fine for certain classes of
problems; however, it seems unlikely that systems with
only a single approach will be able to handle larger vision
problems involving large quantities of data, uncertainty,
cooperative multiple and alternative KS application and
independent exploration of alternative hypotheses.

* Supported by a SERC studentship. Currently employed at
AI Ltd, Greycaine Road, Watford, England

The motivations behind building a distributed black-
board system are:

• Multiple KSs can be used to cooperatively solve a
problem.

• Task and data parallelism improves the problem
solving performance of the system.

Mixing the two types of parallelism is particularly im-
portant to vision applications, where substantial data
parallelism is needed to interpret raw data during low-
level vision, and task parallelism is needed to investigate
independent or alternative hypotheses during high-level
vision processing.

The distributed blackboard system1 presented in this pa-
per consists of a distributed blackboard data structure,
a central control mechanism and distributed hierarchical
KSs.

2 Blackboard Systems

Blackboard systems2 are characterized by a collection of
KSs, a shared memory blackboard and a task control
mechanism. The KSs cooperate with each other only
through: (1) reading and writing to the blackboard and
(2) by directly requesting the task controller to execute
other KSs. The blackboard holds the specification of the
original problem and contains the partial solutions devel-
oped by the KSs so far. The task control mechanism's
goal is to ensure that the KSs cooperate together to solve
the problem.

The blackboard or shared memory is used by the KSs to
record the outstanding problems that need to be solved
for the system to reach a solution and the partial solu-
tions developed so far. The system can develop several
possible solution paths in parallel and proceed both for-
wards from the data and backwards from the goals.

163



A task control mechanism invokes the KSs, but only if
the KS can potentially contribute towards the solution
of the problem. Thus, it needs to determine the set of
KSs that are applicable. This set can be determined
by the KSs reacting to events on the blackboard, or by
the task controller matching the known capabilities of
the KSs with the outstanding tasks or by requests from
previously executed KSs.

Two parallel blackboard systems are the CAGE3 and
POLIGON4 systems. CAGE is a shared memory multi-
processor implementation of the AGE5 system that al-
lows parallelism to be used at varying levels (e.g. at the
level of individual rules, or as collections of rules). The
POLIGON system is implemented on a message pass-
ing multi-processor, and has a distributed control mech-
anism. POLIGON most closely resembles the system
described in this paper, except our system uses phys-
ically distributed memory, rather than a large shared
memory. This seems to be more suited for parallel
MIMD (multiple-instruction, multiple-data) machines,
where each processor has a co-located memory. The
SCHEMAS system6, the VISIONS system7, and the SBS
system8 are examples of blackboard systems used in com-
puter vision applications.

3.1 Knowledge Source Control

In a sequential blackboard system only one KS can be
active at any time. A typical serial blackboard execu-
tion cycle consists of repeatedly selecting and invoking
a suitable KS until a solution is found. Thus, the KSs
passively interact with each other by running in turn.

The parallel blackboard also activates KSs as processing
resources become available, except that many KSs may
be active simultaneously. By implementing the parallel
blackboard on a multi-processor system, true parallelism
can be achieved by distributing the KSs amongst the
transputers.

The KS invocation requests are enqueued by:

• the storage of new data items,

• the controller recognizing that a KS can potentially
satisfy an outstanding goal,

• requests from other KSs and

• entry by the user.

The Distributed
Blackboard System

Parallel

The distributed parallel blackboard system consists of
a task control subsystem and a database management
subsystem. Both are implemented by using a message
passing kernel9 to forward processing and data requests
to the appropriate processes.

The blackboard was implemented on a large Meiko Com-
puting Surface, which is a multi-transputer processor.
Each transputer has substantial local memory and four
fast local neighbor communication channels. In the im-
plementation, many independent processes run on each
transputer, which are connected into a torus configu-
ration (Figure 1). The advantage of the torus is that
the central portion of the processor array is connected
analogously with regular image topology. Hence, it pro-
vides a firm foundation for data-directed parallelism,
wherein some operation is applied everywhere in the im-
age. A torus connection topology also means that in-
dividual processors are not particularly far from each
other for communication and database access in task-
parallel regimes (although 3D connection topologies can
further reduce the average interprocessor communication
distance).

If the input blackboard objects required for a task have
not been created, then a data dependency is unresolved.
In this case, the KS will enqueue subgoals which, when
satisfied, will result in the creation of the desired black-
board objects. The KS then requeues its goal together
with the names of the blackboard objects upon which
it is dependent, which causes the goal to suspend until
known data dependencies are resolved.

A KS is able to run when all data dependencies are sat-
isfied. This is useful for backward chaining, where the
solution to a problem is required (e.g. find the 3D edges
in a scene) and the KS is dependent on its data being
available, or subproblems being previously solved. This
causes other goals to be created and a rescheduling of
the main goal dependent on the satisfaction of the other
goals (e.g. find the 2D edges in a stereo pair of images).
The actual invocation of a KS occurs when it is able to
run and a transputer containing the KS is available.

The control of the KSs is centralized - that is, one trans-
puter has a control blackboard and receives all goal re-
quests. The current implementation uses a first-come
first-served queue, though facilities are provided for con-
trol KSs to manipulate the queue. Distributed control is
also possible, but rejected here, because: (1) distributed
control is much more difficult, and it is hard to focus the
processing to achieve a solution4 and (2) many vision ap-
plications seem to have simple goal requests that require
substantial processing. Hence, the ratio of processing to
control communication is high.

164



AH links are m-directional

Figure 1: Transputer Connection Topology

Blackboard control for most low level vision is simple
since the sequence of actions is predetermined. If alter-
natives exist, there are usually few paths to follow and
the best one is generally easy to spot. For high level
vision, this is less often the case, as the action to apply
may depend on the data. For example, in a 3D scene
analysis program, the reasoning may require: prediction
and search for missing image features, inference of vis-
ibility, search for subcomponents - each of which might
require several alternative approaches before a satisfac-
tory result is obtained.

The control system needs to determine which path to
follow, or indeed which paths to follow since multiple hy-
potheses about different data and model objects can be
evaluated in parallel. The control processing can be per-
formed by control KSs which are invoked by the black-
board scheduler when it gets into a situation which re-
quires complicated control decisions to be made. These
control KSs will take the complicated control situation
and use their control knowledge to determine the best
next step to determine the solution. The blackboard con-
trol system can then use the results to invoke problem
solving KSs. For example, the control KS could reason:
as the estimated position of the geometric model predicts
that a feature should be forward-facing and self-occlusion
analysis indicates no occlusion, and direct search can-
not find the missing feature, then invoke the "external-
occlusion" verification process.

The control KSs resolve the decision problem by deter-
mining which of the possible next steps are both desir-

able and satisfy the current problem solving constraints.
Seven10 behavioral goals for intelligent control have been
identified.

Knowledge sources are often classified as coarse or
fine-grained, depending on whether they execute large
amounts of computation (e.g. edge-detect an image) or
execute only one or a few logical inferences (e.g. as in a
production rule system).

For low level vision, coarse grained KSs seem to be more
appropriate, because generally a large amount of data-
parallel image-oriented calculation and only a little logic
is required. Further, as the image is spatially distributed,
it makes sense to also spatially distribute the KSs, in
correspondence with the image. Otherwise, considerable
performance degradation will result from having to move
the data around to available KSs. As requests for pro-
cessing usually require the application of a given process
to a single image, this means that subrequests need to be
generated and distributed. To account for these factors,
the design model for the low-level KSs was based on a
single master KS with multiple slave KSs, wherein the
master KSs maintain data dependencies, but distributes
the actual KS workload amongst the slave KSs.

Once the master KS has successfully established the pres-
ence of its dependent input objects, it can start the task
of satisfying its assigned goal. If the task involves op-
erations on distributed arrays the task can be split into
subtasks which use the distributed subarrays, and these
subtasks are assigned to slave KSs to achieve parallel
task execution. The master KS attempts to match the
location of the subarrays with slave KSs to minimise
inter-processor communication. Once all the slave KSs
have completed their allocated subtasks the master KS
can make any resulting blackboard objects public which
will allow any data dependencies on these objects to be
cleared.

The slave KSs are distributed amongst the processors to
execute tasks on distributed arrays in parallel and cur-
rently all transputers have copies of all slave KSs, though
this need not be the case. They suspend, waiting fora
start message from a master KS, which includes informa-
tion about which subarray the slave KS should process.
When the slave KS finishes its allocated subtask, it sends
a completion message to its master KS.

For high level vision, the tasks relate more to hypothe-
ses, but may require both image data and model based
access. There will usually be multiple hypotheses, and
there might be multiple approaches to verifying the hy-
potheses. Hence, task parallelism is likely to be the dom-
inant paradigm.

The hypotheses need not be spatially located, but most
are, because, by the nature of the computer vision prob-

165



lem, the data that substantiate the hypotheses are spa-
tially located. In processing the hypotheses, more logic
is needed than in low level vision, although substantial
data processing might also occur (e.g. when relating
model and image features to extract shape or position
parameters). While fine-grained parallelism is possible,
it has seemed to us to be more suitable to use coarser-
grained parallelism, because most processing can be as-
sociated with individual hypotheses, and the hypotheses
themselves can be spatially distributed, to be near their
supporting image data.

To account for these factors, the design model for the
high level KSs was:

\
• one KS for each reasoning process, for each proces-

sor (i.e. distributed throughout the image)

• use of the agenda to record new processing to be
applied to hypotheses

• distribution of tasks to processors near to the re-
quired data

3.2 The Blackboard Database

Figure 2: Interaction Between Blackboard Processes

The BB descriptor table is created statically and is cur-
rently defined at compile time. The BB object table
records information about the specific data objects that
have been created. Each record contains:

The blackboard is designed for four types of objects, be-
cause they seem to be the most useful types of data struc-
tures for computer vision purposes:

1. atomic items (e.g. a record structure), such as might
be used to record the properties of an image feature,

2. lists of atomic items, e.g. for recording a boundary,
or a set of hypotheses,

3. arrays, e.g. for small matrices, or sub-arrays of an
image and

4. distributed arrays (where the array is partitioned
amongst the transputers), generally used for split-
ting up an image amongst a set of transputers.

The contents of the database is managed by use of two
tables, the BB descriptor table and the BB object table.
The BB descriptor table describes the types of objects
that can be created in the blackboard, and records:

• descriptor name (e.g. "raw intensity image")

• data type (which of the above four types)

• array dimensions if array or partitioned array

• a daemon to be scheduled when instances of the data
structure are created

• user-defined object name

• unique blackboard identifier

• descriptor type

• physical location

• element size

• protection status

Access to the database is via interface subroutines taht
manage the underlying data access transparently to the
KS, irrespective of whether the data is local or remote.
Using the subroutines, a KS can create, read and write
instances of the four types of objects. In addition, it can
enable read-only access or deny access to objects.

The blackboard contents are stored in a set of dis-
tributed blackboard-data processes. In addition, there
are a set of distributed blackboard-interface processes.
KS-callable subroutines pass database access requests to
the local blackboard-interface process, which then vali-
dates the requests and forwards them to the appropriate
blackboard-data processes, which return the results to
the requesting KS. The interface routines also assem-
ble or partition distributed arrays when necessary. The
communication between the processes is managed by the
message-passing subsystem. Figure 2 shows the commu-

166



nication channels and types of messages sent between the
KS process and the blackboard management processes.

Here, the blackboard is physically distributed amongst
the transputers thus making the system data parallel.
This form of parallelism is useful for computer vision
applications that involve storing images (i.e. large ar-
rays of data), since one usually distributes image process-
ing about a processor array. Other data structures (be-
sides distributed-images) can also be stored throughout
the processor array (although they are stored complete,
rather than partitioned), so this can support efficient
task-parallelism. In any case, the knowledge sources do
not need to know where a piece of data is physically
stored (but could be applied more efficiently if invoked
nearby to where all requisite data is available).

MASTER INPUT OUTPUT SLAVES?
load image 1
ID image smooth 1 2
ID derivative 2 3,4
non-max suppress 3,4 5,6
track edges 5,6 7

N
Y
Y
Y
N

The edge tracking process could also have had slave pro-
cesses.

We describe now the sequence of actions that occur in a
goal-driven execution of the smooth jmage goal. The
initial system state has the blackboard empty. The goal
agenda contains the goal smooth jmage (imagel) with
no data dependencies attached. The sequence of actions
is:

4 Performance Using a Parallel
Canny Edge Detector

A Canny edge detector11 was implemented on the dis-
tributed blackboard system as a test domain. It was
chosen because there is substantial data parallelism in
its first three stages (image smoothing, gradient calcula-
tion and non-maximal suppression), but also task paral-
lelism in the final stage, where individual line segments
are tracked.

The Canny KSs are arranged into a hierarchy with four
master KSs (for the four Canny stages) controlling slave
KSs, each responsible for a subtask (e.g. smoothing) on
a local image subarray.

The main data structures allocated by the Canny pro-
cesses are all partitioned arrays:

1. the raw image,

2. two smoothed images (x and y smoothing),

3. two derivative images (x and y derivative),

4. the unsuppressed gradient magnitude,

5. the suppressed gradient magnitude,

6. the suppressed gradient orientation and

7. the tracked edges

These data structures (identified by the number
given above) are used by the following KS processes:

1. The scheduler dequeues the smooth jmage (im-
agel) goal and allocates it to the smooth jmage
master KS.

2. The smooth jmage master KS cannot find its
data, imagel, so it enters the load jmage (imagel)
goal into the agenda. After this it suspends itself by
re-enqueuing itself with a data dependency on im-
agel.

3. The load jmage(imagel) task is then allocated to
the load jmage KS which reads the image from file
and loads it into a newly created blackboard object
for the image.

4. The load jmage (imagel) goal is successfully com-
pleted and image 1 is made public.

5. The data dependency for the smooth jmage goal
is now cleared, and the goal is again allocated to the
smooth jmage master KS.

6. The smooth jmage master KS breaks the smooth
image task up into subtasks which operate on subar-
rays of the image, and these subtasks are distributed
to the slave KSs.

7. When all the slave KSs have finished the
smooth jmage master KS makes the resulting
smoothed image public.

The other Canny tasks are executed in a similar manner.

The blackboard system was successfully implemented
with the Canny edge detector as the test domain. The
system was tested over a range of transputer array sizes.
We report here the speedup (ratio of processing time on
one transputer to time on N transputers) and efficiency
(ratio of speedup to the number of transputers used).

The speedup and efficiency achieved are illustrated in

167



Figure 3. A maximum speedup of 21.2 (1.6 seconds on a
2562 image, excluding image loading) was achieved with
the distributed blackboard Canny experts running on 64
transputers. The speedup then drops away because of
increasing data communication costs, but still remains
at a high level. The performance achieved is satisfactory
for a first implementation of the distributed blackboard
system, and does not include tuning of the blackboard,
which would improve performance.

Running the blackboard on a single transputer took
38 seconds, as compared to 24 seconds on a SUN
3/50. Given the raw transputer performance, this
means that there is much overhead on the use of the
blackboard. However, there is still considerable scope
for further developments that will improve the perfor-
mance (including C compilers for transputers that gen-
erate more efficient code). In particular, we feel that
the database access process can be greatly streamlined,
in part by reducing communication overheads through
merging the local blackboard-interface and blackboard-
data processes. Prioritizing KSs and recording KS failure
are also planned control extensions.

Of course, it is always possible to develop special purpose
algorithm implementations that use the transputer facil-
ities directly, and thus achieve much greater efficiency.
But the distributed blackboard system described here
provides greater flexibility in a more general structure, si-
multaneously supporting both data and task parallelism,
such as are needed for systems that involve both low and
high-level image interpretation.

Acknowledgements

This work was funded by a UK Science and Engineering
Research Council Studentship. We would like to thank
R. Baldock, J. Hallam and H. Hughes for advice.

Bibliography

1. Brown, M. D., "A Distributed Blackboard System
for Vision Applications", MSc Thesis, University of
Edinburgh, Dept. of Artificial Intelligence, 1989.

2. Engelmore, R. and Morgan, T., Blackboard
Systems, Addison Wesley, 1988.

3. Aiello, N., "User-Directed Control of Parallelism:
The Cage System", Stanford University Technical
Report KSL-86-31, 1986.

4. Rice, J., "POLIGON: A System for Parallel Prob-
lem Solving", Stanford University Technical Report
KSL-86-19, 1986.

The First Three Canny Stages

30

a.
3

20-

10-

-O- Speedup
-•- Efficiency

1.200

-1.000

• 0.800

-0.600

-0.400

•0.200

.1
w
W

0.000
0 50 100 150

Number of Processors
Figure 3: The Speedup and Efficiency Achieved

5. Nii, H. P. and Aiello, N., "AGE(Attempt to GEn-
eralize):A Knowledge-Based Program for Building
Knowledge-Based Programs", in Engelmore and
Morgan (eds), Blackboard Systems, Addison Wes-
ley, pp 251-280, 1988.

6. Draper, B., Collins, R., Brolio, J., Hanson, A.
and Riseman, E., "Issues in the Development of a
Blackboard-Based Schema System for Image Un-
derstanding", in Engelmore and Morgan (eds),
Blackboard Systems, Addison Wesley, pp 189-218,
1988.

7. Hanson, A. and Riseman, E., "VISIONS: A Com-
puter System for Interpreting Scenes", in Hanson
and Riseman (eds), Computer Vision Systems, Aca-
demic Press, New York, pp 303-333, 1978.

8. Towers, S. and Baldock, R., "Application of a
Knowledge-Based System to the Interpretation of
Ultrasound Images - Preliminary Studies", Medical
Research Council technical report, Western General
Hospital, Edinburgh, 1988.

9. Clarke, L. J., "tiny Discussion and User Guide",
Report ECSP-UG-9, Edinburgh Concurrent Super-
computer Project, Univ. of Edinburgh, March 1989.

10. Hayes-Roth, B. and Hewett, M., "BBl: An
Implementation of the Blackboard Control Ar-
chitecture", in Engelmore and Morgan (eds),
Blackboard Systems, Addison Wesley, pp 297-313,

11. Canny, J. F., "Finding Edges and Lines in Images",
MIT, AI Lab, Techical report AI-TR 720, 1983.

168


