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Abstract

The ability to construct CAD or other object models from edgeand range
data has a fundamental meaning in building a recognition andpositioning
system. While the problem of model fitting has been successfully addressed,
the problem of efficient high accuracy and stability of the fitting is still an
open problem. In the past researchers have used approximatedistance func-
tions rather than the real Euclidean distance because of computational effi-
ciency. We now feel that machine speeds are sufficient to ask whether it is
worth considering Euclidean fitting again. This paper address the problem of
estimation of elliptical cylinder and cone surfaces to 3D data by a constrained
Euclidean fitting. We study and compare the performance of various distance
functions in terms of correctness, robustness and pose invariance, and present
our results improving known fitting methods by closed form expressions of
the real Euclidean distance.

1 Motivation

Shape analysis of objects is a key problem in computer visionwith several important ap-
plications in manufacturing, such as quality control and reverse engineering. However,
the application of shape in computer vision has been limitedto date by the difficulties in
its computation. To build a recognition and positioning system based on implicit curves
and surfaces it is imperative to solve the problem of how curves and surfaces can be fitted
to the data extracted from single or multiple 3D images. The fitting process is necessary
for automatically constructing object models and for building intermediate representa-
tions from observations during the recognition. Implicit polynomial surfaces are poten-
tially among the most useful object or data representationsfor use in computer vision and
image analysis. Their power appears by their ability to smooth noisy data, to interpo-
late through sparse or missing data, their compactness and their form being commonly
used in numerous constructions. An implicit surface is the zero set of a smooth functionf : Rn ! Rm of then variables:Z(f) = f~x : f(~x) = 0g. Let f(~x) be animplicit
polynomialof degreed given byf(~x) = X(i+j+k)�dfi;j;kg�0aijk � xi � yj � zk = 0 : (1)�The work was funded by the CAMERA (CAd Modelling of Built Environments fromRangeAnalysis)
project, an EC TMR network (ERB FMRX-CT97-0127).



Then, we only have to determine the parameter setfaijkg that describes the given data
best. Parameter estimation is usually cast as an optimization problem, which can be solved
in many ways because of different optimization criteria andseveral possible parameteri-
zations. Generally, the literature on fitting can be dividedinto three general techniques:
least-squares fitting (e.g. [1, 3, 9, 11, 13]), Kalman filtering (e.g. [4, 5, 6]), and robust
clustering techniques (e.g. [2, 7]). While the clustering methods are based on mapping
data points to the parameter space, such as the Hough transform and the accumulation
methods, the least-squares methods are centered on finding the sets of parameters that
minimize some distance measures between the data points andthe curves and surfaces.
Given a finite set of data pointsD = f~xpg, p 2 [1; P ℄, the problem of fitting a general
curve and surfaceZ(f) toD is usually cast as minimizing a distance measure1P PXp=1 dist (~xp;Z(f))! Minimum (2)

from the data points to the curve or surfaceZ(f), a function of the set of parametersfaijkg of the polynomial. The distance from the point~xp to the zero setZ(f) is defined
as the minimum of the distances from~xp to points~xt in the zero setZ(f):dist(~xp;Z(f)) = min fk ~xp � ~xt k : f(~xt) = 0g : (3)

In the past researchers have often replaced the real Euclidean distance by an approxima-
tion because of computational efficiency. For approximation, often the result of evaluating
the characteristic polynomialf(~x) is taken, or the first order approximation, suggested by
Taubin [15], is used. However, experiments with the Euclidean distance show the limita-
tions of approximations regarding quality and accuracy of the fitting results. Additionally,
when using an approximation, the invariance of the fitting toEuclidean transformations is
not guaranteed. But on the other hand it is obvious that accuracy and stability of the fitting
has a substantial impact on the recognition performance especially in reverse engineering
where we desire an accurate reconstruction of 3D geometric models of objects from range
data. Thus it is very important to get good shape estimates from the data.
Combining Eq. (2) (to minimizes the distance error of all points) and Eq. (3) (to get the
distance error of one point) to get the fitting algorithm overall data points will lead to
algorithms of different computational complexity (see Table 1).

Algorithm distance computation minimization
Algebraic closed form closed form
Taubin closed form iterative
Euclidean sometimes closed, sometimes iterative iterative

Table 1: Computational properties of the three distance measures: algebraic distance,
Taubin’s approximation, and Euclidean distance

Given the doubly iterative nature of the Euclidean form, many researchers have avoided
it. However, we show below that the time difference is not actually so bad as maybe
expected. In this paper we

1. summarize how to compute the Euclidean distance functionfor elliptical cylinder
and cone surfaces, These are probably the most commonly encountered shapes in
reverse engineering (pipes and blending) after planar surfaces.



2. give an efficient algorithm for least-squares fitting using the Euclidean distance,
and

3. compare this fitting to well-known fitting distance measures (algebraic and Taubin)
and concludes that the Euclidean distance is much more accurate and stable without
extraordinary computational expense.

2 Closed-form expression for the Euclidean distance

For primitive surfaces like planes, cylinders, and cones, there is a closed form expression
for the Euclidean distance from a point to the zero set and we use these. While the closed
form expression for the distance between a point and a plane is trivial, we will show how
the Euclidean distance can be estimated in a closed form for an elliptical cylinder and an
elliptical cone.
It is a well-known that the most fitting methods are not pose invariant (see Sec. 4). To
improve the pose invariance of the fittings wenormalizethe data set in terms of general
moments to affine transformations at first. For a detailed description on how to normalize
the data set we refer to the appropriate, numerous literature (e.g. [10, 14]). Applying the
normalization we get the data set in a so-calledstandard positionwith respect to a given
transformation, here the Affine transformation. The standard position can be understood
as a special representative of the equivalence class corresponding to the transformation.
If the data set is in standard position, it is ensured that we get a) more stable fitting results
for all methods, and b) the framework to estimate the Euclidean distance can be simplified
for the elliptical cylinder and elliptical cone substantially. In particular, we normalize by
moving the data into standard position, translation by the centroid to the origin, rotation
of the principal axes of the data aligned with the coordinateaxes, and anisotropic scaling
to fit in the unit cube.

2.1 Elliptical cylinder

If the generatixg of the elliptical cylinder is parallel to one axis, e.g. herethe z axis,
any arbitrary normalized elliptical cylinder can be expressed by the implicit polynomialZ(f) = a200x2+a020y2+a110xy+a100x+a010y+a001z+a000 with a200; a020 > 0.
The estimation of the Euclidean distance can be reduced to the estimation of the Euclidean
distance to the directrixd, here an ellipseZ(d) = a200x2 + a020y2 + a110xy + a100x+a010y + a000, a200; a020 > 0. Thus, to estimate the Euclidean distance for an elliptical
cylinder we only have to estimate the Euclidean distance to an ellipse. For a detailed
description on how to estimate the Euclidean distance between a point~xp and the ellipseZ(f) in closed form we refer to [8].
If the Euclidean distance is given, we have to consider if theestimated~xt belongs to the
cylinder element or not, which means if the generatrixg of the elliptical cylinder is infinite
in length or not. In case of a finite generatrix we can simply estimate the point~xr 2 Z(f)
nearest to~xt (see Fig. 1b.).distE (~xp;Z(f)) = � k~xp � ~xt k if g !1k~xp � ~xrk else

(4)
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Figure 1: Estimation ofdistE(~xp;Z(f)) for an elliptical cylinder.~xt is the nearest point
to ~xp on the (infinite) cylinder. If~xt does not belong to the cylinder element,~xr can be
used.

2.2 Elliptical Cone

If the generatixg of the elliptical cone is parallel to one axis, e.g. here the zaxis, any
arbitrary normalized elliptical cone can be expressed by the implicit polynomialZ(f) =a200x2 + a020y2 + a002z2 + a110xy + a100x + a010y + a001z with a200; a020 > 0 anda002 < 0. From thefaijkg the fixed point~x0 (vertex of the cone) can be directly deduced.~x0 = �0� a200 12a110 012a110 a020 00 0 a002 1A�1�0� a100a010a001 1A (5)

The estimation of the Euclidean distance can be done in two steps. First the estimation of
the Euclidean distance can be reduced to the estimation of the Euclidean distance to the
directrix d, here an ellipseZ(d) = a0200x2 + a0020y2 + a0110xy + a0100x+ a0010y + a0000,a0200; a0020 > 0. Now, the parametersA andB (axis of the directrixd) can be deduced
from thefa0ijkgA =ph=�1 ; B =ph=�2�1;2= 12 �a0200 + a0020 �p(a0200 � a0020)2 + (a0110)2�h =��a0200x2 + a0020y2 + 2a0110xy + 2a0100x + 2a0010y + a0000� (6)

Note, this step is similar to that in the previous section, but fa0ijkg are different tofaijkg.
In the second step the~xt with (~xo � ~xt) ? (~xp � ~xt) is determined, which yields the
Euclidean distance. The only problem left is how to estimate~xt. Therefore, we estimate~x 0t located on the directrixd of the cone (see Fig. 2b.). Then~xt can be estimated using
simple geometric relations (see Fig. 2a.). Then, the estimation of the Euclidean distance
is trivial using Eq. 4. In the case that the estimated~xt does not belong to the cone element
(see Fig. 2c.), the reasoning is similar to that in the previous section.

3 Euclidean Surface Fitting

To overcome the problems with the approximate distance metrics, it is natural to use
instead the Euclidean distance, which is invariant to transformations in Euclidean space
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Figure 2: Estimation ofdistE(~xp;Z(f)) for an elliptical cone.~xt is the nearest point to~xp on the (infinite) cone. If~xt does not belong to the cone element,~xr can be used.

and is not biased. In Sec. 2 we showed how the Euclidean distance can be estimated
between a point and an elliptical cylinder or an elliptical cone. Given the Euclidean
distancedistE(~xp;Z(f)) for each point the following fitting method can be used:

1. The Euclidean fitting requires an initial estimate for theparametersfaijkg and we
have found (cf. Sec. 4) that the results of Taubin’s fitting method are better than the
others. We get the initial parameter setfaijkg[0℄.

2. In the second step the estimation is updated using the Levenberg-Marquardt (LM)
algorithmfaijkg[s+1℄ = FLM (faijkg[s℄). TheLM algorithm has become the stan-
dard of nonlinear optimization routines, because it combines the inherent stability
of the Steepest Gradient Descent with the quadratic convergence rate of the Gauss-
Newton method.

3. Finally the new estimationfaijkg[s+1℄ is evaluated by a so-calledM-estimatorL
on the basis ofdistE(~xp;Z(f)). faijkg[s+1℄ will be accepted ifL(faijkg[s+1℄) <L(faijkg[s℄) and the fitting will be continued with step 2. Otherwise the fitting is
terminated andfaijkg[s℄ is the desired solution. The problem of selecting a suitable
error functionL was discussed in e.g. [12] and [17]. A good choice may be the so-
calledL� (least power) function which represents a family of functions including
the two commonly used functionsL1 (absolute power) with � = 1 andL2 (least
squares) with � = 2. In practise, we useL1:2 for 3 iterations, remove the10%worst
data points using a histogram analysis and continue the fitting with the commonly
usedL2 estimator.

4 Experimental results

In the previous section we described how to estimate the distance between a point and an
elliptical cylinder or an elliptical cone and how to approximate a surface by an Euclidean
fitting based on the estimated Euclidean distance. In this section we summarize empirical
testing of the proposed fitting method in terms of efficiency,correctness and robustness
for both simulated and real data. In case of simulated data wehave generated data sets
which describe (elliptical) cylinders and cones. The 3D data were generated by adding



isotropic Gaussian noise� = f1%; 5%; 10%g. Additionally the surfaces were partially
occluded. The visible surfaces were varied between1=2 (maximal case) and1=6 of the
full 3D cylinder. The performance of Euclidean fitting (EF) is compared with Algebraic
fitting (AF), and Taubin’s fitting (TF). Finally, we look to the pose invariance of the fitting
methods. For all experiments we include in all three fitting methods the same constraints
which describe the expected surface type to enforce the fitting of a special surface type.

4.1 Efficiency

A good fitting algorithm has to be as efficient as possible in terms of run time and formal
complexity. While the problem of computational cost is no longer a really hard problem
because of the rapidly increasing machine speed, we should guarantee the fitting with
acceptable computational cost as well as the algorithm withrelatively low complexity.
All algorithms have been implemented in C and the computation was performed on a
Pentium III 466 MHz. The average computational costs for theAF, TF, EF are in Tab. 2.

Table 2: Average computational costs in milliseconds per 1000 points.
AF TF EF

Circular cylinder 3.583 3.625 12.375
Elliptical cylinder 13.292 13.958 241.667
Circular cone 15.667 15.833 288.375
Elliptical cone 15.042 15.375 291.958

As expected theAF andTF supply the best performance. TheEF algorithm requires a
repeated search for the pointxt closest toxp and the calculation of the Euclidean distance.
A quick review of the values in Tab.2 shows that the computational costs increase if we
fit an elliptical cylinder, a circular or an elliptical cone,because the distance estimation is
more complicated. In summary the efficiency is aconof EF, but is bounded by a factor
of about 20 times the performance of the other algorithms andis still computationally
reasonable for up to106 data points if real-time performance is not needed.

4.2 Correctness

It is obviously that the fitting result should describe the data set by the correct surface
type. That means that it should not fit a false type to the data.To verify the correctness
we tested if the fitting result of the (constrained) eigenvalue analysis corresponds to the
general surface invariants. If one solution satisfies the conditions for the surface type, it
is assumed that the fitting is correct in sense of an interpretable real surface. Otherwise,
the fitting will be defined as failure. In our experimentsAF failed up to 23%, especially
in case of a higher noise level and a sparse data set (see Sec. 4.3). ForTF andEF we had
no failures in our experiments. In summary the correctness is apro of EF.

4.3 Robustness

A fitting method must degrade gracefully with increasing noise in the data, with a decrease
in the available relevant data, and with an increase in the irrelevant data. To evaluate the
robustness of the proposedEF, we use synthetic generated data describing an elliptical
cylinder by adding isotropic Gaussian noise� = f1%; 5%; 10%; 20%g and partially oc-
clusion exposing between1=2 (maximal case) and1=6 of the full 3D cylinder. In the



first experiment the number of 3D points for the simulated cylinder wasn = 100 and to
measure the average fitting error each experiment runs 100 times. The reported error is
the Euclidean geometric distance between the 3D data pointsand the estimated surfaces.
The mean squares errors (MSE’s) and standard deviations of the different fittings are in
Fig. 3.
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a. Algebraic fitting. b. Taubin’s fitting. c. Euclidean fitting.

Figure 3: Average least squares error fitting a synthetic generated cylinder with added
Gaussian noise� = f1%; 5%; 10%; 20%g. The visible surfaces were observed between1=2 (maximal case) and1=6 of the full 3D cylinder. The number of trials was 100.

As expected,TF and EF yield the best results respect with to the mean and standard
deviation, and the mean forEF is always lower than for the other two algorithms. The
results ofAF are only partially acceptable, because of the mean and the standard deviation.
In the direct comparison ofTF with EF the results ofEF are much better. As mentioned
in Sec.4.2,AF can sometimes give wrong results which means that the fitted curve or
surface types does not come up with our expectations. We removed all failed fittings out
of the considerations.
In the second experiment, the number of 3D points was stepwise decreased fromn =3000 down ton = 30 3D data points to evaluate the behaviour of the several fitting
methods. Each experiment runs 100 times. The mean squares errors (MSE’s) and standard
deviations of the different fittings are in Fig. 4.
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Figure 4: Average least squares error fitting a synthetic generated cylinder with added
Gaussian noise� = f1%; 5%; 10%; 20%g. The number of 3D points was stepwise de-
creased from3000 up to50. The visible surfaces was5=12 of the full 3D cylinder. The
number of trials was 100.

As expected,TF andEF yield also the best results in this experiment. With decreased
point density especially theAF becomes more and more unstable which is reflected in the



mean and standard deviation. Unexpectedly, theEF is very stable even with onlyn = 10
3D data points. Reviewing some visualized fitting results for a synthetic data set (see
Fig. 5) we can assume that the results ofEF are much better in the sense of robustness
and the expected surface than the results ofAF andTF. While the robustness (see Fig. 3
and 4) ofTF is better thanAF, the fitted surfaces of both fitting methods are mostly larger
than the optimal surface. The results ofEF are both robust and they correspond much
more to our expectations. In summary the robustness is clearly a pro of EF.

Synthetic data. True shape.n = 100 � = 5%� = 1% � = 10% n = 500 n = 10
AF

TF

EF

Figure 5: Fitting results for a synthetic generated data set. The noise level was zero and
the visible surface1=6 of the full 3D cylinder. Note, the maximal visible surface is1=2
of the full 3D cylinder.

4.4 Pose invariance

It is obviously that the fitting results should be pose invariant. But, it is well known
that this reasonable and necessary requirement cannot be always guaranteed by all three
viewed fitting methods. To evaluate the pose invariance we use a real data set (see Fig. 6a.)
describing an elliptical cylinder. The normalized data setwas a) shifted, b) rotated, and c)
both rotated and shifted. A quick review of the residuals (MSE) in Tab. 3 showsAF and
TF are not pose invariant while theEF is pose invariant. To illustrate the pose dependency,
the fitting results for position 3 are visualized in Fig. 6.
As we can seeAF yields an elliptical cylinder with correct direction but too large radii,
while the results ofTF is an elliptical cylinder with a correct direction but too small radii.
The result ofEF describes the data set best (cmp. Tab. 3). In summary pose invariance is
clearly apro of EF.



Table 3: Residuals fitting an elliptical cylinder. The normalized cylinder was shifted byt = [0:3; 0:2; 0:1℄ (pos. 1), rotated by# = �=12 andn = [0:5; 1:0; 0:5℄ (pos. 2), shifted
and rotated (pos. 3).

normal pos position 1 position 2 position 3
AF [10�3℄ 0:5242 2:0181 2:6950 1:8271
TF [10�3℄ 0:5024 1:5143 2:0277 1:3817
EF [10�3℄ 0:4021 0:4152 0:8634 0:6088

a. Real data. b. Algebraic fitting.

d. Taubin’s fitting. d. Euclidean fitting.

Figure 6: Fitting results for a real range data ( points). Thenormalized data set was shifted
by t = [0:3; 0:2; 0:1℄ and rotated by# = �=12 andn = [0:5; 1:0; 0:5℄.
5 Conclusion

We revisited the Euclidean fitting of elliptical cylinderaland conical surfaces to 3D data to
investigate if it is worth considering Euclidean fitting again. The focus was on the quality
and robustness of Euclidean fitting compared with the commonly used Algebraic and
Taubin’s fitting. Now, we can conclude that robustness and accuracy increases sufficiently
compared to the other methods and Euclidean fitting is more stable with increased noise,
as well as invariant to Euclidean transformations.



The main disadvantage of the Euclidean fitting, computational cost, has become less im-
portant due to rising computing speed. In our experiments the computational costs of
Euclidean fitting were only about 2-19 times worse than Taubin’s fitting. This relation
probably cannot be improved substantially in favor of Euclidean fitting, but the absolute
computational costs are becoming an insignificant deterrent to usage, especially if high
accuracy is required.
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