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Shape analysis of objects is a key problem in computer visitimseveral important ap-
plications in manufacturing, such as quality control angerse engineering. However,
the application of shape in computer vision has been lintiethte by the difficulties in
its computation. To build a recognition and positioningteys based on implicit curves
and surfaces it is imperative to solve the problem of how esiand surfaces can be fitted
to the data extracted from single or multiple 3D images. Ttiied process is hecessary
for automatically constructing object models and for buitgintermediate representa-
tions from observations during the recognition. Impliaitynomial surfaces are poten-
tially among the most useful object or data representafimnsse in computer vision and
image analysis. Their power appears by their ability to sthowisy data, to interpo-
late through sparse or missing data, their compactnesshaidform being commonly
used in numerous constructions. An implicit surface is i@ et of a smooth function
f: R —» R™ of then variables: Z(f) = {Z : f(¥) = 0}. Let f(Z) be animplicit
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Abstract

The ability to construct CAD or other object models from edgel range
data has a fundamental meaning in building a recognitionpositioning
system. While the problem of model fitting has been succtgsfddressed,
the problem of efficient high accuracy and stability of thérfg is still an
open problem. In the past researchers have used approxiistaace func-
tions rather than the real Euclidean distance because opuatational effi-
ciency. We now feel that machine speeds are sufficient to &skher it is
worth considering Euclidean fitting again. This paper adslitbe problem of
estimation of elliptical cylinder and cone surfaces to 3Ead#®y a constrained
Euclidean fitting. We study and compare the performanceiabua distance
functions in terms of correctness, robustness and posgamee, and present
our results improving known fitting methods by closed fornpessions of
the real Euclidean distance.

Motivation

polynomialof degreel given by

f@ =Y age-atoyl -2 =0.
(i4+j+k)<d
{i,7,k}2>0
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Then, we only have to determine the parameter{agy. } that describes the given data
best. Parameter estimation is usually cast as an optimizptoblem, which can be solved
in many ways because of different optimization criteria aaderal possible parameteri-
zations. Generally, the literature on fitting can be dividled three general techniques:
least-squares fitting (e.g. [1, 3, 9, 11, 13]), Kalman filigr{e.g. [4, 5, 6]), and robust

clustering techniques (e.g. [2, 7]). While the clusteringtihods are based on mapping
data points to the parameter space, such as the Hough tmanafa the accumulation

methods, the least-squares methods are centered on firfdirgets of parameters that
minimize some distance measures between the data pointharmdrves and surfaces.
Given a finite set of data poin® = {Z,}, p € [1, P], the problem of fitting a general

curve and surfac€(f) to D is usually cast as minimizing a distance measure

,
% S dist (7, Z(f)) — Minimum 2
=1

from the data points to the curve or surfagéf), a function of the set of parameters
{a;;i } of the polynomial. The distance from the poif) to the zero seg( f) is defined
as the minimum of the distances frafp to pointsz, in the zero seg( f):

dist(Zp, Z(f)) = min {[| &, — &, [| : f(Z:) =0} . 3)

In the past researchers have often replaced the real Eanlidistance by an approxima-
tion because of computational efficiency. For approxinrgtidten the result of evaluating
the characteristic polynomigl(%) is taken, or the first order approximation, suggested by
Taubin [15], is used. However, experiments with the Eudliddistance show the limita-
tions of approximations regarding quality and accuracyeffitting results. Additionally,
when using an approximation, the invariance of the fittingteclidean transformations is
not guaranteed. But on the other hand it is obvious that acguand stability of the fitting
has a substantial impact on the recognition performanceocésify in reverse engineering
where we desire an accurate reconstruction of 3D geometritefs of objects from range
data. Thus it is very important to get good shape estimates fthe data.

Combining Eq. (2) (to minimizes the distance error of allrgs) and Eq. (3) (to get the
distance error of one point) to get the fitting algorithm oa#trdata points will lead to
algorithms of different computational complexity (see [Eab).

Algorithm distance computation minimization
Algebraic closed form closed form
Taubin closed form iterative
Euclidean sometimes closed, sometimes iterative iterativ

Table 1: Computational properties of the three distancesomes: algebraic distance,
Taubin’s approximation, and Euclidean distance

Given the doubly iterative nature of the Euclidean form, sneasearchers have avoided
it. However, we show below that the time difference is noualty so bad as maybe
expected. In this paper we

1. summarize how to compute the Euclidean distance funétioalliptical cylinder
and cone surfaces, These are probably the most commonlyetezed shapes in
reverse engineering (pipes and blending) after planaasast



2. give an efficient algorithm for least-squares fitting gsthe Euclidean distance,
and

3. compare this fitting to well-known fitting distance measufalgebraic and Taubin)
and concludes that the Euclidean distance is much moreatecamd stable without
extraordinary computational expense.

2 Closed-form expression for the Euclidean distance

For primitive surfaces like planes, cylinders, and conesié is a closed form expression
for the Euclidean distance from a point to the zero set andseehese. While the closed
form expression for the distance between a point and a ptamiwial, we will show how
the Euclidean distance can be estimated in a closed forrmfelligtical cylinder and an
elliptical cone.

It is a well-known that the most fitting methods are not posaiiant (see Sec. 4). To
improve the pose invariance of the fittings wermalizethe data set in terms of general
moments to affine transformations at first. For a detailedilg$on on how to normalize
the data set we refer to the appropriate, numerous litexgtug. [10, 14]). Applying the
normalization we get the data set in a so-cale&ghdard positiorwith respect to a given
transformation, here the Affine transformation. The stadgesition can be understood
as a special representative of the equivalence class porrdsg to the transformation.
If the data set is in standard position, it is ensured thatet@ymore stable fitting results
for all methods, and b) the framework to estimate the Eualidéistance can be simplified
for the elliptical cylinder and elliptical cone substatifialn particular, we normalize by
moving the data into standard position, translation by #rgrid to the origin, rotation
of the principal axes of the data aligned with the coordiraies, and anisotropic scaling
to fit in the unit cube.

2.1 Elliptical cylinder

If the generatixg of the elliptical cylinder is parallel to one axis, e.g. héhne z axis,
any arbitrary normalized elliptical cylinder can be exmed by the implicit polynomial
Z(f) = a2007” + ao20y? + @110y + a100Z + a010Y + G001 2 + agoo With asgg, agzo > 0.
The estimation of the Euclidean distance can be reducee stimation of the Euclidean
distance to the directrid, here an ellipseZ (d) = asp0x? + ag20y? + a1107y + ar00% +
ag10Y + Gooo, @200, ag2o > 0. Thus, to estimate the Euclidean distance for an elliptical
cylinder we only have to estimate the Euclidean distancentelbpse. For a detailed
description on how to estimate the Euclidean distance taeointz, and the ellipse
Z(f) in closed form we refer to [8].

If the Euclidean distance is given, we have to consider ifgstémated:; belongs to the
cylinder element or not, which means if the generagrdf the elliptical cylinder is infinite
in length or not. In case of a finite generatrix we can simptineste the point, € Z(f)
nearest tae; (see Fig. 1b.).

|17, — T || if g = oo
|2, — Z|| else

distg (7, Z(f)) = { (4)
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Figure 1: Estimation oflist (£, Z(f)) for an elliptical cylinder.z, is the nearest point
to Z, on the (infinite) cylinder. 1f; does not belong to the cylinder elemefit,can be
used.

2.2 Elliptical Cone

If the generatixg of the elliptical cone is parallel to one axis, e.g. here thaxis, any
arbitrary normalized elliptical cone can be expressed Byirtplicit polynomialZ(f) =
2007 + Ag20y? + App22” + a1102Y + a100% + 10y + Aoo1 2 With asgg, agao > 0 and
ago2 < 0. From the{a;; } the fixed point, (vertex of the cone) can be directly deduced.
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The estimation of the Euclidean distance can be done in assFirst the estimation of
the Euclidean distance can be reduced to the estimatiorediticlidean distance to the
directrix d, here an ellipSeZ (d) = ayp02> + agegy? + a1102Y + G102 + Ag10Y + o0
00, Agao > 0. Now, the parameterd and B (axis of the directrixd) can be deduced
from the{a;, }

A=/h/x, B=+/h/X

/\1,2:% (%00 + agy = \/(ahg — agyg)? + (a’l]]O)Q) 6)

h =-— (“20037% + Agap¥s + 2a110%cYe + 20109Te + 20010Ye + “000)

Note, this step is similar to that in the previous section,{lm}jk} are different to{a;;r }.

In the second step th& with (£, — #;) L (£, — #;) is determined, which yields the
Euclidean distance. The only problem left is how to estinigteTherefore, we estimate
#, located on the directrid of the cone (see Fig. 2b.). Thef can be estimated using
simple geometric relations (see Fig. 2a.). Then, the esitimaf the Euclidean distance
is trivial using Eqg. 4. In the case that the estimafgdoes not belong to the cone element
(see Fig. 2c.), the reasoning is similar to that in the presisection.

3 Euclidean Surface Fitting

To overcome the problems with the approximate distanceicsetit is natural to use
instead the Euclidean distance, which is invariant to fiamnsations in Euclidean space
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Figure 2: Estimation oflist z (#,, Z(f)) for an elliptical cone #, is the nearest point to
%, on the (infinite) cone. I¥; does not belong to the cone elememhican be used.

and is not biased. In Sec. 2 we showed how the Euclidean distean be estimated
between a point and an elliptical cylinder or an ellipticahe. Given the Euclidean
distancelist g (Zp, Z(f)) for each point the following fitting method can be used:

1. The Euclidean fitting requires an initial estimate for pfagameterga;;« } and we
have found (cf. Sec. 4) that the results of Taubin’s fittinghmoe are better than the
others. We get the initial parameter e, }[°.

2. In the second step the estimation is updated using thenbevg-Marquardtl(M)
algorithm{a;;. }*+') = Fy,pr ({aiji }1*!). TheLM algorithm has become the stan-
dard of nonlinear optimization routines, because it corabithe inherent stability
of the Steepest Gradient Descent with the quadratic coevergrate of the Gauss-
Newton method.

3. Finally the new estimatiofia, ;. }'**'! is evaluated by a so-calléd-estimator(
on the basis oflist s (Z,, Z(f)). {aijx }*+"] will be accepted ifC({a;;, }*+') <
L({aijx }*!) and the fitting will be continued with step 2. Otherwise therfy is
terminated anda;;; }'*! is the desired solution. The problem of selecting a suitable
error function was discussed in e.g. [12] and [17]. A good choice may be the so
calledZ, (least powey function which represents a family of functions including
the two commonly used function%, (absolute powerwith v = 1 and £, (least
square¥with v = 2. In practise, we usg, » for 3 iterations, remove th&)% worst
data points using a histogram analysis and continue thegfittith the commonly
used(, estimator.

4 Experimental results

In the previous section we described how to estimate thardistbetween a point and an
elliptical cylinder or an elliptical cone and how to appnméte a surface by an Euclidean
fitting based on the estimated Euclidean distance. In tlokosewe summarize empirical

testing of the proposed fitting method in terms of efficieroryrectness and robustness
for both simulated and real data. In case of simulated dathave generated data sets
which describe (elliptical) cylinders and cones. The 3Dadaere generated by adding



isotropic Gaussian noise = {1%, 5%, 10%}. Additionally the surfaces were partially
occluded. The visible surfaces were varied betwegh(maximal case) and/6 of the
full 3D cylinder. The performance of Euclidean fittingK) is compared with Algebraic
fitting (AF), and Taubin’s fitting TF). Finally, we look to the pose invariance of the fitting
methods. For all experiments we include in all three fittingtnods the same constraints
which describe the expected surface type to enforce thedfittf a special surface type.

4.1 Efficiency

A good fitting algorithm has to be as efficient as possible imgeof run time and formal
complexity. While the problem of computational cost is noder a really hard problem
because of the rapidly increasing machine speed, we shaadhgtee the fitting with
acceptable computational cost as well as the algorithm reidtively low complexity.
All algorithms have been implemented in C and the computatias performed on a
Pentium Il 466 MHz. The average computational costs foXReTF, EF are in Tab. 2.

Table 2: Average computational costs in milliseconds p&0l@oints.

AF TF EF
Circular cylinder 3.583 3.625 12.375
Elliptical cylinder 13.292 13.958 241.667
Circular cone 15.667 15.833 288.375
Elliptical cone 15.042 15.375 291.958

As expected thé\F and TF supply the best performance. TE& algorithm requires a
repeated search for the pointclosest taz,, and the calculation of the Euclidean distance.
A quick review of the values in Tab.2 shows that the compoieti costs increase if we
fit an elliptical cylinder, a circular or an elliptical conlgecause the distance estimation is
more complicated. In summary the efficiency isan of EF, but is bounded by a factor
of about 20 times the performance of the other algorithmsiargdill computationally
reasonable for up td0® data points if real-time performance is not needed.

4.2 Correctness

It is obviously that the fitting result should describe théadset by the correct surface
type. That means that it should not fit a false type to the detaverify the correctness
we tested if the fitting result of the (constrained) eigeneadnalysis corresponds to the
general surface invariants. If one solution satisfies thalitmns for the surface type, it
is assumed that the fitting is correct in sense of an inteaiptetreal surface. Otherwise,
the fitting will be defined as failure. In our experimewE failed up to 23%, especially
in case of a higher noise level and a sparse data set (see.3ed¢-@rTF andEF we had
no failures in our experiments. In summary the correctnespio of EF.

4.3 Robustness

A fitting method must degrade gracefully with increasingsedn the data, with a decrease
in the available relevant data, and with an increase in tie¢eivant data. To evaluate the
robustness of the proposé&F, we use synthetic generated data describing an elliptical
cylinder by adding isotropic Gaussian noise= {1%, 5%, 10%, 20%} and patrtially oc-
clusion exposing betweely2 (maximal case) and/6 of the full 3D cylinder. In the



first experiment the number of 3D points for the simulatednzidr wasn = 100 and to
measure the average fitting error each experiment runs &r@¥#ti The reported error is
the Euclidean geometric distance between the 3D data paiicishe estimated surfaces.
The mean squares errofgI$Es) and standard deviations of the different fittings are in
Fig. 3.
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Figure 3: Average least squares error fitting a syntheticcgeed cylinder with added
Gaussian noise = {1%, 5%, 10%,20%}. The visible surfaces were observed between
1/2 (maximal case) antl/6 of the full 3D cylinder. The number of trials was 100.

As expected,TF and EF yield the best results respect with to the mean and standard
deviation, and the mean f&F is always lower than for the other two algorithms. The
results ofAF are only partially acceptable, because of the mean andahdatd deviation.

In the direct comparison ofF with EF the results oEF are much better. As mentioned
in Sec.4.2 AF can sometimes give wrong results which means that the fitteeeoor
surface types does not come up with our expectations. Wewvednall failed fittings out
of the considerations.

In the second experiment, the number of 3D points was stepdésreased from =
3000 down ton = 30 3D data points to evaluate the behaviour of the severaldittin
methods. Each experiment runs 100 times. The mean squares®SEs) and standard
deviations of the different fittings are in Fig. 4.
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Figure 4: Average least squares error fitting a syntheticegeed cylinder with added
Gaussian noise = {1%,5%,10%,20%}. The number of 3D points was stepwise de-
creased fron8000 up to50. The visible surfaces wasg/12 of the full 3D cylinder. The
number of trials was 100.

As expectedTF andEF yield also the best results in this experiment. With decrdas
point density especially th&F becomes more and more unstable which is reflected in the



mean and standard deviation. UnexpectedlyBRes very stable even with only = 10

3D data points. Reviewing some visualized fitting resultsafesynthetic data set (see
Fig. 5) we can assume that the resultEéf are much better in the sense of robustness
and the expected surface than the resultalfindTF. While the robustness (see Fig. 3
and 4) of TF is better tharAF, the fitted surfaces of both fitting methods are mostly larger
than the optimal surface. The resultsiEf are both robust and they correspond much
more to our expectations. In summary the robustness islglagro of EF.
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Figure 5: Fitting results for a synthetic generated data Ebé noise level was zero and
the visible surfacd /6 of the full 3D cylinder. Note, the maximal visible surfacelif2
of the full 3D cylinder.

4.4 Pose invariance

It is obviously that the fitting results should be pose inaati But, it is well known
that this reasonable and necessary requirement cannowvbgsafjuaranteed by all three
viewed fitting methods. To evaluate the pose invariance waueal data set (see Fig. 6a.)
describing an elliptical cylinder. The normalized datavses a) shifted, b) rotated, and c)
both rotated and shifted. A quick review of the residudSE in Tab. 3 shows\F and
TF are not pose invariant while th&- is pose invariant. To illustrate the pose dependency,
the fitting results for position 3 are visualized in Fig. 6.

As we can sed\F yields an elliptical cylinder with correct direction butadarge radii,
while the results o F is an elliptical cylinder with a correct direction but too atiradii.
The result ofEF describes the data set best (cmp. Tab. 3). In summary posganee is
clearly apro of EF.



Table 3: Residuals fitting an elliptical cylinder. The notized cylinder was shifted by
t =[0.3,0.2,0.1] (pos. 1), rotated by = x/12 andn = [0.5,1.0,0.5] (pos. 2), shifted
and rotated (pos. 3).

normal pos position 1 position 2 position 3
AF [1077] 0.5242 2.0181 2.6950 1.8271
TF [1077] 0.5024 1.5143 2.0277 1.3817
EF [1073] 0.4021 0.4152 0.8634 0.6088

a. Real data. b. Algebraic fitting.

d. Taubin’s fitting. d. Euclidean fitting.

Figure 6: Fitting results for a real range data ( points). mbanalized data set was shifted
byt =[0.3,0.2,0.1] and rotated by = = /12 andn = [0.5, 1.0, 0.5].

5 Conclusion

We revisited the Euclidean fitting of elliptical cylindesaid conical surfaces to 3D data to
investigate if it is worth considering Euclidean fitting agar he focus was on the quality
and robustness of Euclidean fitting compared with the conynosed Algebraic and
Taubin’s fitting. Now, we can conclude that robustness acd@cy increases sufficiently
compared to the other methods and Euclidean fitting is maidestvith increased noise,
as well as invariant to Euclidean transformations.



The main disadvantage of the Euclidean fitting, computatioast, has become less im-
portant due to rising computing speed. In our experimergsctbmputational costs of
Euclidean fitting were only about 2-19 times worse than TaslHfitting. This relation
probably cannot be improved substantially in favor of Edetin fitting, but the absolute
computational costs are becoming an insignificant detetoensage, especially if high
accuracy is required.
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