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Abstract

As gait pathology assessment systems improve both in accuracy and
efficiency, the prospect of using these systems in real healthcare appli-
cations is becoming more realistic. Although gait analysis systems have
proven capable of detecting gait abnormalities in supervised tasks in labo-
ratories and clinics, there is comparatively little investigation into making
such systems explainable to healthcare professionals who would use gait
analysis in practice in home-based settings. There is a “black box” prob-
lem with existing machine learning models, where healthcare professionals
are expected to “trust” the model making diagnoses without understand-
ing its underlying reasoning. To address this applicational barrier, an
end-to-end pipeline is introduced here for creating graph feature embed-
dings, generated using a bespoke Spatio-temporal Graph Convolutional
Network and per-joint Principal Component Analysis. The latent graph
embeddings produced by this framework led to a novel semi-supervised
weighting function which quantifies and ranks the most important joint
features, which are used to provide a description for each pathology. Us-
ing these embeddings with a K-means clustering approach, the proposed
method also outperforms the state-of-the-art by between 4.53% - 16% in
classification accuracy across 3 datasets with at total of 14 different sim-
ulated gait pathologies from minor limping to Ataxic gait. The resulting
system provides a workable improvement to at-home gait assessment ap-
plications by providing accurate and explainable descriptions of the nature
of detected gait abnormalities without need of prior labeled descriptions
of detected pathologies.

1 Introduction

Gait assessment using computer vision is a demonstrably effective method
for detecting gait abnormalities, particularly in older adults or people af-
fected by age-related diseases (Tian et al., 2024; Zhang et al., 2023; Liu
et al., 2023; Sepas-Moghaddam and Etemad, 2022). Beyond the relatively
simpler problems of person recognition or fall detection which have been
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developed to clinically high accuracy (Yhdego et al., 2021; Zhao et al.,
2018; Wang et al., 2020), the attention of researchers has turned to the
more complex task of gait abnormality assessment. Gait assessment is
defined as the task of identifying changes in the gait of an individual or
similar changes across individuals (i.e. the presence of a limp) in con-
trast to gait recognition, which concerns person identification using only
gait data. This problem domain is useful for the detection and monitor-
ing of diseases (Fernandes et al., 2018; Gholami et al., 2023; Guo et al.,
2022), the assessment of at-home safety (Pais et al., 2020; Xue et al.,
2018) and the quantification of health attributes like patient stability and
balance (Tao and Yun, 2017; Jeon et al., 2021).

There are two core gaps in gait assessment that act as a barrier between
research and real world use: 1) the lack of research on unsupervised gait
assessment problems and 2) the lack of explainability in gait assessment
models. Research focusing on gait assessment tends to use supervised
tasks with labeled datasets featuring distinct gait pathologies to train
their models (Tian et al., 2024; Yin et al., 2023; Nguyen et al., 2018)
but in application - for example in an at-home gait monitoring system
- these models are likely to only have access to examples of a person’s
current gait. Explainability is vital in this domain, as low acceptance in
application is often attributed to be a result of lack of interpretability by
users (Braspenning et al., 2022; Hunter et al., 2020; Itoh et al., 2022).

This work proposes an ensemble approach using trained Graph Convo-
lutional Networks and Principal Component Analysis (PCA) for produc-
ing highly descriptive feature embeddings which are more readily separa-
ble using K-means clustering than regular gait graph data. GCN-based
architectures are extremely useful in this domain as representing gait as
graphs is typically the superior method in domains where laboratory con-
ditions are not used for data recording and accurate joint key-point ex-
traction is difficult. Dimensionality reduction methods such as PCA then
have utility in simplifying these gait graphs into more explainable repre-
sentations. Using these embeddings, a novel weighted feature importance
score is developed. This score quantifies the importance of different body
key-points for distinguishing between a cluster representing a pathology
and the cluster representing a patient’s “regular” gait. This score is cal-
culated using a semi-supervised paradigm, in which the method is only
aware of which cluster represents ‘normal’ gait, with the other clusters
remaining unlabeled and without explicit context of the type of patholo-
gies they exhibit. This novel scoring system provides vital explainability
to a model’s prediction of gait by illustrating the model’s decisions by its
observations of each body part.

To achieve the goal of developing a more explainable gait assessment
system with potential real-life applications in healthcare, two main con-
tributions are proposed. First, a novel ensemble approach using trained
ST-TAGCN embeddings with context-aware PCA and K-means is pro-
posed. Secondly a novel semi-supervised feature importance score ‘Dim-
Wise’ is introduced, capable of ranking the relative importance of body
joints to provide an explainable description of clusters without requiring
prior knowledge of abnormal gait pathologies. This scoring metric allows
for the description via joint-ranking any gait pathology. In practice this
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means that any novel deviations in a user’s gait can be described with-
out explicit labels, and communicated in a manner that is explainable
to healthcare professionals who would use said data to inform their care
decisions.

The research question for this work can be summarized as: How can
an explainable machine learning framework be developed to both more
effectively cluster gait pathologies and be used to describe gait pathology
clusters in an interpretable way? To answer this question, the following
contributions are introduced:

1. A novel ST-GCN-based embedding approach, supplemented with
context-aware PCA to generate descriptive single-frame gait repre-
sentations for more accurate clustering. These embeddings achieve
the state-of-the-art accuracy and f1 scores in supervised gait abnor-
mality assessment when used with K-means.

2. A novel feature importance score named DimWise, capable of rank-
ing, per-cluster, the importance of features to provide an explain-
able description of clusters without requiring prior knowledge of the
pathologies in a dataset other than what the “regular” gait class is.

3. A pair of confidence and severity scores to communicate to a user
both the confidence the system has for its prediction and the esti-
mated degree of difference of a pathology from an individual’s regular
gait.

After an overview of the current state of at-home gait analysis systems
and an investigation into semi-supervised gait assessment, machine learn-
ing (ML) powered embedding systems and K-means feature importance
algorithms (see Section 2), a description of the novel embedding and fea-
ture importance calculation system is provided (see Section 3). Also pro-
vided is an overview of the datasets and pre-processing methodology used
prior to the implementation of the novel clustering system. In Section
4 there is an overview of accuracy comparisons with the current state-
of-the-art on three simulated gait pathology datasets on the supervised
assessment task (achieving between 4.53%-15% accuracy improvement),
alongside a discussion of the interpretability and explainability of the re-
sulting feature-scores. To conclude, limitations, such as the types of prior
information about gait pathology classes that are still required for this
methodology are given, as well as a discussion of future work to build on
this new direction of research (see Section 6).

2 Related Work

Machine learning (ML) for gait assessment is a broad field of work, en-
compassing simple methods such as K-means or Logistic Regression, to
advanced neural-network based methods utilizing Graph Convolutional
Networks and associated architectures. The most recent ML powered gait
assessment research is based on the ST-GCN. Originally developed in (Yu
et al., 2017) for traffic control modeling, it has since been extensively used
in gait recognition and assessment applications (Yin et al., 2023) (Zhang
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et al., 2023) (Guo et al., 2022) (Guo et al., 2021), assessing a wide vari-
ety of pathologies, such as freezing of gait events typical to Parkinson’s
Disease (Filtjens et al., 2022) and general dementia-based illnesses (Sabo
et al., 2022), as well as specific simulated gait abnormalities such as gait
asymmetry (Ortells et al., 2018) and more complex abnormalities such as
Ataxic or Lurching gait (Jun et al., 2020).

2.1 Machine Learning in Gait Assessment

The ST-GCN is the implementation of a convolutional network for
graph-based data, in which the input stream is convolved both along the
spatial dimension and then the temporal dimension of the input data in
different combinations and orders depending on the specific implemen-
tation. The spatio-temporal gait data using these models are typically
representations of individual body joints in space. These can be as sim-
ple as joint co-ordinates to more second-order data derived from these
co-ordinates, namely joint velocities or bone angle vectors. Much of the
recent gait assessment literature employs networks made up of these ST-
GCN blocks, for example Wang et al. (2022), who use a network made
up of 9 sequential ST-GCN blocks along with a 3-stream input paradigm,
feeding their network separate streams for joint position, velocity and bone
angles simultaneously to achieve up to 90% person recognition accuracy
on the CASIA-B dataset Yu et al. (2006).

Beyond person recognition, researchers in Guo et al. (2021) employ a
2-stream ST-GCN, using bone and joint features as inputs for the task
of Parkinsonian gait severity assessment, achieving 65.7% mean accuracy
across the 6 classes of degradation, indicating the feasibility of using gait
to distinguish between different stages of age-related disease. Researchers
in Yin et al. (2023) use another 3-stream approach along with selective
joint aggregation, early model fusion and a spatial dimension attention
module to obtain 92.6% mean accuracy across 2 simulated gait pathology
datasets (n = 22) demonstrating the feasibility of using ML models to
accurately distinguish between distinct pathologies.

(Lochhead and Fisher, 2025) develop an ST-GCN variant employing
temporal attention, using short-form gait instances segmented by gait cy-
cle and using joint velocities as the only input stream. Achieving 94.38%
on a complex simulated gait pathology dataset (n=15), they demonstrate
that gait assessment can be trained at far lower computational cost than
previous research (approximately 100 times faster per training epoch than
the second best model (Yin et al., 2023)), highlighting the feasibility of
real-world use in at-home systems. These results also demonstrate that
ST-GCN model architectures can be modified such that different types of
graphical input data perform more optimally. In summary, modern ML
and particularly GCN-based approaches to gait abnormality assessment
consistently achieve ¿90% accuracy and f1 score on a variety of bench-
marks, however these benchmarks are typically datasets recorded in lab-
oratory conditions as opposed to a more realistic ‘in-the-wild’ approach.
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2.2 Gait Pathology Datasets

Simulated gait datasets which are publicly available are typically recorded
and distributed using accelerometer or gyroscopic data instead of image-
based methods. As a result, there is a noted lack of open-source gait
datasets where entire gait skeletons can be reliably extracted.

In (Jun et al., 2020) and (Ortells et al., 2018), gait datasets are intro-
duced to specifically simulate age-related gait abnormalities (n = 10) and
more general gait asymmetries (n = 10) respectively. The former dataset
exhibits a total of 5 complex pathological gait patterns such as antalgic
and ataxic gait, acted out by healthy participants following a series of
instructions. The latter dataset has a total of 8 abnormalities intended to
be subtle and to cause slight asymmetries in gait rather than specific com-
plex gait symptoms. This is achieved by attaching either small weights
to the ankles or placing raised insoles in one or both shoes to modify gait
without the need for acting.

The Walking Gait dataset introduced in (Nguyen et al., 2018) follows
the trend of the latter, developing a dataset of subtle gait asymmetries
by modifying the shoes or attaching ankle weights to participants. In
the WeightGait dataset (Lochhead and Fisher, 2025), a mixture of these
paradigms are employed, developing a dataset including both benign ab-
normalities like limps, and also instances of gait freezing and shuffling
more akin to Parkinsonian gait. Furthermore, this dataset introduces
overlapping gait abnormalities, rather than treating each abnormality as
a distinct class. See table 6 which contains the specific gait abnormalities
present in the three datasets used in this research.

Due to the inherent privacy and ethical implications that accompany
producing vision-based gait datasets, the vast majority of research that
creates gait abnormality datasets either a) do not make their video-based
datasets open source as they contain vulnerable adults (Sabo et al., 2022),
b) create their datasets without using a visual medium such as accelerom-
eter data or pressure sensors (Filtjens et al., 2022) or c) publish vision-
based datasets of health adults simulating gait abnormalities to circum-
vent ethical concerns (Jun et al., 2020), (Ortells et al., 2018).

2.3 Unsupervised Gait Assessment and Embed-
ding Methods

Generalized methods of Machine Learning model explainability exist, such
as SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016).
SHAP estimates importance values by conducting extensive ablations on
the data, recalculating model performance after removing every combina-
tion of input features. This exhaustive search method is computationally
expensive and hence impractical for a method which would see use at
scale in a healthcare setting. This domain would benefit from requiring
less financial resources for processing data per patient and using process-
ing that could be carried out on the edge (for example in an at-home gait
monitoring application).

LIME, on the other hand, is a computationally simpler model where
an approximate model is estimated for each prediction and perturbed
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examples are assessed on that model to estimate feature importance on
classification. DimWise, however, does not rely on the generation of any
new data via perturbation, thus keeping it computationally less complex.
LIME is also prone to unstable results depending on the perturbation
strategy and is also constrained by the model selected for approximation.
Typically these are simple models with linear biases such as Logistic Re-
gression, making the method less effective for non-linear data such as gait
graphs.

To estimate feature importance after K-means clustering, researchers
in (Moshkovitz et al., 2020) used decision trees to group input data in each
cluster by feature to accurately describe each K-means cluster by commu-
nicating the most prominent value ranges for each feature per cluster.
Building on this premise, (Laber et al., 2023) provide an algorithm using
a penalty term to favor the synthesis of shallow decision trees to produce
explainable clusters with a limited number of attributes describing each
cluster.

While the majority of the gait assessment literature relies on labeled
datasets and supervised learning methods, some research investigates un-
supervised approaches, typically for the purpose of generating more ex-
plainable results. In (Young-Shand et al., 2023), researchers use PCA to
generate highly descriptive clusters from time-series knee flexion data to
assess post-operative mobility improvement in sufferers of Osteoarthritis.
From these PCA embeddings, they were directly able to measure statis-
tically distinct improvements in various gait attributes after surgery such
as flexion angle and moment.

Researchers in (Zhang et al., 2019) use an Autoencoder framework
to generate highly descriptive gait embeddings for multi-view person re-
identification, achieving state-of-the-art re-identification accuracy and en-
tanglement loss on the CASIA-B dataset. (Wang et al., 2018) use a
Multi-granularity network to produce a per-instance feature representa-
tion, achieving 96.6% rank 1 re-identification accuracy.

GCN architectures have a precedent for being used to generate fea-
ture embeddings for downstream tasks. (Duvenaud et al., 2015; Lu et al.,
2020), while autoencoders are a popular ML method for generating de-
scriptive feature embeddings of high dimensional data. This method lacks
explainability because the latent embedding vector values have no explicit
relation to any specific input values. GCN architectures are not typically
fully connected, meaning each node at layer l predominantly describes the
same node at layer l− 1, combined with varying levels of context from its
connected neighbors depending on the size of the node’s receptive field and
the convolutional operation being performed (attention-based, weighted,
mean, max, etc). Deeper GCN models further limit explainability, as the
receptive field at any given node expands with every additional layer and
the influence of the original input for the node is diluted with more global
context.

Models in the domain of unsupervised assessment exhibit limited per-
formance and evaluation, for example none of the reviewed literature eval-
uated the effectiveness of their models for explainability using domain
experts such as healthcare professionals. This illustrates a potent gap
in gait assessment research that unsupervised approaches are not only
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under-researched, but the quality of both performance and evaluation of
explainable methods require considerable improvement to reach a quality
suitable for clinical use.

3 Methodology

3.1 Datasets and Pre-Processing

Three gait datasets with simulated pathologies serve as benchmarks to
test the effectiveness and interpretability of the models across a variety
of simulated gait conditions. They provide a broad range of gait patholo-
gies across a total of 35 participants (15, 10 and 10 respectively) using
different methods of abnormality generation ranging from acting, attach-
able weights, shoe implants and environmental obstacles. These three gait
datasets are all of the datasets which exhibit synthetic gait abnormalities
as classes, are published as gait skeleton data, and are open source. A
comprehensive overview of the datasets and their attributes is provided
in table 1.

Table 1: The datasets selected for the experiments in section 4.
Dataset People Sequences Pathology

Count
Pathology Types

Pathological
Gait Dataset
(Jun et al.,
2020)

10 7200 5+1 normal A variety of acted gait patholo-
gies including Ataxic, Lurching and
stiff-legged gait.

Shoe (?) 10 160 8+1 normal 8 variations of modified shoe insoles
and 4 variations of ankle weights
from 1.5 to 3kg on each leg.

WeightGait
Dataset
(Lochhead
and Fisher,
2025)

15 5250 2+1 normal Overlapping pathologies including
gait freezing, limping, shuffling and
obstacles. Pathologies achieved
through a mix of acting and attach-
able ankle weights.

As these open-source datasets exist in different formats, with different
numbers of joint co-ordinates per-skeleton ranging from 18 to 25, it is
necessary to standardize the data so all three datasets are interpretable
by one model architecture. To this end, all datasets were reformatted to
fit the WeightGait dataset format in (Lochhead and Fisher, 2025) which
contains the least joints (n = 18): excluding fingers, toes and other likely
redundant information as indicated in the experiments in (Yin et al.,
2023). Their ablations found that a single joint for each foot and hand
instead of individual fingers and toes provided comparable performance
and reduced unnecessary variance. All gait samples were reformatted from
individual instances of a single skeleton to 7-frame gait cycle instances
connected into a single spatio-temporal graph, with the joint i at frame t
being connected to joint i at frames t+1 and t−1. 7 frames was observed
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to be the median gait cycle length in (Lochhead and Fisher, 2025) and
creating input graphs of this depth as opposed to entire gait videos of
150-200 frames (Yin et al., 2023) further reduces unhelpful variance in
the data and contributes to a significant efficiency boost by reducing the
number of channels necessary in the GCN model layers from 150 to 7.

The pre-processing format in (Lochhead and Fisher, 2025) (see figure
1) was followed on each dataset where feasible. This was followed exactly
for the WeightGait dataset, however for the latter two datasets all the
steps except for joint outlier removal, noise removal and skeleton normal-
ization were skipped as these operations had already been performed by
the original researchers prior to publishing their datasets.

Figure 1: Pre-processing illustration for the WeightGait dataset. All steps ex-
cept for joint outlier and noise removal had already been performed in the
Pathological (Jun et al., 2020) and Shoe datasets (Nguyen et al., 2018) prior to
release. Joint outlier and noise removal refers to bespoke functions for normal-
izing depth values from occlusion and resetting joints that are unnaturally far
from their connected key points. Normalization and scaling refers to a series
of operations which standardize the sizes and shapes of gait skeletons to ensure
similar heights and limb lengths to de-emphasize person variation within gait
abnormalities.

3.2 Machine Learning Model Embedding

Benchmarking reported in (Lochhead and Fisher, 2025) (Gholami et al.,
2023) (Hofmann et al., 2014) indicates that graph-based gait sequence
data is too complex and non-linear for non-deep learning methods such as
K-means and Logistic Regression to perform adequately (see the results
in table 2 for our own benchmark of these methods).

The ST-TAGCN network used in this work receives as input gait
graphs of 18 nodes representing the human body as a set of (vx, vy, vz) 3D
joint velocities. These 18-point gait graphs are temporally connected (i.e.
the nose joint at frame t is connected to the nose joint at frame t+ 1) to
gait graphs of 7 sequential frames representing a gait cycle, for an input
graph shape of 18× 7 nodes. The top layer of figure 2 is initially trained
with the one-hot encoding of the n gait anomaly classes as the output (see
section 4 for specific details of the model training method).

An ST-TAGCN model is trained using 70:20:10 train:validation:test
split of each of the three datasets for 120 epochs at a learning rate of
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0.001 and using mini-batches of 128 according to the architecture given
in Figure 2. The n×1 output vector is processed via Softmax (where n is
the number of classes of the dataset being used) to provide a prediction,
using the cross entropy loss function. Stochastic gradient descent was
the optimizer and the trained models were ran across 5 folds for cross-
validation to produce the results in Table 2.

To obtain the gait cycle embeddings, the fully-connected layers of the
trained ST-TAGCN model are removed, with the final ST-TAGCN mod-
ule’s output being reshaped from its typical 256× 7 to the same shape as
the input graph of 18× 7 3D nodes.

To convert the graph data into a linear vector usable in a K-means
model and process the data to accommodate greater interpretability, the
18 × 7 ST-TAGCN 3D output is converted into an 18 × 1 3D output,
producing an embedding the equivalent size and shape of a single frame.
It is hypothesized that the relatively shallow (3 modules) ST-TAGCN
network imbues the embedded features with local regional context with-
out sacrificing the dominant relation to its original input equivalent, as
indicated by the DimWise results in table 3 (See section 4 for a more
in-depth analysis). To achieve an 18 × 1 3D representation, PCA was
employed individually for each of the 18 joints on the 1× 7 3D temporal
dimension, using the first principle component to reduce the number of
3D components per-joint to one to produce an 18 × 1 embedding where
each joint is effectively an embedding of that joint’s behavior across the
entire gait cycle. Note, because of the three ST-GCN layers, the 18 × 1
vector does not have an exact correspondence with the 18 joints.

Figure 2: End-to-end diagram of the model used in this work. Three stacked
ST-TAGCN modules feed their output into a fully connected network for the
supervised task. Latent embeddings are taken from the last ST-TAGCN block
and passed through a context-aware PCA to produce highly descriptive and
compact single-frame gait embeddings. K-means clustering exposes clusters
with different behaviors.

Using only 1 principle component was chosen as the first component
would describe > 50% of the variance per group during testing and using
one component likewise simplifies interpretability for downstream tasks,

9



for example clustering. To determine clustering accuracy, all gait instance
embeddings are clustered according to pathology without supervision, us-
ing the existing gait instance labels to evaluate the clustering accuracy.

3.3 DimWise, Severity and Confidence Metrics

The DimWise score represents the importance of a body joint (feature) f
for cluster a (denoted as Iaf ), calculated for each of the 18 features in the
18 × 1 PCA embedding. Intuitively, the score is designed to account for
the variability of feature f in each cluster, the degree of overlap of each
cluster, and the degree of separation between clusters. The DimWise score
is defined as:

Iaf =
1

σ2
f

· (1 +Oar
f ) · (1 + |µr

f − µa
f )|) (1)

The first component 1
σ2
f

gives the inverse variance of feature f across

all instances within cluster a. (Ismaili et al., 2014) and (Liu et al., 2010)
reason that a lower variance of a feature within a cluster indicates that
this feature is consistent and thereby predictably belongs to a certain
cluster. Following this premise, a higher inverse variance correlates to a
higher importance value that feature f has on the structure of cluster a.

(1+Oar
f ) is the positively constrained overlap percentage between the

instances of abnormal cluster a and cluster r, where cluster r is the cluster
of the “regular” gait data for the dataset. This makes the DimWise metric
semi-supervised in the sense that only the cluster representing “regular”
gait must be known to perform these calculations. Oar

f is a measure of
how many cluster instances are closer to the centroid of cluster a than the
centroid of the regular cluster r:

Oar
f = 1− 1

n1 + n2
(
∑
x∈Ca

δf (x, µ
r
f , µ

a
f ) +

∑
x∈Cr

δf (x, µ
a
f , µ

r
f )) (2)

where

δf (x, Y, Z) = (mahY (xf , Y ) < mahZ(xf , Z)) (3)

µr
f and µa

f are the centroid values of feature f in the regular cluster r
and the abnormal comparison cluster a, and n1 and n2 are the number
of instances in clusters Ca and Cr respectively. Variable x denotes the
individual values being iterated in clusters Ca and Cr. Distances in this
context are calculated in Mahalanobis distance rather than Euclidean to
account for cluster variance and provide a more meaningful distance be-
tween values belonging to different clusters. Dividing by n1 +n2 provides
an overlap ratio describing the extent of intersecting points overlapping
on dimension f .

Subtracting from 1 constrains the result so that smaller amounts of
overlap give larger values for Oar

f , indicating a greater importance of that
feature. Adding 1 in (1+Oar

f ) ensures a number greater than 1 and hence
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ensures the multiplication produces a higher value rather than a lower
one, as Oar

f is constrained between 0 and 1.
The product of this inverse overlap value modifies the importance

score, producing a higher value corresponding with lesser overlap. The
higher the overlap between clusters Cr and Ca over dimension f , the less
conclusive feature f is to the distinction between the two clusters, thus
lowering the importance score.

Finally, (1 + |µr
f − µa

f )|) is the absolute distance between the cluster
centroids µr

f and µa
f along dimension f , augmented by one to ensure that

the equation is multiplied by a value ≥ 1. This constraint ensures a
positive correlation between a greater absolute gap between the clusters
on the dimension of feature f and a greater importance of feature f to
the distinction between the two clusters.

The corresponding DimWise values for six body regions (head, torso,
left arm, left leg, right arm, right leg) are summed to generate 6 scores,
which are then processed through a SoftMax function to provide each
body part’s value as a percentage of the total DimWise score.

This scoring metric forms the basis of the experiment in section 4
(see table 3 which demonstrates both the accuracy and relatability of
this scoring metric compared to the intuition of healthcare professionals).
To provide the model further domain-specific knowledge, DimWise scores
are modified with user-defined weights to give greater relative importance
to, for example, the leg joints contrasted with the nose joint (the weights
used are given in table 4 of the appendix). To gauge the descriptive power
of the DimWise metric for describing gait abnormalities, five healthcare
professionals across Medicine, Nursing, Occupational Therapy and Social
Care were invited to independently rank body regions by their importance
in gait assessment based on excerpts from the WeightGait dataset (see
section 4.)

While the DimWise score can be used to get an approximate descrip-
tion of the detected gait clusters, to improve its interpretability, two ad-
ditional metrics are introduced:

1. Confidence: the confidence that the clusters represent statistically
distinct gait pathologies.

2. Severity: the degree of difference of gait pathologies from regular
gait patterns.

The Confidence score, for each gait cycle instance, estimates how con-
fident the model is that gait instance i belongs to cluster Ca, as given
by:

Conf i
a =

(
max(dir, d

i
a)

Dist(Mr,Ma)

)
(4)

where dir and dia are the distances of centroids Mr and Ma from gait
instance i respectively. Confidence is calculated by finding the maximum
distance between instance i and one of the two centroids (i.e. max(dir, d

i
a))

and dividing by the total distance between clusters a and r given by
Dist(Mr,Ma). This formula quantifies the confidence of assigning sample
i to cluster a. “Regular”, in this context, is the cluster that contains the
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“default” class of each dataset. For example, in WeightGait, this would
be the class where the participant has no attached weights.

The Confidence metric provides one indication to an end-user as to
whether specific instances are likely to be in the cluster they are assigned,
whether that cluster is distinct enough to be considered its own class, or
whether this specific instance is likely to be influenced by noise. The Con-
fidence metric therefore provides a means of evaluating a cluster (through
taking the mean confidence of all instances in a cluster), not unlike ex-
isting metrics such as Jaccard or Rand indices, with the added benefit of
providing greater descriptive power in evaluating how similar any given
instance is to one of the clusters relative to others.

To complement the Confidence score, a Severity score is also intro-
duced. While the Confidence score reports the model’s confidence that an
instance belongs to a cluster and that the cluster itself is legitimate, the
Severity score quantifies the degree of difference between one cluster of
gait instances and the characteristics of “regular” gait. As before, there
is a Severity score for each gait cycle instance i.

The severity score for an instance i assigned to cluster C is given by:

Si
C =

dir
1

k−1

∑
j ̸=i

djr
(5)

dir is the distance from instance i’s assigned cluster to the “regular” class
centroid. This value is aggregated for all dkr . “abnormal” cluster dis-
tances. Dividing the distance dir by this normalization term gives higher
Severity scores for instances i that are relatively further from “regular”
than the other abnormal instances. Higher values, especially compared to
the average Severity scores given by instances in the regular class cluster,
give a further general indication that a cluster is indeed composed of a
unique gait pathology, and that said pathology is more or less different
from regular gait. (Figure 3, as discussed below, demonstrates this point.)
Observations on how the Confidence and Severity scores complement the
DimWise metric are given in section 4, including an analysis of how these
metrics might be used to interpret results.
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4 Results

4.1 Performance of the Proposed Model

Table 2: Comparison of different models across 3 datasets, including an ablation
of the proposed method via the last three model combinations in each section.
“Embed” indicates the use of feature embeddings taken from a trained ST-
TAGCN, and “PCA” indicates the use of the per-joint PCA strategy described
in Section 3.2.
Dataset Model Accuracy (%) F1 + STD

WeightGait
(Ours)
3 classes

Logistic Regression 52.77 0.53 ± 0.13
K-means 32.03 0.34 ± 0.07
ST-GCN 78.99 0.81 ± 0.32
ST-JAGCN 89.45 0.83 ± 0.39
ST-TAGCN 94.38 0.93 ± 0.34
Embed + K-Means 92.1 0.92 ± 0.6
Embed + PCA + K-means (Ours) 98.9 0.98 ± 0.51

Pathological
(Jun et al., 2020)
6 classes

Logistic Regression 44.7 0.44 ± 0.1
K-means 18.7 0.07 ± 0.07
GRU (Jun et al., 2020) 93.67 N/A ± N/A
ST-GCN 92.55 0.89 ± 0.81
ST-JAGCN 92.47 0.89 ± 0.52
ST-TAGCN 92.31 0.91 ± 0.67
ST-TAGCN embed + K-means 77.7 0.77 ± 0.66
Embed + PCA + K-means (Ours) 98.4 0.98 ± 0.45

INIT
(Nguyen et al., 2018)
9 classes

Logistic Regression 13.1 0.11 ± 0.09
K-means 10.2 0.1 ± 0.11
ST-GCN 75.23 0.72 ± 1.87
ST-JAGCN 77.03 0.72 ± 1.34
ST-TAGCN 77.8 0.74 ± 1.04
ST-TAGCN embed + PCA 58.8 0.55 ± 0.77
Embed + PCA + K-means (Ours) 93.8 0.93 ± 0.68

First, we assess the reliability of the embeddings being produced by the
trained ST-TAGCN models, which are then further processed using PCA
to transform the 7-frame gait cycle representations into single-frame pro-
cessed embeddings. The proposed method is compared using existing
benchmarks across the 3 datasets, with accuracy being computed as the
average classification accuracy across all classes in each dataset, including
the “regular” gait class. The ST-TAGCN model used for the proposed
embedding is identical in structure to the one used in (Lochhead and
Fisher, 2025) for which a direct comparison is provided.

Table 2 shows the improved accuracy of the proposed ensemble PCA-
neural network embedded approach with K-means clustering, compared
to both traditional and state-of-the-art classification methods for gait ab-
normality assessment. Across all 3 datasets used as benchmarks, the
proposed approach achieves a mean accuracy increase of (4.52%, 4.73%,
and 16%) respectively for the WeightGait (Lochhead and Fisher, 2025),
Pathological (Jun et al., 2020) and INIT (Nguyen et al., 2018) datasets.
To our knowledge, this is the first benchmark for the INIT dataset using
the skeletal joint data as opposed to the point-cloud data also provided in
the dataset. Reducing the complexity of the feature space, in this case by
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using the proposed grouped PCA strategy prior to clustering, yields an
improvement in describability. This is illustrated by the boost in accuracy
across the ablations to the proposed method, as shown in table 2. The pro-
posed base model outperforms the multi-stream input approaches, and,
with the inclusion of PCA, outperforms the best single-stream approach.

4.2 Evaluation of the DimWise Metric

While section 3.3 provides a mathematical justification for the feature
importance calculations, the purpose of the next experiment is to demon-
strate the practicality of this feature importance formula in application.

Table 3: Predicted order of model joint-importance compared with the mode
of the predictions from five medical professionals for the abnormalities present
in the WeightGait Dataset. 1 (light green) denotes the most important joint
and 6 the least (dark red). The color coding is used to illustrate the similarity
of our method’s predictions to the human experts, with clumps of similar colors
corresponding to areas of agreement.
Predictor AbnormalityHead Torso Left Arm Right Arm Left Leg Right Leg
ML Model None 4 3 5 6 2 1
Health pro-
fessional

None 3 5 6 4 1 2

ML Model Limping
left leg

4 3 6 5 1 2

Health pro-
fessional

Limping
left leg

3 6 5 4 1 2

ML Model Shuffling
gait

1 6 4 5 2 3

Health pro-
fessional

Shuffling
gait

1 6 5 4 2 3

Six videos from the WeightGait Dataset were shown to the recruited
healthcare professionals, two of each gait type, who were asked to rank
from 1-6 the importance of each joint region in table 3 to their understand-
ing of the nature of the gait exhibited in each video. To compare results,
the mean of each participant’s scores across both videos were taken, with
the resulting values ranked 1-6 by final value in descending order.

While there is some degree of variability in the comparison, especially
toward the lower end of the ranking with the less “important” joints, 33%
of DimWise calculations overlap exactly with health professional predic-
tions, rising to 83% when accounting for predictions that are off by a
single rank (for example cases of ranking left and right arms with 4 and 5
versus 5 and 4 for shuffling gait). Full DimWise scores for the other two
datasets can be found in table 5 of the appendix.

14



4.3 Analysis of the Confidence and Severity Score

Figure 3: Mean of Severity scores for the pathology clusters in the WeightGait
Dataset.

The average confidence scores per-class across the three datasets calcu-
lated using the formula in equation 3.3 were 73.6%, 67% and 65.07% for
WeightGait, Pathological Gait and INIT respectively. While these results
generally indicate positive confidence, losses in confidence can partly be
explained by higher numbers of classes to distinguish from (3 in Weight-
Gait comapared to 9 in INIT) or lower confidence scores for more subtle
classes bringing the average down (small and medium pad classes average
64% vs 72.5% for the ankle weight classes in the INIT dataset). The full
table of these results can be seen in table 5 of the appendix.

The results in figures 3 and 4 show a consistent increase in severity
scores relative to the regular cluster in both datasets, illustrating the
increasing severity of progressively more noticeable pathologies. The only
slight inconsistency is in the case of the INIT dataset, in part likely due
to the subtlety of the difference between the pathologies themselves.

15



Figure 4: Mean Severity scores for the pathology clusters in the Walking Gait
Dataset.

The severity score, combined with the DimWise metric, helps build a
general picture of each cluster’s gait anomaly without requiring explicit
domain knowledge about the abnormality itself. For example, with the
limping left leg class in WeightGait, the results show that the difference
from the regular gait is significant given the severity score, indicating a
notable difference in gait, and the DimWise scores show that the main
components of these differences are manifested in the left leg.

5 Conclusion

This paper has introduced a more accurate method for pathological gait
classification, which includes some medically-validated joint-level gait ab-
normality explainability. Also introduced was a method for quantifying
feature importance in unknown clusters as a means of producing pathol-
ogy descriptions. To achieve this, we proposed a novel framework for
measuring per-cluster feature importance using the novel DimWise score,
alongside severity and confidence scoring mechanisms to reinforce the in-
terpretability of the results. This DimWise metric provides highly ex-
plainable outputs without requiring prior labels of pathologies or extensive
combinations and comparisons of features, making this method especially
useful in a healthcare context where computing power and data are lim-
ited.

Using an embedding of a gait sequence generated from an ensem-
ble method of a trained ST-TAGCN model and then condensed through
PCA to produce a single-frame representation, the ability to produce im-
proved state of the art gait assessment accuracy is demonstrated. This
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was validated across three synthetic gait abnormality datasets by 4.52%,
4.73%, and 16% when clustering the resultant embeddings using a K-
means model. The effectiveness of the three introduced metrics are il-
lustrated, describing the nature of gait pathologies without labels via a
ranking of feature importance by body region. The accuracy and intu-
ition of the DimWise metric specifically was verified via comparison of
joint ranking with 5 healthcare professionals.

6 Discussion

One limitation of this work is that the proposed method requires prior in-
formation regarding how many pathology classes there are, which may not
be known in practice and could lead to unstable results. In terms of eval-
uation, despite the range of opinions across the medical community being
in broad agreement with the rankings provided by the model, a larger
study to further reinforce these claims would also benefit the technology.
To more convincingly test this technology in the field of gait assessment,
at-home studies would be a logical next step, attempting to build gait pro-
files in people over a series of recording periods without explicitly labeled
pathologies.

There is a high variability in performance of the DimWise score be-
tween the top and bottom ranked joints when compared with rankings
provided by experts. This can be explained intuitively as, in the case of
limping of the left leg, the torso or individual arms in determining this
pathology are unimportant. For both humans or the proposed model,
ranking these remaining regions is therefore difficult and irrelevant. The
most vital part of the feature importance measurement in this domain
would likely be the first two body parts, on which DimWise achieves com-
plete parity with human professionals, bar a single difference in ranking
in the left and right legs for the “no abnormality” column.

Compared to prior work (Laber et al., 2023; Young-Shand et al., 2023;
Wang et al., 2018), the three metrics introduced in this study offer a more
nuanced characterization of gait pathologies, specifically by localizing ab-
normalities to specific body parts and quantifying deviations relative to an
individual’s typical gait. This represents a novel contribution, as existing
methods often trade off between model sophistication and interpretabil-
ity. For instance, (Laber et al., 2023) employs decision trees to generate
cluster-based feature descriptions, but fails to capture the relative im-
portance of features across clusters. Similarly, (Young-Shand et al., 2023)
demonstrates that PCA embeddings can yield high predictive performance
for mobility markers, yet the resulting representations are abstract and
difficult to communicate in clinical settings. Other studies that focus on
richer gait embeddings (Wang et al., 2018; Ismaili et al., 2014) often im-
prove performance but still fall short in providing interpretable insights.

The prime future use of this system would be in precision healthcare;
namely in at-home gait monitoring to provide remote monitoring of in-
dividuals either a) recovering from injury at home or b) deteriorating
from an age-related disease like Alzheimer’s. This would facilitate preci-
sion care without needing to sacrifice additional independence that comes
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with institutionalization in hospital or a care home. Future work includes
optimization and improvement of the ensemble embedding pipeline. For
example, investigating the degree of geometric information preserved in
the embedding from the original nodes and varying the PCA methodology
with more components per joint, or the removal of further joints like the
eyes and ears to improve performance further.
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Table 4: The weights used to regulate the relative importance of joints in each
joint region for the DimWise calculations.
Body Part No. Joints Weight
Head 4 0.4
Torso 2 0.8
L.Arm 3 0.3
R.arm 3 0.3
L.Leg 3 0.6
R.Leg 3 0.6
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The weights in Table 4 were estimated as a means of imbuing the model
with human intuition as to the importance of body parts for determin-
ing gait, for example eye-joints are intuitively less important than knee
joints. The additional benefit for this weighting scheme is to dilute the
importance of joints in regions with more joints than others, for example
the head contains more joints than the left leg, so a simple aggregation
may provide a faulty picture of genuine importance to the model.

Figure 5 provides the results for Mean severity by pathology type for
the Pathological Gait Dataset, to complement the similar charts in the
main paper.

Figure 5: Mean Severity scores for the Pathological Gait dataset.
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Table 5: The ranking of each body part across all pathologies in the datasets.
Rankings from 1-6 are in brackets, with the outside values denoting the DimWise
values. Values are rounded so rows may not precisely sum to 100.
Data Abnormality Head Torso L.Arm R.Arm L.Leg R.Leg
(Lochhead and
Fisher, 2025)

Regular 12 (4) 14 (3) 9 (5) 4 (6) 22 (2) 36 (1)

(Lochhead and
Fisher, 2025)

Limping left leg 10 (4) 14 (3) 6 (6) 9 (5) 39 (1) 19 (2)

(Lochhead and
Fisher, 2025)

Shuffling gait 22 (2) 10 (6) 12 (5) 14 (4) 23 (1) 16 (3)

(Jun et al.,
2020)

None 12 (4) 15 (3) 8 (5) 6 (6) 27 (2) 30 (1)

(Jun et al.,
2020)

Antalgic 17 (4) 20 (3) 3 (6) 7 (5) 30 (1) 21 (2)

(Jun et al.,
2020)

Stiff-legged 18 (3) 10 (6) 12 (4) 11 (5) 21 (2) 25 (1)

(Jun et al.,
2020)

Lurching 14 (4) 20 (2) 9 (5) 9 (6) 26 (1) 19 (3)

(Jun et al.,
2020)

Steppage 13 (3) 11 (4) 10 (5) 9 (6) 31 (1) 24 (2)

(Jun et al.,
2020)

Trendelenburg gait 13 (4) 15 (3) 10 (6) 11 (5) 23 (2) 26 (1)

(Ortells et al.,
2018)

None 17 (2) 16 (3) 11 (6) 12 (5) 13 (4) 28 (1)

(Ortells et al.,
2018)

L. foot, small pad 20 (2) 19 (3) 8 (6) 13 (5) 17 (4) 21 (1)

(Ortells et al.,
2018)

L. foot, med pad 17 (2) 16 (5) 7 (6) 16 (3) 25 (1) 16 (4)

(Ortells et al.,
2018)

L. foot, large pad 15 (4) 19 (2) 9 (6) 16 (3) 25 (1) 14 (5)

(Ortells et al.,
2018)

L. foot weight 18 (3) 19 (2) 9 (6) 14 (4) 24 (1) 13 (5)

(Ortells et al.,
2018)

R. foot, small pad 13 (4) 14 (3) 14 (2) 12 (5) 9 (6) 35 (1)

(Ortells et al.,
2018)

R. foot, med pad 11 (4) 10 (5) 16 (2) 9 (6) 13 (3) 37 (1)

(Ortells et al.,
2018)

R. foot, large pad 9 (5) 14 (2) 13 (3) 8 (6) 11 (4) 41 (1)

(Ortells et al.,
2018)

R. foot weight 16 (3) 23 (2) 12 (4) 10 (6) 12 (5) 24 (1)
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Table 6: The mean severity and confidence values by pathology type for the 3
datasets. The means were taken from 10 runs of each dataset.
Dataset Abnormality Severity

(Mean)
Confidence
(Mean)

WeightGait (Lochhead and Fisher, 2025)
Regular 0.98 N/A
Limping left leg 2.05 76.0
Shuffling gait 2.39 80.21

Pathological Gait (Jun et al., 2020)

None 1 N/A
Antalgic 1.5 89.94
Stiff-legged 1.32 85.86
Lurching 1.33 75.82
Steppage 1.42 80.76
Trendelenburg gait 1.5 80.24

Walking Gait Dataset (Ortells et al.,
2018)

None 1.01 N/A
L. foot, small pad 1.18 81.84
L. foot, medium pad 1.34 88.08
L. foot, large pad 1.49 87.58
L. foot ankle weight 1.41 84.36
R. foot, small pad 1.28 99.4
R. foot, medium pad 1.56 80.58
R. foot, large pad 1.49 90.09
R. foot ankle weight 1.46 83.47
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